JP2004153925A - Ferromagnetic plate and eddy current type reduction gear - Google Patents

Ferromagnetic plate and eddy current type reduction gear Download PDF

Info

Publication number
JP2004153925A
JP2004153925A JP2002316003A JP2002316003A JP2004153925A JP 2004153925 A JP2004153925 A JP 2004153925A JP 2002316003 A JP2002316003 A JP 2002316003A JP 2002316003 A JP2002316003 A JP 2002316003A JP 2004153925 A JP2004153925 A JP 2004153925A
Authority
JP
Japan
Prior art keywords
eddy current
ferromagnetic plate
pole piece
peripheral surface
current type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002316003A
Other languages
Japanese (ja)
Inventor
Yasutoku Tani
泰徳 谷
Kenji Imanishi
憲治 今西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2002316003A priority Critical patent/JP2004153925A/en
Publication of JP2004153925A publication Critical patent/JP2004153925A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ferromagnetic plate and an eddy current type reduction gear that increase the density of a line of magnetic force that goes toward a rotor from a permanent magnet via a pole piece, increase the density of a line of magnetic force that enters the rotor from the rear rotational side of the pole piece, make the line of magnetic force from the permanent magnet easily enter the rotor via the pole piece, make the line of magnetic force from the rotor easily enter the pole piece, and improve braking torque particularly when braking. <P>SOLUTION: The pole piece 4 is arranged so as to oppose the permanent magnets 5, 5a and 5b of the eddy current type reduction gear. Between external and internal peripheries of the pole piece 4, throttled parts 4a each having a cross section smaller than the internal peripheral surface, or than the external peripheral surface, or than the area of the external peripheral surface are formed at either the external periphery or the internal periphery. A forward protrusion 4c and a backward protrusion 4b are formed for braking, which are formed such that forward and backward external peripheral sides facing traveling directions of rotations of the rotors 2a, 2b are flatly protruded. A projected shape viewed from the upper side of a main surface is spread toward the front side or the backside facing the traveling directions of the rotations. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、制動補助装置としてバスやトラック等の大型自動車に取付けられ、特に制動トルクの向上を可能とする渦電流式減速装置の強磁性板及びその強磁性板を採用した渦電流式減速装置に関するものである。
【0002】
【従来の技術】
近年、長い降坂時等において安定した減速を行い、フットブレーキの使用回数を減少させて、ライニングの異常摩耗やフェード現象を防止すると共に、制動停止距離の短縮を目的として、バスやトラック等の大型自動車にフットブレーキや排気ブレーキに加えて渦電流式減速装置が取付けられるようになってきた。
【0003】
この渦電流式減速装置は、現在では制動時に通電を必要としない永久磁石式のものが主流となっており、以下の4つの方式がある。
▲1▼ 例えば図12に示すような、回転軸1に取付けられ、制動時、渦電流を内部に生じるドラム型の部材(以下、「ロータ」という。)2aの内周面側に、非磁性の支持体3間にその周方向に所定の間隔を存して配置した強磁性板(以下、「ポールピース」という。)4群を介して、前記ポールピース4と同じ間隔でN極、S極を周方向に交互に配置した永久磁石5群をその外周面に取付けた強磁性の磁石支持リング6を配置し、この磁石支持リング6を前記永久磁石5群がポールピース4群と全面対向する位置から全面離脱する位置までアクチュエータ7によってケース8内を進退可能に設けた軸スライド方式(例えば特開平1−234043号)。
【0004】
▲2▼ 例えば図13に示すような、ロータ2aの内周面側にこれと対向して配置した磁石支持リング6を、前記ポールピース4と磁石支持リング6の外周面に取付けた永久磁石5とが重なり合う位置と、一つの永久磁石5が隣接するポールピース4を跨いで半分ずつ重なり合う位置とを、選択できるように旋回移動可能に設けた単列旋回方式(例えば特開平1−298948号)。
【0005】
▲3▼ 例えば図14に示すような、外周面にその周方向に沿って所定の間隔でN極、S極を交互に配置した永久磁石群を有する磁石支持リングを2個並列に配置し、一方の磁石支持リングは固定で(以下、「固定支持リング6a」という。)、他方の磁石支持リングは所定角度回動可能に構成し(以下、「可動支持リング6b」という。)、可動支持リング6bの旋回移動によって、可動支持リング6bの永久磁石5bと隣合う固定支持リング6aの永久磁石5aが同極になる位置と、隣合う可動支持リング6bの永久磁石5bと固定支持リング6aの永久磁石5aが異極になる位置とを選択できるように構成した複列旋回方式(例えば特開平4−12659号)。
【0006】
▲4▼ 例えば図15に示すような、回転軸1に取付けられたディスク型のロータ2bと対向する位置に、非磁性の支持体3の間にその周方向に所定の間隔を存して配置したポールピース4群を介して、前記ポールピース4と同じ間隔でN極、S極を周方向に交互に配置した永久磁石5群を側面に取り付けた強磁性の磁石支持リング6を配置し、この磁石支持リング6を前記永久磁石5群がポールピース4群と全面対向する位置から全面離脱する位置までアクチュエータ7によってケース内を進退可能に設けたディスク型ロータによる軸スライド方式。
【0007】
ところで、上記したような渦電流式減速装置にあっては、いずれの方式であっても、ポールピース4と永久磁石5,5a,5bが全面対向する制動時には、磁石支持リング6と、隣接する永久磁石5,5a,5b及び隣接するポールピース4と、ロータ2a,2b間で磁気回路が形成され、ロータ2a,2bには永久磁石5,5a,5bからの磁力線が作用して渦電流が発生し、制動トルクが発生する。
【0008】
そして、この制動力を効率良く発生させるためには、前記磁気回路を構成する磁力線をロータ面に対して垂直に入力させることが必要である。制動時にロータ面にポールピース4から入力される磁力線の中では、図16に細線で示したように、ロータ2a,2bの回転の進行方向に向かって前方(以下、単に「回転前方」という。)の側から入力される磁力線が、前記垂直に入力される成分を多く含んでいる。
【0009】
【発明が解決しようとする課題】
しかしながら、従来は、ポールピース4の形状は略直方体で、内周側の回転(円周)方向長さは、図17に示したように、永久磁石5の外周面長さと略同一であった。そのため、前記制動時に形成される磁気回路は、図17に細線で示したように、ロータ2a,2bの回転の進行方向に引きずられた形に歪曲する。その結果、ポールピース4の回転前方側から入力する磁力線であっても、ロータ2a,2bに垂直に入力するものが減少し、制動力が低下するという欠点があった。
【0010】
本発明は、上記した従来の問題点に鑑みてなされたものであり、特に制動時における制動トルクを向上させることができる渦電流式減速装置のポールピース及びそのポールピースを採用した渦電流式減速装置を提供することを目的としている。
【0011】
【課題を解決するための手段】
上記した目的を達成するために、本発明は、渦電流式減速装置の永久磁石と対向して配置されるポールピースの、ロータの回転の進行方向に向かって前方又は後方(以下、単に「回転前方」「回転後方」という。)の外周側を、平板状に突出させると共に、ポールピースの内外周間に、例えば内周面の面積よりも小さい断面積を有する絞り部を設けたこととしている。そして、このようにすることで、特に制動時における制動トルクを向上させることができるようになる。
【0012】
ところで、この「前方又は後方」という記載は、前方と後方のうち何れか一方の場合と、前方と後方の両方との全ての場合を含む。また、「前方側又は後方側」「前方突出部又は後方突出部」という記載も同様とする。更に、「内周面又は外周面」という記載も、内周面と外周面のうち何れか一方の場合と、内周面及び外周面の両方との全ての場合を含む。
【0013】
【発明の実施の形態】
本発明において、永久磁石5,5a,5bと対向するポールピース4の内周面の面積(永久磁石5,5a,5bの面積と略同じ)又は外周面の面積よりも小さい断面積を有する部分、即ち、前記の面積よりも小さい断面積となるように絞った部分(以下、「絞り部」という。)4aの設置位置は、図3(a)に示したように、ポールピース4の内外周間における中間部分に限らず、図3(b)に示したように、ポールピース4の外周部や、図3(c)に示したように、ポールピース4の内周部であっても良い。また、断面積が絞られていれば良いので、ロータの回転(円周)方向の長さを短くしたものに限らず、それに垂直な方向の回転軸方向の長さを短くしたもの、或いは両方の長さを短くしたものでも良い。
【0014】
本発明に係る渦電流式減速装置では、絞り部4aを有する本発明に係るポールピース4を使用するので、図4(a)に示したように、制動時、永久磁石5,5a,5bからポールピース4を経てロータ2a,2bに向かう磁力線の密度が、内外周間において断面積が一定の従来のポールピース4(図4(b)参照)を使用したものに比べて高くなる。
【0015】
密度が高められた磁力線はロータ2a,2bに達すると大きな渦電流を発生させ、大きなローレンツ力が得られるので、前述したように、例えロータ2a,2bの回転に引きずられて垂直に入力する磁力線が減少しても、全体的な制動力が向上する。
【0016】
本発明に係る渦電流式減速装置では、前記の絞り部4aに加えて、回転後方の外周側を永久磁石5,5a,5bよりも平板状に突出させた本発明に係るポールピース4を使用する。図5(a)に示したように、非制動時、永久磁石5,5a,5bから支持体3を経てロータ2a,2bに向かう磁気漏れが、前記平板状に突出させた後方突出部4bで吸収されるので、後方突出部4bのない従来のポールピース4(図5(b)参照)を使用したものに比べて、損失トルクを低減できる。なお、後方突出部4bは、制動時における短絡磁気回路形成時に磁気飽和する厚さであると、短絡磁気が流れ難くなり、制動力低下が抑制できるので好ましい。
