JP2004153129A - Thermoelectric module and cooling device using the same - Google Patents

Thermoelectric module and cooling device using the same Download PDF

Info

Publication number
JP2004153129A
JP2004153129A JP2002318199A JP2002318199A JP2004153129A JP 2004153129 A JP2004153129 A JP 2004153129A JP 2002318199 A JP2002318199 A JP 2002318199A JP 2002318199 A JP2002318199 A JP 2002318199A JP 2004153129 A JP2004153129 A JP 2004153129A
Authority
JP
Japan
Prior art keywords
thermoelectric module
heat
water
substrate
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002318199A
Other languages
Japanese (ja)
Inventor
Takahito Shibayama
卓人 柴山
Mitsunori Taniguchi
光徳 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP2002318199A priority Critical patent/JP2004153129A/en
Publication of JP2004153129A publication Critical patent/JP2004153129A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the infiltration of condensate into a thermoelectric module. <P>SOLUTION: The thermoelectric module comprises a heat absorbing-side substrate 1a having high thermal conductivity and an electrical insulation property, a heat radiating-side substrate 1b having high thermal conductivity and an electrical insulation property, and a plurality of thermoelectric elements 2 provided between the substrates 1a and 1b. The module also comprises a sealing member 3 provided between the substrates 1a and 1b, and a water repellent film 7 formed on the side face of the module 6. Consequently, the condensate which adheres to the side face of the module 6 when an electric current is made to flow to the module 6 becomes granular and easily dischargeable. In addition, the infiltration of the condensate into the module 6 can be reduced significantly, because the contact angle of the condensate becomes larger and the contacting area of the condensate with the side face of the module 6 becomes significantly small. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ペルチェ効果を有する熱電モジュールに関するものである。
【0002】
【従来の技術】
近年、フロンガスの大気放出によるオゾン層破壊や温暖化が地球的な問題となり、フロンガスを使用しない冷温機の開発が急がれている。そしてフロンガスを使用しない方式の一つとして、熱電素子を用いた熱電モジュールが注目されている。
【0003】
ここで熱電モジュールとは、ペルチェ(Peltier)モジュール、サーモモジュール又は熱電素子として知られているものであり、二つの伝熱面を有し、電流を流すことにより一方の伝熱面が加熱され、他方の伝熱面が冷却される機能を持つ部材である。すなわち熱電モジュールでは、一方の面が放熱面として機能し、他方が吸熱面として機能する。
【0004】
従来の熱電モジュールとしては、特許文献1に示されているものがある。
【0005】
以下図面を参照しながら上記従来例の熱電モジュールを説明する。
【0006】
図7は、従来の熱電モジュールの概略断面図である。図7に示すように、電気絶縁性の吸熱側基板1aと、電気絶縁性の放熱側基板1bと、吸熱側基板1aと放熱側基板1bとの間に配設された複数個の熱電素子2と、吸熱側基板1aと放熱側基板1bとの間をシールするシール部材3と、両基板1a,1bの上に形成された電極4と、電極4と熱電素子2とを接続するハンダ5とから、従来の熱電モジュール6が構成されている。
【0007】
吸熱側基板1aと放熱側基板1bは、アルミナ、窒化アルミニウムが用いられる。シール部材3は、エポキシ樹脂やシリコン樹脂などが用いられる。
【0008】
以上のように構成された従来の熱電モジュールについて、以下その動作を説明する。
【0009】
まず、熱電モジュール6に電流を流すことにより吸熱側基板1aが冷やされ、周囲の空気の露点温度より低くなったときに吸熱側基板1a周囲に結露が生じる。結露により生じた結露水をシール部材3により熱電モジュール6の中に入るのを防いでいる。
【0010】
【特許文献1】
特開平8−18109号公報
【0011】
【発明が解決しようとする課題】
しかしながら、上記従来の構成は、結露水がシール部材3上へ付着するので、結露水がシール部材3中を浸透していくという問題があり、熱電素子2や電極4、ハンダ5が劣化して信頼性が低下するという問題があった。
【0012】
本発明は従来の課題を解決するもので、結露水の熱電モジュール内部への浸透を減少できる熱電モジュールを提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明の請求項1に記載の熱電モジュールの発明は、吸熱側基板と放熱側基板との間をシールするシール部材の表面に撥水処理を施したものであり、熱電モジュールに電流を流すことによりに生じたシール部材上の結露水が粒状になり、重力方向に排出しやすくなる。また、結露水の接触角が大きくなり接触面積が著しく小さくなるので結露水の熱電モジュール内部への浸透を大幅に減少させる作用を有する。
【0014】
本発明の請求項2に記載の熱電モジュールの発明は、吸熱側基板と放熱側基板との間をシールするシール部材が撥水性をもつ材料からなるものであり、熱電モジュールに電流を流すことにより生じた撥水性シール上の結露水が粒状になり、重力方向に排出しやすくなる。また、結露水の接触角が大きくなり接触面積が著しく小さくなるので結露水の熱電モジュール内部への浸透を大幅に減少させる作用を有する。
【0015】
本発明の請求項3に記載の熱電モジュールの発明は、吸熱側基板と放熱側基板の側面の少なくとも一部に撥水処理を施したものであり、熱電モジュールに電流を流すことにより生じた基板側面の結露水が粒状になり、重力方向に排出しやすくなる作用を有する。
【0016】
本発明の請求項4に記載の熱電モジュールの発明は、請求項1または2に記載の発明に加えて、吸熱側基板と放熱側基板の側面の少なくとも一部に撥水処理を施したものであり、請求項1または2に記載の発明の作用に加えて、熱電モジュールに電流を流すことにより生じた熱電モジュール側面の結露水が粒状になり、重力方向に排出しやすくなる。また、結露水の接触角が大きくなり接触面積が著しく小さくなるので結露水の熱電モジュール内部への浸透を大幅に減少させる作用を有する。
【0017】
本発明の請求項5に記載の熱電モジュールの発明は、請求項1または3または4のいずれか一項に記載の発明における撥水処理がフッ素樹脂で施されるものであり、熱電モジュールに電流を流すことにより生じた熱電モジュール側面の結露水が粒状になり、重力方向に排出しやすくなる。また、結露水の接触角が大きくなり接触面積が著しく小さくなるので結露水の熱電モジュール内部への浸透を大幅に減少させる作用を有する。また、フッ素系材料は臨界表面張力が小さく、コストの点でも優れているので、低コストで結露水の熱電モジュール内部への浸透を大幅に減少させることができるという作用を有する。
【0018】
本発明の請求項6に記載の熱電モジュールの発明は、請求項2に記載の発明におけるシール部材の材料がフッ素樹脂であるものであり、熱電モジュールに電流を流すことにより生じたシール上の結露水が粒状になり、重力方向に排出しやすくなる。また、結露水の接触角が大きくなり接触面積が著しく小さくなるので結露水の熱電モジュール内部への浸透を大幅に減少させる作用を有する。また、フッ素系材料は臨界表面張力が小さく、コストの点でも優れているので、低コストで結露水の熱電モジュール内部への浸透を大幅に減少させることができるという作用を有する。
【0019】
