WO2013147073A1 - Eddy-current-type reduction gear - Google Patents

Eddy-current-type reduction gear Download PDF

Info

Publication number
WO2013147073A1
WO2013147073A1 PCT/JP2013/059359 JP2013059359W WO2013147073A1 WO 2013147073 A1 WO2013147073 A1 WO 2013147073A1 JP 2013059359 W JP2013059359 W JP 2013059359W WO 2013147073 A1 WO2013147073 A1 WO 2013147073A1
Authority
WO
WIPO (PCT)
Prior art keywords
braking
pole piece
support member
magnet
pole pieces
Prior art date
Application number
PCT/JP2013/059359
Other languages
French (fr)
Japanese (ja)
Inventor
今西 憲治
齋藤 晃
裕 野上
野口 泰隆
山口 博行
洋三 奥田
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to KR1020147027168A priority Critical patent/KR101653897B1/en
Priority to CN201380015434.2A priority patent/CN104205590B/en
Priority to JP2014508053A priority patent/JP5825428B2/en
Publication of WO2013147073A1 publication Critical patent/WO2013147073A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/02Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type
    • H02K49/04Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type of the eddy-current hysteresis type
    • H02K49/043Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type of the eddy-current hysteresis type with a radial airgap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/10Electromagnets; Actuators including electromagnets with armatures specially adapted for alternating current
    • H01F7/11Electromagnets; Actuators including electromagnets with armatures specially adapted for alternating current reducing or eliminating the effects of eddy currents
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/145Stator cores with salient poles having an annular coil, e.g. of the claw-pole type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/02Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type
    • H02K49/04Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type of the eddy-current hysteresis type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/02Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type
    • H02K49/04Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type of the eddy-current hysteresis type
    • H02K49/046Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type of the eddy-current hysteresis type with an axial airgap