【0017】
別の本発明に係る渦電流式減速装置においては、前記の絞り部に加えて、回転前方の外周側に永久磁石5,5a,5bよりも突出する平板状の前方突出部4cを設けたポールピースを使用する。この渦電流式減速装置では、図6(a)に示したように、制動時、ポールピース4の回転前方側からロータ2a,2bに入力する磁力線が、前記前方突出部4cの作用により、磁力線の密度が高められて、より制動力が向上する。この際、前記前方突出部4c端面を、図6(b)に示したように、ロータ2a,2bの内周面に対して回転後方側に傾けた場合には、ロータ2a,2bに入力する磁力線が垂直に近くなって、より制動力が向上する。なお、前方突出部4cは、制動時における短絡磁気回路形成時に磁気飽和しない厚さであると、ロータへ入力する磁束ポールピース4の回転前方にまで達し、より垂直になるので好ましい。
【0018】
前記図5、図6に示されるポールピース4は、本発明においては、これらが組み合わされた形状となったものでも良い。組み合わせは、1つのポールピース4に両方組み込んでも良いし、交互に、或いは、数個おき等ある規則性を持って並べられても良い。いずれにせよ、これらの組み合わせにより、両方の効果が得られる。
【0019】
また、更に別の上記の本発明に係る渦電流式減速装置は、図7(a)に示したようにその主面上方から見た投影形状4d,4e、或いは、図8(a)に示したように外周面4eの形状について、ロータの回転方向と直交する幅方向に回転後方側で広がっているポールピース4を採用している。この本発明に係る渦電流式減速装置では、制動時、ロータからの磁力線がポールピースに入り易くなって、より制動力が向上する。この場合、図8(a)に示したように外周面形状のみならず、図7(a)に示したように回転後方側で広がっている本発明に係るポールピースを採用した方が、より好ましい。なお、ここでポールピース4の主面とは、ポールピース4の表面のうち、最も広い表面積を有する面をいい、例えば蒲鉾型では湾曲した一面が主面である。主面上方とは、この定義に基づく主面の中心から鉛直に伸びた軸上の方向を示す。
【0020】
また別の、上記の本発明に係る渦電流式減速装置は、図9(a)に示したようにその主面上方から見た投影形状4e,4d、或いは図10(a)に示したように外周面4eの形状について、ロータの回転方向と直交する幅方向に回転前方側で広がっているポールピース4を採用している。この本発明に係る渦電流式減速装置では、制動時、永久磁石からの磁力線がポールピースを経てロータに入り易くなって、より制動力が向上する。この場合も、図10(a)に示したように外周面形状のみならず、図9(a)に示したように回転前方側で広がっている本発明に係るポールピースを採用した方が、より好ましい。
【0021】
前記図7〜図10に示されるポールピース4は、本発明においてこれらが組み合わされた形状となったものでも良い。組み合わせは、1つのポールピース4にそれぞれ可能な組み合わせで組み込んでも良いし、交互に、或いは、数個おき等ある規則性を持って並べられても良い。これらの組み合わせにより、それぞれの効果も相乗される。更に、図5、図6に示される形状が図7〜図10に示される形状と可能な組み合わせで組み合わされた形状となっても良い。組み合わせ方法は、前述と同様になす事ができ、効果も相乗される。
【0022】
上記の本発明において、回転前方側或いは回転後方側とは、ポールピースの円周方向長さの中心より回転前方側或いは回転後方側をいい、広がっているとは、図7〜10に示したように、回転前方端部或いは回転後方端部のみが幅方向(回転軸方向)に広がっているもののみならず、図11(a)に示したように、回転前方側に対して回転後方側が広がっているものや、反対に図11(b)に示したように、回転後方側に対して回転前方側が広がっているものも含む。
【0023】
また、上記の本発明に係る渦電流式減速装置において、図示省略したが、主面上方から見た投影形状或いは外周面の形状が、回転前方側及び回転後方側の両方に広がっている本発明に係るポールピースを採用した本発明に係る渦電流式減速装置では、上記の相乗効果によってより制動力が向上する。
【0024】
【実施例】
以下、本発明に係るポールピースを図1及び図2に示す実施例に基づいて説明する。
【0025】
図1は本発明に係るポールピース4の第1実施例を示した図であり、この第1実施例では、渦電流式減速装置の永久磁石と対向して配置されるポールピース4における回転前方と回転後方の両方共に外周側を例えば厚さが2mmの平板状に突出させた突出部4b,4cを形成している。なお、ロータの回転方向は図1(a)に示した矢印A方向である。また、その回転軸方向は同様に矢印のB方向である。
【0026】
そして、ポールピース4の回転軸方向の長さを、内周面4dと外周面4eの中間部で一旦長くした後4f、外周面4eで一番短くして、外周面4eを内周面4dの面積よりも小さい断面積を有する絞り部4aとなすと共に、外周面4eの形状が、ポールピース4における回転前方と回転後方の両端部で広がっているように形成している。
【0027】
このような形状のポールピース4を使用した本発明に係る渦電流式減速装置にあっては、制動時には、以下に列挙する作用によって制動力が向上する。
▲1▼ 永久磁石からポールピース4を経てロータに向かう磁力線の密度が外周面4eにおいて絞られて高くなって、ロータに達すると大きな渦電流を発生させ、大きなローレンツ力が得られる。
【0028】
▲2▼ ポールピース4の回転後方側からロータに入力する磁力線が、前記突出部4cの作用により、磁力線の密度が高められる。
▲3▼ 永久磁石からの磁力線がポールピースを経てロータに入り易くなる。
▲4▼ ロータからの磁力線がポールピースに入り易くなる。
【0029】
また、非制動時には、
▲5▼ 永久磁石から支持体を経てロータに向かう磁気漏れが、前記平板状に突出させた突出部4b、4cで吸収されるので、損失トルクを低減できることになる。
【0030】
図2は本発明に係るポールピースの第2実施例を示した図であり、この図2に示した第2実施例では、前記第1実施例のように、絞り部4aを形成していない他は、第1実施例と同じ構成である。
【0031】
このような構成の第2実施例では、制動時における前記▲1▼の作用がないものの、他の▲2▼〜▲5▼の作用は同じであるので、従来のポールピースを使用した渦電流式減速装置と比べて、制動トルクの向上と損失トルクの低減が図れる。
【0032】
本発明は上記実施例に限らず、各請求項のみ対応するものでも、制動トルクの向上や損失トルクの低減が図れることは言うまでもない。
【0033】
【発明の効果】
以上説明したように、本発明によれば、
▲1▼ 永久磁石からポールピースを経てロータに向かう磁力線の密度を高めたり、
▲2▼ ポールピースの回転後方側からロータに入力する磁力線を垂直に近くしたり、
▲3▼ 永久磁石からの磁力線がポールピースを経てロータに入り易くしたり、
▲4▼ ロータからの磁力線がポールピースに入り易くしたりして、
特に制動時における制動トルクを向上することができる。
【図面の簡単な説明】
【図1】本発明に係るポールピースの第1実施例を示した図で、(a)は斜視図、(b)は(a)の矢視A図、(c)は(a)の矢視B図、(d)は(a)の矢視C図である。
【図2】本発明に係るポールピースの第2実施例を示した図で、(a)は斜視図、(b)は(a)の矢視A図、(c)は(a)の矢視B図、(d)は(a)の矢視C図である。
【図3】本発明に係るポールピースの必須構成要件である絞り部の説明図で、(a)は絞り部が内外周間における中間部分に存在する場合、(b)は絞り部が外周部である場合、(c)は絞り部が内周部である場合の図である。
【図4】(a)は本発明に係るポールピースの必須構成要件である絞り部を有する場合の磁力線の流れの説明図、(b)は絞り部を有さない従来のポールピースの磁力線の流れの説明図である。
【図5】(a)は本発明に係るポールピースの必須構成要件である回転後方の平板状突出部を有する場合の非制動時における磁力線の流れの説明図、(b)は回転後方の平板状突出部を有さない従来のポールピースの非制動時における磁力線の流れの説明図である。
【図6】(a)は本発明に係るポールピースの必須構成要件である回転前方の平板状突出部を有する場合の制動時における磁力線の流れの説明図、(b)は前記平板状突出部の端面をロータの内周面に対して回転後方側に傾けた場合の(a)と同様の磁力線の流れの説明図である。
【図7】主面上方から見た投影形状がロータの回転方向と直交する幅方向に回転後方で広がる本発明に係るポールピースの一例を示した図で、(a)は平面から見た図、(b)は正面から見た図、(c)は左側面から見た図である。
【図8】外周面形状がロータの回転方向と直交する幅方向に回転後方側で広がる本発明に係るポールピースの一例を示した図で、(a)は平面から見た図、(b)は正面から見た図、(c)は左側面から見た図である。
【図9】主面上方から見た投影形状がロータの回転方向と直交する幅方向に回転前方で広がる本発明に係るポールピースの一例を示した図で、(a)は平面から見た図、(b)は正面から見た図、(c)は左側面から見た図である。
【図10】外周面形状がロータの回転方向と直交する幅方向に回転前方側で広がる本発明に係るポールピースの一例を示した図で、(a)は平面から見た図、(b)は正面から見た図、(c)は左側面から見た図である。
【図11】(a)は本発明における「回転後方に広がる」の意味を説明する図、(b)は本発明における「回転前方に広がる」の意味を説明する図である。
【図12】軸スライド方式の渦電流式減速装置の回転軸方向の断面図である。
【図13】単列旋回方式の渦電流式減速装置の回転軸方向の断面図である。
【図14】複列旋回方式の渦電流式減速装置の回転軸方向の断面図である。
【図15】ディスク型ロータによる軸スライド方式の渦電流式減速装置の回転軸方向の断面図である。
【図16】従来の渦電流式減速装置における制動時のポールピースからロータに入力する磁力線の流れの説明図である。
【図17】従来の渦電流式減速装置における制動時に形成される磁気回路の説明図である。
【符号の説明】
2a,2b ロータ
4 ポールピース
4a 絞り部
4b 後方突出部
4c 前方突出部
4d 内周面
4e 外周面
5,5a,5b 永久磁石
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a ferromagnetic plate of an eddy current type speed reducer which is attached to a large vehicle such as a bus or a truck as a braking auxiliary device and which can improve braking torque, and an eddy current type speed reducer employing the ferromagnetic plate. It is about.
[0002]
[Prior art]
In recent years, stable deceleration has been performed on long downhills, etc., and the number of times the foot brake has been used has been reduced to prevent abnormal lining wear and fade phenomena. Eddy current type reduction gears have been attached to large vehicles in addition to foot brakes and exhaust brakes.
[0003]
At present, the eddy current type reduction gear is mainly of a permanent magnet type which does not need to be energized at the time of braking, and there are the following four types.