本発明の請求項7に記載の熱電モジュールの発明は、請求項5または6に記載の発明におけるフッ素樹脂が、四フッ化エチレン樹脂または三フッ化塩化エチレン樹脂または四フッ化エチレン・エチレン共重合樹脂または四フッ化エチレン・六フッ化プロピレン共重合樹脂または四フッ化エチレン・パーフルオロアルコキシエチレン共重合樹脂のいずれかから成るものであり、熱電モジュールに電流を流すことにより生じた熱電モジュール側面の結露水が粒状になり、重力方向に排出しやすくなる。また、結露水の接触角が大きくなり接触面積が著しく小さくなるので結露水の熱電モジュール内部への浸透を大幅に減少させる作用を有する。また、四フッ化エチレン樹脂または三フッ化塩化エチレン樹脂または四フッ化エチレン・エチレン共重合樹脂または四フッ化エチレン・六フッ化プロピレン共重合樹脂または四フッ化エチレン・パーフルオロアルコキシエチレン共重合樹脂の耐熱性等がよく利便性がよいという作用を有する。
【0020】
本発明の請求項8に記載の冷却装置の発明は、請求項1から請求項7のいずれか一項に記載の熱電モジュールを、重力方向と垂直になる面がないように使用するものであり、熱電モジュールに電流を流すことにより生じた熱電モジュール側面の結露水が粒状になり、さらに熱電モジュールを重量方向と垂直になる面をもたないように使用するので熱電モジュールに付く結露水が流れ落ちやすくなる。その結果、シール上に結露水が付着し続けるのを軽減し、結露水の浸透を大幅に減少させる作用を有する。
【0021】
本発明の請求項9に記載の冷却装置の発明は、熱電モジュールに熱交換器を接続してなり、前記熱交換器における前記熱電モジュールと接続される面の少なくとも接続面以外の部分に撥水処理を施したものであり、熱電モジュールに電流を流すことにより生じた熱交換器の基板との接続面側表面の結露水が粒状になり、重力方向に排出しやすくなる。それにより、熱電モジュール側面に結露水が溜まるのを減少させる作用を有する。
【0022】
本発明の請求項10に記載の冷却装置の発明は、請求項9に記載の発明における熱電モジュールが、吸熱側基板と放熱側基板との間をシールするシール部材の表面に撥水処理を施したものであり、熱電モジュールに電流を流すことにより生じた熱交換器の基板との接続面側表面と、シール部材の結露水が粒状になり、重力方向に排出しやすくなる。また、結露水の接触角が大きくなり接触面積が著しく小さくなるので結露水の熱電モジュール内部への浸透を大幅に減少させる作用を有する。
【0023】
本発明の請求項11に記載の冷却装置の発明は、請求項9に記載の発明における熱電モジュールの吸熱側基板と放熱側基板との間をシールするシール部材が撥水性をもつ材料からなるものであり、熱電モジュールに電流を流すことにより生じた熱交換器の基板との接続面側表面と、シール部材の結露水が粒状になり、重力方向に排出しやすくなる。また、結露水の接触角が大きくなり接触面積が著しく小さくなるので結露水の熱電モジュール内部への浸透を大幅に減少させる作用を有する。
【0024】
本発明の請求項12に記載の冷却装置の発明は、請求項9から請求項11のいずれか一項記載の発明における熱電モジュールが、吸熱側基板と放熱側基板の側面の少なくとも一部に撥水処理を施したものであり、熱電モジュールに電流を流すことにより生じた熱交換器の基板との接続面側表面と、熱電モジュール側面の結露水が粒状になり、重力方向に排出しやすくなる。また、結露水の接触角が大きくなり接触面積が著しく小さくなるので結露水の熱電モジュール内部への浸透を大幅に減少させる作用を有する。
【0025】
本発明の請求項13に記載の冷却装置の発明は、請求項9または10または12のいずれか一項に記載の発明における撥水処理が、フッ素樹脂で施されるものであり、熱電モジュールに電流を流すことにより生じた熱交換器の基板との接続面側表面と、熱電モジュール側面の結露水が粒状になり、重力方向に排出しやすくなる。また、結露水の接触角が大きくなり接触面積が著しく小さくなるので結露水の熱電モジュール内部への浸透を大幅に減少させる作用を有する。また、フッ素系材料は、臨界表面張力が小さく、コストの点でも優れているので、低コストで結露水の熱電モジュール内部への浸透を大幅に減少させることができるという作用を有する。
【0026】
本発明の請求項14に記載の冷却装置の発明は、請求項11に記載の発明におけるシール部材の材料が、フッ素樹脂であるものであり、熱電モジュールに電流を流すことにより生じた熱交換器の基板との接続面側表面と、熱電モジュール側面の結露水が粒状になり、重力方向に排出しやすくなる。また、結露水の接触角が大きくなり接触面積が著しく小さくなるので結露水の熱電モジュール内部への浸透を大幅に減少させる作用を有する。また、フッ素系材料は、臨界表面張力が小さく、コストの点でも優れているので、低コストで結露水の熱電モジュール内部への浸透を大幅に減少させることができるという作用を有する。
【0027】
本発明の請求項15に記載の冷却装置の発明は、請求項13または14に記載の発明におけるフッ素樹脂が、四フッ化エチレン樹脂または三フッ化塩化エチレン樹脂または四フッ化エチレン・エチレン共重合樹脂または四フッ化エチレン・六フッ化プロピレン共重合樹脂または四フッ化エチレン・パーフルオロアルコキシエチレン共重合樹脂のいずれかから成るものであり、熱電モジュールに電流を流すことにより生じた熱交換器の基板との接続面側表面と、熱電モジュール側面の結露水が粒状になり、重力方向に排出しやすくなる。また、結露水の接触角が大きくなり接触面積が著しく小さくなるので結露水の熱電モジュール内部への浸透を大幅に減少させる作用を有する。また、四フッ化エチレン樹脂または三フッ化塩化エチレン樹脂または四フッ化エチレン・エチレン共重合樹脂または四フッ化エチレン・六フッ化プロピレン共重合樹脂または四フッ化エチレン・パーフルオロアルコキシエチレン共重合樹脂の耐熱性等がよく利便性がよいという作用を有する。
【0028】
本発明の請求項16に記載の冷却装置の発明は、請求項9から請求項16のいずれか一項に記載の発明における熱電モジュールを、重力方向と垂直になる面がないように使用するものであり、請求項9から請求項16のいずれか一項に記載の発明の作用に加えて、熱電モジュールに電流を流すことにより生じた結露水が熱電モジュールに溜まらないで、重力方向に排出しやすくする作用を有する。
【0029】
【発明の実施の形態】
以下、本発明による熱電モジュールと熱電モジュールを用いた冷却装置の実施の形態について、図面を参照しながら説明する。なお、従来と同一構成については、同一符号を付してその詳細な説明は省略する。
【0030】
(実施の形態1)
図1は、本発明の実施の形態1による熱電モジュールの斜視図である。図2は、図1のA−A線断面図である。
【0031】
図1、図2に示すように、本実施の形態の熱電モジュール6の側面(吸熱側基板1aと放熱側基板1bとの間をシールするシール部材3の表面と、吸熱側基板1aと放熱側基板1bの側面)には、撥水処理により撥水性膜7が形成されている。
【0032】
ここで、撥水処理で撥水性膜7が形成する材料としては、特にフッ素樹脂が臨界表面張力が低い点やコスト面、使用温域が広い(−180〜260℃)点で好ましい。
【0033】
また、フッ素樹脂の中でも、四フッ化エチレン樹脂または三フッ化塩化エチレン樹脂または四フッ化エチレン・エチレン共重合樹脂または四フッ化エチレン・六フッ化プロピレン共重合樹脂または四フッ化エチレン・パーフルオロアルコキシエチレン共重合樹脂などが耐熱性等がよく利便性がよいので好ましい。
【0034】
以上のように構成された本実施の形態の熱電モジュール6では、熱電モジュール6に電流を流すことによりに生じた熱電モジュール6側面に付く結露水が粒状になって排出されやすくなる。また、結露水の接触角が大きくなり接触面積が著しく小さくなるので結露水の熱電モジュール6内部への浸透を減少させることができる。
【0035】
以上のように本実施の形態1の熱電モジュール6は、吸熱側基板1aと、放熱側基板1bと、吸熱側基板1aと放熱側基板1bの間をシールするシール部材3と、熱電モジュール6の側面(吸熱側基板1aと放熱側基板1bとの間をシールするシール部材3の表面と、吸熱側基板1aと放熱側基板1bの側面)に撥水処理を施し形成した撥水性膜7とから構成されたものであり、熱電モジュール6の側面に撥水性膜7を形成したので、結露水の熱電モジュール6内部への浸透が減少され、熱電素子2や電極4、ハンダ5の劣化を抑え熱電モジュールの信頼性を上げることができる。また、より多くの水分を空気中から集めることもでき、除湿も効率よく行うことができる。
【0036】
(実施の形態2)
図3は、本発明の実施の形態2による熱電モジュールの斜視図である。図4は、図3のB−B線断面図である。
【0037】
なお、実施の形態1と同一構成には同一符号を付してその詳細な説明を省略する。
【0038】
図3、図4に示すように、本実施の形態の熱電モジュール6は、吸熱側基板1aと放熱側基板1bとの間を撥水性シール部材8によりシールしている。
【0039】
ここで、撥水性シール部材8としては、特にフッ素樹脂が臨界表面張力が低い点やコスト面、使用温域が広い(−180〜260℃)点で好ましい。
【0040】
また、フッ素樹脂の中でも、四フッ化エチレン樹脂または三フッ化塩化エチレン樹脂または四フッ化エチレン・エチレン共重合樹脂または四フッ化エチレン・六フッ化プロピレン共重合樹脂または四フッ化エチレン・パーフルオロアルコキシエチレン共重合樹脂などが耐熱性等がよく利便性がよいので好ましい。
【0041】
以上のように構成された本実施の形態の熱電モジュール6では、熱電モジュール6に電流を流すことによりに生じた撥水性シール部材8に付く結露水が粒状になって排出されやすくなる。また、結露水の接触角が大きくなり接触面積が著しく小さくなるので結露水の熱電モジュール6内部への浸透を減少させることができる。
【0042】
以上のように本実施の形態2の熱電モジュールは、吸熱側基板1aと、放熱側基板1bと、吸熱側基板1aと放熱側基板1bの間をシールする撥水性シール部材8とから構成されたものであり、吸熱側基板1aと放熱側基板1bの間をシールする撥水性シール部材8を形成したので、結露水の熱電モジュール6内部への浸透が減少され、熱電素子2や電極4、ハンダ5の劣化を抑え熱電モジュールの信頼性を上げることができる。また、より多くの水分を空気中から集めることもでき、除湿も効率よく行うことができる。