Definitions

  • the present invention relates to an eddy current type speed reducer (hereinafter referred to as a retarder) for vehicles mounted as an auxiliary brake on, for example, a large-sized / medium-sized bus or truck.
  • a retarder eddy current type speed reducer
  • it is intended to reduce the operating force required for switching between braking on and braking off (hereinafter referred to as the required operating force).
  • an engine brake and an exhaust brake are mounted as auxiliary brakes in addition to a foot brake (friction brake) which is a main brake.
  • a foot brake vibration brake
  • the capacity of engine brakes and exhaust brakes has been reduced as the engine mounted on a vehicle has been reduced in displacement, and therefore, the number of cases where a retarder has been introduced to strengthen the auxiliary brakes has increased.
  • Retarders are broadly divided into methods using electromagnets and methods using permanent magnets in order to generate a magnetic field that provides braking force. Recently, permanent magnet type retarders that do not require energization during braking have become mainstream. It has become. This permanent magnet type retarder is classified into two types, a drum type and a disk type, according to the shape of the braking member to which the braking force is provided.
  • Patent Literature 1 and Patent Literature 2 disclose a general configuration of a permanent magnet type retarder mounted on a large vehicle.
  • Patent Document 1 discloses a drum-type retarder.
  • a cylindrical braking drum 2 as a braking member is fixed to a rotating shaft 1 such as a propeller shaft.
  • a ring-shaped magnet support member 4 provided with a plurality of permanent magnets 3 in the circumferential direction is arranged inside the brake drum 2.
  • a ferromagnetic pole piece 5 is disposed between the group of permanent magnets 3 and the braking drum 2 at the same angular position as the permanent magnet 3.
  • These pole pieces 5 are supported by a support body 6 in which a nonmagnetic support member 6 a is interposed between the pole pieces 5.
  • Patent Document 2 discloses a disk-type retarder. As shown in FIG. 11, this retarder has a disc-shaped braking disk 7 as a braking member fixed to the rotating shaft 1.
  • annular magnet support member 4 provided with a plurality of permanent magnets 3 in the circumferential direction is disposed so as to face the main surface 7a of the brake disk 7.
  • a ferromagnetic pole piece 5 is disposed between the group of permanent magnets 3 and the braking disk 7 at the same angular position as the permanent magnet 3.
  • These pole pieces 5 are supported by a support body 6 in which a nonmagnetic support member 6 a is interposed between the pole pieces 5.
  • the brake support is switched on and off by moving the magnet support member to a predetermined position.
  • FIGS. 10 and 11 (c) are diagrams showing a magnetic circuit configuration during non-braking.
  • Patent Document 3 proposes a retarder for reducing the required operating force required for the rotation of the magnet support member when switching between braking on and braking off.
  • the retarder proposed in Patent Document 3 is configured such that an outer magnet ring and an inner side are arranged such that a plurality of permanent magnets are arranged at predetermined intervals in the circumferential direction from the brake drum side, facing the inner peripheral surface of the brake drum. Magnet rings are provided so that the permanent magnets face each other.
  • the plurality of permanent magnets are arranged such that the magnetic poles are oriented in the circumferential direction and the magnetic poles facing in the circumferential direction are the same polarity.
  • the inner magnet ring the plurality of permanent magnets are arranged such that the magnetic poles are directed in the diameter direction and the magnetic poles adjacent in the circumferential direction are alternately opposite in polarity.
  • the inner circumferential surface of the outer magnet ring is formed with recesses extending from the permanent magnet at both ends in the circumferential direction extending along the permanent magnet, and the outer magnet ring is further provided at both ends of the recess.
  • the dug-down part dug down is formed avoiding the permanent magnet.
  • Patent Document 4 A retarder configured as described above was proposed (Patent Document 4).
  • the retarder proposed in Patent Document 4 since the number of parts does not change, there is no problem that the manufacturing cost increases. However, when trying to further reduce the cost and size of the entire apparatus, the retarder proposed in Patent Document 4 lacks the force of the air cylinder. On the other hand, if an air cylinder that satisfies a predetermined pushing and pulling force is employed, the cost and size cannot be reduced.
  • JP-A-1-298948 Japanese Patent Laid-Open No. 1-234044 JP 2007-82338 A Japanese Patent No. 4581186
  • the problem to be solved by the present invention is that the conventional retarder for reducing the required operating force required for switching between braking on and braking off has a large number of parts. Further, if the size of the device is further reduced, the air cylinder force is insufficient.
  • the retarder of the present invention aims to reduce the required force when switching between braking on and braking off at the lowest possible cost while reducing the number of parts and further reducing the size of the device. It was made.
  • the retarder of the present invention In the single row swirl type retarder having the configuration shown in FIG. 10 or the disc type retarder having the configuration shown in FIG.
  • a plurality of pole pieces are notched on the front end side in the turning direction of the magnet support member when switching from braking off to braking on and facing the permanent magnet.
  • the main feature is that it has a department.
  • the plurality of pole pieces are opposed to the permanent magnet on the front end side in the turning movement direction of the magnet support member when switching from braking off to braking on. Since the notch is provided on the side, the flow of the magnetic flux from the permanent magnet to the pole piece for each or the same pole changes. This makes it possible to reduce the required force when switching between braking on and braking off by changing the peak position of the attractive force and repulsive force acting between the permanent magnet and pole piece for each or different poles. It becomes.
  • a plurality of pole pieces are arranged on the front end side of the turning direction of the magnet support member when switching from braking off to braking on and on the side facing the permanent magnet.
  • (A)-(d) is a figure explaining the example of the shape of the pole piece employ
  • the paper surface right side is the perspective view seen from the front lower direction of the circumferential direction
  • (E) is the figure which looked at the example of the combination of the pole piece to employ
  • (A) is an operation required force required for switching from braking off to braking on by rotation in the direction opposite to the rotation direction of the brake drum (hereinafter simply referred to as reverse direction) in the case shown in FIG.
  • required by numerical analysis, (b) is a figure similar to (a) in the case shown in FIG.3 (b).
  • FIG. 4 is a view similar to FIG. 3 when the brake drum rotates in the same direction (hereinafter referred to as a forward direction). It is the same figure as Fig.2 (a) at the time of rotation of a forward direction.
  • An angle formed by a straight line connecting the front and rear ends on the inner peripheral side of the pole piece when the notch portion is not provided from the axis center of the rotation shaft when viewed from the cross-sectional direction of the rotation shaft (hereinafter referred to as the pole piece) Angle)) divided by the angle formed by the straight line connecting the front and rear ends of the permanent magnet at the position facing the pole piece (hereinafter referred to as magnet angle), the required operating force ratio and the braking torque. It is the figure which showed the relationship of ratio / magnetic leakage torque ratio.
  • FIG. 10 It is a figure explaining the conventional drum type retarder of a single row turning system, (a) is sectional drawing of a rotating shaft direction, (b) is explanatory drawing of the magnetic circuit structure at the time of braking, (c) is at the time of non-braking It is explanatory drawing of a magnetic circuit structure. It is a figure similar to FIG. 10 explaining the conventional disc type retarder. It is a figure which shows the moving direction of a magnet support member and the shape of a pole piece in the conventional retarder of a single row turning system, (a) shows the time of forward rotation, (b) shows the time of reverse rotation.
  • An object of the present invention is to reduce the required operating force when switching between braking on and braking off at as low a cost as possible without increasing the number of parts and further reducing the size of the device. To do.
  • the object is to provide notches on the front end side of the plurality of pole pieces in the turning direction of the magnet support member and on the side facing the permanent magnet of the group of pole pieces arranged in the circumferential direction. Realized by.
  • FIG. 12 is a view showing the moving direction of the magnet support member 4 in the conventional retarder of the single row swivel type using the pole piece 5 having the shape shown in FIG.
  • FIG. 14 shows an operation necessary for switching between braking-on and braking-off in the case of applying the technique proposed by the applicant in Patent Document 4 in the conventional retarder of the single-row turning system shown in FIG. It is the figure which showed the result of having calculated
  • FIG. 14 is a diagram corresponding to FIG. 6 of Patent Document 4, and a result equivalent to that of the single-row swirl type retarder shown by the solid line in FIG. 6 of Patent Document 4 is obtained.
  • the demagnetizing field accompanying the eddy current generated in the braking drum and the magnetic field from the permanent magnet repel each other when switching from braking-off to braking-on. Since a force to push the permanent magnet is applied, it can be confirmed that the force by the air cylinder may be small.
  • the inventors have suppressed the peak by dispersing the flow of magnetic flux between the permanent magnet and the pole piece, which is the source of the required operating force when switching from braking off to braking on of the permanent magnet type retarder. Repeated examination.
  • an air cylinder that satisfies the specified push / pull force and can be reduced in cost and size can be adopted. This is because the weight and weight can be reduced.
  • FIGS. 1A to 1D show examples of notches provided on the pole piece on the front end side in the turning direction of the magnet support member when switching from braking off to braking on and on the side facing the permanent magnet. .
  • FIG. 1 (a) to 1 (c) are examples in which a notch 5a having the same cross section is provided in the axial direction of the rotating shaft, (a) the cross section is rectangular, and (b) the cross section is cross section. Is a triangular shape, and FIG. 6C shows an example in which the cross section is an arc shape.
  • FIG. 1 (d) shows an example in which a notch 5a having a rectangular cross section is provided in the axial direction of the rotation axis.
  • the notch 5a provided at the position of the pole piece 5 is braked as compared to the conventional shape shown in FIG.
  • the required operating force is reduced when switching from off to braking on.
  • FIG. 2 is a diagram showing the result of obtaining the required operating force required when switching from braking-off to braking-on by rotating in the reverse direction under the same conditions as in FIG. 14 (b).
  • (a) shows the case where the pole pieces 5 provided with the notches 5a shown in FIG. 1 (a) and the pole pieces 5 shown in FIG. 13 without the notches are alternately arranged. (See FIG. 3A).
  • FIG. 3B shows the case where the pole piece 5 provided with the notch 5a shown in FIG. 1A is arranged all around (see FIG. 3B).
  • FIG. 2 (b) in which the pole piece 5 provided with the notch 5a is arranged around the entire circumference is different from the pole piece 5 provided with the notch 5a.
  • the required force for operation is smaller than that of FIG. 2A in which the pole pieces 5 not provided with the notches are alternately arranged.
  • FIG. 6 is a diagram showing the result of obtaining the required operating force required for switching from braking-off to braking-on by forward rotation under the same conditions as in FIG. 14 (a), and provided with a notch 5a. This is a case where the pole pieces 5 and the pole pieces 5 not provided with notches are alternately arranged (see FIG. 5A).
  • FIG. 7A is a diagram showing the result of calculating the required force required for switching from braking-off to braking-on by forward rotation by numerical analysis
  • FIG. 7B shows braking from braking-on by reverse rotation. It is the figure which showed the result of having calculated
  • the required operating force when switching from braking on to braking off by reverse rotation is the position where braking is off in the case of the minimum number of revolutions (0 rpm) among the numerical analysis. It turns out that it becomes the maximum.
  • the inventors calculated the maximum required operating force at the time of switching from braking off to braking on and switching from braking on to braking off by dividing the pole piece angle ⁇ 1 by the magnet angle ⁇ 2 (hereinafter referred to as ( The pole piece angle / magnet angle) ratio (see FIG. 8) was changed and obtained by numerical analysis.
  • the inventors obtained the maximum braking torque and magnetic leakage torque when the rotational speed is 3600 rpm (see FIG. 4) by numerical analysis by changing the (pole piece angle / magnet angle) ratio.
  • FIG. 9 shows the relationship between the required operating force, braking torque, magnetic leakage torque, and (pole piece angle / magnet angle) ratio.
  • the (pole piece angle / magnet angle) ratio is in the range of 1.047 to 1.13, the operation at the time of switching from braking off to braking on and the switching from braking on to braking off is performed. It can be seen that a reduction in braking torque can be reduced with a small magnetic leakage torque while balancing the required force.
  • FIG. 2 The results shown in FIG. 2, FIG. 4, FIG. 6, FIG. 7, FIG. 9 and FIG. 14 are obtained when 32 permanent magnets are installed in the circumferential direction. A similar tendency is obtained in the range of 16 to 48.
  • the notches 5a formed in the pole piece 5 may all have the same shape as in the example described above. However, as shown in FIG. 1 (e), for example, the similarity increases in order in the circumferential direction. It may be a shape. Further, the combination shown in FIG. 1E may be repeated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

A single-row rotating-type eddy-current-type reduction gear, wherein the number of components is not large, and low cost is achieved and the amount of operating power needed during switching between braking on and braking off is reduced while further reduction in the size of the device is achieved. A magnet support member (4) for a ferromagnetic material in which permanent magnets (3) are arranged with a constant interval therebetween is provided facing a braking drum (2) so as to be able to rotate through a necessary angle, so that magnetic poles are in opposite orientations to each other in the circumferential direction of the braking drum (2), which is attached to a rotating shaft (1). A support (3) in which a group of pole pieces (5) of a ferromagnetic material arranged at basically the same angle positions as the permanent magnets (3) is provided with support members (6a) of a non-magnetic material interposed between the pole pieces (5) is provided between the group of permanent magnets and the braking drum (2). Notch parts (5a) are provided in sides of the plurality of pole pieces (5) facing the permanent magnets (3), on front end sides in the direction in which the magnet support member (4) moves during switching from braking off to braking on.

