JP2004155230A - Bumper beam for automobile - Google Patents

Bumper beam for automobile Download PDF

Info

Publication number
JP2004155230A
JP2004155230A JP2002320452A JP2002320452A JP2004155230A JP 2004155230 A JP2004155230 A JP 2004155230A JP 2002320452 A JP2002320452 A JP 2002320452A JP 2002320452 A JP2002320452 A JP 2002320452A JP 2004155230 A JP2004155230 A JP 2004155230A
Authority
JP
Japan
Prior art keywords
wall portion
bumper beam
collision
side wall
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002320452A
Other languages
Japanese (ja)
Other versions
JP4216045B2 (en
Inventor
Takaharu Amano
敬治 天野
Yoshiya Suzuki
義也 鈴木
Hideo Kamitsuma
英雄 上妻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unipres Corp
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Unipres Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd, Unipres Corp filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2002320452A priority Critical patent/JP4216045B2/en
Priority to US10/690,576 priority patent/US6893062B2/en
Priority to EP03024506A priority patent/EP1415865B1/en
Priority to DE60304416T priority patent/DE60304416T2/en
Priority to MXPA03009897A priority patent/MXPA03009897A/en
Priority to CNB2003101046894A priority patent/CN1265988C/en
Publication of JP2004155230A publication Critical patent/JP2004155230A/en
Application granted granted Critical
Publication of JP4216045B2 publication Critical patent/JP4216045B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bumper beam structure for minimizing maximum load generated at the moment of collision. <P>SOLUTION: The bumper beam for an automobile is composed in a "θ-shaped" cross section of a top wall, a bottom wall opposed to the top wall, a pair of lateral walls connecting the top and bottom walls at opposite ends, and a connection rib provided intermediate between the top and bottom walls and connecting the lateral walls. The top wall is thicker than the bottom wall, both corners at opposite ends of the top wall are curved with a radius of curvature of 0.1-0.3 of the length of the top wall, and both corners at opposite ends of the bottom wall are curved with a radius of curvature of 0.5-2.0 of the thickness of the bottom wall. The bumper beam is formed of an extrusion hollow member made of aluminum alloy. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、自動車のバンパーを補強するバンパービームに関するものである。
【0002】
【従来の技術】
一般に、自動車のバンパーは、車体に連結されるとともにバンパーの強度を保つバンパービームと、このバンパービームに取り付けられて車体の外観を整える樹脂製の表皮材とから概略構成されている。そして、このバンパービームは燃費低減のために軽量化が図られており、近年では軽合金製とする例が多くなってきている。例えば、図8に断面図として示すバンパービーム30は、アルミ合金材で押し出し成形されたバンパービームの一例で、“日の字型”断面に押し出し成形された中空構造を有している。すなわち、互いに平行な上壁部11と底壁部12、及びこれらと直角方向に互いに平行な側壁部13,14と、上壁部11と底壁部12と平行して、側壁部13,14を2分するように中央に設けられた連結リブ15から構成されている。
【0003】
バンパービーム30は、実際にはサイドメンバー16を介して車両17の前面または後面に取り付けられ、衝突の際には衝突面側の側壁部13が図の左方矢印の方向からの衝撃力Fを受け止める面となる。従って“日の字型”断面構造の部材の内でも側壁部13が最も厚さが厚く作られている。また、図8の例では上壁部11及び底壁部12と、連結リブ15は同じ厚さに作られており、図の左方からの衝撃力を均等に受け止めて衝撃力をやわらげる構造となっている。
このようなバンパービームは軽量化を目的として7000番系高力アルミニウム合金等で作成される。通常、バンパービームには発泡材等からなる緩衝材が取り付けられ、表面はバンパーカバーで覆われている。
【0004】
バンパービームは自動車の衝突等により外部から衝撃力が加わった時に、その衝撃エネルギーをバンパービーム材料の塑性変形により吸収し、他の部材の損傷を回避すると同時に人体の安全を確保するための重要な部材である。
ところで、自動車の衝突の形態には壁状障害物がバンパービームの壁面の全面に比較的に高速で衝突する形態と、柱状障害物がバンパービームの壁面の一部に比較的に低速で衝突する形態とがある。
前者の衝突形態では、衝突による衝突エネルギーは乗員の負傷やバンパービーム取り付け部材の座屈損傷を招くような大きなものであることが多く、バンパービームに対しては徐々に変形崩壊して大量の衝突エネルギーを吸収できるものであることが望まれている。
一方、後者の衝突形態では、乗員の負傷や取り付け部材の損傷を招くような大きな衝突エネルギーを有する場合は少なく、バンパービームに対しては変形崩壊して衝突エネルギーを吸収するよりも、衝突荷重で変形し難い剛性に富んだものであることが望まれている。
【0005】
バンパービームには、軽量化を図りつつも形材の曲げ剛性と曲がる時のエネルギー吸収量を大きくすることが求められている。断面形状の改良によりこれらの特性を改良する提案が開示されている(例えば、特許文献1参照。)。
この提案においては、長さ方向に一様な矩形断面形状のアルミ合金形材からなり、衝突方向に対して垂直な壁面を有するように車体側に位置する壁面の両端部が車体に取り付けられるバンパービームであり、上記アルミ合金形材の車体側に位置する角隅部が板厚の2.5倍以上の半径Rで湾曲をなしているバンパービームが開示されている。