【0043】
(実施の形態3)
図5は、本発明の実施の形態3による冷却装置の斜視図である。図6は、本発明の実施の形態3による冷却装置の側面図である。
【0044】
図5、図6に示すように、熱電モジュール6の冷却面に冷却側の熱交換器9を接続してなり、熱交換器9における熱電モジュール6と接続される面の少なくとも接続面以外の部分に撥水処理を施して撥水性膜7を形成したものである。
【0045】
本実施の形態は、実施の形態1による熱電モジュール6に、さらに冷却側の熱交換器9を設け、熱電モジュール6を重力方向と垂直になる面が生じないような向きで、ハンダまたは接着剤または熱導電性材料等10により熱交換器9に接続した冷却装置である。
【0046】
以上のように構成された冷却装置は、熱電モジュール6に電流を流したときに熱交換器9の接続面側の表面に生じた結露水が流れ落ちやすくなる。また、実施の形態1の作用に加え、熱電モジュール6の側面につく結露水もさらに流れ落ちやすくなる。よって、熱電モジュール6内部への結露水の浸透をさらに減少させことができる。
【0047】
以上のように本実施の形態3の冷却装置は、熱電モジュール6と、撥水性膜7と、熱電モジュール6が接続され、熱電モジュール6との接続面側の接続面を除く表面に撥水性膜7を有した熱交換器9とから構成されたものであり、熱電モジュール4を重力方向と垂直になる面が生じないような向きで熱交換器9に接続したので、実施の形態1のよりさらに結露水が熱電モジュール6側面から放出されやすくなり、結露水が熱電モジュール6内部へ浸透するのが減少できる。それにより、熱電素子2や電極4、ハンダ5の劣化を抑え信頼度を上げることができる。また、より多くの水分を空気中から集めることもでき、除湿も効率よく行うことができる。
【0048】
【発明の効果】
以上説明したように請求項1に記載の発明は、シール部材の表面に撥水処理を施したので熱電モジュール内部への結露水の浸透を減少でき、熱電素子、電極、ハンダの劣化を抑え、信頼性を大幅に改善できる。
【0049】
また、請求項2に記載の発明は、シール部材に撥水性をもった材料を使うので熱電モジュール内部への結露水の浸透を減少でき、熱電素子、電極、ハンダの劣化を抑え、信頼性を大幅に改善できる。また、撥水処理を施す必要がないので生産性に優れる。
【0050】
また、請求項3に記載の発明は、基板側面の少なくとも一部に撥水処理を施したので、熱電モジュール内部への結露水の進入を減少でき、熱電素子、電極、ハンダの劣化を抑え、信頼性を大幅に改善できる。
【0051】
また、請求項4に記載の発明は、請求項1または2に記載の発明に加えて、基板側面に撥水処理を施したので、熱電モジュール内部への結露水の浸透をさらに減少でき、熱電素子、電極、ハンダの劣化を抑え、信頼性を大幅に改善できる。
【0052】
また、請求項5に記載の発明は、請求項1または3または4のいずれか一項に記載の発明における撥水処理の材料を、フッ素系材料にしたものであり、フッ素系材料は臨界表面張力が小さく、コストの点でも優れているので、請求項1または3または4のいずれか一項に記載の発明の効果に加えて、コストの点でも優れた効果が得られる。
【0053】
また、請求項6に記載の発明は、請求項2に記載の発明におけるシール部材の材料をフッ素系樹脂にしたものであり、フッ素系材料は臨界表面張力が小さく、コストの点でも優れているので、請求項2に記載の発明の効果に加えて、コストの点でも優れている。
【0054】
また、請求項7に記載の発明は、請求項5に記載の発明における撥水処理の材料を、フッ素樹脂が四フッ化エチレン樹脂または三フッ化塩化エチレン樹脂または四フッ化エチレン・エチレン共重合樹脂または四フッ化エチレン・六フッ化プロピレン共重合樹脂または四フッ化エチレン・パーフルオロアルコキシエチレン共重合樹脂のいずれかとしたものであり、請求項5または6に記載の効果に加えて、四フッ化エチレン樹脂または三フッ化塩化エチレン樹脂または四フッ化エチレン・エチレン共重合樹脂または四フッ化エチレン・六フッ化プロピレン共重合樹脂または四フッ化エチレン・パーフルオロアルコキシエチレン共重合樹脂の耐熱性等がよく利便性がよいという点で優れている。
【0055】
また、請求項8に記載の発明は請求項1から請求項7のいずれか一項に記載の熱電モジュールを、重力方向と垂直になる面がないように使用するものであり、結露水をさらに放出されやすくなり、熱電モジュール内部への結露水の浸透をさらに減少できる。それにより、熱電素子、電極、ハンダの劣化を抑え、熱電モジュールの信頼性を大幅に改善できる。また、より多くの水分を空気中から集めることもでき、除湿も効率よく行うことができる。
【0056】
また、請求項9に記載の発明は、熱電モジュールに熱交換器を接続してなり、前記熱交換器における前記熱電モジュールと接続される面の少なくとも接続面以外の部分に撥水処理を施したので、熱電モジュールに電流を流すことにより生じた熱交換器の基板との接続面側表面の結露水が粒状になり、重力方向に排出しやすくなる。よって、結露水が熱電モジュール側面に溜まるのが減少し、熱電モジュール内部への結露水の浸透を大幅に減少させる作用を有する。それにより、熱電素子や電極、ハンダの劣化を抑え熱電モジュールの信頼性を上げることができる。また、より多くの水分を空気中から集めることもでき、除湿も効率よく行うことができる。
【0057】
また、請求項10に記載の発明は、請求項9に記載の発明における熱電モジュールが、吸熱側基板と放熱側基板との間をシールするシール部材の表面に撥水処理を施したものであり、請求項9に記載の発明の効果に加え、シール部材に付着の結露水が粒状になり、重力方向に排出しやすくなる。また、結露水の接触角が大きくなり接触面積が著しく小さくなるので結露水の熱電モジュール内部への浸透を大幅に減少させる作用を有する。それにより、熱電素子や電極、ハンダの劣化を抑え熱電モジュールの信頼度を上げることができる。
【0058】
また、請求項11に記載の発明は、請求項9に記載の発明における熱電モジュールの吸熱側基板と放熱側基板との間をシールするシール部材を撥水性をもつ材料から構成したので、請求項9に記載の発明の効果に加え、撥水性シール部材に付着の結露水が粒状になり、重力方向に排出しやすくなる。また、結露水の接触角が大きくなり接触面積が著しく小さくなるので結露水の熱電モジュール内部への浸透を大幅に減少させる作用を有する。それにより、熱電素子や電極、ハンダの劣化を抑え熱電モジュールの信頼性を上げることができる。
【0059】
また、請求項12に記載の発明は、請求項9から請求項11のいずれか一項に記載の発明における熱電モジュールが、吸熱側基板と放熱側基板の側面の少なくとも一部に撥水処理を施したものであり、請求項9から請求項11のいずれか一項に記載の発明の効果に加えて、熱電モジュール側面に付着の結露水が粒状になり、重力方向に排出しやすくなる。また、結露水の接触角が大きくなり接触面積が著しく小さくなるので結露水の熱電モジュール内部への浸透を大幅に減少させる作用を有する。それにより、熱電素子や電極、ハンダの劣化を抑え熱電モジュールの信頼性を上げることができる。
【0060】
また、請求項13に記載の発明は、請求項9または10または12のいずれか一項に記載の発明における撥水処理が、フッ素樹脂で施されるものであり、請求項9または10または12のいずれか一項に記載の発明の効果に加えて、コストの点でも優れている。
【0061】
また、請求項14に記載の発明は、請求項11に記載の発明におけるシール部材の材料が、フッ素樹脂であるものであり、請求項11に記載の発明の効果に加えて、コストの点でも優れている。
【0062】
また、請求項15に記載の冷却装置の発明は、請求項13または14に記載の発明におけるフッ素樹脂が、四フッ化エチレン樹脂または三フッ化塩化エチレン樹脂または四フッ化エチレン・エチレン共重合樹脂または四フッ化エチレン・六フッ化プロピレン共重合樹脂または四フッ化エチレン・パーフルオロアルコキシエチレン共重合樹脂のいずれかから成るものであり、請求項13または14に記載の発明の効果に加えて、耐熱性等がよく利便性がよい点で優れている。
【0063】
また、請求項16に記載の冷却装置の発明は、請求項9から請求項16のいずれか一項に記載の発明における熱電モジュールを、重力方向と垂直になる面がないように使用するものであり、請求項9から請求項16のいずれか一項に記載の発明の効果に加えて、熱電モジュールに電流を流すことにより生じた結露水が熱電モジュールに溜まらないで、重力方向にさらに排出しやすくなるという点で優れている。
【図面の簡単な説明】
【図1】本発明による熱電モジュールの実施の形態1の斜視図
【図2】図1のA−A線断面図
【図3】本発明による熱電モジュールの実施の形態2の斜視図
【図4】図3のB−B線断面図
【図5】本発明による冷却装置の実施の形態3の正面図
【図6】同実施の形態の冷却装置の側面図
【図7】従来の熱電モジュールの断面図
【符号の説明】
1a 吸熱側基板
1b 放熱側基板
2 熱電素子
3 シール部材
6 熱電モジュール
7 撥水性膜
8 撥水性シール部材
9 熱交換器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thermoelectric module having a Peltier effect.
[0002]
[Prior art]
In recent years, destruction of the ozone layer and global warming due to release of CFCs into the atmosphere have become a global problem, and development of a cooler / heater that does not use CFCs is urgently required. A thermoelectric module using a thermoelectric element has attracted attention as one of the systems that does not use Freon gas.