Description

渦電流式減速装置Eddy current reducer
 本発明は、例えば大型・中型のバスやトラックに、補助ブレーキとして搭載する車両用の渦電流式減速装置(以下、リターダという。)に関するものである。特に制動オンと制動オフの切り替え時に必要な作動力(以下、作動所要力という。)の低減を図ることを目的としたものである。 The present invention relates to an eddy current type speed reducer (hereinafter referred to as a retarder) for vehicles mounted as an auxiliary brake on, for example, a large-sized / medium-sized bus or truck. In particular, it is intended to reduce the operating force required for switching between braking on and braking off (hereinafter referred to as the required operating force).
 例えばトラックやバスなどの大型車両の場合、主ブレーキであるフットブレーキ(摩擦ブレーキ)の他に、補助ブレーキとしてエンジンブレーキや排気ブレーキが搭載されている。近年、車両に搭載するエンジンが小排気量化することに伴ってエンジンブレーキや排気ブレーキの能力が低下することから、リターダを導入して補助ブレーキを強化する場合が多くなってきている。 For example, in the case of large vehicles such as trucks and buses, an engine brake and an exhaust brake are mounted as auxiliary brakes in addition to a foot brake (friction brake) which is a main brake. In recent years, the capacity of engine brakes and exhaust brakes has been reduced as the engine mounted on a vehicle has been reduced in displacement, and therefore, the number of cases where a retarder has been introduced to strengthen the auxiliary brakes has increased.
 リターダは、制動力をもたらす磁界を発生させるために、電磁石を用いる方式と、永久磁石を用いる方式に大別されるが、近年は、制動時に通電を必要としない永久磁石方式のリターダが主流となっている。この永久磁石方式のリターダは、制動力がもたらされる制動部材の形状に応じて、ドラム型とディスク型の二種類に区分される。 Retarders are broadly divided into methods using electromagnets and methods using permanent magnets in order to generate a magnetic field that provides braking force. Recently, permanent magnet type retarders that do not require energization during braking have become mainstream. It has become. This permanent magnet type retarder is classified into two types, a drum type and a disk type, according to the shape of the braking member to which the braking force is provided.
 例えば、特許文献1や特許文献2には、大型車両に搭載される永久磁石方式のリターダの一般的な構成が開示されている。 For example, Patent Literature 1 and Patent Literature 2 disclose a general configuration of a permanent magnet type retarder mounted on a large vehicle.
 このうち、特許文献1にはドラム型のリターダが開示されている。このリターダは、図10に示すように、プロペラシャフトなどの回転軸1に制動部材である円筒状の制動ドラム2を固定している。 Of these, Patent Document 1 discloses a drum-type retarder. In this retarder, as shown in FIG. 10, a cylindrical braking drum 2 as a braking member is fixed to a rotating shaft 1 such as a propeller shaft.
 そして、制動ドラム2の内側に、複数の永久磁石3を円周方向に設けたリング状の磁石支持部材4を配置している。また、前記永久磁石3群と前記制動ドラム2との間に、永久磁石3と基本的には同じ角度位置に配置した強磁性体のポールピース5を配置している。これらポールピース5は、各ポールピース5の間に非磁性体の支持部材6aを介在させた支持体6によって支持されている。 Further, a ring-shaped magnet support member 4 provided with a plurality of permanent magnets 3 in the circumferential direction is arranged inside the brake drum 2. A ferromagnetic pole piece 5 is disposed between the group of permanent magnets 3 and the braking drum 2 at the same angular position as the permanent magnet 3. These pole pieces 5 are supported by a support body 6 in which a nonmagnetic support member 6 a is interposed between the pole pieces 5.
 一方、特許文献2にはディスク型のリターダが開示されている。このリターダは、図11に示すように、回転軸1に制動部材である円板状の制動ディスク7を固定している。 On the other hand, Patent Document 2 discloses a disk-type retarder. As shown in FIG. 11, this retarder has a disc-shaped braking disk 7 as a braking member fixed to the rotating shaft 1.
 そして、制動ディスク7の主面7aに対向して、複数の永久磁石3を円周方向に設けた環状の磁石支持部材4を配置している。また、前記永久磁石3群と前記制動ディスク7との間に、永久磁石3と基本的には同じ角度位置に配置した強磁性体のポールピース5を配置している。これらポールピース5は、各ポールピース5の間に非磁性体の支持部材6aを介在させた支持体6によって支持されている。 Further, an annular magnet support member 4 provided with a plurality of permanent magnets 3 in the circumferential direction is disposed so as to face the main surface 7a of the brake disk 7. A ferromagnetic pole piece 5 is disposed between the group of permanent magnets 3 and the braking disk 7 at the same angular position as the permanent magnet 3. These pole pieces 5 are supported by a support body 6 in which a nonmagnetic support member 6 a is interposed between the pole pieces 5.
 前記のドラム型やディスク型のリターダの場合、前記磁石支持部材を所定の位置に移動させることにより、制動オンと制動オフの切替えを行う。 In the case of the above-mentioned drum type or disk type retarder, the brake support is switched on and off by moving the magnet support member to a predetermined position.
 これらドラム型、ディスク型のリターダの場合は、図10,11の(b)図に示す制動時には、両者とも永久磁石3からの磁界の作用で、永久磁石3と対向する制動ドラム2の内周面又は制動ディスク7の主面7aに渦電流が発生する。そして、この渦電流により、回転軸とともに回転する制動ドラム又は制動ディスクに回転方向と逆向きの制動力が生じ、回転軸を減速する。なお、図10,11の(c)図は非制動時の磁気回路構成を示す図である。 In the case of these drum-type and disk-type retarders, the inner circumference of the brake drum 2 facing the permanent magnet 3 by the action of the magnetic field from the permanent magnet 3 in both cases shown in FIGS. An eddy current is generated on the surface or the main surface 7 a of the braking disk 7. The eddy current causes a braking force in the direction opposite to the rotation direction on the brake drum or the brake disk that rotates together with the rotation shaft, and decelerates the rotation shaft. FIGS. 10 and 11 (c) are diagrams showing a magnetic circuit configuration during non-braking.
 しかしながら、ドラム型およびディスク型のリターダの場合は、両者とも制動オンと制動オフを切り替える際の磁石支持部材の回転に大きな作動所要力を必要とするため、アクチュエータが大きくなって自動車への搭載が困難であった。 However, in the case of both the drum type and the disk type retarder, both require large operating force to rotate the magnet support member when switching between braking on and braking off. It was difficult.
 そこで、制動オンと制動オフを切り替える際の磁石支持部材の回転に必要な作動所要力を小さくすることを目的としたリターダが特許文献3で提案された。 Therefore, Patent Document 3 proposes a retarder for reducing the required operating force required for the rotation of the magnet support member when switching between braking on and braking off.
 特許文献3で提案されたリターダは、制動ドラムの内周面と対向して、制動ドラム側から、それぞれ円周方向に所定間隔を存して複数の永久磁石を配置した、外側磁石環と内側磁石環を、それぞれの永久磁石が相対するように設けている。このうち、外側磁石環では、複数の永久磁石は、磁極を円周方向に向け、円周方向に向き合う磁極が同極となるように配置している。一方、内側磁石環では、複数の永久磁石は、磁極を直径方向に向け、円周方向に隣り合う磁極が交互に逆極性となるように配置している。そして、外側磁石環の内周面には、前記永久磁石に沿って延びた円周方向の両端を永久磁石から延出させる凹部が形成されると共に、凹部の両端の位置に外側磁石環を更に掘り下げた掘り下げ部が、永久磁石を避けて形成されている。 The retarder proposed in Patent Document 3 is configured such that an outer magnet ring and an inner side are arranged such that a plurality of permanent magnets are arranged at predetermined intervals in the circumferential direction from the brake drum side, facing the inner peripheral surface of the brake drum. Magnet rings are provided so that the permanent magnets face each other. Among these, in the outer magnet ring, the plurality of permanent magnets are arranged such that the magnetic poles are oriented in the circumferential direction and the magnetic poles facing in the circumferential direction are the same polarity. On the other hand, in the inner magnet ring, the plurality of permanent magnets are arranged such that the magnetic poles are directed in the diameter direction and the magnetic poles adjacent in the circumferential direction are alternately opposite in polarity. The inner circumferential surface of the outer magnet ring is formed with recesses extending from the permanent magnet at both ends in the circumferential direction extending along the permanent magnet, and the outer magnet ring is further provided at both ends of the recess. The dug-down part dug down is formed avoiding the permanent magnet.
 この特許文献3で提案されたリターダの場合、制動オンと制動オフを切り替える際の内側磁石環の回転に必要な作動所要力は小さくなる。しかしながら、その構造から部品点数が多くなって、製造経費が嵩むといった問題がある。 In the case of the retarder proposed in Patent Document 3, the required operating force required to rotate the inner magnet ring when switching between braking on and braking off is reduced. However, there is a problem that the number of parts increases due to the structure and the manufacturing cost increases.
 そこで、出願人は、制動オフから制動オンに切り替える際の磁石支持部材の回転を、ピストン受圧面積の大きい側へのエアーの供給により、制動ドラムの回転方向へピストンロットが突出することで行うように構成したリターダを提案した(特許文献4)。 Therefore, the applicant performs rotation of the magnet support member when switching from braking-off to braking-on by causing the piston lot to protrude in the rotation direction of the braking drum by supplying air to the side having the larger piston pressure receiving area. A retarder configured as described above was proposed (Patent Document 4).