{Circle around (1)} As shown in FIG. 12, for example, a non-magnetic member is provided on the inner peripheral surface side of a drum-shaped member (hereinafter referred to as “rotor”) 2a which is attached to the rotating shaft 1 and generates an eddy current inside during braking. N poles and S poles at the same interval as the pole pieces 4 via a group of ferromagnetic plates (hereinafter referred to as "pole pieces") 4 arranged at predetermined intervals in the circumferential direction between the supports 3 A ferromagnetic magnet support ring 6 having permanent magnets 5 arranged alternately in the circumferential direction attached to the outer peripheral surface thereof is arranged, and the permanent magnets 5 are entirely opposed to the pole pieces 4 by the magnet support ring 6. (See, for example, Japanese Patent Application Laid-Open No. 1-234043).
[0004]
{Circle around (2)} As shown in FIG. 13, a permanent magnet 5 in which a magnet support ring 6 disposed on the inner peripheral surface side of the rotor 2 a so as to face the same is attached to the outer peripheral surfaces of the pole piece 4 and the magnet support ring 6. (See Japanese Patent Application Laid-Open No. 1-298948) in which a single row turning system is provided so as to be able to turn so that a position at which a permanent magnet 5 overlaps and a position at which one permanent magnet 5 overlaps by half over an adjacent pole piece 4 can be selected. .
[0005]
(3) For example, as shown in FIG. 14, two magnet support rings each having a permanent magnet group in which N poles and S poles are alternately arranged on the outer peripheral surface at predetermined intervals along the circumferential direction thereof are arranged in parallel, One of the magnet support rings is fixed (hereinafter, referred to as a “fixed support ring 6a”), and the other magnet support ring is configured to be rotatable by a predetermined angle (hereinafter, referred to as a “movable support ring 6b”). Due to the turning movement of the ring 6b, the position where the permanent magnet 5b of the movable support ring 6b and the permanent magnet 5a of the fixed support ring 6a adjacent to each other have the same polarity, and the position of the permanent magnet 5b of the adjacent movable support ring 6b and the fixed support ring 6a. A double-row turning system (for example, Japanese Patent Application Laid-Open No. 4-12659) in which a position where the permanent magnet 5a has a different polarity can be selected.
[0006]
{Circle around (4)} As shown in FIG. 15, for example, at a position facing the disk-shaped rotor 2 b attached to the rotating shaft 1, the non-magnetic support 3 is disposed at a predetermined interval in the circumferential direction thereof. Through the group of pole pieces 4, a ferromagnetic magnet support ring 6 having permanent magnets 5 in which N poles and S poles are alternately arranged in the circumferential direction at the same intervals as the pole pieces 4 is attached to the side face, A shaft-sliding method using a disk-type rotor provided with the magnet support ring 6 so as to be able to move forward and backward in the case by an actuator 7 from a position where the group of permanent magnets 5 is entirely opposed to a group of pole pieces 4 to a position where the permanent magnet is completely separated.
[0007]
In any of the above-described eddy current type speed reducers, the magnet support ring 6 is adjacent to the pole support 4 and the permanent magnets 5, 5a, 5b during braking in which the entire surface is opposed. A magnetic circuit is formed between the permanent magnets 5, 5a, 5b and the adjacent pole pieces 4, and the rotors 2a, 2b. Lines of magnetic force from the permanent magnets 5, 5a, 5b act on the rotors 2a, 2b to generate eddy currents. And a braking torque is generated.
[0008]
In order to efficiently generate the braking force, it is necessary to input the magnetic lines of force constituting the magnetic circuit perpendicularly to the rotor surface. Among the magnetic lines of force input from the pole piece 4 to the rotor surface at the time of braking, as shown by the thin line in FIG. 16, the rotor 2a, 2b moves forward in the direction of rotation (hereinafter simply referred to as “rotation forward”). The lines of magnetic force input from the side of ()) contain many components that are input vertically.
[0009]
[Problems to be solved by the invention]
However, conventionally, the shape of the pole piece 4 is a substantially rectangular parallelepiped, and the length in the rotation (circumferential) direction on the inner peripheral side is substantially the same as the outer peripheral surface length of the permanent magnet 5 as shown in FIG. . Therefore, the magnetic circuit formed at the time of the braking is distorted in such a manner as to be dragged in the direction of rotation of the rotors 2a and 2b as shown by the thin line in FIG. As a result, there is a drawback that, even among the lines of magnetic force input from the rotation front side of the pole piece 4, those input perpendicular to the rotors 2a and 2b decrease, and the braking force decreases.
[0010]
The present invention has been made in view of the above-mentioned conventional problems, and in particular, a pole piece of an eddy current type reduction device capable of improving braking torque during braking, and an eddy current type deceleration employing the pole piece. It is intended to provide a device.
[0011]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention provides a pole piece disposed opposite to a permanent magnet of an eddy current type reduction gear, in a forward or rearward direction (hereinafter simply referred to as “rotation”) in a direction in which a rotor rotates. The outer peripheral side of “front” and “rotational rear” is projected in a flat plate shape, and a narrowed portion having a cross-sectional area smaller than the area of the inner peripheral surface is provided between the inner and outer peripheries of the pole piece. . This makes it possible to improve the braking torque particularly during braking.