[0003]
Here, the thermoelectric module is known as a Peltier module, a thermo module or a thermoelectric element, has two heat transfer surfaces, and heat is applied to one of the heat transfer surfaces, This is a member having a function of cooling the other heat transfer surface. That is, in the thermoelectric module, one surface functions as a heat radiation surface, and the other functions as a heat absorption surface.
[0004]
As a conventional thermoelectric module, there is one disclosed in Patent Document 1.
[0005]
Hereinafter, the conventional thermoelectric module will be described with reference to the drawings.
[0006]
FIG. 7 is a schematic sectional view of a conventional thermoelectric module. As shown in FIG. 7, an electrically insulating heat absorbing side substrate 1a, an electrically insulating heat releasing side substrate 1b, and a plurality of thermoelectric elements 2 disposed between the heat absorbing side substrate 1a and the heat releasing side substrate 1b. A sealing member 3 for sealing between the heat-absorbing substrate 1a and the heat-radiating substrate 1b; an electrode 4 formed on both substrates 1a and 1b; and a solder 5 for connecting the electrode 4 and the thermoelectric element 2. Thus, the conventional thermoelectric module 6 is configured.
[0007]
Alumina and aluminum nitride are used for the heat absorption side substrate 1a and the heat radiation side substrate 1b. The seal member 3 is made of epoxy resin, silicon resin, or the like.
[0008]
The operation of the conventional thermoelectric module configured as described above will be described below.
[0009]
First, the heat absorption side substrate 1a is cooled by flowing a current through the thermoelectric module 6, and when the temperature becomes lower than the dew point temperature of the surrounding air, dew condensation occurs around the heat absorption side substrate 1a. The condensed water generated by the dew is prevented from entering the thermoelectric module 6 by the seal member 3.
[0010]
[Patent Document 1]
JP-A-8-18109
[Problems to be solved by the invention]
However, the above-described conventional configuration has a problem that the condensed water adheres to the seal member 3, so that the condensed water permeates the seal member 3, and the thermoelectric element 2, the electrode 4, and the solder 5 deteriorate. There has been a problem that reliability is reduced.
[0012]
An object of the present invention is to solve the conventional problem, and an object of the present invention is to provide a thermoelectric module that can reduce the penetration of dew condensation water into the thermoelectric module.
[0013]
[Means for Solving the Problems]
The invention of the thermoelectric module according to claim 1 of the present invention is such that the surface of a sealing member that seals between the heat-absorbing side substrate and the heat-radiating side substrate is subjected to a water-repellent treatment. As a result, the dew water on the seal member generated by the process becomes granular and is easily discharged in the direction of gravity. Further, since the contact angle of the dew condensation water becomes large and the contact area becomes extremely small, it has an effect of greatly reducing the penetration of the dew condensation water into the thermoelectric module.
[0014]
According to a second aspect of the present invention, there is provided a thermoelectric module, wherein a sealing member for sealing between a heat-absorbing substrate and a heat-radiating substrate is made of a material having water repellency. The condensed water generated on the water-repellent seal becomes granular and is easily discharged in the direction of gravity. Further, since the contact angle of the dew condensation water becomes large and the contact area becomes extremely small, it has an effect of greatly reducing the penetration of the dew condensation water into the thermoelectric module.
[0015]
According to a third aspect of the present invention, there is provided a thermoelectric module in which at least a part of a side surface of a heat-absorbing substrate and a heat-radiating substrate are subjected to a water-repellent treatment, and a substrate generated by applying a current to the thermoelectric module. The dew water on the side surface becomes granular, and has an effect of being easily discharged in the direction of gravity.