 特許文献4で提案したリターダの場合、部品点数は変化しないので、製造経費が嵩むといった問題は生じない。しかしながら、更なる装置全体の低コスト化と小型化を図ろうとすると、特許文献4で提案したリターダではエアーシリンダの力が不足する。一方、所定の押引力を満たすエアーシリンダを採用すると低コストと小型化が図れなくなる。 In the case of the retarder proposed in Patent Document 4, since the number of parts does not change, there is no problem that the manufacturing cost increases. However, when trying to further reduce the cost and size of the entire apparatus, the retarder proposed in Patent Document 4 lacks the force of the air cylinder. On the other hand, if an air cylinder that satisfies a predetermined pushing and pulling force is employed, the cost and size cannot be reduced.
特開平1-298948号公報JP-A-1-298948 特開平1-234044号公報Japanese Patent Laid-Open No. 1-234044 特開2007-82338号公報JP 2007-82338 A 特許第4581186号公報Japanese Patent No. 4581186
 本発明が解決しようとする問題点は、制動オンと制動オフの切り替えの際に必要な作動所要力を小さくすることを目的とした従来のリターダは、部品点数が多くなるという点である。また、更なる装置の小型化を図ろうとすると、エアーシリンダの力が不足するという点である。 The problem to be solved by the present invention is that the conventional retarder for reducing the required operating force required for switching between braking on and braking off has a large number of parts. Further, if the size of the device is further reduced, the air cylinder force is insufficient.
 本発明のリターダは、部品点数が多くならず、しかも更なる装置の小型化を図りつつ、できるだけ低コストで、かつ制動オンと制動オフの切り替えの際の作動所要力を小さくすることを目的として成されたものである。 The retarder of the present invention aims to reduce the required force when switching between braking on and braking off at the lowest possible cost while reducing the number of parts and further reducing the size of the device. It was made.
 本発明のリターダは、
 図10に示した構成の単列旋回方式のリターダ、或いは、図11に示した構成のディスク型のリターダにおいて、
 円周方向に配置した前記ポールピース群の内、複数のポールピースの、制動オフから制動オンに切り替える際の磁石支持部材の旋回移動方向前端部側でかつ永久磁石と相対する側に、切欠き部を設けたことを最も主要な特徴としている。
The retarder of the present invention
In the single row swirl type retarder having the configuration shown in FIG. 10 or the disc type retarder having the configuration shown in FIG.
Of the plurality of pole piece groups arranged in the circumferential direction, a plurality of pole pieces are notched on the front end side in the turning direction of the magnet support member when switching from braking off to braking on and facing the permanent magnet. The main feature is that it has a department.
 上記本発明では、円周方向に配置したポールピース群の内、複数のポールピースの、制動オフから制動オンに切り替える際の磁石支持部材の旋回移動方向の前端部側でかつ永久磁石と相対する側に切欠き部を設けるので、個々または同極毎の永久磁石からポールピースへの磁束の流れが変化する。これにより、個々または異極毎の永久磁石とポールピース間に働く吸引力と反発力のピーク発生位置が変化して、制動オンと制動オフの切り替えの際の作動所要力を小さくすることが可能となる。 In the present invention, among the pole piece groups arranged in the circumferential direction, the plurality of pole pieces are opposed to the permanent magnet on the front end side in the turning movement direction of the magnet support member when switching from braking off to braking on. Since the notch is provided on the side, the flow of the magnetic flux from the permanent magnet to the pole piece for each or the same pole changes. This makes it possible to reduce the required force when switching between braking on and braking off by changing the peak position of the attractive force and repulsive force acting between the permanent magnet and pole piece for each or different poles. It becomes.
 本発明では、円周方向に配置したポールピース群の内、複数のポールピースの、制動オフから制動オンに切り替える際の磁石支持部材の旋回移動方向前端部側でかつ永久磁石と相対する側に切欠き部を設けることにより、制動オフと制動オンの切り替えの際の作動所要力を効果的に小さくすることができる。 In the present invention, among the pole piece groups arranged in the circumferential direction, a plurality of pole pieces are arranged on the front end side of the turning direction of the magnet support member when switching from braking off to braking on and on the side facing the permanent magnet. By providing the notch, it is possible to effectively reduce the required operating force when switching between braking-off and braking-on.
 これにより、従来に比べて更に低コストで、かつ制動オフと制動オンの切り替えの際の作動所要力の小さいアクチュエータを採用することができ、その結果、装置全体の小型化、軽量化を図ることが可能となる。 As a result, it is possible to employ an actuator that is lower in cost than the conventional one and requires a smaller force required for switching between braking-off and braking-on. As a result, the entire device can be reduced in size and weight. Is possible.
(a)~(d)は本発明のリターダに採用するポールピースの形状例を説明する図で、夫々紙面左側は側面から見た図、紙面右側は円周方向の前方下方から見た斜視図、(e)は採用するポールピースの組合せの一例を側面から見た図である。(A)-(d) is a figure explaining the example of the shape of the pole piece employ | adopted as the retarder of this invention, The figure which looked at the paper surface left side from the side, respectively, The paper surface right side is the perspective view seen from the front lower direction of the circumferential direction (E) is the figure which looked at the example of the combination of the pole piece to employ | adopted from the side. (a)は、図3(a)に示した場合の、制動ドラムの回転方向と逆方向(以下、単に逆方向という。)の回転により制動オフから制動オンに切り替える際に必要な作動所要力を数値解析により求めた結果を示した図、(b)は、図3(b)に示した場合の(a)と同様の図である。(A) is an operation required force required for switching from braking off to braking on by rotation in the direction opposite to the rotation direction of the brake drum (hereinafter simply referred to as reverse direction) in the case shown in FIG. The figure which showed the result calculated | required by numerical analysis, (b) is a figure similar to (a) in the case shown in FIG.3 (b). 逆方向の回転時における本発明の単列旋回方式のリターダのポールピース形状の一例を示す図で、(a)は切欠き部を設けたポールピースと、切欠き部を設けないポールピースを交互に配置した場合、(b)は切欠き部を設けたポールピースを全周配置した場合である。It is a figure which shows an example of the pole piece shape of the retarder of the single row turning system of this invention at the time of reverse rotation, (a) is the pole piece which provided the notch part, and the pole piece which does not provide a notch part alternately (B) is a case where the pole piece provided with the notch is arranged all around. (a)は本発明と特許文献4の技術の制動トルクを比較した図、(b)は同じく磁気漏れ損失トルクを比較した図である。(A) is the figure which compared the braking torque of this invention and the technique of patent document 4, (b) is the figure which similarly compared the magnetic leakage loss torque. 制動ドラムの回転方向と同方向(以下、順方向という。)の回転時における図3と同様の図である。FIG. 4 is a view similar to FIG. 3 when the brake drum rotates in the same direction (hereinafter referred to as a forward direction). 順方向の回転時における図2(a)と同様の図である。It is the same figure as Fig.2 (a) at the time of rotation of a forward direction. 制動オフと制動オンを切り替える際に必要な作動所要力を数値解析により求めた結果を示した図で、(a)は順方向の回転による制動オフから制動オンへの切り替え時、(b)は逆方向の回転による制動オンから制動オフへの切り替え時である。The figure which showed the result of calculating | requiring the required operation force required when switching a brake off and a brake on by numerical analysis, (a) is at the time of switching from the brake off by the forward rotation to a brake on, (b) is This is when switching from braking on to braking off due to rotation in the reverse direction. 回転軸の横断面方向から見た場合の、ポールピースと永久磁石の関係を説明する図である。It is a figure explaining the relationship between a pole piece and a permanent magnet when it sees from the cross-sectional direction of a rotating shaft. 回転軸の横断面方向から見た場合に、回転軸の軸中心から前記切欠き部を設けないとした場合のポールピースの内周側の前後端を結んだ直線がなす角度(以下、ポールピース角度という。)を、当該ポールピースと相対する位置の永久磁石の外周側の前後端を結んだ直線がなす角度(以下、磁石角度という。)で除した値と、作動所要力比及び制動トルク比・磁気漏れトルク比の関係を示した図である。An angle formed by a straight line connecting the front and rear ends on the inner peripheral side of the pole piece when the notch portion is not provided from the axis center of the rotation shaft when viewed from the cross-sectional direction of the rotation shaft (hereinafter referred to as the pole piece) Angle)) divided by the angle formed by the straight line connecting the front and rear ends of the permanent magnet at the position facing the pole piece (hereinafter referred to as magnet angle), the required operating force ratio and the braking torque. It is the figure which showed the relationship of ratio / magnetic leakage torque ratio. 単列旋回方式の従来のドラム型のリターダを説明する図で、(a)は回転軸方向の断面図、(b)は制動時の磁気回路構成の説明図、(c)は非制動時の磁気回路構成の説明図である。