[0012]
By the way, the description “front or rear” includes any one of the front and rear, and all cases of both front and rear. The same applies to the description “front side or rear side” and “front projection or rear projection”. Further, the expression “inner peripheral surface or outer peripheral surface” also includes any one of the inner peripheral surface and the outer peripheral surface and all cases of both the inner peripheral surface and the outer peripheral surface.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, a portion having a sectional area smaller than the area of the inner peripheral surface of the pole piece 4 facing the permanent magnets 5, 5a, 5b (substantially the same as the area of the permanent magnets 5, 5a, 5b) or the area of the outer peripheral surface. That is, as shown in FIG. 3A, the installation position of the portion 4a narrowed so as to have a cross-sectional area smaller than the above-mentioned area (hereinafter, referred to as a "restricted portion") is located inside and outside the pole piece 4. Not only the intermediate part between the circumferences, but also the outer peripheral part of the pole piece 4 as shown in FIG. 3B or the inner peripheral part of the pole piece 4 as shown in FIG. good. Further, since the cross-sectional area only needs to be reduced, the length of the rotor in the rotational (circumferential) direction is not limited to be reduced, and the length in the direction of the rotation axis perpendicular to the rotor is reduced, or both. May be shortened.
[0014]
In the eddy current type reduction gear according to the present invention, since the pole piece 4 according to the present invention having the throttle portion 4a is used, as shown in FIG. 4 (a), during braking, the permanent magnets 5, 5a, 5b The density of the lines of magnetic force traveling toward the rotors 2a and 2b via the pole piece 4 is higher than that using a conventional pole piece 4 (see FIG. 4B) having a constant cross-sectional area between the inner and outer circumferences.
[0015]
When the magnetic field lines having the increased density reach the rotors 2a and 2b, a large eddy current is generated, and a large Lorentz force is obtained. Therefore, as described above, for example, the magnetic field lines input vertically by being dragged by the rotation of the rotors 2a and 2b. , The overall braking force improves.
[0016]
In the eddy current type speed reducer according to the present invention, in addition to the above-described throttle portion 4a, the pole piece 4 according to the present invention is used in which the outer peripheral side behind the rotation is protruded in a flat plate shape from the permanent magnets 5, 5a, 5b. I do. As shown in FIG. 5A, when the brake is not applied, the magnetic leakage from the permanent magnets 5, 5a, 5b to the rotors 2a, 2b via the support 3 is caused by the rear protruding portion 4b protruding in the flat shape. Since it is absorbed, the torque loss can be reduced as compared with the conventional pole piece 4 without the rear protruding portion 4b (see FIG. 5B). It is preferable that the rear protruding portion 4b has a thickness that is magnetically saturated when the short-circuit magnetic circuit is formed during braking, because short-circuit magnetism is less likely to flow and a reduction in braking force can be suppressed.
[0017]
In another eddy current type speed reducer according to the present invention, in addition to the above-described throttle portion, a pole provided with a flat front protruding portion 4c protruding beyond the permanent magnets 5, 5a, 5b on the outer peripheral side in front of rotation. Use a piece. In this eddy current type reduction gear, as shown in FIG. 6 (a), during braking, the lines of magnetic force input to the rotors 2a, 2b from the rotation front side of the pole piece 4 are caused by the action of the front protruding portions 4c. And the braking force is further improved. At this time, when the end face of the front protruding portion 4c is inclined rearward with respect to the inner peripheral surfaces of the rotors 2a and 2b as shown in FIG. 6B, the input is input to the rotors 2a and 2b. The magnetic force lines become nearly vertical, and the braking force is further improved. It is preferable that the front protruding portion 4c has a thickness that does not cause magnetic saturation when the short-circuit magnetic circuit is formed during braking, because it reaches the rotation front of the magnetic flux pole piece 4 input to the rotor and becomes more vertical.
[0018]
In the present invention, the pole piece 4 shown in FIGS. 5 and 6 may have a shape obtained by combining them. The combinations may be incorporated in one pole piece 4, or may be arranged alternately or with a regularity such as every few pieces. In any case, these effects provide both effects.
[0019]
Further, still another eddy current type speed reducer according to the present invention as shown in FIG. 7 (a) has a projection shape 4d, 4e viewed from above the main surface thereof, or FIG. 8 (a). As described above, with respect to the shape of the outer peripheral surface 4e, the pole piece 4 that is widened on the rotation rear side in the width direction orthogonal to the rotation direction of the rotor is employed. In the eddy current type reduction gear transmission according to the present invention, the lines of magnetic force from the rotor are more likely to enter the pole piece during braking, and the braking force is further improved. In this case, not only the outer peripheral surface shape as shown in FIG. 8A but also the pole piece according to the present invention which spreads on the rotation rear side as shown in FIG. preferable. Here, the main surface of the pole piece 4 refers to the surface having the largest surface area among the surfaces of the pole piece 4, and for example, in the case of a kamaboko type, a curved surface is the main surface. The term “above the main surface” refers to an axial direction that extends vertically from the center of the main surface based on this definition.