[0016]
According to a fourth aspect of the present invention, in addition to the first or second aspect of the present invention, at least a part of the side surfaces of the heat-absorbing substrate and the heat-radiating substrate is subjected to a water-repellent treatment. In addition, in addition to the effect of the invention described in claim 1 or 2, dew condensation water on the side surface of the thermoelectric module generated by applying a current to the thermoelectric module becomes granular and is easily discharged in the direction of gravity. Further, since the contact angle of the dew condensation water becomes large and the contact area becomes extremely small, it has an effect of greatly reducing the penetration of the dew condensation water into the thermoelectric module.
[0017]
According to a fifth aspect of the present invention, there is provided a thermoelectric module, wherein the water-repellent treatment in the first aspect of the present invention is performed with a fluororesin, and the thermoelectric module has an electric current. The condensed water generated on the side of the thermoelectric module generated by flowing water becomes granular, and is easily discharged in the direction of gravity. Further, since the contact angle of the dew condensation water becomes large and the contact area becomes extremely small, it has an effect of greatly reducing the penetration of the dew condensation water into the thermoelectric module. Further, since the fluorine-based material has a small critical surface tension and is excellent in cost, the fluorine-based material has an effect that the permeation of dew condensation water into the thermoelectric module can be significantly reduced at low cost.
[0018]
According to a sixth aspect of the present invention, there is provided a thermoelectric module according to the second aspect, wherein the material of the seal member in the second aspect is a fluororesin, and dew condensation on the seal caused by applying a current to the thermoelectric module. The water becomes granular and is easily drained in the direction of gravity. Further, since the contact angle of the dew condensation water becomes large and the contact area becomes extremely small, it has an effect of greatly reducing the penetration of the dew condensation water into the thermoelectric module. Further, since the fluorine-based material has a small critical surface tension and is excellent in cost, the fluorine-based material has an effect that the permeation of dew condensation water into the thermoelectric module can be significantly reduced at low cost.
[0019]
According to a seventh aspect of the present invention, there is provided a thermoelectric module according to the fifth or sixth aspect, wherein the fluororesin according to the fifth or sixth aspect is an ethylene tetrafluoride resin, an ethylene trifluoride chloride resin, or an ethylene tetrafluoride / ethylene copolymer. It is made of resin or ethylene tetrafluoride / hexafluoropropylene copolymer resin or ethylene tetrafluoride / perfluoroalkoxyethylene copolymer resin. Condensed water becomes granular and is easily discharged in the direction of gravity. Further, since the contact angle of the dew condensation water becomes large and the contact area becomes extremely small, it has an effect of greatly reducing the penetration of the dew condensation water into the thermoelectric module. In addition, ethylene tetrafluoride resin, ethylene trifluoride chloride resin, ethylene tetrafluoride / ethylene copolymer resin, ethylene tetrafluoride / hexafluoropropylene copolymer resin, or ethylene tetrafluoride / perfluoroalkoxyethylene copolymer resin Has good heat resistance and good convenience.
[0020]
An invention of a cooling device according to claim 8 of the present invention uses the thermoelectric module according to any one of claims 1 to 7 so that there is no surface perpendicular to the direction of gravity. When the current flows through the thermoelectric module, the dew water on the side of the thermoelectric module becomes granular and the thermoelectric module does not have a surface that is perpendicular to the weight direction. It will be easier. As a result, it is possible to reduce the possibility that the dew water continues to adhere to the seal and to greatly reduce the permeation of the dew water.
[0021]
The cooling device according to the ninth aspect of the present invention is configured such that a heat exchanger is connected to the thermoelectric module, and at least a portion of the heat exchanger connected to the thermoelectric module other than the connection surface is water-repellent. The dew water on the surface of the heat exchanger connected to the substrate, which is generated by applying a current to the thermoelectric module, becomes granular and is easily discharged in the direction of gravity. This has the effect of reducing the accumulation of dew water on the side of the thermoelectric module.
[0022]
In a cooling device according to a tenth aspect of the present invention, the thermoelectric module according to the ninth aspect performs a water-repellent treatment on a surface of a sealing member that seals between the heat absorption side substrate and the heat radiation side substrate. The surface of the heat exchanger on the side of the connection surface with the substrate of the heat exchanger and the dew condensation water of the sealing member, which are generated by passing an electric current through the thermoelectric module, become granular and are easily discharged in the direction of gravity. Further, since the contact angle of the dew condensation water becomes large and the contact area becomes extremely small, it has an effect of greatly reducing the penetration of the dew condensation water into the thermoelectric module.
[0023]
According to an eleventh aspect of the present invention, there is provided a cooling device according to the ninth aspect, wherein the sealing member for sealing between the heat absorption side substrate and the heat radiation side substrate of the thermoelectric module is made of a material having water repellency. In addition, the surface of the heat exchanger on the connection surface side with the substrate and the dew condensation water of the seal member generated by applying a current to the thermoelectric module become granular and are easily discharged in the direction of gravity. Further, since the contact angle of the dew condensation water becomes large and the contact area becomes extremely small, it has an effect of greatly reducing the penetration of the dew condensation water into the thermoelectric module.
[0024]
According to a twelfth aspect of the present invention, there is provided a cooling device, wherein the thermoelectric module according to any one of the ninth to eleventh aspects is characterized in that the thermoelectric module repels at least a part of the side surface of the heat-absorbing substrate and the heat-radiating substrate. Water treatment is applied, and the condensed water on the side of the heat exchanger connected to the substrate and the side of the thermoelectric module generated by passing the current through the thermoelectric module becomes granular and easily drains in the direction of gravity. . Further, since the contact angle of the dew condensation water becomes large and the contact area becomes extremely small, it has an effect of greatly reducing the penetration of the dew condensation water into the thermoelectric module.
[0025]
A cooling device according to a thirteenth aspect of the present invention is the cooling device according to any one of the ninth, tenth, and twelfth aspects, wherein the water-repellent treatment in the invention according to any one of the ninth, tenth, and twelfth aspects is performed with a fluororesin. Condensed water on the surface of the heat exchanger connected to the substrate and the surface of the side surface of the thermoelectric module, which are generated by passing the current, become granular, and are easily discharged in the direction of gravity. Further, since the contact angle of the dew condensation water becomes large and the contact area becomes extremely small, it has an effect of greatly reducing the penetration of the dew condensation water into the thermoelectric module. In addition, since the fluorine-based material has a small critical surface tension and is excellent in cost, it has an effect that the permeation of dew condensation water into the thermoelectric module can be significantly reduced at low cost.
[0026]
According to a fourteenth aspect of the present invention, there is provided a cooling device according to the eleventh aspect, wherein the material of the sealing member is a fluororesin, and the heat exchanger is formed by applying a current to the thermoelectric module. The dew water on the surface on the side of the connection surface with the substrate and the side surface of the thermoelectric module becomes granular and is easily discharged in the direction of gravity. Further, since the contact angle of the dew condensation water becomes large and the contact area becomes extremely small, it has an effect of greatly reducing the penetration of the dew condensation water into the thermoelectric module. In addition, since the fluorine-based material has a small critical surface tension and is excellent in cost, it has an effect that the permeation of dew condensation water into the thermoelectric module can be significantly reduced at low cost.
[0027]
The cooling device according to claim 15 of the present invention is characterized in that the fluororesin in the invention according to claim 13 or 14 is ethylene tetrafluoride resin or ethylene trifluorochloride resin or ethylene tetrafluoride / ethylene copolymer. It consists of either resin or ethylene tetrafluoride / hexafluoropropylene copolymer resin or ethylene tetrafluoride / perfluoroalkoxyethylene copolymer resin. Condensed water on the surface on the connection surface side with the substrate and on the side surface of the thermoelectric module becomes granular and is easily discharged in the direction of gravity. Further, since the contact angle of the dew condensation water becomes large and the contact area becomes extremely small, it has an effect of greatly reducing the penetration of the dew condensation water into the thermoelectric module. In addition, ethylene tetrafluoride resin, ethylene trifluoride chloride resin, ethylene tetrafluoride / ethylene copolymer resin, ethylene tetrafluoride / hexafluoropropylene copolymer resin, or ethylene tetrafluoride / perfluoroalkoxyethylene copolymer resin Has good heat resistance and good convenience.