It is a figure explaining the conventional drum type retarder of a single row turning system, (a) is sectional drawing of a rotating shaft direction, (b) is explanatory drawing of the magnetic circuit structure at the time of braking, (c) is at the time of non-braking It is explanatory drawing of a magnetic circuit structure. 従来のディスク型のリターダを説明する図10と同様の図である。It is a figure similar to FIG. 10 explaining the conventional disc type retarder. 単列旋回方式の従来のリターダにおける磁石支持部材の移動方向とポールピースの形状を示す図であり、(a)は順方向の回転時、(b)は逆方向の回転時を示す。It is a figure which shows the moving direction of a magnet support member and the shape of a pole piece in the conventional retarder of a single row turning system, (a) shows the time of forward rotation, (b) shows the time of reverse rotation. リターダに採用する従来のポールピース形状を説明する図で、紙面左側は側面から見た図、紙面右側は円周方向の前方下方から見た斜視図である。It is a figure explaining the conventional pole piece shape employ | adopted as a retarder, the figure which looked at the paper surface left side from the side surface, and the paper surface right side is the perspective view seen from the front lower direction of the circumferential direction. 特許文献4で提案した単列旋回方式のリターダにおける制動オンと制動オフの切り替えの際に必要な作動所要力を数値解析により求めた結果を示した図で、(a)は順方向の回転時、(b)は逆方向の回転時を示す。The figure which showed the result of having calculated | required the required operating force required at the time of switching of braking-on and braking-off in the single row turning type retarder proposed by patent document 4 by the numerical analysis, (a) is the time of forward rotation , (B) shows the time of rotation in the reverse direction.
 本発明では、部品点数が多くならず、しかも更なる装置の小型化を図りつつ、できるだけ低コストで、かつ制動オンと制動オフの切り替えの際に必要な作動所要力を小さくすることを目的とするものである。 An object of the present invention is to reduce the required operating force when switching between braking on and braking off at as low a cost as possible without increasing the number of parts and further reducing the size of the device. To do.
 そして、前記目的を、円周方向に配置したポールピース群の内、複数のポールピースの、磁石支持部材の旋回移動方向前端部側でかつ永久時磁石と相対する側に切欠き部を設けることにより実現した。 The object is to provide notches on the front end side of the plurality of pole pieces in the turning direction of the magnet support member and on the side facing the permanent magnet of the group of pole pieces arranged in the circumferential direction. Realized by.
 図12は、図13に示した形状のポールピース5を使用した単列旋回方式の従来のリターダにおける磁石支持部材4の移動方向を示した図である。また、図14は、図10に示した単列旋回方式の従来のリターダにおいて、出願人が特許文献4で提案した技術を適用した場合の、制動オンと制動オフの切り替えの際に必要な作動所要力を数値解析によって求めた結果を示した図である。 FIG. 12 is a view showing the moving direction of the magnet support member 4 in the conventional retarder of the single row swivel type using the pole piece 5 having the shape shown in FIG. FIG. 14 shows an operation necessary for switching between braking-on and braking-off in the case of applying the technique proposed by the applicant in Patent Document 4 in the conventional retarder of the single-row turning system shown in FIG. It is the figure which showed the result of having calculated | required required force by the numerical analysis.
 図14は特許文献4の図6に相当する図であり、特許文献4の図6の実線で示した単列旋回方式のリターダと同等の結果が得られている。このように、特許文献4で提案した技術は、制動オフから制動オンへの切り替え時に、制動ドラムに生じる渦電流に伴う反磁界と永久磁石からの磁界が反発し合い、制動ドラムの回転方向に永久磁石を押す力が加わるので、エアーシリンダによる力が小さくて良いことが確認できる。 FIG. 14 is a diagram corresponding to FIG. 6 of Patent Document 4, and a result equivalent to that of the single-row swirl type retarder shown by the solid line in FIG. 6 of Patent Document 4 is obtained. As described above, in the technique proposed in Patent Document 4, the demagnetizing field accompanying the eddy current generated in the braking drum and the magnetic field from the permanent magnet repel each other when switching from braking-off to braking-on. Since a force to push the permanent magnet is applied, it can be confirmed that the force by the air cylinder may be small.
 しかしながら、市場からの車両の燃費向上の要請に伴い、リターダの更なる小型化、軽量化の要求が自動車メーカからなされている。 However, automakers are demanding further reductions in the size and weight of the retarder in response to demands for improving the fuel efficiency of vehicles from the market.
 そこで、発明者らは、永久磁石方式のリターダの制動オフから制動オンへの切り替え時に必要な作動所要力の源である永久磁石とポールピース間の磁束の流れを分散させてピークを抑えることについて検討を重ねた。 Therefore, the inventors have suppressed the peak by dispersing the flow of magnetic flux between the permanent magnet and the pole piece, which is the source of the required operating force when switching from braking off to braking on of the permanent magnet type retarder. Repeated examination.
 永久磁石とポールピース間の磁束の流れを分散させてピークを抑えることができれば、所定の押引力を満たしつつ、低コストと小型化が可能となるエアーシリンダを採用することができ、リターダの小型化、軽量化を図ることができるからである。 If the flow of magnetic flux between the permanent magnet and the pole piece can be dispersed and the peak can be suppressed, an air cylinder that satisfies the specified push / pull force and can be reduced in cost and size can be adopted. This is because the weight and weight can be reduced.
 発明者らが検討を重ねた結果、ポールピースの、制動オフから制動オンに切り替える際の磁石支持部材の旋回移動方向前端部側でかつ永久磁石と相対する側に切欠き部を設けた場合、永久磁石とポールピース間の磁束の流れのピークを抑えることができることを知見した。 As a result of repeated studies by the inventors, when the notch portion is provided on the pole piece of the magnet support member when switching from braking off to braking on, on the front end side in the turning direction of the magnet support member and on the side facing the permanent magnet, It was found that the peak of the flow of magnetic flux between the permanent magnet and the pole piece can be suppressed.
 すなわち、ポールピースの前記位置に切欠き部を設けた場合、制動オフから制動オンに切り替わる際のポールピースの下端と永久磁石の上端が離れるかまたは近づく瞬間に働く力のタイミングが、切欠き部を設けないポールピースに比べてずれることになる。 That is, when a notch is provided at the position of the pole piece, the timing of the force acting at the moment when the lower end of the pole piece and the upper end of the permanent magnet are separated or approached when switching from braking off to braking on is notched. It will deviate compared to the pole piece that is not provided.
 そして、このタイミングのずれによりリターダの制動オフから制動オンへの切り替え時に必要な作動所要力が小さくて良くなる。従って、小型・軽量のエアーシリンダを採用することが可能となって、装置全体の低コスト化と小型化を図ることができる。 And, due to this timing shift, the required operating force when the retarder is switched from braking off to braking on can be reduced. Therefore, it is possible to adopt a small and lightweight air cylinder, and the entire apparatus can be reduced in cost and size.
 ポールピースの、制動オフから制動オンに切り替える際の磁石支持部材の旋回移動方向前端部側でかつ永久磁石と相対する側に設ける切欠き部の一例を図1(a)~(d)に示す。 FIGS. 1A to 1D show examples of notches provided on the pole piece on the front end side in the turning direction of the magnet support member when switching from braking off to braking on and on the side facing the permanent magnet. .
 図1(a)~(c)は回転軸の軸方向に同じ横断面を有する切欠き部5aを設けた例であり、(a)図は横断面が矩形状、(b)図は横断面が三角形状、(c)図は横断面が円弧状の例である。 1 (a) to 1 (c) are examples in which a notch 5a having the same cross section is provided in the axial direction of the rotating shaft, (a) the cross section is rectangular, and (b) the cross section is cross section. Is a triangular shape, and FIG. 6C shows an example in which the cross section is an arc shape.
 また、図1(d)は回転軸の軸方向に矩形状の横断面の大きさが大きくなる切欠き部5aを設けた例である。 FIG. 1 (d) shows an example in which a notch 5a having a rectangular cross section is provided in the axial direction of the rotation axis.
 このように、ポールピース5の前記位置に設ける切欠き部5aは、どのような形状の場合も、若干の差はあっても、図13に示す切欠き部を設けない従来形状に比べて制動オフから制動オンへの切り替え時に必要な作動所要力が小さくなる。 In this way, the notch 5a provided at the position of the pole piece 5 is braked as compared to the conventional shape shown in FIG. The required operating force is reduced when switching from off to braking on.
 図2は、逆方向の回転により制動オフから制動オンに切り替える際に必要な作動所要力を図14(b)と同じ条件で求めた結果を示した図である。このうち、(a)図は、図1(a)に示した切欠き部5aを設けたポールピース5と、図13に示した、切欠き部を設けないポールピース5を交互に配置した場合(図3(a)参照)である。また、(b)図は、図1(a)に示した切欠き部5aを設けたポールピース5を全周配置した場合(図3(b)参照)である。 FIG. 2 is a diagram showing the result of obtaining the required operating force required when switching from braking-off to braking-on by rotating in the reverse direction under the same conditions as in FIG. 14 (b). Of these figures, (a) shows the case where the pole pieces 5 provided with the notches 5a shown in FIG. 1 (a) and the pole pieces 5 shown in FIG. 13 without the notches are alternately arranged. (See FIG. 3A). FIG. 3B shows the case where the pole piece 5 provided with the notch 5a shown in FIG. 1A is arranged all around (see FIG. 3B).