[0020]
Further, another eddy current type speed reducer according to the present invention described above, as shown in FIG. 9 (a), has a projected shape 4e, 4d viewed from above the main surface, or as shown in FIG. 10 (a). Regarding the shape of the outer peripheral surface 4e, a pole piece 4 that is widened on the rotation front side in the width direction orthogonal to the rotation direction of the rotor is adopted. In the eddy current type speed reducer according to the present invention, at the time of braking, the lines of magnetic force from the permanent magnets are more likely to enter the rotor via the pole pieces, and the braking force is further improved. In this case as well, not only the outer peripheral surface shape as shown in FIG. 10A but also the pole piece according to the present invention which spreads on the rotation front side as shown in FIG. More preferred.
[0021]
The pole piece 4 shown in FIGS. 7 to 10 may have a shape obtained by combining them in the present invention. The combinations may be incorporated in each possible pole piece 4 in a possible combination, or may be arranged alternately or with a regularity such as every few pieces. By these combinations, the respective effects are also synergized. Further, the shapes shown in FIGS. 5 and 6 may be combined with the shapes shown in FIGS. 7 to 10 in a possible combination. The combination method can be performed in the same manner as described above, and the effect is also synergistic.
[0022]
In the present invention described above, the rotation front side or the rotation rear side refers to the rotation front side or the rotation rear side from the center of the circumferential length of the pole piece. As shown in FIG. 11A, not only the rotation front end or the rotation rear end only extends in the width direction (rotation axis direction), but also the rotation 11A and 11B. On the other hand, as shown in FIG. 11B, there is also a case where the rotation front side is wider than the rotation rear side.
[0023]
In the above-described eddy current type speed reducer according to the present invention, although not shown, the present invention has a projection shape or an outer peripheral shape viewed from above the main surface extending to both the rotation front side and the rotation rear side. In the eddy current type reduction gear transmission according to the present invention employing the pole piece according to the above, the braking force is further improved by the above synergistic effect.
[0024]
【Example】
Hereinafter, a pole piece according to the present invention will be described based on an embodiment shown in FIGS.
[0025]
FIG. 1 is a view showing a first embodiment of a pole piece 4 according to the present invention. In the first embodiment, a rotation front of a pole piece 4 arranged opposite to a permanent magnet of an eddy current type speed reducer is shown. The projections 4b and 4c are formed on both the rear side and the rear side of the rotation so that the outer peripheral side protrudes into, for example, a flat plate having a thickness of 2 mm. The rotation direction of the rotor is the direction of arrow A shown in FIG. The direction of the rotation axis is also the arrow B direction.
[0026]
Then, the length of the pole piece 4 in the direction of the rotation axis is temporarily increased at an intermediate portion between the inner peripheral surface 4d and the outer peripheral surface 4e, then is shortened at the outer peripheral surface 4e, and then the outer peripheral surface 4e is reduced to the inner peripheral surface 4d. And the outer peripheral surface 4e is formed so that the shape of the outer peripheral surface 4e is widened at both ends of the pole piece 4 before and after rotation.
[0027]
In the eddy current type speed reducer according to the present invention using the pole piece 4 having such a shape, at the time of braking, the braking force is improved by the following operations.
{Circle around (1)} The density of the lines of magnetic force from the permanent magnet to the rotor via the pole piece 4 is narrowed and increased on the outer peripheral surface 4e, and when reaching the rotor, a large eddy current is generated and a large Lorentz force is obtained.
[0028]
{Circle over (2)} The density of the lines of magnetic force input to the rotor from the rear side of the rotation of the pole piece 4 is increased by the action of the protrusions 4c.
{Circle around (3)} The lines of magnetic force from the permanent magnets easily enter the rotor via the pole piece.
(4) Magnetic lines of force from the rotor easily enter the pole piece.
[0029]
Also, when not braking,
{Circle around (5)} Magnetic leakage from the permanent magnet to the rotor via the support is absorbed by the projecting portions 4b and 4c projecting in a plate shape, so that the torque loss can be reduced.
[0030]
FIG. 2 is a view showing a second embodiment of the pole piece according to the present invention. In the second embodiment shown in FIG. 2, the throttle portion 4a is not formed unlike the first embodiment. The other configuration is the same as that of the first embodiment.
[0031]