[0028]
A cooling device according to a sixteenth aspect of the present invention uses the thermoelectric module according to any one of the ninth to sixteenth aspects so that there is no surface perpendicular to the direction of gravity. In addition to the effect of the invention according to any one of claims 9 to 16, in addition to the operation of the present invention, dew condensation water generated by flowing an electric current through the thermoelectric module does not accumulate in the thermoelectric module and is discharged in the direction of gravity. Has the effect of making it easier.
[0029]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a thermoelectric module and a cooling device using the thermoelectric module according to the present invention will be described with reference to the drawings. The same components as those of the related art are denoted by the same reference numerals, and detailed description thereof will be omitted.
[0030]
(Embodiment 1)
FIG. 1 is a perspective view of a thermoelectric module according to Embodiment 1 of the present invention. FIG. 2 is a sectional view taken along line AA of FIG.
[0031]
As shown in FIGS. 1 and 2, a side surface of the thermoelectric module 6 according to the present embodiment (the surface of the sealing member 3 for sealing between the heat-absorbing substrate 1 a and the heat-radiating substrate 1 b, the heat-absorbing substrate 1 a and the heat-radiating side) On the side surface of the substrate 1b), a water-repellent film 7 is formed by a water-repellent treatment.
[0032]
Here, as a material for forming the water-repellent film 7 by the water-repellent treatment, a fluororesin is particularly preferable in terms of low critical surface tension, cost, and wide use temperature range (−180 to 260 ° C.).
[0033]
In addition, among fluororesins, ethylene tetrafluoride resin or ethylene trifluoride chloride resin, ethylene tetrafluoride / ethylene copolymer resin, ethylene tetrafluoride / hexafluoropropylene copolymer resin, or tetrafluoroethylene / perfluoro resin Alkoxyethylene copolymer resins are preferred because of their good heat resistance and good convenience.
[0034]
In the thermoelectric module 6 according to the present embodiment configured as described above, the dew water attached to the side surface of the thermoelectric module 6 generated by applying a current to the thermoelectric module 6 becomes granular and is easily discharged. In addition, since the contact angle of the condensed water becomes large and the contact area becomes extremely small, the penetration of the condensed water into the thermoelectric module 6 can be reduced.
[0035]
As described above, the thermoelectric module 6 of the first embodiment includes the heat-absorbing substrate 1a, the heat-radiating substrate 1b, the seal member 3 for sealing between the heat-absorbing substrate 1a and the heat-radiating substrate 1b, The water-repellent film 7 formed by performing water-repellent treatment on the side surface (the surface of the sealing member 3 for sealing between the heat-absorbing substrate 1a and the heat-radiating substrate 1b and the side surface of the heat-absorbing substrate 1a and the heat-radiating substrate 1b) Since the water-repellent film 7 is formed on the side surface of the thermoelectric module 6, the penetration of dew condensation into the thermoelectric module 6 is reduced, and the thermoelectric element 2, the electrode 4, and the solder 5 are prevented from deteriorating. Module reliability can be increased. Further, more moisture can be collected from the air, and dehumidification can be performed efficiently.
[0036]
(Embodiment 2)
FIG. 3 is a perspective view of a thermoelectric module according to Embodiment 2 of the present invention. FIG. 4 is a sectional view taken along line BB of FIG.
[0037]
The same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
[0038]
As shown in FIGS. 3 and 4, the thermoelectric module 6 of the present embodiment seals the space between the heat-absorbing substrate 1 a and the heat-radiating substrate 1 b with a water-repellent seal member 8.
[0039]
Here, as the water-repellent sealing member 8, a fluororesin is particularly preferable in terms of low critical surface tension, cost, and wide use temperature range (−180 to 260 ° C.).
[0040]
In addition, among fluororesins, ethylene tetrafluoride resin or ethylene trifluoride chloride resin, ethylene tetrafluoride / ethylene copolymer resin, ethylene tetrafluoride / hexafluoropropylene copolymer resin, or tetrafluoroethylene / perfluoro resin Alkoxyethylene copolymer resins are preferred because of their good heat resistance and good convenience.
[0041]
In the thermoelectric module 6 according to the present embodiment configured as described above, the dew condensation water attached to the water-repellent seal member 8 generated by applying a current to the thermoelectric module 6 becomes granular and is easily discharged. In addition, since the contact angle of the condensed water becomes large and the contact area becomes extremely small, the penetration of the condensed water into the thermoelectric module 6 can be reduced.
[0042]
As described above, the thermoelectric module according to the second embodiment includes the heat-absorbing substrate 1a, the heat-radiating substrate 1b, and the water-repellent seal member 8 that seals between the heat-absorbing substrate 1a and the heat-radiating substrate 1b. Since the water-repellent sealing member 8 that seals between the heat-absorbing substrate 1a and the heat-radiating substrate 1b is formed, the penetration of dew condensation into the thermoelectric module 6 is reduced, and the thermoelectric element 2, the electrode 4, and the solder 5 can be suppressed and the reliability of the thermoelectric module can be increased. Further, more moisture can be collected from the air, and dehumidification can be performed efficiently.
[0043]
(Embodiment 3)
FIG. 5 is a perspective view of a cooling device according to Embodiment 3 of the present invention. FIG. 6 is a side view of a cooling device according to Embodiment 3 of the present invention.
[0044]
As shown in FIGS. 5 and 6, a cooling side heat exchanger 9 is connected to a cooling surface of the thermoelectric module 6, and at least a portion of the heat exchanger 9 connected to the thermoelectric module 6 other than the connection surface. Is subjected to a water-repellent treatment to form a water-repellent film 7.
[0045]
In the present embodiment, the thermoelectric module 6 according to the first embodiment is further provided with a heat exchanger 9 on the cooling side, and the thermoelectric module 6 is soldered or glued in an orientation such that a surface perpendicular to the direction of gravity does not occur. Alternatively, the cooling device is connected to the heat exchanger 9 by a heat conductive material 10 or the like.
[0046]
In the cooling device configured as described above, when current flows through the thermoelectric module 6, the dew condensation water generated on the surface on the connection surface side of the heat exchanger 9 easily flows down. In addition to the operation of the first embodiment, the dew condensation on the side surface of the thermoelectric module 6 is more likely to flow down. Therefore, the penetration of the dew condensation water into the thermoelectric module 6 can be further reduced.
[0047]
As described above, in the cooling device according to the third embodiment, the thermoelectric module 6, the water-repellent film 7, and the thermoelectric module 6 are connected, and the water-repellent film is formed on the surface except for the connection surface on the connection surface side with the thermoelectric module 6. 7, and the thermoelectric module 4 is connected to the heat exchanger 9 in a direction such that a surface perpendicular to the direction of gravity does not occur. Further, the dew water is easily released from the side of the thermoelectric module 6, and the permeation of the dew water into the thermoelectric module 6 can be reduced. Thereby, deterioration of the thermoelectric element 2, the electrode 4, and the solder 5 can be suppressed, and the reliability can be increased. Further, more moisture can be collected from the air, and dehumidification can be performed efficiently.
[0048]
【The invention's effect】
As described above, the invention according to claim 1 performs a water-repellent treatment on the surface of the sealing member, so that the penetration of dew condensation water into the thermoelectric module can be reduced, and the deterioration of the thermoelectric element, the electrode, and the solder can be suppressed. The reliability can be greatly improved.