 図2(a)(b)と図14(b)を比較すると、切欠き部を設けたポールピースを採用した場合は、制動オフから制動オンに切り替える際に必要な作動所要力が、切欠き部を設けないポールピースを採用する場合に比べて小さくなっている。 Comparing FIGS. 2 (a), 2 (b) and 14 (b), when a pole piece provided with a notch is used, the required operating force for switching from braking off to braking on is notch. It is smaller than the case where a pole piece without a part is adopted.
 一方、図2(a)(b)を比較した場合、切欠き部5aを設けたポールピース5を全周配置した図2(b)の方が、切欠き部5aを設けたポールピース5と、切欠き部を設けないポールピース5を交互に配置した図2(a)よりも作動所要力は小さくなっている。 On the other hand, when comparing FIGS. 2 (a) and 2 (b), FIG. 2 (b) in which the pole piece 5 provided with the notch 5a is arranged around the entire circumference is different from the pole piece 5 provided with the notch 5a. The required force for operation is smaller than that of FIG. 2A in which the pole pieces 5 not provided with the notches are alternately arranged.
 しかしながら、切欠き部5aを設けたポールピース5を全周配置した図3(b)の場合は、図4に示すように、特許文献4で提案した技術に比べて、制動トルクは同等であるが、磁気漏れトルクが若干上昇する。 However, in the case of FIG. 3B in which the pole piece 5 provided with the notch 5a is arranged all around, as shown in FIG. 4, the braking torque is equivalent to the technique proposed in Patent Document 4. However, the magnetic leakage torque slightly increases.
 これに対して、切欠き部5aを設けたポールピース5と、切欠き部を設けないポールピース5を交互に配置した図3(a)の場合、制動トルクと磁気漏れトルクは、図4に示すように、特許文献4で提案した技術と同等である。 On the other hand, in the case of FIG. 3A in which the pole pieces 5 provided with the notches 5a and the pole pieces 5 not provided with the notches are alternately arranged, the braking torque and the magnetic leakage torque are shown in FIG. As shown, this technique is equivalent to the technique proposed in Patent Document 4.
 図6は、順方向の回転により制動オフから制動オンに切り替える際に必要な作動所要力を図14(a)と同じ条件で求めた結果を示した図であり、切欠き部5aを設けたポールピース5と、切欠き部を設けないポールピース5を交互に配置した場合(図5(a)参照)である。 FIG. 6 is a diagram showing the result of obtaining the required operating force required for switching from braking-off to braking-on by forward rotation under the same conditions as in FIG. 14 (a), and provided with a notch 5a. This is a case where the pole pieces 5 and the pole pieces 5 not provided with notches are alternately arranged (see FIG. 5A).
 図6と図14(a)を比較した場合、順方向の回転による制動オフから制動オンへの切り替えの際に必要な作動所要力も、切欠き部を設けないポールピースを採用する場合に比べて小さくなっている。 When FIG. 6 is compared with FIG. 14A, the required operating force when switching from braking off to braking on by forward rotation is also greater than when using a pole piece without a notch. It is getting smaller.
 図7(a)は順方向の回転により制動オフから制動オンに切り替える際に必要な作動所要力を数値解析により求めた結果を示した図、(b)は逆方向の回転により制動オンから制動オフに切り替える際に必要な作動所要力を数値解析により求めた結果を示した図である。 FIG. 7A is a diagram showing the result of calculating the required force required for switching from braking-off to braking-on by forward rotation by numerical analysis, and FIG. 7B shows braking from braking-on by reverse rotation. It is the figure which showed the result of having calculated | required the required operating force required when switching to off by numerical analysis.
 図7(a)より、順方向の回転により制動オフから制動オンに切り替える際に必要な作動所要力は、数値解析したうちの最大回転数(3600rpm)の場合における、制動オフから制動オンへの作動直後の位置で最大となることが分かる。 From FIG. 7 (a), the required operating force required to switch from braking off to braking on by forward rotation is from braking off to braking on at the maximum rotational speed (3600rpm) of the numerical analysis. It can be seen that the maximum is obtained immediately after the operation.
 一方、図7(b)より、逆方向の回転により制動オンから制動オフに切り替える際に必要な作動所要力は、数値解析したうちの最少回転数(0rpm)の場合における、制動オフとなる位置で最大となることが分かる。 On the other hand, as shown in FIG. 7B, the required operating force when switching from braking on to braking off by reverse rotation is the position where braking is off in the case of the minimum number of revolutions (0 rpm) among the numerical analysis. It turns out that it becomes the maximum.
 発明者らは、制動オフから制動オンへの切り替え時と、制動オンから制動オフへの切り替え時の、前記最大作動所要力を、ポールピース角度α1を磁石角度α2で除した値(以下、(ポールピース角度/磁石角度)比という。図8参照)を変更して数値解析により求めた。 The inventors calculated the maximum required operating force at the time of switching from braking off to braking on and switching from braking on to braking off by dividing the pole piece angle α1 by the magnet angle α2 (hereinafter referred to as ( The pole piece angle / magnet angle) ratio (see FIG. 8) was changed and obtained by numerical analysis.
 また、発明者らは、最大となる、回転数が3600rpmの場合における(図4参照)制動トルクと磁気漏れトルクも、(ポールピース角度/磁石角度)比を変更して数値解析により求めた。 In addition, the inventors obtained the maximum braking torque and magnetic leakage torque when the rotational speed is 3600 rpm (see FIG. 4) by numerical analysis by changing the (pole piece angle / magnet angle) ratio.
 これら作動所要力、制動トルク及び磁気漏れトルクと、(ポールピース角度/磁石角度)比との関係を図9に示す。図9より、(ポールピース角度/磁石角度)比を1.047~1.13の範囲内とすれば、制動オフから制動オンへの切り替え時と、制動オンから制動オフへの切り替え時の作動所要力のバランスを取りつつ、小さな磁気漏れトルクで、制動トルクの低下を小さくできることが分かる。より望ましい(ポールピース角度/磁石角度)比は、1.09~1.13である。なお、図9中の制動トルク及び磁気漏れトルクは、図4に示した3600rpmの場合のトルク比(=1.0)に対する比で表した。 FIG. 9 shows the relationship between the required operating force, braking torque, magnetic leakage torque, and (pole piece angle / magnet angle) ratio. As shown in FIG. 9, when the (pole piece angle / magnet angle) ratio is in the range of 1.047 to 1.13, the operation at the time of switching from braking off to braking on and the switching from braking on to braking off is performed. It can be seen that a reduction in braking torque can be reduced with a small magnetic leakage torque while balancing the required force. A more desirable (pole piece angle / magnet angle) ratio is 1.09 to 1.13. Note that the braking torque and magnetic leakage torque in FIG. 9 are expressed as a ratio to the torque ratio (= 1.0) in the case of 3600 rpm shown in FIG.
 図2、図4、図6、図7、図9、図14に示した結果は、永久磁石を円周方向に32個設置した場合のものであるが、発明者らの数値解析によれば16個~48個の範囲であれば、同様の傾向が得られている。 The results shown in FIG. 2, FIG. 4, FIG. 6, FIG. 7, FIG. 9 and FIG. 14 are obtained when 32 permanent magnets are installed in the circumferential direction. A similar tendency is obtained in the range of 16 to 48.
 本発明は上記した例に限らないことは勿論であり、請求項に記載の技術的思想の範疇であれば、適宜実施の形態を変更しても良いことは言うまでもない。 Of course, the present invention is not limited to the above-described example, and it is needless to say that the embodiments may be appropriately changed within the scope of the technical idea described in the claims.
 例えば、ポールピース5に形成する切欠き部5aは、先に説明した例のように全て同じ形状でも良いが、例えば図1(e)に示すように、円周方向に向かって順に大きくなる相似形としても良い。また、図1(e)に示した組み合わせを繰り返したものでも良い。 For example, the notches 5a formed in the pole piece 5 may all have the same shape as in the example described above. However, as shown in FIG. 1 (e), for example, the similarity increases in order in the circumferential direction. It may be a shape. Further, the combination shown in FIG. 1E may be repeated.
 しかしながら、作動所要力を効果的に低減しつつ、従来技術と同等の制動トルクと磁気漏れ損失トルクの実現が可能な、切欠き部を有するポールピースと、切欠き部を有さないポールピースを交互に配置するものが最良の実施形態であることは言うまでもない。 However, a pole piece with a notch and a pole piece without a notch that can effectively reduce the required operating force and achieve the same braking torque and magnetic leakage loss torque as the prior art. It goes without saying that the alternate arrangement is the best embodiment.
 また、上記の例は図10に示した単列旋回方式のドラム型のリターダについて説明しているが、図11に示すディスク型のリターダについても同様の作用効果が得られることは言うまでもない。 In the above example, the single-row swirl type drum type retarder shown in FIG. 10 is described. Needless to say, the same effect can be obtained with the disk type retarder shown in FIG.
 1  回転軸
 2  制動ドラム
 3  永久磁石
 4  磁石支持部材
 5  ポールピース
 6  支持体
 6a  支持部材
 7  制動ディスク
 7a  主面
DESCRIPTION OF SYMBOLS 1 Rotating shaft 2 Brake drum 3 Permanent magnet 4 Magnet support member 5 Pole piece 6 Support body 6a Support member 7 Brake disc 7a Main surface