In the second embodiment having such a configuration, although there is no action of the above-mentioned (1) at the time of braking, the actions of the other (2) to (5) are the same, so that the eddy current using the conventional pole piece is used. As compared with the type reduction gear transmission, the braking torque can be improved and the loss torque can be reduced.
[0032]
The present invention is not limited to the above embodiment, and it goes without saying that even if only the claims correspond, the braking torque can be improved and the loss torque can be reduced.
[0033]
【The invention's effect】
As described above, according to the present invention,
(1) Increasing the density of lines of magnetic force from the permanent magnet to the rotor via the pole piece,
(2) The line of magnetic force input to the rotor from the rear side of the pole piece is made nearly vertical,
(3) The magnetic field lines from the permanent magnet can easily enter the rotor through the pole piece,
▲ 4 ▼ The lines of magnetic force from the rotor can easily enter the pole piece,
In particular, the braking torque during braking can be improved.
[Brief description of the drawings]
FIGS. 1A and 1B are views showing a first embodiment of a pole piece according to the present invention, wherein FIG. 1A is a perspective view, FIG. 1B is a view A in FIG. 1A, and FIG. 1C is an arrow in FIG. A view B is shown, and (d) is an arrow C view of (a).
FIGS. 2A and 2B are diagrams showing a second embodiment of the pole piece according to the present invention, wherein FIG. 2A is a perspective view, FIG. A view B is shown, and (d) is an arrow C view of (a).
FIGS. 3A and 3B are explanatory diagrams of a throttle portion which is an essential component of the pole piece according to the present invention. FIG. 3A shows a case where the throttle portion exists at an intermediate portion between the inner and outer circumferences, and FIG. And (c) is a diagram in a case where the aperture portion is an inner peripheral portion.
FIG. 4A is an explanatory view of a flow of magnetic lines of force when the pole piece according to the present invention has a constricted portion, which is an essential component of the pole piece, and FIG. 4B is a diagram of a magnetic field line of a conventional pole piece having no constricted portion. It is explanatory drawing of a flow.
FIG. 5A is an explanatory view of the flow of the lines of magnetic force during non-braking when the pole piece according to the present invention has a plate-like projection at the rear of rotation, which is an essential component of the pole piece according to the present invention; FIG. 4 is an explanatory view of the flow of magnetic force lines when a conventional pole piece having no protruding portion is not braked.
FIG. 6A is an explanatory view of a flow of lines of magnetic force at the time of braking when the pole piece according to the present invention has a plate-shaped protrusion in front of rotation, which is an essential component of the pole piece according to the present invention; FIG. 8 is an explanatory diagram of the flow of the lines of magnetic force similar to (a) when the end surface of FIG.
FIG. 7 is a view showing an example of a pole piece according to the present invention in which a projected shape as viewed from above the main surface spreads rearward in a width direction orthogonal to the rotation direction of the rotor, and FIG. , (B) is a view from the front, and (c) is a view from the left side.
8A and 8B are diagrams illustrating an example of a pole piece according to the present invention in which the outer peripheral surface shape is widened on the rotation rear side in a width direction orthogonal to the rotation direction of the rotor, where FIG. Is a view seen from the front, and (c) is a view seen from the left side.
FIG. 9 is a diagram showing an example of a pole piece according to the present invention in which a projected shape as viewed from above the main surface spreads forward in the width direction orthogonal to the rotation direction of the rotor, and FIG. , (B) is a view from the front, and (c) is a view from the left side.
10A and 10B are diagrams illustrating an example of a pole piece according to the present invention in which the outer peripheral surface shape is widened on the rotation front side in a width direction orthogonal to the rotation direction of the rotor, wherein FIG. Is a view seen from the front, and (c) is a view seen from the left side.
11A is a diagram illustrating the meaning of “spreading backward in rotation” in the present invention, and FIG. 11B is a diagram illustrating the meaning of “spread forward in rotation” in the present invention.
FIG. 12 is a cross-sectional view of a shaft slide type eddy current type reduction gear in a rotation axis direction.
FIG. 13 is a sectional view of the single-row turning type eddy current type speed reducer in the rotation axis direction.
FIG. 14 is a cross-sectional view of a double-row turning type eddy current type speed reducer in the rotation axis direction.
FIG. 15 is a sectional view of a shaft type eddy current type speed reducer using a disk type rotor in the direction of the rotation axis.
FIG. 16 is an explanatory diagram of the flow of magnetic lines of force input from a pole piece to a rotor during braking in a conventional eddy current type speed reducer.
FIG. 17 is an explanatory diagram of a magnetic circuit formed at the time of braking in a conventional eddy current type speed reducer.
[Explanation of symbols]
2a, 2b Rotor 4 Pole piece 4a Restricted portion 4b Rear protruding portion 4c Front protruding portion 4d Inner peripheral surface 4e Outer peripheral surface 5, 5a, 5b Permanent magnet