具体的には図9に示すように、バンパービーム40は、バンパーカバー内に設けられたアルミ合金形材からなっており、車体42側に位置する壁面41aがサイドメンバー44を介して車体42に支持されている。上記のアルミ合金形材は、長さ方向に一様な例えば“日”字形の矩形断面形状に形成されており、一対の横設リブ41b、41bと、両横設リブ41b、41bの両端に接続された縦設リブ41a、41aと、縦設リブ41a、41a間に接続された補強リブ41cとからなっている。
【0006】
上記のバンパービーム40は、縦設リブ41a、41aが衝突方向に対して垂直となると共に、横設リブ41b、41bが衝突方向に対して平行となるように設けられている。そして、車体42側の角隅部41d、41dは、縦設リブ41a、41aの長さの1/6以下の範囲において板厚の2.5倍以上の半径Rで湾曲されている。一方、バンパービーム40の衝突側の角隅部41e、41eは、板厚程度の半径rで略直角に曲折されている。これにより、バリアー衝突時においては、湾曲された角隅部41d、41dを座屈の起点に位置させることによって、発生荷重を抑制しながら座屈を促進し、衝突エネルギーを効率良く吸収するようになっている。また、ポール衝突時においては、湾曲された角隅部41d、41dを座屈の起点の反対側に位置させることによって、大きな発生荷重を生じさせるようになっている。尚、半径Rを縦設リブ41a・41aの長さの1/6以下に制限した理由は、1/6を越えるとサイドメンバ44への取り付けが困難になると共に吸収エネルギーが低下するからである。
この構造によれば、上記の二つの衝突形態に対応できるような、徐々に変形崩壊して大量の衝突エネルギーを吸収できる特性と、衝突荷重で変形し難い剛性に富んだ特性とを兼ね備えることができるとされている。
【0007】
【特許文献1】
特開平8−80789号公報 (第1頁、第2図)
【0008】
【発明が解決しようとする課題】
しかしながら、バンパービームがあまり強すぎると、バンパービームの座屈と共に車体の取り付け金具であるサイドメンバーを損傷させてしまうことになる。サイドメンバーは衝突の瞬間に発生する最大荷重によって損傷する。
例えば、図8に断面で示すような全角隅部が直角に曲折されたバンパービームでは、図10に示すように衝突によりバンパービームが3.5〜4.5mm塑性変形する間の平均荷重は50kN程度であるのに対して、衝突直後のバンパービームの変位量が1mmに達する以前の0.5mm程度塑性変形する間に、最大250kNもの最大荷重が発生し、その後はほぼ一定の潰し荷重で変形していく。この場合には最大荷重は平均荷重の5.88倍にも達する。
この最大荷重を低くすることができれば、サイドメンバーを損傷させることなくバンパービームの変形崩壊のみで衝突エネルギーを吸収することができる。
従来はバンパービームが最大3.5〜4.5mm塑性変形する間に、発生荷重が大幅な変動を伴わない場合の最大荷重と吸収エネルギーの関係を問題としており、衝突の瞬間に発生する最大荷重を下げる試みはなされていなかった。
人身の安全を確保するためにも、衝突の瞬間に発生するこの最大荷重のピークをできる限り低くすることが重要である。
本発明の目的は、上記衝突の瞬間に発生するこの最大荷重のピークをできる限り低くし、バンパービームの取付け金具であるサイドメンバーの損傷を防ぐことのできるバンパービームの構造を提供することにある。
【0009】
【課題を解決するための手段】
上記課題を解決するため普通乗用車のバンパービームの断面形状を種々検討した結果、サイドメンバーが損傷するのは長さ100mmのバンパービーム試片に加わる圧潰荷重が150kNを越える場合であることが判明した。衝突の瞬間に発生する最大荷重を150kN以下に抑えれば、バンパービームの塑性変形により、サイドメンバーを損傷させることなく衝突エネルギーを吸収できることが判明した。バンパービームの構造を、衝突の後半に発生する衝撃荷重が低くなり過ぎる構造にしてしまうと、バンパービームとしてのエネルギー吸収能が低下してしまうことも判明した。
従って、図10に示す潰し荷重−変位曲線において、最大ピークのみを引き下げて波形をより矩形波形に近づけることができれば、サイドメンバーを損傷させることなくバンパービームの塑性変形により衝突エネルギーを吸収できることになり、エネルギー吸収材として安定した性能を有するバンパービームとすることができると考えた。そこでバンパービームの断面形状を種々検討した結果、衝撃を受ける面の部材の厚さを厚くし、かつ衝撃を受ける部材面の両端に特定の曲率半径を付与させることにより、上記目的を達成できることを見い出し本発明に至った。
すなわち、本発明のバンパービームでは、断面形状が上壁部と、上壁部に対向する底壁部と、前記上壁部および底壁部の両端部を連結する一対の側壁部と、前記上壁部および底壁部の中間に設けられて2つの側壁部を連結する連結リブとからなる日の字型を呈し、衝突面側の側壁部の厚さが車体取付け面側の側壁部の厚さよりも厚く、衝突面側の側壁部の両角隅部は前記衝突面側の側壁部の長さの0.1〜0.3倍の長さの曲率半径Rで湾曲しており、かつ車体取付け面側の側壁部の両角隅部が該車体取付け面側の側壁部の厚さの0.6〜1倍の長さの曲率半径rで湾曲したアルミニウム合金製の押し出し中空部材からなるバンパービームとした。この断面形状は衝突面側の側壁部の長さLが、上壁部及び底壁部の長さLの2倍よりも短い時に適用される。
【0010】
一方、側壁部の長さLが、上壁部及び底壁部の長さLの2倍よりも長い時には、断面形状が上壁部と、上壁部に対向する底壁部と、前記上壁部および底壁部の両端部を連結する一対の側壁部と、前記上壁部および底壁部の中間に設けられて2つの側壁部を連結する連結リブとからなる日の字型を呈し、衝突面側の側壁部の厚さが車体取付け面側の側壁部の厚さよりも厚く、衝突面側の側壁部の両角隅部は前記底壁部の長さの0.2〜0.6倍の長さの曲率半径で湾曲しており、かつ車体取付け面側の側壁部の両角隅部が該車体取付け面側の側壁部の厚さの0.6〜1倍の長さの曲率半径で湾曲したアルミニウム合金製の押し出し中空部材からなるバンパービームとする。
バンパービームを上記のように構成することにより、衝突した瞬間に発生する最大荷重のピークを効果的に低下させることができ、サイドメンバーを損傷することなしに、衝突エネルギーをバンパービームで吸収し、乗員に与える損傷を飛躍的に少なくすることができるようになる。
【0011】
本発明においては、前記上壁部と連結リブ及び底壁部の厚さを全て等しく構成することができる。
連結リブの厚さを底壁部の厚さよりも薄く構成する場合には、前記連結リブの厚さは前記底壁部の厚さの0.6〜1倍とすることが好ましい。
連結リブをこのように構成することにより、高い剛性を有すると同時に、衝突時に発生する最大ピーク荷重の飛躍的に低減させることができるようになる。
本発明においては、前記 衝突面側の側壁部の両角隅部の曲率半径Rを10〜30mmとするのが良い。
最大ピーク荷重の飛躍的な低減効果と、押出し加工の容易さを考慮した結果、最も実用的な値である。
【0012】
【発明の実施の形態】
次に図面を用いて本発明を具体的に説明する。なお、以下の図面においては判りやすく説明するため、各部の縮尺は必ずしも正確には描かれていない。
(第1の実施形態)
図1は本発明のバンパービームの第1の実施形態を示す断面図である。図に示すように本発明のバンパービーム10は、断面形状が上壁部1と、上壁部1と対向する底壁部2と、上壁部1および底壁部2の両端部を連結する一対の側壁部3、4と、上壁部1および底壁部2の中間に設けられてこれら2つの部位を連結する連結リブ5とからなる“日の字型”を呈するように構成して剛性を確保するようにしている。このバンパービーム10は、紙面左側の側壁部が衝突面側の側壁部3であり、矢印Fで示す衝突の際の衝撃力Fが加わる。紙面右側の側壁部が車体取付け面側の側壁部4であり、サイドメンバー6を介して車体7に取り付けられる。図1は、側壁部3,4の長さが上壁部1及び底壁部2の長さの2倍よりも短くて、上壁部1、底壁部2及び連結リブ5の厚さが全て等しい場合を示している。
【0013】
ここで、図2は本発明のバンパービームの各部の寸法を示す図であり、側壁部の長さをL、上壁部の長さをL、衝突面側の側壁部の厚さをt、車体取付け面側の側壁部の厚さをt、上壁部及び底壁部の厚さをそれぞれt、t、連結リブの厚さをtで示している。