Claims (5)

  1.  回転軸に一体的に取り付けた制動ドラムと、
     この制動ドラムに対向して支持され、制動ドラムの円周方向に磁極の向きが互いに逆向きとなるよう、一定の間隔を存して永久磁石を配置した強磁性体の磁石支持部材と、
     前記永久磁石群と前記制動ドラムとの間に、これら永久磁石と基本的には同じ角度位置に配置した強磁性体のポールピース群を、このポールピース群の各ポールピース間に設けた非磁性体の支持部材を介在させて設置した支持体を備え、
     前記磁石支持部材を所要角度、回転軸を中心とする円周方向の旋回移動可能に構成した単列旋回方式の渦電流式減速装置、
     或いは、
     回転軸に一体的に取り付けた制動ディスクと、
     この制動ディスクの主面と対向すべく設けられ、制動ディスクの円周方向に磁極の向きが互いに逆向きとなるよう、一定の間隔を存して永久磁石を配置した強磁性の磁石支持部材と、
     前記制動ディスクと前記永久磁石群との間に、これら永久磁石と基本的には同じ角度位置に配置した強磁性体のポールピース群を、このポールピース群の各ポールピース間に設けた非磁性体の支持部材を介在させて設置した支持体を備え、
     前記磁石支持部材を所定角度、回転軸を中心とする円周方向の旋回移動可能に構成したディスク型の渦電流式減速装置、
    において、
     円周方向に配置された前記ポールピース群の内、複数のポールピースの、制動オフから制動オンに切り替える際の磁石支持部材の旋回移動方向前端部側でかつ永久磁石と相対する側に、切欠き部を設けたことを特徴とする渦電流式減速装置。
    A braking drum integrally attached to the rotating shaft;
    A ferromagnetic magnet support member that is supported opposite to the brake drum and has permanent magnets arranged at a certain interval so that the magnetic poles are opposite to each other in the circumferential direction of the brake drum,
    A non-magnetic ferromagnetic pole piece group disposed between the permanent magnet group and the brake drum between each pole piece of the pole piece group. A support body installed with a body support member interposed therebetween,
    Single-row swirl type eddy current reduction device configured to allow the magnet support member to swivel in the circumferential direction around the required angle and rotation axis,
    Or
    A braking disk integrally attached to the rotating shaft;
    A ferromagnetic magnet support member provided so as to face the main surface of the brake disk and having permanent magnets arranged at a certain interval so that the magnetic poles are opposite to each other in the circumferential direction of the brake disk; ,
    A non-magnetic ferromagnetic pole piece group disposed between the brake disk and the permanent magnet group between the pole pieces in the pole piece group. A support body installed with a body support member interposed therebetween,
    A disk-type eddy current type decelerating device configured such that the magnet support member is pivotable in a circumferential direction around a predetermined angle and a rotation axis;
    In
    Of the group of pole pieces arranged in the circumferential direction, a plurality of pole pieces are cut on the front end side in the turning direction of the magnet support member when switching from braking off to braking on and on the side facing the permanent magnet. An eddy current type speed reducer characterized by providing a notch.
  2.  複数のポールピースに設ける前記切欠き部が同一形状であることを特徴とする請求の範囲第1項に記載の渦電流式減速装置。 2. The eddy current type reduction device according to claim 1, wherein the notches provided in a plurality of pole pieces have the same shape.
  3.  複数のポールピースに設ける前記切欠き部が異なる形状であることを特徴とする請求の範囲第1項に記載の渦電流式減速装置。 2. The eddy current type reduction device according to claim 1, wherein the notch portions provided in the plurality of pole pieces have different shapes.
  4.  前記ポールピースは、前記切欠き部を有するものと、切欠き部を有しないものが交互に配置されていることを特徴とする請求の範囲第2項又は第3項に記載の渦電流式減速装置。 4. The eddy current type deceleration according to claim 2, wherein the pole piece has the notch portion and the pole piece that does not have the notch portion are alternately arranged. 5. apparatus.
  5.  回転軸の横断面方向から見た場合に、回転軸の軸中心から前記切欠き部を設けないとした場合のポールピースの内周側の前後端を結んだ直線がなす角度を、当該ポールピースと相対する位置の永久磁石の外周側の前後端を結んだ直線がなす角度で除した値が、1.047以上、1.13以下であることを特徴とする請求の範囲第1~4項の何れかに記載の渦電流式減速装置。 When viewed from the cross-sectional direction of the rotating shaft, the angle formed by the straight line connecting the front and rear ends on the inner peripheral side of the pole piece when the notch is not provided from the axial center of the rotating shaft The value obtained by dividing by the angle formed by the straight line connecting the front and rear ends of the outer peripheral side of the permanent magnet at a position opposite to is in a range from 1.047 to 1.13. The eddy current type reduction gear according to any one of the above.
PCT/JP2013/059359 2012-03-29 2013-03-28 Eddy-current-type reduction gear WO2013147073A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147027168A KR101653897B1 (en) 2012-03-29 2013-03-28 Eddy-current-type reduction gear
CN201380015434.2A CN104205590B (en) 2012-03-29 2013-03-28 Eddy current type deceleration device
JP2014508053A JP5825428B2 (en) 2012-03-29 2013-03-28 Eddy current reducer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-077727 2012-03-29
JP2012077727 2012-03-29