[0049]
According to the second aspect of the present invention, since a material having water repellency is used for the seal member, it is possible to reduce the penetration of dew condensation water into the inside of the thermoelectric module, to suppress the deterioration of the thermoelectric element, the electrodes, and the solder, and to improve the reliability. Can be greatly improved. Further, since there is no need to perform a water-repellent treatment, the productivity is excellent.
[0050]
According to the third aspect of the present invention, since at least a part of the side surface of the substrate is subjected to the water-repellent treatment, the penetration of dew condensation water into the thermoelectric module can be reduced, and the deterioration of the thermoelectric element, the electrode, and the solder can be suppressed. The reliability can be greatly improved.
[0051]
Further, in the invention according to claim 4, in addition to the invention according to claim 1 or 2, a water repellent treatment is performed on the side surface of the substrate, so that the penetration of dew condensation water into the thermoelectric module can be further reduced, and the thermoelectric module can be further reduced. Deterioration of elements, electrodes, and solder can be suppressed, and reliability can be significantly improved.
[0052]
According to a fifth aspect of the present invention, the material of the water-repellent treatment in the first aspect of the present invention is a fluorine-based material, and the fluorine-based material has a critical surface. Since the tension is small and the cost is excellent, in addition to the effect of the invention described in any one of the first, third, and fourth aspects, an excellent effect in terms of cost can be obtained.
[0053]
According to a sixth aspect of the present invention, the material of the sealing member in the second aspect of the present invention is a fluororesin, and the fluoromaterial has a small critical surface tension and is excellent in cost. Therefore, in addition to the effect of the invention described in claim 2, it is also excellent in cost.
[0054]
According to a seventh aspect of the present invention, the water-repellent material of the fifth aspect of the present invention is obtained by using the fluororesin as the tetrafluoroethylene resin or the ethylene trifluorochloride resin or the tetrafluoroethylene / ethylene copolymer. Resin or a tetrafluoroethylene / hexafluoropropylene copolymer resin or a tetrafluoroethylene / perfluoroalkoxyethylene copolymer resin, in addition to the effects of claim 5 or 6, Heat resistance of fluorinated ethylene resin, ethylene trifluoride ethylene resin, ethylene tetrafluoride / ethylene copolymer resin, ethylene tetrafluoride / hexafluoropropylene copolymer resin, or ethylene tetrafluoride / perfluoroalkoxy ethylene copolymer resin However, the convenience is good.
[0055]
The invention according to claim 8 uses the thermoelectric module according to any one of claims 1 to 7 so that there is no surface perpendicular to the direction of gravity. It is easy to be released, and the penetration of dew condensation water into the thermoelectric module can be further reduced. Thereby, the deterioration of the thermoelectric element, the electrode, and the solder can be suppressed, and the reliability of the thermoelectric module can be greatly improved. Further, more moisture can be collected from the air, and dehumidification can be performed efficiently.
[0056]
According to a ninth aspect of the present invention, a heat exchanger is connected to the thermoelectric module, and a water-repellent treatment is performed on at least a portion of the surface of the heat exchanger connected to the thermoelectric module other than the connection surface. Therefore, the dew water on the surface of the heat exchanger on the connection surface side with the substrate, which is generated by applying a current to the thermoelectric module, becomes granular and is easily discharged in the direction of gravity. Therefore, the accumulation of the dew condensation water on the side of the thermoelectric module is reduced, which has an effect of greatly reducing the penetration of the dew condensation water into the thermoelectric module. Thereby, the deterioration of the thermoelectric element, the electrode, and the solder can be suppressed, and the reliability of the thermoelectric module can be increased. Further, more moisture can be collected from the air, and dehumidification can be performed efficiently.
[0057]
According to a tenth aspect of the present invention, in the thermoelectric module according to the ninth aspect, the surface of a sealing member that seals between the heat-absorbing substrate and the heat-radiating substrate is subjected to a water-repellent treatment. In addition to the effects of the ninth aspect of the present invention, the dew water adhering to the seal member becomes granular and is easily discharged in the direction of gravity. Further, since the contact angle of the dew condensation water becomes large and the contact area becomes extremely small, it has an effect of greatly reducing the penetration of the dew condensation water into the thermoelectric module. Thereby, the deterioration of the thermoelectric element, the electrode, and the solder can be suppressed, and the reliability of the thermoelectric module can be increased.
[0058]
According to the eleventh aspect of the present invention, the sealing member for sealing between the heat absorbing side substrate and the heat radiating side substrate of the thermoelectric module according to the ninth aspect is made of a material having water repellency. In addition to the effect of the invention described in 9, the dew water adhering to the water-repellent seal member becomes granular and is easily discharged in the direction of gravity. Further, since the contact angle of the dew condensation water becomes large and the contact area becomes extremely small, it has an effect of greatly reducing the penetration of the dew condensation water into the thermoelectric module. Thereby, the deterioration of the thermoelectric element, the electrode, and the solder can be suppressed, and the reliability of the thermoelectric module can be increased.
[0059]
According to a twelfth aspect of the present invention, in the thermoelectric module according to any one of the ninth to eleventh aspects, the thermoelectric module performs a water-repellent treatment on at least a part of a side surface of the heat-absorbing substrate and the heat-radiating substrate. In addition to the effect of the invention according to any one of claims 9 to 11, the dew condensation water adhered to the side surface of the thermoelectric module becomes granular and is easily discharged in the direction of gravity. Further, since the contact angle of the dew condensation water becomes large and the contact area becomes extremely small, it has an effect of greatly reducing the penetration of the dew condensation water into the thermoelectric module. Thereby, the deterioration of the thermoelectric element, the electrode, and the solder can be suppressed, and the reliability of the thermoelectric module can be increased.
[0060]
According to a thirteenth aspect of the present invention, the water-repellent treatment in the first aspect of the present invention is performed with a fluororesin, and the ninth, tenth, or twelfth aspect of the present invention provides a water-repellent treatment. In addition to the effects of the invention described in any one of the above, the present invention is also excellent in cost.
[0061]
According to a fourteenth aspect of the present invention, the material of the sealing member in the eleventh aspect of the present invention is a fluororesin, and in addition to the effects of the eleventh aspect of the present invention, also in terms of cost. Are better.
[0062]
Further, in the cooling device according to the fifteenth aspect, the fluororesin according to the thirteenth or fourteenth aspect is characterized in that the fluororesin is ethylene tetrafluoride resin, ethylene trifluoride chloride resin, or ethylene tetrafluoride / ethylene copolymer resin. Or it consists of either a tetrafluoroethylene hexafluoropropylene copolymer resin or a tetrafluoroethylene perfluoroalkoxyethylene copolymer resin, in addition to the effect of the invention according to claim 13 or 14, It is excellent in that it has good heat resistance and convenience.
[0063]
A cooling device according to a sixteenth aspect uses the thermoelectric module according to any one of the ninth to sixteenth aspects so that there is no surface perpendicular to the direction of gravity. In addition, in addition to the effect of the invention according to any one of claims 9 to 16, in addition to the effect of the present invention, dew condensation water generated by flowing current to the thermoelectric module does not accumulate in the thermoelectric module, but is further discharged in the direction of gravity. It is excellent in that it becomes easy.
[Brief description of the drawings]
1 is a perspective view of a thermoelectric module according to a first embodiment of the present invention; FIG. 2 is a cross-sectional view taken along line AA of FIG. 1; FIG. 3 is a perspective view of a thermoelectric module according to a second embodiment of the present invention; FIG. 5 is a sectional view taken along line BB of FIG. 3; FIG. 5 is a front view of a cooling device according to a third embodiment of the present invention; FIG. 6 is a side view of the cooling device of the same embodiment; Cross-sectional view [Description of symbols]
1a Heat absorption side substrate 1b Heat radiation side substrate 2 Thermoelectric element 3 Seal member 6 Thermoelectric module 7 Water repellent film 8 Water repellent seal member 9 Heat exchanger

Claims (16)

吸熱側基板と放熱側基板との間をシールするシール部材の表面に撥水処理を施した熱電モジュール。A thermoelectric module in which a surface of a sealing member for sealing between a heat absorbing side substrate and a heat radiating side substrate is subjected to a water repellent treatment. 吸熱側基板と放熱側基板との間をシールするシール部材が撥水性をもつ材料からなる熱電モジュール。A thermoelectric module in which a sealing member for sealing between a heat-absorbing substrate and a heat-radiating substrate is made of a material having water repellency. 吸熱側基板と放熱側基板の側面の少なくとも一部に撥水処理を施した熱電モジュール。A thermoelectric module in which at least a part of a side surface of a heat absorption side substrate and a heat radiation side substrate is subjected to a water repellent treatment. 吸熱側基板と放熱側基板の側面の少なくとも一部に撥水処理を施した請求項1または2に記載の熱電モジュール。3. The thermoelectric module according to claim 1, wherein a water-repellent treatment is performed on at least a part of a side surface of the heat absorption side substrate and the heat radiation side substrate. 4. 撥水処理がフッ素樹脂で施される請求項1または3または4のいずれか一項に記載の熱電モジュール。The thermoelectric module according to claim 1, wherein the water-repellent treatment is performed with a fluororesin. シール部材の材料がフッ素樹脂である請求項2に記載の熱電モジュール。The thermoelectric module according to claim 2, wherein the material of the seal member is a fluororesin. フッ素樹脂が四フッ化エチレン樹脂または三フッ化塩化エチレン樹脂または四フッ化エチレン・エチレン共重合樹脂または四フッ化エチレン・六フッ化プロピレン共重合樹脂または四フッ化エチレン・パーフルオロアルコキシエチレン共重合樹脂のいずれかから成る請求項5または6に記載の熱電モジュール。Fluorine resin is tetrafluoroethylene resin, ethylene trifluoride ethylene chloride resin, ethylene tetrafluoride / ethylene copolymer resin, ethylene tetrafluoride / hexafluoropropylene copolymer resin or ethylene tetrafluoride / perfluoroalkoxyethylene The thermoelectric module according to claim 5, comprising a resin. 請求項1から請求項7のいずれか一項に記載の熱電モジュールを、重力方向と垂直になる面がないように使用する冷却装置。A cooling device that uses the thermoelectric module according to any one of claims 1 to 7 so that there is no surface perpendicular to the direction of gravity. 熱電モジュールに熱交換器を接続してなり、前記熱交換器における前記熱電モジュールと接続される面の少なくとも接続面以外の部分に撥水処理を施した冷却装置。A cooling device comprising a heat exchanger connected to a thermoelectric module, wherein at least a portion of the heat exchanger connected to the thermoelectric module other than the connection surface is subjected to a water-repellent treatment. 熱電モジュールは、吸熱側基板と放熱側基板との間をシールするシール部材の表面に撥水処理を施した請求項9に記載の冷却装置。The cooling device according to claim 9, wherein the thermoelectric module has a surface of a sealing member that seals between the heat-absorbing-side substrate and the heat-radiating-side substrate subjected to a water-repellent treatment. 熱電モジュールは、吸熱側基板と放熱側基板との間をシールするシール部材が撥水性をもつ材料からなる請求項9に記載の冷却装置。The cooling device according to claim 9, wherein in the thermoelectric module, a sealing member for sealing between the heat-absorbing-side substrate and the heat-radiating-side substrate is made of a material having water repellency. 熱電モジュールは、吸熱側基板と放熱側基板の側面の少なくとも一部に撥水処理を施した請求項9から請求項11のいずれか一項に記載の冷却装置。The cooling device according to any one of claims 9 to 11, wherein the thermoelectric module has at least a part of a side surface of the heat-absorbing substrate and a heat-radiating substrate subjected to a water-repellent treatment. 撥水処理がフッ素樹脂で施される請求項9または10または12のいずれか一項に記載の冷却装置。The cooling device according to claim 9, wherein the water-repellent treatment is performed with a fluororesin. シール部材の材料がフッ素樹脂である請求項11に記載の冷却装置。The cooling device according to claim 11, wherein the material of the seal member is a fluororesin. フッ素樹脂が四フッ化エチレン樹脂または三フッ化塩化エチレン樹脂または四フッ化エチレン・エチレン共重合樹脂または四フッ化エチレン・六フッ化プロピレン共重合樹脂または四フッ化エチレン・パーフルオロアルコキシエチレン共重合樹脂のいずれかから成る請求項13または14に記載の冷却装置。Fluorine resin is tetrafluoroethylene resin, ethylene trifluoride ethylene chloride resin, ethylene tetrafluoride / ethylene copolymer resin, ethylene tetrafluoride / hexafluoropropylene copolymer resin or ethylene tetrafluoride / perfluoroalkoxyethylene The cooling device according to claim 13, comprising a resin. 熱電モジュールが重力方向と垂直になる面がないように使用する請求項9から請求項16のいずれか一項に記載の冷却装置。The cooling device according to any one of claims 9 to 16, wherein the thermoelectric module is used so that there is no surface perpendicular to the direction of gravity.
JP2002318199A 2002-10-31 2002-10-31 Thermoelectric module and cooling device using the same Pending JP2004153129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002318199A JP2004153129A (en) 2002-10-31 2002-10-31 Thermoelectric module and cooling device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002318199A JP2004153129A (en) 2002-10-31 2002-10-31 Thermoelectric module and cooling device using the same

Publications (1)

Publication Number Publication Date
JP2004153129A true JP2004153129A (en) 2004-05-27

Family

ID=32461386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002318199A Pending JP2004153129A (en) 2002-10-31 2002-10-31 Thermoelectric module and cooling device using the same

Country Status (1)

Country Link
JP (1) JP2004153129A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332443A (en) * 2005-05-27 2006-12-07 Kyocera Corp Thermoelectric conversion module and power generator and cooling device using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332443A (en) * 2005-05-27 2006-12-07 Kyocera Corp Thermoelectric conversion module and power generator and cooling device using the same

Similar Documents

Publication Publication Date Title
JP3510831B2 (en) Heat exchanger
CA2574230C (en) Heat pipe heat sink
US7675163B2 (en) Carbon nanotubes for active direct and indirect cooling of electronics device
JP5372472B2 (en) Conductive cooling circuit board structure
JP3480459B2 (en) Graphite sheet
US7447025B2 (en) Heat dissipation device
JP2008503895A (en) Thermoelectric module
US20210014963A1 (en) Circuit board structure
TW200528014A (en) Variable density graphite foam heat sink
US8558373B2 (en) Heatsink, heatsink assembly, semiconductor module, and semiconductor device with cooling device
JP2006066822A (en) Thermoelectric conversion device
JP2004153129A (en) Thermoelectric module and cooling device using the same
KR101753322B1 (en) Thermoelectic moudule and Apparatus for cooling and heating a vehicle seat having the same
JP4391351B2 (en) Cooling system
JP4649950B2 (en) Semiconductor device with cooler
JPH0430586A (en) Thermoelectric device
KR101930867B1 (en) Thermoelectric module for heat recovery attachable to refrigerating and air conditioning apparatus
JP2004153128A (en) Thermoelectric module
JP2003060141A (en) Super heat conductor and cooling unit using the same
JP2003322482A (en) Panel type heat recovery device
JP2003309238A (en) Tower-type heat sink
JPH11307824A (en) Thermoelectric module
JP2007144293A (en) Electrostatic atomization device
KR101774651B1 (en) Thermoelectric module
JP2003222426A (en) Heat exchanger