この図2を用い上記の関係を説明すれば、L <2L で、かつt =t =t の場合を示していることになる。
本実施形態では衝突面側の側壁部3の厚さを車体取付け面側の側壁部4の厚さよりも厚くして衝突エネルギーを受け止め、上壁部1、底壁部2、及び上壁部1と底壁部2との中間に設けられた連結リブ5とで衝撃エネルギーを分担して吸収するようになっている。
【0014】
実用的な各部の厚さは、例えば上壁部1、底壁部2及び連結リブ5の厚さは2.0mm〜3.0mm、衝突面側の側壁部3の厚さは2.0mm〜4.5mm、車体取付け面側の側壁部4の厚さは2.0mm〜3.5mm程度が適当である。
各部の寸法を示した図2を用いて上記を説明すれば、本第1の実施形態においてはt>t、t=t=t であり、各値の適正値は、t=2.0mm〜4.5mm、t=2.0〜3.5mm、t=t=t=2.0mm〜3.0 mmとなる。
【0015】
図1は衝突面側の側壁部3及び車体取付け面側の側壁部4の長さが上壁部1及び底壁部2の長さの2倍よりも短い場合を示した。バンパービームの圧潰強度を調整する手段としては、図3に示すように、逆に衝突面側の側壁部3及び車体取付け面側の側壁部4の長さLを上壁部1及び底壁部2の長さLの2倍よりも長くすることも考えられる。この場合各部の厚さは、上記の場合と同様でよい。ただし、後に詳述するように隅部の曲率半径Rを変える必要がある。
【0016】
本実施の形態においては、衝突面側の側壁部3の両角隅部と車体取付け面側の側壁部4の両角隅部は、それぞれ曲率半径R,rをもって湾曲して加工する必要がある。“日の字型”の断面の各角隅部に曲率半径を持たせることにより、衝突した瞬間に発生する最大荷重のピークを劇的に低下させることが可能となる。
曲率半径の大きさはごく小さくても最大荷重のピークを低下させる効果を有するが、材料の加工の観点からすれば板厚と同程度以上に大きくするのが実用的である。曲率半径の大きさが大きくなるほど最大荷重のピークを低下させる効果も高くなるが、曲率半径があまり大きくなっても効果は飽和する。適正な曲率半径の大きさは、“日の字型”の断面の長さに関係し、図1に示すように、衝突面側の側壁部3及び車体取付け面側の側壁部4の長さが上壁部1及び底壁部2の長さの2倍よりも短い場合には、衝突面側の側壁部の長さの0.1〜0.3倍の長さの曲率半径とするのが良い。すなわち図2においてL <2L で、かつt=t =t の場合には、曲率半径Rは
R=(0.1〜0.3)×L・・・・・・(1)
とする。
【0017】
一方、図3に示すように、衝突面側の側壁部3及び車体取付け面側の側壁部4の長さが上壁部1及び底壁部2の長さの2倍よりも長い場合には、上壁部1及び底壁部2の長さの0.6〜1倍の長さの曲率半径とするのが良い。すなわち図2においてL >2L で、かつt =t =t の場合には、曲率半径Rは
R=(0.6〜1.0)×L・・・・・・(2)
とするのが適当である。
【0018】
車体取付け面側の側壁部4の両角隅部の曲率半径rは、直接衝撃を受けないので加工精度も配慮して、側壁部4の板厚程度に僅かな曲率半径を与えておけばよい。各部の寸法を示した図2を用いて説明すれば、
r=(0.6〜1)×t・・・・・・(3)
となる。
【0019】
バンパービームを上記のように構成すれば衝突した瞬間に発生する最大荷重のピークを効果的に低下させることができる。
例えば、図1に示すように、図2に示す寸法図においてt=4.5mm、t=3.5mm、t= t=t=2.6mm、L=100mm、L=75mmの断面形状が“日の字型”をなしたアルミニウム合金製のバンパービームを押出し成形加工により作成し、長さ100mmに切断して試験片とし、図1の矢印で示す衝突方向に試験片を押し潰す圧壊試験を行って、衝突時の最大荷重と変位との関係を調べた。曲率半径Rは0mm,5mm,及び10mmとした。測定結果を図4に示す。
【0020】
図4は衝突実験におけるバンパービームの変位量と潰し荷重の関係を示したものである。図に示すように衝突直後の変位量が1mmに達する以前に最大荷重が発生し、その後はほぼ一定の潰し荷重で変形していく。図4の曲線jは“日の字型”バンパービームの上壁部両端の曲率半径Rを0(曲率半径ナシ)にした場合の変位量曲線であって、変位量が約0.5mm程度の時に250kNの最大荷重が発生している。これに対して曲率半径Rを5mmとした曲線aや、曲率半径Rを10mmとした曲線bでは、変位量1mm前後の時に最大荷重が約150kN前後と大幅に低下して発生し、曲線はより矩形波に近づいている。
このように“日の字型”バンパービームの上壁部両端に曲率半径Rを付与することにより衝突時に発生する最大荷重を大幅に低減させることができ、サイドメンバーを損傷することなくバンパービームで衝突エネルギーを有効に吸収することができるので、乗員の安全確保に極めて有効となる。
【0021】
図5は上記と同じ各部寸法のバンパービームについて上壁部両端の曲率半径Rを20,30,40mmに変化させて、同様な最大荷重の測定を行った結果を示している。図中曲線cは曲率半径Rが20mmの場合を、曲線dは曲率半径Rが30mmの場合を、曲線eは曲率半径Rが40mmの場合をそれぞれ示したものである。
図に示すとおり、曲率半径Rを大きくすると最大荷重は約100kNと一層低くなり、より矩形波に近づくものの、曲率半径Rが30mmを越えると最大荷重の低下はほぼ飽和してくる。従ってRの上限値は40mmとするのが適当である。Rの下限値は最大荷重は約100kN以下となる10mm程度である。より好ましいRの範囲は、前記(1)式で示されるR=(0.1〜0.3)×Lの範囲で選択すれば良く、実用上は10〜30mm程度である。
【0022】
(第2の実施形態)
次に、第1の実施形態の変形として“日の字型”断面の上壁部1と底壁部2とは同じ厚さとし、連結リブ5の厚さを薄く変化させた場合の、最大荷重と変位との関係を図6に示す。
図6において、“日の字型”断面各部位の寸法はt <t=tとした以外は前記第1の実施例の場合と同様で、衝突側の側面部両端の曲率半径Rは20mmとした。図中曲線cは第1の実施形態の図5に示す上壁部と底壁部及び連結リブの各厚さが全て等しい(t =t=t=2.6mm)場合と同じである。また、図中曲線fは連結リブの厚さを15%薄くして、t=t=2.6mm、t =2.2mmとした場合であり、曲線gは連結リブの厚さを30%薄くして、t=t=2.6mm、t =1.8mmとした場合である。
図6に示すとおり、連結リブの厚さを上壁部及び底壁部の厚さよりも薄くした場合、薄肉化とともに最大荷重が低下する。これは衝力を受ける方向が連結リブに沿った方向であるため、連結リブの強度が弱くなって衝撃力を和らげるためと推測される。
連結リブの厚さをいろいろ変えたバンパービームを作成して衝突実験を繰り返した結果、連結リブの適正値は“日の字型”断面の側壁部の寸法によって最も影響を受けることが判明した。実験の結果、図2に示す各部寸法で説明すると、連結リブの厚さ(t )の適正値は“日の字型”断面の側壁部t(=t) との関係において、
=(0.6〜1)×t ・・・・・・(4)
とするのが適当であることが判明した。
【0023】
(比較例)
次に、比較のため、“日の字型”断面において、連結リブの厚さを上壁部及び底壁部の厚さよりも厚くした場合の例を図7に示す。
図7において、“日の字型”断面各部位の寸法はt >t=tとした以外は前記第1の実施例の場合と同様で、上壁部両端の曲率半径Rは20mmとした。図中曲線cは第1の実施形態の図5に示す連結リブの厚さと上壁部及び底壁部の厚さが等しい(t =t=t=2.6mm)場合と同じである。また、図中曲線hは上壁部の厚さを連結リブの厚さよりも15%薄くして、t=t=2.2mm、t =2.6mmとした場合であり、曲線iは上壁部の厚さを連結リブの厚さよりも30%薄くして、t=t=1.8mm、t =2.6mmとした場合である。
図7に示すとおり、側壁部の厚さを連結リブの厚さよりも薄くした場合、曲率半径Rの効果により衝突時に発生する最大荷重は低下するものの、薄肉化の程度によって最大荷重が変化することはない。これは側壁部の強度が弱くなって衝撃力を和らげるが、衝力を受ける位置が連結リブ部分であるため、連結リブの強度によって最大荷重が支配されるためと推測される。
【0024】
次に側壁部と連結リブの厚さが等しい第1の実施形態の結果を表1に纏めてその効果を示す。
【0025】
【表1】