Claims (8)

渦電流式減速装置の永久磁石と対向して配置される強磁性板であって、
強磁性板の内外周間、外周部、内周部の何れかに内周面又は外周面の面積よりも小さい断面積を有する絞り部を設け、
制動時に渦電流を内部に生じる部材の回転の進行方向に向かって前方又は後方の外周側を平板状に突出させた前方突出部又は後方突出部を有することを特徴とする強磁性板。
A ferromagnetic plate arranged opposite to a permanent magnet of the eddy current type reduction gear,
Between the inner and outer peripheries of the ferromagnetic plate, an outer peripheral portion, an aperture portion having a cross-sectional area smaller than the area of the inner peripheral surface or the outer peripheral surface is provided at any of the inner peripheral portion,
A ferromagnetic plate having a front protruding portion or a rear protruding portion in which a front or rear outer peripheral side projects in a flat plate shape in a rotation progress direction of a member that internally generates an eddy current during braking.
渦電流式減速装置の永久磁石と対向して配置される強磁性板であって、
強磁性板の内外周間、外周部、内周部の何れかに内周面又は外周面の面積よりも小さい断面積を有する絞り部を設け、
前記強磁性板におけるその主面上方から見た投影形状或いは外周面の、制動時に渦電流を内部に生じる部材の回転方向と直交する幅が、前記回転の進行方向に向かって前方側又は後方側で広がっていることを特徴とする強磁性板。
A ferromagnetic plate arranged opposite to a permanent magnet of the eddy current type reduction gear,
Between the inner and outer peripheries of the ferromagnetic plate, an outer peripheral portion, an aperture portion having a cross-sectional area smaller than the area of the inner peripheral surface or the outer peripheral surface is provided at any of the inner peripheral portion,
The width of the projected shape or the outer peripheral surface of the ferromagnetic plate viewed from above the main surface thereof, which is orthogonal to the rotation direction of the member that internally generates the eddy current at the time of braking, is the front side or the rear side in the rotation traveling direction. A ferromagnetic plate characterized by being spread out in.
渦電流式減速装置の永久磁石と対向して配置される強磁性板であって、
前記強磁性板は、制動時に渦電流を内部に生じる部材の回転の進行方向に向かって前方又は後方の外周側を平板状に突出させた前方突出部又は後方突出部を有することを特徴とする請求項2記載の強磁性板。
A ferromagnetic plate arranged opposite to a permanent magnet of the eddy current type reduction gear,
The ferromagnetic plate has a front protruding portion or a rear protruding portion in which a front or rear outer side protrudes in a flat plate shape toward a traveling direction of a member that generates an eddy current inside during braking. The ferromagnetic plate according to claim 2.
渦電流式減速装置の永久磁石と対向して配置される強磁性板であって、
制動時に渦電流を内部に生じる部材の回転の進行方向に向かって前方又は後方の外周側を平板状に突出させた前方突出部又は後方突出部を有し、
前記強磁性板におけるその主面上方から見た投影形状或いは外周面の、制動時に渦電流を内部に生じる部材の回転方向と直交する幅が、前記回転の進行方向に向かって前方側又は後方側で広がっていることを特徴とする強磁性板。
A ferromagnetic plate arranged opposite to a permanent magnet of the eddy current type reduction gear,
A front or rear protruding portion in which a front or rear outer circumferential side protrudes in a flat plate shape toward a traveling direction of a member that internally generates an eddy current during braking,
The width of the projected shape or the outer peripheral surface of the ferromagnetic plate viewed from above the main surface thereof, which is orthogonal to the rotation direction of the member that internally generates the eddy current at the time of braking, is the front side or the rear side in the rotation traveling direction. A ferromagnetic plate characterized by being spread out in.
前方突出部を有する前記強磁性板であり、
前記前方突出部の前方端面を、前記渦電流を内部に生じる部材の内周面に対して回転後方側に傾けたことを特徴とする請求項1,3又は4の何れかに記載の強磁性板。
The ferromagnetic plate having a forward protrusion,
The ferromagnetic material according to any one of claims 1, 3 and 4, wherein a front end surface of the front protruding portion is inclined rearward with respect to an inner peripheral surface of the member that generates the eddy current therein. Board.
前記後方突出部の厚さが、制動時における短絡磁気回路形成時に磁気飽和する厚さであることを特徴とする請求項1又は3乃至5の何れかに記載の強磁性板。The ferromagnetic plate according to any one of claims 1 to 3, wherein the thickness of the rear protrusion is a thickness that is magnetically saturated when a short-circuit magnetic circuit is formed during braking. 前記前方突出部の厚さが、制動時における短絡磁気回路形成時に磁気飽和しない厚さであることを特徴とする請求項1又は3乃至6の何れかに記載の強磁性板。7. The ferromagnetic plate according to claim 1, wherein the thickness of the front protrusion is a thickness that does not cause magnetic saturation when a short-circuit magnetic circuit is formed during braking. 請求項1乃至7の何れかに記載の強磁性板を少なくとも備えたことを特徴とする渦電流式減速装置。An eddy current type speed reducer comprising at least the ferromagnetic plate according to claim 1.
JP2002316003A 2002-10-30 2002-10-30 Ferromagnetic plate and eddy current type reduction gear Pending JP2004153925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002316003A JP2004153925A (en) 2002-10-30 2002-10-30 Ferromagnetic plate and eddy current type reduction gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002316003A JP2004153925A (en) 2002-10-30 2002-10-30 Ferromagnetic plate and eddy current type reduction gear

Publications (1)

Publication Number Publication Date
JP2004153925A true JP2004153925A (en) 2004-05-27

Family

ID=32459837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002316003A Pending JP2004153925A (en) 2002-10-30 2002-10-30 Ferromagnetic plate and eddy current type reduction gear

Country Status (1)

Country Link
JP (1) JP2004153925A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013147073A1 (en) * 2012-03-29 2013-10-03 新日鐵住金株式会社 Eddy-current-type reduction gear

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013147073A1 (en) * 2012-03-29 2013-10-03 新日鐵住金株式会社 Eddy-current-type reduction gear
KR20140141612A (en) * 2012-03-29 2014-12-10 신닛테츠스미킨 카부시키카이샤 Eddy-current-type reduction gear
CN104205590A (en) * 2012-03-29 2014-12-10 新日铁住金株式会社 Eddy-current-type reduction gear
JPWO2013147073A1 (en) * 2012-03-29 2015-12-14 新日鐵住金株式会社 Eddy current reducer
KR101653897B1 (en) * 2012-03-29 2016-09-02 신닛테츠스미킨 카부시키카이샤 Eddy-current-type reduction gear
CN104205590B (en) * 2012-03-29 2017-06-16 新日铁住金株式会社 Eddy current type deceleration device

Similar Documents

Publication Publication Date Title
JPH0454862A (en) Eddy current type reduction gear
JP3765291B2 (en) Eddy current reducer
JP2004153925A (en) Ferromagnetic plate and eddy current type reduction gear
JP2004222405A (en) Ferromagnetic plate and eddy current type reduction gear
JP4042524B2 (en) Eddy current reducer
JP2004215430A (en) Reduction gear utilizing eddy current
JP2003348816A (en) Eddy current decelerating device
JP2601177Y2 (en) Eddy current retarder pole piece structure
JP2004350412A (en) Eddy current type reduction gear
JP3953718B2 (en) Eddy current reducer
JP7294914B2 (en) rotor and motor
JP2004328891A (en) Eddy current type reduction gear unit
JP4042357B2 (en) Eddy current reducer
JP3809771B2 (en) Eddy current reducer
JP2004343953A (en) Eddy current type reduction gear
JP2001292559A (en) Eddy current reducer
JP3702794B2 (en) Eddy current reducer
JP3484992B2 (en) Eddy current speed reducer
JP4016537B2 (en) Eddy current reducer
JP3882397B2 (en) Eddy current reducer
JP4296836B2 (en) Eddy current reducer
JP3633291B2 (en) Eddy current reducer
JP2004350411A (en) Eddy current type reduction gear
JP3941733B2 (en) Manufacturing method of eddy current type speed reducer
JP2001069694A (en) Dynamo-electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041018

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070314

A131 Notification of reasons for refusal

Effective date: 20070508

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071009