Publications (1)

Publication Number Publication Date
WO2013147073A1 true WO2013147073A1 (en) 2013-10-03

Family

ID=49260316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/059359 WO2013147073A1 (en) 2012-03-29 2013-03-28 Eddy-current-type reduction gear

Country Status (4)

Country Link
JP (1) JP5825428B2 (en)
KR (1) KR101653897B1 (en)
CN (1) CN104205590B (en)
WO (1) WO2013147073A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6870397B2 (en) * 2017-03-14 2021-05-12 日本製鉄株式会社 Eddy current speed reducer and its manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07245933A (en) * 1994-02-28 1995-09-19 Isuzu Motors Ltd Eddy current type reduction gear
JP2002272088A (en) * 2001-03-06 2002-09-20 Isuzu Motors Ltd Eddy-current decelerator
JP2004153925A (en) * 2002-10-30 2004-05-27 Sumitomo Metal Ind Ltd Ferromagnetic plate and eddy current type reduction gear
JP2004222405A (en) * 2003-01-14 2004-08-05 Sumitomo Metal Ind Ltd Ferromagnetic plate and eddy current type reduction gear
JP2004350411A (en) * 2003-05-22 2004-12-09 Isuzu Motors Ltd Eddy current type reduction gear
JP2007110804A (en) * 2005-10-12 2007-04-26 Isuzu Motors Ltd Eddy current decelerator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2709822B2 (en) 1988-03-14 1998-02-04 住友金属工業株式会社 Eddy current type reduction gear
JPH01298948A (en) 1988-05-25 1989-12-01 Sumitomo Metal Ind Ltd Eddy current type decelerator
JP4581186B2 (en) 2000-06-12 2010-11-17 住友金属工業株式会社 Eddy current reducer
JP2004035041A (en) * 2002-07-02 2004-02-05 Kao Corp Container
JP4815963B2 (en) 2005-09-14 2011-11-16 いすゞ自動車株式会社 Eddy current reducer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07245933A (en) * 1994-02-28 1995-09-19 Isuzu Motors Ltd Eddy current type reduction gear
JP2002272088A (en) * 2001-03-06 2002-09-20 Isuzu Motors Ltd Eddy-current decelerator
JP2004153925A (en) * 2002-10-30 2004-05-27 Sumitomo Metal Ind Ltd Ferromagnetic plate and eddy current type reduction gear
JP2004222405A (en) * 2003-01-14 2004-08-05 Sumitomo Metal Ind Ltd Ferromagnetic plate and eddy current type reduction gear
JP2004350411A (en) * 2003-05-22 2004-12-09 Isuzu Motors Ltd Eddy current type reduction gear
JP2007110804A (en) * 2005-10-12 2007-04-26 Isuzu Motors Ltd Eddy current decelerator

Also Published As

Publication number Publication date
KR101653897B1 (en) 2016-09-02
JPWO2013147073A1 (en) 2015-12-14
KR20140141612A (en) 2014-12-10
CN104205590A (en) 2014-12-10
JP5825428B2 (en) 2015-12-02
CN104205590B (en) 2017-06-16

Similar Documents

Publication Publication Date Title
WO2016199836A1 (en) Eddy-current-type deceleration device
JP6327474B2 (en) Outer rotor type variable field motor
EP0566745A1 (en) Eddy current type retarder
JP2007162923A (en) Abrasion powder adsorption device
JP5825428B2 (en) Eddy current reducer
JP4752414B2 (en) Eddy current reducer
JP3953718B2 (en) Eddy current reducer
JP4882355B2 (en) Eddy current reducer
JP4752416B2 (en) Eddy current reducer
JP2594754Y2 (en) Eddy current type reduction gear
JP3892599B2 (en) Eddy current reducer
JP3809771B2 (en) Eddy current reducer
JP3882488B2 (en) Eddy current reducer
JP3285052B2 (en) Eddy current type reduction gear
JP2631417B2 (en) Eddy current type reduction gear
JP2631418B2 (en) Eddy current type reduction gear
JP3633291B2 (en) Eddy current reducer
JP3719338B2 (en) Eddy current reducer
JP2001119924A (en) Eddy-current decelerator
KR101585666B1 (en) Eddy current braking device
JP4604857B2 (en) Eddy current reducer
JP2573695Y2 (en) Eddy current type reduction gear
JP3882404B2 (en) Eddy current reducer
JP2585789Y2 (en) Eddy current type reduction gear
JP2005020809A (en) Eddy current type reduction gear

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13769393

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014508053

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147027168

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13769393

Country of ref document: EP

Kind code of ref document: A1