Figure 2004155230
【0026】
表1の結果から、側壁部と連結リブの厚さが等しい場合には、最大荷重と平均荷重の比は、曲率半径Rが20mmの時に最も低くなり、Rが無い場合の半分程度となることが判る。曲率半径Rを5から40mmの範囲で付与すれば、最大荷重と平均荷重の比が低くなり、最大荷重と平均荷重の比が低いほど乗員の受ける身体的損傷を少なくすることが期待できる。
【0027】
最後に、側壁部と連結リブの厚さを変化させた場合の第2の実施形態の結果と比較例の結果を表2に纏めてその効果を示す。
【0028】
【表2】
Figure 2004155230
【0029】
表2の結果から、連結リブの厚さを側壁部の厚さよりも薄くした方が、衝突の際に発生する最大荷重を下げるためには効果的であることが判る。
【0030】
【発明の効果】
本発明によれば、バンパービームの断面形状を詳細に検討した結果、衝撃を受ける面の厚さを厚くして剛性を高め、衝撃を受ける面の両端に曲率半径Rを付与した形状にしたので、衝突の際バンパービームの変形直後に発生する最大荷重が低くなり、乗員の受ける身体的損傷を少なくすることができるようになる。
本発明のバンパービームを装着した車両は、より安全性の高い車両といえる。
【図面の簡単な説明】
【図1】本発明の自動車用バンパービームの第1の実施形態の断面形状を示す図である。
【図2】本発明の自動車用バンパービームの各部の寸法を示す図である。
【図3】本発明の自動車用バンパービームの第2の実施形態の断面形状を示す図である。
【図4】第1の実施形態におけるバンパービームの変位量と潰し荷重との関係の一例を示す図である。
【図5】第1の実施形態におけるバンパービームの変位量と潰し荷重との関係の他の例を示す図である。
【図6】第2の実施形態におけるバンパービームの変位量と荷重の関係を示す図である。
【図7】比較例におけるバンパービームの変位量と荷重の関係のを示す図である。
【図8】従来の自動車用バンパービームの断面形状の一例を示す図である。
【図9】従来の自動車用バンパービームの断面形状の他の例を示す図である。
【図10】図8に示す従来の自動車用バンパービームの変位量と荷重の関係を示す図である。
【符号の説明】
1,11・・・・・・上壁部、2,12・・・・・・底壁部、3・・・・・・衝突面側の側壁部、4・・・・・・車体取付け面側の側壁部、5,15・・・・・・連結リブ、10,20,30,40・・・・・・バンパービーム、13,14・・・・・・側壁部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a bumper beam for reinforcing a bumper of an automobile.
[0002]
[Prior art]
2. Description of the Related Art In general, a bumper of an automobile generally includes a bumper beam that is connected to a vehicle body and maintains the strength of the bumper, and a resin skin material that is attached to the bumper beam to adjust the appearance of the vehicle body. The bumper beam has been reduced in weight in order to reduce fuel consumption, and in recent years, the use of light alloys has been increasing. For example, a bumper beam 30 shown as a cross-sectional view in FIG. 8 is an example of a bumper beam extruded from an aluminum alloy material and has a hollow structure extruded in a “sun-shaped” cross section. That is, the upper wall portion 11 and the bottom wall portion 12 which are parallel to each other, the side wall portions 13 and 14 which are parallel to each other in a direction perpendicular to these, and the side wall portions 13 and 14 which are parallel to the upper wall portion 11 and the bottom wall portion 12. Is formed by a connecting rib 15 provided at the center so as to divide it into two.
[0003]
The bumper beam 30 is actually attached to the front or rear surface of the vehicle 17 via the side member 16, and in the event of a collision, the side wall 13 on the collision surface side generates an impact force F from the direction of the left arrow in the figure. It is the face to receive. Therefore, the side wall 13 is formed to be the thickest among the members having the "sun-shaped" sectional structure. In the example of FIG. 8, the upper wall 11 and the bottom wall 12 and the connecting rib 15 are formed to have the same thickness, and have a structure in which the impact force from the left side of the figure is evenly received and the impact force is softened. Has become.
Such a bumper beam is made of a 7000 series high-strength aluminum alloy or the like for the purpose of weight reduction. Usually, a cushioning material made of a foam material or the like is attached to the bumper beam, and the surface is covered with a bumper cover.
[0004]
When a bumper beam receives an external impact due to a collision of a car, etc., it absorbs the impact energy by plastic deformation of the bumper beam material, which is important for avoiding damage to other members and ensuring the safety of the human body. It is a member.
By the way, there are two types of collisions of a vehicle: a wall-shaped obstacle collides with the entire surface of the bumper beam at a relatively high speed, and a columnar obstacle collides with a part of the wall of the bumper beam at a relatively low speed. There is a form.
In the former type of collision, the collision energy due to the collision is often large enough to cause injury to the occupant and buckling damage of the bumper beam mounting member, and the bumper beam gradually deforms and collapses, causing a large amount of collision. It is desired that the material can absorb energy.
On the other hand, in the latter type of collision, there are few cases in which the collision energy is large enough to cause injury to the occupant or damage to the mounting member, and the bumper beam is deformed and collapsed to absorb the collision energy rather than absorbing the collision energy. It is desired that the material has high rigidity that is difficult to deform.
[0005]
For the bumper beam, it is required to increase the bending rigidity of the profile and the amount of energy absorbed when bending, while reducing the weight. A proposal for improving these characteristics by improving the cross-sectional shape has been disclosed (for example, see Patent Document 1).
In this proposal, a bumper made of an aluminum alloy material having a rectangular cross-sectional shape that is uniform in the length direction and having both ends of a wall located on the vehicle body side so as to have a wall perpendicular to the collision direction is attached to the vehicle body. A bumper beam, which is a beam and has a corner R located on the vehicle body side of the aluminum alloy profile and having a radius R of 2.5 times or more the plate thickness, is disclosed.
More specifically, as shown in FIG. 9, the bumper beam 40 is made of an aluminum alloy material provided in the bumper cover, and the wall surface 41 a located on the vehicle body 42 side is connected to the vehicle body 42 via the side member 44. Supported. The above-mentioned aluminum alloy material is formed in a rectangular cross section having a uniform shape in the longitudinal direction, for example, a "Japanese" character, and a pair of horizontal ribs 41b, 41b, and both ends of both horizontal ribs 41b, 41b. The vertical ribs 41a, 41a are connected, and the reinforcing ribs 41c are connected between the vertical ribs 41a, 41a.
[0006]
The bumper beam 40 is provided so that the vertical ribs 41a and 41a are perpendicular to the collision direction and the horizontal ribs 41b and 41b are parallel to the collision direction. The corners 41d, 41d on the vehicle body 42 side are curved with a radius R of 2.5 times or more the plate thickness in a range of 1/6 or less of the length of the vertical ribs 41a, 41a. On the other hand, the corners 41e on the collision side of the bumper beam 40 are bent substantially at right angles with a radius r of about the plate thickness. Thus, at the time of a barrier collision, the curved corners 41d, 41d are positioned at the starting point of buckling, thereby promoting buckling while suppressing the generated load and efficiently absorbing the collision energy. Has become. Further, at the time of a pole collision, a large generated load is generated by positioning the curved corners 41d, 41d on the opposite side of the starting point of buckling. The reason that the radius R is limited to 1/6 or less of the length of the vertical ribs 41a is that if it exceeds 1/6, it becomes difficult to attach the side member 44 and the absorbed energy is reduced. .
According to this structure, it is possible to have both a characteristic capable of absorbing a large amount of collision energy by gradually deforming and collapsing and a characteristic of high rigidity that is difficult to be deformed by a collision load, which can cope with the above two collision modes. It is possible.
[0007]
[Patent Document 1]
JP-A-8-80789 (Page 1, FIG. 2)
[0008]
[Problems to be solved by the invention]
However, if the bumper beam is too strong, the buckling of the bumper beam and the side member, which is the mounting bracket of the vehicle body, will be damaged. The side members are damaged by the maximum load that occurs at the moment of the collision.
For example, in the case of a bumper beam whose all corners are bent at right angles as shown in the cross section in FIG. 8, the average load during the plastic deformation of the bumper beam by 3.5 to 4.5 mm due to collision is 50 kN as shown in FIG. However, a maximum load of 250 kN occurs at the maximum during plastic deformation of about 0.5 mm before the displacement of the bumper beam reaches 1 mm immediately after the collision, and thereafter it is deformed with a substantially constant crushing load I will do it. In this case, the maximum load reaches 5.88 times the average load.
If the maximum load can be reduced, the collision energy can be absorbed only by the deformation and collapse of the bumper beam without damaging the side members.
Conventionally, the relationship between the maximum load and the absorbed energy when the generated load is not accompanied by a significant change during the plastic deformation of the bumper beam at the maximum of 3.5 to 4.5 mm has been a problem. No attempt was made to lower
In order to ensure personal safety, it is important to minimize the peak of the maximum load generated at the moment of a collision as much as possible.
An object of the present invention is to provide a bumper beam structure that can minimize the peak of the maximum load generated at the moment of the collision as much as possible and can prevent damage to a side member that is a mounting bracket for the bumper beam. .
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, various examinations were made on the cross-sectional shape of the bumper beam of the ordinary passenger car. As a result, it was found that the side members were damaged when the crushing load applied to the 100 mm long bumper beam specimen exceeded 150 kN. . It was found that if the maximum load generated at the moment of the collision is suppressed to 150 kN or less, the collision energy can be absorbed without damaging the side members due to the plastic deformation of the bumper beam. It has also been found that if the structure of the bumper beam is configured such that the impact load generated in the latter half of the collision becomes too low, the energy absorption capacity of the bumper beam is reduced.
Therefore, in the crushing load-displacement curve shown in FIG. 10, if only the maximum peak is lowered to make the waveform closer to a rectangular waveform, the collision energy can be absorbed by plastic deformation of the bumper beam without damaging the side members. It was thought that a bumper beam having stable performance as an energy absorbing material could be obtained. Therefore, as a result of various examinations of the cross-sectional shape of the bumper beam, it was found that the above-mentioned object can be achieved by increasing the thickness of the member on the surface subjected to the impact and giving specific radii of curvature to both ends of the surface of the member subjected to the impact. The present invention has been found.
That is, in the bumper beam of the present invention, the cross-sectional shape is an upper wall portion, a bottom wall portion facing the upper wall portion, a pair of side wall portions connecting both ends of the upper wall portion and the bottom wall portion, and A connection rib provided between the wall portion and the bottom wall portion for connecting the two side wall portions, and the thickness of the side wall portion on the collision surface side is the thickness of the side wall portion on the vehicle body mounting surface side. And both corners of the side wall portion on the collision surface side are curved with a radius of curvature R of 0.1 to 0.3 times the length of the side wall portion on the collision surface side, and A bumper beam made of an aluminum alloy extruded hollow member whose both corners of the side wall portion on the surface side are curved with a radius of curvature r of 0.6 to 1 times the thickness of the side wall portion on the vehicle body mounting surface side; did. The cross-sectional shape the length L 1 of the side wall portion of the collision surface side, is applied when less than twice the length L 2 of the upper wall portion and bottom wall portion.
[0010]
On the other hand, the length L 1 of the side wall portion, when longer than twice the length L 2 of the upper wall portion and the bottom wall portion includes a top wall portion cross section, and a bottom wall portion opposed to the upper wall portion, A sun-shape comprising a pair of side walls connecting both ends of the upper wall and the bottom wall, and a connecting rib provided between the upper wall and the bottom wall and connecting the two side walls. The thickness of the side wall portion on the collision surface side is greater than the thickness of the side wall portion on the vehicle body attachment surface side, and both corners of the side wall portion on the collision surface side are 0.2 to 0 of the length of the bottom wall portion. .6 times as long as the radius of curvature, and both corners of the side wall portion on the vehicle body mounting surface side have a length of 0.6 to 1 times the thickness of the side wall portion on the vehicle body mounting surface side. The bumper beam is made of an extruded hollow member made of an aluminum alloy and curved with a radius of curvature.
By configuring the bumper beam as described above, it is possible to effectively reduce the peak of the maximum load generated at the moment of collision, absorb the collision energy with the bumper beam without damaging the side members, Damage to the occupant can be dramatically reduced.
[0011]
In the present invention, the thicknesses of the upper wall portion, the connection rib, and the bottom wall portion can be all equal.
When the thickness of the connecting rib is configured to be smaller than the thickness of the bottom wall, it is preferable that the thickness of the connecting rib be 0.6 to 1 times the thickness of the bottom wall.
By configuring the connecting ribs in this way, it is possible to have high rigidity and to dramatically reduce the maximum peak load generated at the time of collision.
In the present invention, the radius of curvature R at both corners of the side wall on the collision surface side is preferably set to 10 to 30 mm.
This is the most practical value as a result of taking into account the dramatic reduction effect of the maximum peak load and the ease of extrusion.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be specifically described with reference to the drawings. In the following drawings, the scale of each part is not always drawn accurately for easy understanding.
(1st Embodiment)
FIG. 1 is a sectional view showing a first embodiment of the bumper beam of the present invention. As shown in the figure, a bumper beam 10 of the present invention connects an upper wall 1 with a cross-sectional shape, a bottom wall 2 facing the upper wall 1, and both ends of the upper wall 1 and the bottom wall 2. It is configured so as to exhibit a “sun-shaped” composed of a pair of side walls 3 and 4 and a connecting rib 5 provided between the upper wall 1 and the bottom wall 2 and connecting these two parts. The rigidity is ensured. In the bumper beam 10, the side wall on the left side of the drawing is the side wall 3 on the collision surface side, and an impact force F at the time of collision indicated by an arrow F is applied. The side wall on the right side of the drawing is the side wall 4 on the vehicle body mounting surface side, and is mounted on the vehicle body 7 via the side member 6. FIG. 1 shows that the length of the side walls 3 and 4 is shorter than twice the length of the top wall 1 and the bottom wall 2, and the thickness of the top wall 1, the bottom wall 2 and the connecting rib 5 is small. All the cases are equal.
[0013]
Here, FIG. 2 is a diagram showing the dimensions of each part of the bumper beam of the present invention. The length of the side wall is L 1 , the length of the upper wall is L 2 , and the thickness of the side wall on the collision surface side is L. At t 1 , the thickness of the side wall on the vehicle body mounting surface side is denoted by t 2 , the thickness of the top wall and the bottom wall is denoted by t 3 and t 4 , and the thickness of the connecting rib is denoted by t 5 .
Explaining the above relationship with reference to FIG. 2, the case where L 1 <2L 2 and t 3 = t 4 = t 5 is shown.
In the present embodiment, the side wall 3 on the side of the collision surface is made thicker than the side wall 4 on the side of the mounting surface of the vehicle body to receive the collision energy, and the top wall 1, the bottom wall 2, and the top wall 1 are received. The impact energy is shared and absorbed by a connecting rib 5 provided between the bottom wall 2 and the bottom wall 2.
[0014]
Practical thicknesses of the upper wall portion 1, the bottom wall portion 2, and the connecting rib 5 are 2.0 mm to 3.0 mm, and the thickness of the side wall portion 3 on the collision surface side is 2.0 mm to 2.0 mm. The appropriate thickness is 4.5 mm, and the thickness of the side wall portion 4 on the vehicle body mounting surface side is about 2.0 mm to 3.5 mm.
The above will be described with reference to FIG. 2 showing the dimensions of each part. In the first embodiment, t 1 > t 2 , t 3 = t 4 = t 5 , and the appropriate value of each value is t 1 = 2.0 mm to 4.5 mm, t 2 = 2.0 to 3.5 mm, and t 3 = t 4 = t 5 = 2.0 mm to 3.0 mm.
[0015]
FIG. 1 shows a case where the length of the side wall portion 3 on the collision surface side and the length of the side wall portion 4 on the vehicle body mounting surface side are shorter than twice the length of the upper wall portion 1 and the bottom wall portion 2. As the means for adjusting the crushing intensity of the bumper beam, as shown in FIG. 3, the length L 1 of the upper wall 1 and bottom wall of the impact surface side wall portion 3 and the side wall 4 of the vehicle body mounting surface of the opposite it is also conceivable to longer than twice the length L 2 of part 2. In this case, the thickness of each part may be the same as in the above case. However, it is necessary to change the radius of curvature R of the corner as will be described later in detail.
[0016]
In the present embodiment, both corners of the side wall 3 on the collision surface side and both corners of the side wall 4 on the vehicle body mounting surface side need to be curved with curvature radii R and r, respectively. Providing a radius of curvature at each corner of the "sun" cross section can dramatically reduce the peak of the maximum load generated at the moment of collision.
Although the radius of curvature is very small, it has the effect of lowering the peak of the maximum load, but from the viewpoint of material processing, it is practical to increase the radius to the same or greater than the plate thickness. The effect of lowering the peak of the maximum load increases as the radius of curvature increases, but the effect saturates when the radius of curvature is too large. The appropriate radius of curvature is related to the length of the cross section of the "sunshade", and as shown in FIG. 1, the length of the side wall portion 3 on the collision surface side and the side wall portion 4 on the vehicle body mounting surface side. Is smaller than twice the length of the upper wall portion 1 and the bottom wall portion 2, the radius of curvature should be 0.1 to 0.3 times the length of the side wall portion on the collision surface side. Is good. That is, in FIG. 2, when L 1 <2L 2 and t 3 = t 4 = t 5 , the radius of curvature R is R = (0.1 to 0.3) × L 1. 1)
And
[0017]
On the other hand, as shown in FIG. 3, when the length of the side wall portion 3 on the collision surface side and the side wall portion 4 on the vehicle body mounting surface side is longer than twice the length of the upper wall portion 1 and the bottom wall portion 2, The radius of curvature is preferably 0.6 to 1 times the length of the upper wall portion 1 and the bottom wall portion 2. That is, in FIG. 2, when L 1 > 2L 2 and t 3 = t 4 = t 5 , the radius of curvature R is R = (0.6 to 1.0) × L 2. 2)
Is appropriate.
[0018]
The curvature radius r at both corners of the side wall portion 4 on the vehicle body mounting surface side may be given a slight radius of curvature approximately equal to the thickness of the side wall portion 4 in consideration of processing accuracy since direct impact is not received. With reference to FIG. 2 showing the dimensions of each part,
r = (0.6-1) × t 2 (3)
It becomes.
[0019]
If the bumper beam is configured as described above, the peak of the maximum load generated at the moment of collision can be effectively reduced.
For example, as shown in FIG. 1, t 1 = 4.5 mm, t 2 = 3.5 mm, t 3 = t 4 = t 5 = 2.6 mm, L 1 = 100 mm, L 2 in the dimensions shown in FIG. A bumper beam made of an aluminum alloy having a cross-sectional shape of “sun-shaped” of 75 mm was formed by extrusion molding, cut into a length of 100 mm to form a test piece, and tested in the collision direction indicated by the arrow in FIG. A crush test was performed to crush the piece, and the relationship between the maximum load and the displacement at the time of collision was examined. The radius of curvature R was 0 mm, 5 mm, and 10 mm. FIG. 4 shows the measurement results.
[0020]
FIG. 4 shows the relationship between the displacement of the bumper beam and the crushing load in a collision experiment. As shown in the figure, the maximum load is generated before the displacement immediately after the collision reaches 1 mm, and thereafter, it deforms with a substantially constant crushing load. Curve j in FIG. 4 is a displacement amount curve when the curvature radii R at both ends of the upper wall portion of the “sun-shaped” bumper beam are set to 0 (no curvature radius), and the displacement amount is about 0.5 mm. Sometimes a maximum load of 250 kN occurs. On the other hand, in the curve a with the radius of curvature R of 5 mm and the curve b with the radius of curvature R of 10 mm, the maximum load is significantly reduced to about 150 kN when the displacement amount is about 1 mm, and the curves are more pronounced. Approaching a square wave.
By providing the radius of curvature R at both ends of the upper wall portion of the "sun-shaped" bumper beam in this manner, the maximum load generated at the time of collision can be significantly reduced, and the bumper beam can be used without damaging the side members. Since the collision energy can be effectively absorbed, it is extremely effective for ensuring the safety of the occupants.
[0021]
FIG. 5 shows the same maximum load measurement results obtained by changing the curvature radii R at both ends of the upper wall portion to 20, 30, and 40 mm for the bumper beams having the same dimensions as above. In the figure, a curve c shows a case where the radius of curvature R is 20 mm, a curve d shows a case where the radius of curvature R is 30 mm, and a curve e shows a case where the radius of curvature R is 40 mm.
As shown in the figure, when the radius of curvature R is increased, the maximum load is further reduced to about 100 kN, and the shape approaches a rectangular wave. However, when the radius of curvature R exceeds 30 mm, the decrease in the maximum load is almost saturated. Therefore, it is appropriate that the upper limit value of R is 40 mm. The lower limit value of R is about 10 mm at which the maximum load becomes about 100 kN or less. A more preferred range of R, the (1) may be selected within the range of R = (0.1 to 0.3) × L 1 represented by formula, practically is about 10 to 30 mm.
[0022]
(Second embodiment)
Next, as a modification of the first embodiment, the maximum load when the top wall 1 and the bottom wall 2 have the same thickness and the thickness of the connecting rib 5 is changed to be thinner in a “sun-shaped” cross section. FIG. 6 shows the relationship between the displacement and the displacement.
6, the cross-sectional dimension of each part "shaped date" t 5 <t 3 = except that the t 4 is the same as in the first embodiment, the radius of curvature R of the side surface portion at both ends of the collision-side Was 20 mm. The curve c in the figure is the same as the case of the first embodiment shown in FIG. 5 where the thicknesses of the top wall, the bottom wall, and the connecting rib are all equal (t 5 = t 3 = t 4 = 2.6 mm). is there. Further, a curve f in the figure is a case where the thickness of the connecting rib is reduced by 15%, and t 3 = t 4 = 2.6 mm and t 5 = 2.2 mm, and a curve g indicates the thickness of the connecting rib. In this case, the thickness is reduced by 30%, and t 3 = t 4 = 2.6 mm and t 5 = 1.8 mm.
As shown in FIG. 6, when the thickness of the connecting rib is smaller than the thickness of the upper wall portion and the bottom wall portion, the maximum load decreases as the thickness decreases. This is presumed to be because the direction in which the impact is received is along the connecting rib, and the strength of the connecting rib is weakened to reduce the impact force.
A bumper beam with various thicknesses of the connecting ribs was prepared, and repeated collision experiments showed that the appropriate value of the connecting ribs was most affected by the dimensions of the side wall of the "sun-shaped" cross section. As a result of the experiment, to explain the dimensions of each part shown in FIG. 2, the appropriate value of the thickness (t 5 ) of the connecting rib is determined in relation to the side wall part t 3 (= t 4 ) of the “sun-shaped” section.
t 5 = (0.6 to 1) × t 3 (4)
Was found to be appropriate.
[0023]
(Comparative example)
Next, for comparison, FIG. 7 shows an example in which the thickness of the connecting rib is larger than the thickness of the upper wall portion and the bottom wall portion in the “sun-shaped” cross section.
7, the cross-sectional dimension of each part "shaped date" t 5> t 3 = except that the t 4 is the same as in the first embodiment, the radius of curvature R of the upper wall portion at both ends is 20mm And The curve c in the figure is the same as the case of the first embodiment shown in FIG. 5 where the thickness of the connection rib is equal to the thickness of the upper wall and the bottom wall (t 5 = t 3 = t 4 = 2.6 mm). is there. Further, a curve h in the figure is a case where the thickness of the upper wall portion is 15% thinner than the thickness of the connecting rib, and t 3 = t 4 = 2.2 mm and t 5 = 2.6 mm. Is a case where the thickness of the upper wall portion is reduced by 30% from the thickness of the connecting rib, and t 3 = t 4 = 1.8 mm and t 5 = 2.6 mm.
As shown in FIG. 7, when the thickness of the side wall portion is smaller than the thickness of the connecting rib, the maximum load generated at the time of collision decreases due to the effect of the radius of curvature R, but the maximum load changes depending on the degree of thinning. There is no. This is presumed to be due to the fact that the strength of the side wall portion is weakened and the impact force is moderated, but the maximum load is governed by the strength of the connecting rib because the position receiving the impact is the connecting rib portion.
[0024]
Next, the results of the first embodiment in which the thickness of the side wall portion and the thickness of the connecting rib are equal are summarized in Table 1 and the effect is shown.
[0025]
[Table 1]
Figure 2004155230
[0026]
From the results in Table 1, when the thickness of the side wall portion and the connecting rib is equal, the ratio of the maximum load to the average load is the lowest when the radius of curvature R is 20 mm, and is about half that when there is no R. I understand. If the radius of curvature R is given in the range of 5 to 40 mm, the ratio of the maximum load to the average load is reduced, and it can be expected that the lower the ratio of the maximum load to the average load, the less the physical damage to the occupant.
[0027]
Finally, Table 2 summarizes the results of the second embodiment and the results of the comparative example when the thicknesses of the side wall portion and the connection rib are changed, and shows the effects thereof.
[0028]
[Table 2]
Figure 2004155230
[0029]
From the results shown in Table 2, it can be seen that making the thickness of the connecting rib thinner than the thickness of the side wall is more effective in reducing the maximum load generated in the event of a collision.
[0030]
【The invention's effect】
According to the present invention, as a result of examining the cross-sectional shape of the bumper beam in detail, as a result of increasing the thickness of the impact-receiving surface to increase rigidity, the impact-receiving surface is formed to have a radius of curvature R at both ends of the impact-receiving surface. In addition, the maximum load generated immediately after the deformation of the bumper beam in the event of a collision is reduced, so that physical damage to the occupant can be reduced.
A vehicle equipped with the bumper beam of the present invention can be said to be a vehicle with higher safety.
[Brief description of the drawings]
FIG. 1 is a diagram showing a cross-sectional shape of a first embodiment of an automobile bumper beam of the present invention.
FIG. 2 is a view showing dimensions of each part of a bumper beam for an automobile of the present invention.
FIG. 3 is a view showing a cross-sectional shape of a second embodiment of the automotive bumper beam of the present invention.
FIG. 4 is a diagram illustrating an example of a relationship between a displacement amount of a bumper beam and a crushing load in the first embodiment.
FIG. 5 is a diagram illustrating another example of the relationship between the displacement amount of the bumper beam and the crushing load in the first embodiment.
FIG. 6 is a diagram illustrating a relationship between a displacement amount of a bumper beam and a load according to the second embodiment.
FIG. 7 is a diagram illustrating a relationship between a displacement amount of a bumper beam and a load in a comparative example.
FIG. 8 is a diagram showing an example of a cross-sectional shape of a conventional bumper beam for an automobile.
FIG. 9 is a view showing another example of a cross-sectional shape of a conventional bumper beam for an automobile.
FIG. 10 is a diagram showing a relationship between a displacement amount and a load of the conventional automobile bumper beam shown in FIG.
[Explanation of symbols]
1, 11 ... top wall, 2, 12 ... bottom wall, 3 ... side wall on the collision surface side, 4 ... body mounting surface Side wall part, 5, 15 ... Connection rib 10, 20, 30, 40 ... Bumper beam, 13, 14 ... Side wall part

Claims (5)

断面形状が上壁部と、上壁部に対向する底壁部と、前記上壁部および底壁部の両端部を連結する一対の側壁部と、前記上壁部および底壁部の中間に設けられて2つの側壁部を連結する連結リブとからなる日の字型を呈し、衝突面側の側壁部の厚さが車体取付け面側の側壁部の厚さよりも厚く、衝突面側の側壁部の両角隅部は前記衝突面側の側壁部の長さの0.1〜0.3倍の長さの曲率半径Rで湾曲しており、かつ車体取付け面側の側壁部の両角隅部が該車体取付け面側の側壁部の厚さの0.6〜1倍の長さの曲率半径rで湾曲したアルミニウム合金製の押し出し中空部材からなることを特徴とする自動車用バンパービーム。The cross-sectional shape is an upper wall portion, a bottom wall portion facing the upper wall portion, a pair of side wall portions connecting both ends of the upper wall portion and the bottom wall portion, and an intermediate portion between the upper wall portion and the bottom wall portion. A side face formed of a connecting rib for connecting the two side wall portions, wherein the side wall portion on the collision surface side is thicker than the side wall portion on the vehicle body mounting surface side, and the side wall on the collision surface side Corners are curved with a radius of curvature R of 0.1 to 0.3 times the length of the side wall on the collision surface side, and both corners of the side wall on the vehicle body mounting surface side Is formed of an extruded hollow member made of an aluminum alloy and curved with a radius of curvature r having a length of 0.6 to 1 times the thickness of the side wall portion on the vehicle body mounting surface side. 断面形状が上壁部と、上壁部に対向する底壁部と、前記上壁部および底壁部の両端部を連結する一対の側壁部と、前記上壁部および底壁部の中間に設けられて2つの側壁部を連結する連結リブとからなる日の字型を呈し、衝突面側の側壁部の厚さが車体取付け面側の側壁部の厚さよりも厚く、衝突面側の側壁部の両角隅部は前記底壁部の長さの0.2〜0.6倍の長さの曲率半径で湾曲しており、かつ車体取付け面側の側壁部の両角隅部が該車体取付け面側の側壁部の厚さの0.6〜1倍の長さの曲率半径で湾曲したアルミニウム合金製の押し出し中空部材からなることを特徴とする自動車用バンパービーム。The cross-sectional shape is an upper wall portion, a bottom wall portion facing the upper wall portion, a pair of side wall portions connecting both ends of the upper wall portion and the bottom wall portion, and an intermediate portion between the upper wall portion and the bottom wall portion. A side face formed of a connecting rib for connecting the two side wall portions, wherein the side wall portion on the collision surface side is thicker than the side wall portion on the vehicle body mounting surface side, and the side wall on the collision surface side Both corners of the portion are curved with a radius of curvature of 0.2 to 0.6 times the length of the bottom wall, and both corners of the side wall on the vehicle body mounting surface side are attached to the vehicle body mounting surface. A bumper beam for an automobile, comprising an extruded hollow member made of an aluminum alloy and curved with a radius of curvature of 0.6 to 1 times the thickness of the side wall portion on the surface side. 前記上壁部と連結リブ及び底壁部の厚さが等しいことを特徴とする請求項1又は請求項2に記載の自動車用バンパービーム。3. The bumper beam for an automobile according to claim 1, wherein the thickness of the upper wall, the connecting rib, and the bottom wall are equal. 前記連結リブの厚さが前記底壁部の厚さの0.6〜1倍であることを特徴とする請求項1又は請求項2に記載の自動車用バンパービーム。3. The bumper beam for an automobile according to claim 1, wherein a thickness of the connecting rib is 0.6 to 1 times a thickness of the bottom wall portion. 前記衝突面側の側壁部の両角隅部の曲率半径Rが10〜30mmであることを特徴とする請求項1から請求項4のにいずれか1項に記載の自動車用バンパービーム。The bumper beam for an automobile according to any one of claims 1 to 4, wherein a radius of curvature (R) at both corners of the side wall on the collision surface side is 10 to 30 mm.
JP2002320452A 2002-11-01 2002-11-01 Bumper beam for automobile Expired - Fee Related JP4216045B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002320452A JP4216045B2 (en) 2002-11-01 2002-11-01 Bumper beam for automobile
US10/690,576 US6893062B2 (en) 2002-11-01 2003-10-23 Bumper beam for automobiles
EP03024506A EP1415865B1 (en) 2002-11-01 2003-10-24 Bumper beam for automobiles
DE60304416T DE60304416T2 (en) 2002-11-01 2003-10-24 Bumper crossmember for motor vehicles
MXPA03009897A MXPA03009897A (en) 2002-11-01 2003-10-29 Bumper beam for automobiles.
CNB2003101046894A CN1265988C (en) 2002-11-01 2003-10-30 Bumper beam for automobiles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002320452A JP4216045B2 (en) 2002-11-01 2002-11-01 Bumper beam for automobile

Publications (2)

Publication Number Publication Date
JP2004155230A true JP2004155230A (en) 2004-06-03
JP4216045B2 JP4216045B2 (en) 2009-01-28

Family

ID=32801358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002320452A Expired - Fee Related JP4216045B2 (en) 2002-11-01 2002-11-01 Bumper beam for automobile

Country Status (1)

Country Link
JP (1) JP4216045B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010006278A (en) * 2008-06-27 2010-01-14 Press Kogyo Co Ltd Underrun protector of vehicle
JP2011152858A (en) * 2010-01-27 2011-08-11 Sumitomo Light Metal Ind Ltd Shock absorbing member
JP2012081861A (en) * 2010-10-12 2012-04-26 Sumitomo Light Metal Ind Ltd Shock absorbing member
JP2013103556A (en) * 2011-11-11 2013-05-30 Kobe Steel Ltd Energy absorbing member and cross-sectional deformation control method of energy absorbing member
WO2023153136A1 (en) * 2022-02-10 2023-08-17 株式会社神戸製鋼所 Bumper reinforcement member and method of manufacturing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010006278A (en) * 2008-06-27 2010-01-14 Press Kogyo Co Ltd Underrun protector of vehicle
JP2011152858A (en) * 2010-01-27 2011-08-11 Sumitomo Light Metal Ind Ltd Shock absorbing member
JP2012081861A (en) * 2010-10-12 2012-04-26 Sumitomo Light Metal Ind Ltd Shock absorbing member
JP2013103556A (en) * 2011-11-11 2013-05-30 Kobe Steel Ltd Energy absorbing member and cross-sectional deformation control method of energy absorbing member
WO2023153136A1 (en) * 2022-02-10 2023-08-17 株式会社神戸製鋼所 Bumper reinforcement member and method of manufacturing same
JP2023117119A (en) * 2022-02-10 2023-08-23 株式会社神戸製鋼所 Bumper reinforcement material and manufacturing method of the same
JP7341266B2 (en) 2022-02-10 2023-09-08 株式会社神戸製鋼所 Bumper reinforcement material and its manufacturing method

Also Published As

Publication number Publication date
JP4216045B2 (en) 2009-01-28

Similar Documents

Publication Publication Date Title
EP1415865B1 (en) Bumper beam for automobiles
JP4488353B2 (en) Bumper to reduce pedestrian injury
JP4004924B2 (en) Bumper device for vehicle
JP3912422B2 (en) Crash box
JP4386036B2 (en) Crash box
EP2889188B1 (en) Crash box and automobile body
US6851731B2 (en) Crash energy absorbing element
US7063376B2 (en) Structural member for a vehicle frame assembly
JP4787728B2 (en) Body bumper beam and body shock absorber
JP2005297726A (en) Automobile bumper
JP4216045B2 (en) Bumper beam for automobile
JP3676491B2 (en) Shock absorbing member
JP2001199292A (en) Bumper reinforcement
JP4216065B2 (en) Bumper beam for automobile
EP1262374A1 (en) Crash energy absorbing element
CN106864594A (en) Automobile longitudinal beam structure
JP3322702B2 (en) Metal bumper
JP4107048B2 (en) Impact energy absorber
JP2889162B2 (en) Energy absorption structure on the side of the vehicle
JP4036234B2 (en) Crash box
CN210116554U (en) Longitudinal beam recessed auxiliary frame
JP2510289Y2 (en) Back frame
JP2004284464A (en) Bumper device for automobile
JPH0820297A (en) Bumper reinforcement
JP2005170232A (en) Shock absorbing member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees