JP2004153052A - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP2004153052A
JP2004153052A JP2002317242A JP2002317242A JP2004153052A JP 2004153052 A JP2004153052 A JP 2004153052A JP 2002317242 A JP2002317242 A JP 2002317242A JP 2002317242 A JP2002317242 A JP 2002317242A JP 2004153052 A JP2004153052 A JP 2004153052A
Authority
JP
Japan
Prior art keywords
substrate
manufacturing
semiconductor device
sheet
support substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002317242A
Other languages
Japanese (ja)
Inventor
Nobuyuki Matsumoto
信之 松本
Yoku Ryu
翊 劉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2002317242A priority Critical patent/JP2004153052A/en
Publication of JP2004153052A publication Critical patent/JP2004153052A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dicing (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that the productivity and process yield of a semiconductor device cannot be improved since a thinned substrate is broken, and it is difficult to transfer a semiconductor substrate to a dicing sheet in the manufacturing method of the semiconductor device which has a process of thinning the substrate. <P>SOLUTION: The manufacturing method of the semiconductor device comprises a process of pasting and integrating the substrate 101 having an element 102 formed thereon to a supporting substrate 103, and a process of thinning the substrate 101 having the element 102 formed thereon and performing element separation. For pasting the supporting substrate 103 and the substrate 101 having the element 102 formed thereon, a sheet 104 containing chemical substances foaming with heat rays or light is used. As the result of this, the thinned substrate is no longer broken and transferring to the dicing sheet becomes possible, thereby improving the productivity and the process yield. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体基板を薄膜化する工程を有する半導体装置の製造方法に関し、特に、高周波パワーデバイスの製造方法における基板研磨工程を有する半導体装置の製造方法に関する。
【0002】
【従来の技術】
例えば、特開平7−37840号公報に示されているように、高出力デバイスは、大きな熱を発生させるため、素子を薄くして、放熱性をよくする工夫がされている。この素子の製造工程は、以下に示すような流れで作製されている。この従来技術の製造方法を図4に示す。
【0003】
まず、半導体素子402を形成した基板401を支持基板404に、ワックス403等を用いて貼り付ける。この工程を図4(a)に示す。
【0004】
次に、研磨によって、基板401を所望の厚さ(通常は、30μm〜100μm)にし、素子裏面に放熱用のメタル(ヒートシンク)405を、メッキ等の手法を用いて形成する。この工程を図4(b)に示す。
【0005】
更に、支持基板404より薄くなった基板を剥がし、基板の表面に付着したワックス403を、有機溶剤によって洗浄し、ダイシングシート406に貼り付ける。この工程を図4(c)に示す。
【0006】
【特許文献1】
特願平7−37840号公報(段落0014〜0019、図1)
【0007】
【発明が解決しようとする課題】
従来の方法では、支持基板に貼り付け、基板を薄くするまでは、再現性や歩留りよく実施できていたが、支持基板より薄くなった基板を剥がし、有機洗浄を行う工程及び、ダイシングシートに貼り付ける工程は、薄くなった基板を、なんの支持も無い状態でハンドリングすることになり、ウェハを損傷することが多く、歩留りを低下させたり、熟練した技術者しか作業できないため、生産性の悪い工程であった。
【0008】
特に、GaAsは、高周波の高出力デバイスとして用いられることが多いうえ、材料の熱抵抗が高く、薄くする必要が有るにも関わらず、非常にもろい材料で、無線用の高出力デバイスの生産歩留りを低下させる大きな原因であった。
【0009】
【課題を解決するための手段】
本発明の半導体装置の製造方法は、素子を形成した基板を、支持基板に接着し一体化させる工程と、前記素子を形成した基板を薄膜化し、素子分離を行う工程とを含む半導体装置の製造方法において、前記支持基板と素子を形成した基板の貼り付けに、熱線あるいは、光によって発泡する化学物質を粘着面に含むシートを用ることを特徴とするものである。
【0010】
また、本発明の製造方法は、前記素子分離を行う工程において、前記素子を形成した基板をダイシングシートへの転写の際、支持基板ごと薄膜化した基板をダイシングシートに一旦貼り付けて、支持基板の側から、部分的に、前記支持基板を通して、熱あるいは、光を照射することにより前記支持基板の剥離を行うことを特徴とするものである。
【0011】
【発明の実施の形態】
以下、実施例によって、詳細に説明する。
【0012】
(実施例1)
図1(a)〜(e)は、本発明の実施の工程断面図を示す。
図1(a)において、素子102を形成した基板101を、熱発泡性粘着シート104を介して、支持基板103に貼り付ける。ここで、基板101は、GaAsウェハを用い、支持基板103として、アルミの金属板を用いた。支持基板としては、熱伝導性がよく、平坦なものであれば、例えば、シリコンウェハも利用できる。また、素子を形成した基板は、GaAs基板が割れやすく、特に直径2インチ以上の大面積の基板にとって、ハンドリングによる割れを防ぐことが重要であり、本発明にとって効果の大きいものである。また、InP基板やGaN基板、SiC基板に適用しても本発明の効果がある。さらに、形成する素子としては、HBTやHEMT、MMICなどの高周波デバイスに用いる素子が特に効果が大きいが、発光素子や受光素子などの素子でも構わない。
【0013】
図1(b)において、基板101を研磨あるいは、研削によって、30μmの厚さまで薄くし、レジストを用いたフォトリソグラフによって、メッキパターンを形成し、裏面の所望の部分に金属を析出させる。具体的には、基板101の裏面全面にメッキ用の給電メタルを析出し、その後、素子と素子の間のスクライブ領域に、メタルが析出させないようにフォトレジストを用いてマスクし、電解メッキによって金を、10μmの厚さに析出させた。
【0014】
図1(c)において、裏面メタルを析出させた面を、支持基板毎、ダイシングシート106に貼り付ける。この際、支持基板が存在するので、薄くなったGaAs基板でも、割れることはない。生産性と歩留りの向上に大きな効果がある。
【0015】
図1(d)において、熱源の発生器107から熱線108を、支持基板103に照射する。熱源として、赤外線を発生させるランプや、ドライヤーのように部分的に熱風を発生させるものを用いてもよい。熱発泡性粘着シート104の中に、気泡109が発生し、支持基板103と基板101の間に、スペースを出現させ、支持基板103が、基板101から浮いた状態になる。通常、ダイシングシートは、熱がかかると、収縮やよれを生じ、この後に行う、ダイシング工程において、シートが平坦でなくなるために、ダイシング不良を生じることがある。本発明では、ダイシングシートは、支持基板103、熱発泡性粘着シート104、基板101を通じて熱せられるが、熱線の部分照射のため、ダイシングシートを劣化させない効果がある。さらに、ダイシングシートに、ポリオレフィン系の耐熱シートを用いることで、シートの表面によれが生じる可能性が低くなり、ダイシング時の歩留り低下を招くことがない。
【0016】
また、支持基板側から熱線を照射することにより、基板を直接加熱するのではないので、半導体素子に熱の影響を抑制することができる半導体装置の製造を行うことができる。
【0017】
図1(e)は、基板101だけが、ダイシングシート106上に残されている状態である。本発明の工程では、薄くなった基板を、ハンドリングする必要がないため、基板を損傷して、歩留りを劣化させることがない。また、支持基板につけたままで、ダイシングシートに貼り付けるため、初心者でも作業が可能で、生産性が高い。
【0018】
本実施例の説明では、基板102と支持基板103の接着に、熱発泡性粘着シート104を用いたが、例えば、支持基板として透明ガラス基板を用い、ジアゾ基を高分子鎖に有する光発泡性シートを用いてもよい。光によって粘着力が劣化する光硬化シートは、従来、透明支持基板とともに良く使われているが、粘着力が弱まるだけで、支持基板を基板から剥がすために力を加える必要があり、その際に、基板を破損してしまうことが多い。発泡性シートの場合、発泡によって、基板と、支持基板の間にスペースを形成し、剥離をスムーズにするため、力を加える必要がなく、基板を破損することがなく、生産性が高い。また、光発泡性シートを用いることにより半導体素子に熱による影響を受けることなく、薄膜化を行うことができる。
【0019】
より好ましくは、支持基板として紫外光に対し透明な石英支持基板を用い、紫外線によりその化学結合の一部が分離することにより気体が発生する、発泡性シートを用いてもよい。このタイプの発泡性シートは、光によって粘着力が劣化するとともに気体が発生し、基板と支持基板を気体により実質上分離させる。単なる発泡でなく気体が発生することによりほぼ完全に基板と支持基板が接点なく分離されているので、より簡便に分離できる。
【0020】
図2に、工程毎の累計歩留りを示す。黒丸●201で示されるラインは、本発明の適用によって、ウェハの厚みを30μmにした場合の結果であり、白丸○202で示されるラインは、従来法によってウェハの厚みを30μmにした場合である。四角□203で示されるラインは、従来法によるが、ウェハ厚みは150μmの場合である。
【0021】
○202で示される基板を30μm厚みにした従来法の場合、支持基板の剥離工程で、薄くなったウェハをハンドリングする必要があるため、歩留りの大きな低下を招いた。しかしながら、従来法であっても、基板厚みが150μmであれば、大きな歩留りの低下をもたらさない。本発明の歩留り向上への効果は、基板厚みが薄いほど高く、厚い場合、あまり効果を示さない。
【0022】
また、支持基板剥離工程から、ダイシング工程時の歩留り変化は、○202で示される、基板を30μm厚みにした従来法で顕著である。これは、支持基板が無い状態で、ダイシングシートに貼り付けできても、強く抑えられないため、表面の平坦性に問題が生じ、均一なダイシング(チップ分離)ができないためである。
【0023】
図3に、本発明の基板厚みと、支持基板は剥離工程での歩留りの関係を示す。黒丸●301で示されるものは、本発明の適用による基板厚みと歩留りの関係で、白丸○302で示されるものは、従来法による基板厚みと歩留りの関係である。基板厚みが120μm以上の場合、本発明の適用による歩留り向上への効果は小さいものの認められ、90μm〜30μmでは、歩留りの向上に大きな効果があることが判る。
【0024】
【発明の効果】
本発明の適用により、薄くなった基板を破損すること無く、ダイシングシートに転写することが可能になり、生産性と工程歩留りの向上に効果がある。
【図面の簡単な説明】
【図1】本発明の製造方法を示す工程断面図である。
【図2】工程累計歩留りと工程の関係を示す図面である
【図3】支持基板剥離工程での基板厚みと歩留りの関係を示す図面である。
【図4】従来の製造方法を示す工程断面図である。
【符号の説明】
101 基板
102 素子
103 支持基板
104 熱発泡性粘着シート
105 裏面メタル
106 ダイシングシート
107 熱源の発生器
108 熱線
109 気泡
401 基板
402 素子
403 ワックス
404 支持基板
405 裏面メタル
406 ダイシングシート
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of manufacturing a semiconductor device having a step of thinning a semiconductor substrate, and more particularly to a method of manufacturing a semiconductor device having a substrate polishing step in a method of manufacturing a high-frequency power device.
[0002]
[Prior art]
For example, as disclosed in Japanese Patent Application Laid-Open No. 7-37840, a high-power device generates a large amount of heat. The manufacturing process of this element is manufactured according to the following flow. FIG. 4 shows this prior art manufacturing method.
[0003]
First, the substrate 401 on which the semiconductor element 402 is formed is attached to the support substrate 404 using wax 403 or the like. This step is shown in FIG.
[0004]
Next, the substrate 401 is polished to a desired thickness (usually 30 μm to 100 μm), and a metal (heat sink) 405 for heat radiation is formed on the back surface of the element by plating or the like. This step is shown in FIG.
[0005]
Further, the substrate thinner than the support substrate 404 is peeled off, and the wax 403 attached to the surface of the substrate is washed with an organic solvent and attached to the dicing sheet 406. This step is shown in FIG.
[0006]
[Patent Document 1]
Japanese Patent Application No. 7-37840 (paragraphs 0014 to 0019, FIG. 1)
[0007]
[Problems to be solved by the invention]
In the conventional method, it was possible to carry out the process with good reproducibility and yield until it was attached to the support substrate and thinned the substrate.However, the substrate thinner than the support substrate was peeled off, and a step of performing organic cleaning and attaching to the dicing sheet In the attaching process, the thinned substrate is handled without any support, which often damages the wafer, lowering the yield, or lowering the productivity because only a skilled technician can work. It was a process.
[0008]
In particular, GaAs is often used as a high-frequency high-power device, and is a very fragile material despite the fact that the material has a high thermal resistance and needs to be thin, and the production yield of wireless high-power devices is high. Was a major cause of lowering.
[0009]
[Means for Solving the Problems]
A method of manufacturing a semiconductor device according to the present invention includes the steps of bonding a substrate on which an element is formed to a supporting substrate and integrating the same, and thinning the substrate on which the element is formed to perform element isolation. The method is characterized in that a sheet containing an adhesive surface containing a chemical substance foamed by heat rays or light is used for attaching the support substrate and the substrate on which the elements are formed.
[0010]
Further, in the manufacturing method of the present invention, in the step of performing the element separation, when the substrate on which the elements are formed is transferred to a dicing sheet, the thinned substrate together with the supporting substrate is once adhered to the dicing sheet to form a supporting substrate. , The support substrate is separated by irradiating heat or light partially through the support substrate.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the embodiment will be described in detail.
[0012]
(Example 1)
1 (a) to 1 (e) are cross-sectional views illustrating a process according to an embodiment of the present invention.
In FIG. 1A, a substrate 101 on which an element 102 is formed is attached to a support substrate 103 via a heat-foamable adhesive sheet 104. Here, a GaAs wafer was used as the substrate 101, and an aluminum metal plate was used as the support substrate 103. As the support substrate, for example, a silicon wafer can be used as long as it has good thermal conductivity and is flat. The substrate on which the element is formed is easily broken by a GaAs substrate. In particular, it is important for a substrate having a large area of 2 inches or more in diameter to prevent cracking due to handling, which is highly effective for the present invention. Further, the effects of the present invention can be obtained even when applied to an InP substrate, a GaN substrate, or a SiC substrate. Further, as an element to be formed, an element used for a high-frequency device such as HBT, HEMT, or MMIC has a particularly large effect, but an element such as a light-emitting element or a light-receiving element may be used.
[0013]
In FIG. 1B, the substrate 101 is polished or ground to a thickness of 30 μm, a plating pattern is formed by photolithography using a resist, and a metal is deposited on a desired portion on the back surface. Specifically, a power supply metal for plating is deposited on the entire back surface of the substrate 101, and thereafter, a mask is formed on a scribe region between the elements using a photoresist so as not to deposit the metal, and gold is formed by electrolytic plating. Was deposited to a thickness of 10 μm.
[0014]
In FIG. 1C, the surface where the back metal is deposited is attached to the dicing sheet 106 for each support substrate. At this time, since the supporting substrate exists, even the thinned GaAs substrate does not break. It has a great effect on improving productivity and yield.
[0015]
In FIG. 1D, the support substrate 103 is irradiated with a heat ray 108 from a heat source generator 107. As a heat source, a lamp that generates infrared rays or a heater that partially generates hot air such as a dryer may be used. Bubbles 109 are generated in the heat-foamable pressure-sensitive adhesive sheet 104, and a space appears between the support substrate 103 and the substrate 101, so that the support substrate 103 floats from the substrate 101. Generally, when heat is applied, the dicing sheet shrinks or warps, and in the subsequent dicing step, the sheet becomes non-flat, which may cause a dicing defect. In the present invention, the dicing sheet is heated through the support substrate 103, the heat-expandable pressure-sensitive adhesive sheet 104, and the substrate 101. However, the partial irradiation of heat rays has an effect of not deteriorating the dicing sheet. Furthermore, by using a polyolefin-based heat-resistant sheet as the dicing sheet, the possibility of the sheet surface being skewed is reduced, and the yield during dicing is not reduced.
[0016]
In addition, since the substrate is not directly heated by irradiating heat rays from the supporting substrate side, a semiconductor device capable of suppressing the influence of heat on a semiconductor element can be manufactured.
[0017]
FIG. 1E shows a state in which only the substrate 101 is left on the dicing sheet 106. In the process of the present invention, it is not necessary to handle the thinned substrate, so that the substrate is not damaged and the yield is not deteriorated. In addition, since it is attached to the dicing sheet while being attached to the supporting substrate, even a beginner can work, and the productivity is high.
[0018]
In the description of the present embodiment, the heat-foamable pressure-sensitive adhesive sheet 104 is used for bonding the substrate 102 and the support substrate 103. However, for example, a transparent glass substrate is used as the support substrate, and a photo-foamable sheet having a diazo group in the polymer chain is used. A sheet may be used. Light-cured sheets, whose adhesive strength is degraded by light, are often used together with transparent support substrates.However, only weakening the adhesive force requires applying force to peel the support substrate from the substrate. In many cases, the substrate is damaged. In the case of the foamable sheet, a space is formed between the substrate and the supporting substrate by foaming, and the peeling is smooth, so that no force is required to be applied, the substrate is not damaged, and the productivity is high. Further, by using the light foaming sheet, the semiconductor element can be thinned without being affected by heat.
[0019]
More preferably, a foamable sheet may be used in which a quartz support substrate transparent to ultraviolet light is used as the support substrate, and a gas is generated when a part of the chemical bond is separated by ultraviolet rays. In this type of foamable sheet, the adhesive force is deteriorated by light and gas is generated, and the substrate and the supporting substrate are substantially separated by the gas. Since the substrate and the supporting substrate are almost completely separated from each other without contact by generating gas instead of merely foaming, separation can be performed more easily.
[0020]
FIG. 2 shows the cumulative yield for each process. The line indicated by black circles 201 is the result when the thickness of the wafer is 30 μm by applying the present invention, and the line indicated by white circle 202 is the case when the thickness of the wafer is 30 μm by the conventional method. . The line indicated by the square □ 203 is based on the conventional method, but the case where the wafer thickness is 150 μm.
[0021]
In the case of the conventional method in which the substrate indicated by 202202 has a thickness of 30 μm, it is necessary to handle the thinned wafer in the support substrate peeling step, so that the yield is greatly reduced. However, even in the conventional method, if the substrate thickness is 150 μm, the yield does not decrease significantly. The effect of the present invention on improving the yield is higher as the thickness of the substrate is thinner.
[0022]
Further, a change in the yield from the support substrate peeling step to the dicing step is remarkable in the conventional method in which the substrate has a thickness of 30 μm, which is indicated by ○ 202. This is because even if a dicing sheet can be attached without a supporting substrate, the dicing sheet cannot be strongly suppressed, causing a problem in surface flatness, and uniform dicing (chip separation) cannot be performed.
[0023]
FIG. 3 shows the relationship between the substrate thickness of the present invention and the yield of the supporting substrate in the peeling step. The black circle 301 indicates the relationship between the substrate thickness and the yield according to the present invention, and the white circle 302 indicates the relationship between the substrate thickness and the yield according to the conventional method. When the thickness of the substrate is 120 μm or more, the effect of improving the yield by applying the present invention is small, but it can be seen that the effect of improving the yield is great when the thickness is 90 μm to 30 μm.
[0024]
【The invention's effect】
By applying the present invention, a thinned substrate can be transferred to a dicing sheet without being damaged, which is effective in improving productivity and process yield.
[Brief description of the drawings]
FIG. 1 is a process sectional view illustrating a manufacturing method of the present invention.
FIG. 2 is a diagram showing a relationship between a process total yield and a process; FIG. 3 is a diagram showing a relationship between a substrate thickness and a yield in a support substrate peeling process;
FIG. 4 is a process sectional view showing a conventional manufacturing method.
[Explanation of symbols]
101 Substrate 102 Device 103 Supporting substrate 104 Thermally foamable adhesive sheet 105 Back metal 106 Dicing sheet 107 Heat source generator 108 Hot wire 109 Bubble 401 Substrate 402 Device 403 Wax 404 Support substrate 405 Back metal 406 Dicing sheet

Claims (4)

素子を形成した基板を、支持基板に接着し一体化させる工程と、前記素子を形成した基板を薄膜化し、素子分離を行う工程とを含む半導体装置の製造方法において、
前記支持基板と素子を形成した基板との貼り付けに、熱線によって発泡する化学物質を粘着面に含むシートを用ることを特徴とする半導体装置の製造方法。
A method for manufacturing a semiconductor device, comprising the steps of: bonding a substrate on which an element is formed to a support substrate and integrating the element; and thinning the substrate on which the element is formed, and performing element isolation.
A method for manufacturing a semiconductor device, characterized in that a sheet containing an adhesive surface containing a chemical substance foamed by heat rays is used for attaching the support substrate and a substrate on which elements are formed.
前記素子分離を行う工程において、前記素子を形成した基板をダイシングシートへの転写の際、支持基板ごと薄膜化した基板をダイシングシートに一旦貼り付けて、支持基板の側から、部分的に、前記支持基板を通して、熱線を照射することにより前記支持基板の剥離を行うことを特徴とする請求項1に記載の半導体装置の製造方法。In the step of performing the element separation, when the substrate on which the elements are formed is transferred to a dicing sheet, the thinned substrate together with the supporting substrate is temporarily attached to the dicing sheet, and partially from the supporting substrate side, The method for manufacturing a semiconductor device according to claim 1, wherein the support substrate is separated by irradiating a heat ray through the support substrate. 素子を形成した基板を、支持基板に接着し一体化させる工程と、前記素子を形成した基板を薄膜化し、素子分離を行う工程とを含む半導体装置の製造方法において、
前記支持基板と素子を形成した基板との貼り付けに、光によって発泡する化学物質を粘着面に含むシートを用ることを特徴とする半導体装置の製造方法。
A method for manufacturing a semiconductor device, comprising the steps of: bonding a substrate on which an element is formed to a support substrate and integrating the element; and thinning the substrate on which the element is formed, and performing element isolation.
A method of manufacturing a semiconductor device, characterized in that a sheet containing a chemical substance foamed by light on an adhesive surface is used for attaching the supporting substrate and a substrate on which elements are formed.
前記素子分離を行う工程において、前記素子を形成した基板をダイシングシートへの転写の際、支持基板ごと薄膜化した基板をダイシングシートに一旦貼り付けて、支持基板の側から、部分的に、前記支持基板を通して、光を照射することにより前記支持基板の剥離を行うことを特徴とする請求項3に記載の半導体装置の製造方法。In the step of performing the element separation, when the substrate on which the elements are formed is transferred to a dicing sheet, the thinned substrate together with the supporting substrate is temporarily attached to the dicing sheet, and partially from the supporting substrate side, The method according to claim 3, wherein the support substrate is separated by irradiating light through the support substrate.
JP2002317242A 2002-10-31 2002-10-31 Manufacturing method of semiconductor device Pending JP2004153052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002317242A JP2004153052A (en) 2002-10-31 2002-10-31 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002317242A JP2004153052A (en) 2002-10-31 2002-10-31 Manufacturing method of semiconductor device

Publications (1)

Publication Number Publication Date
JP2004153052A true JP2004153052A (en) 2004-05-27

Family

ID=32460688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002317242A Pending JP2004153052A (en) 2002-10-31 2002-10-31 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP2004153052A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004186279A (en) * 2002-11-29 2004-07-02 Sekisui Chem Co Ltd Three-dimensional mounting method of electronic parts
JP2011142213A (en) * 2010-01-07 2011-07-21 Tdk Corp Method of dicing thin film electronic element, and adhesive sheet loaded with electronic element manufactured by the method
WO2013157179A1 (en) * 2012-04-19 2013-10-24 シャープ株式会社 Semiconductor device manufacturing method, heat resistant sheet, method for protecting substrate front surface when forming substrate rear film, and semiconductor substrate holding method
JP2014509450A (en) * 2011-03-08 2014-04-17 エルジー・ハウシス・リミテッド Adhesive composition for wafer processed film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004186279A (en) * 2002-11-29 2004-07-02 Sekisui Chem Co Ltd Three-dimensional mounting method of electronic parts
JP2011142213A (en) * 2010-01-07 2011-07-21 Tdk Corp Method of dicing thin film electronic element, and adhesive sheet loaded with electronic element manufactured by the method
JP2014509450A (en) * 2011-03-08 2014-04-17 エルジー・ハウシス・リミテッド Adhesive composition for wafer processed film
US9153471B2 (en) 2011-03-08 2015-10-06 Lg Hausys, Ltd. Adhesive composition for a wafer processing film
WO2013157179A1 (en) * 2012-04-19 2013-10-24 シャープ株式会社 Semiconductor device manufacturing method, heat resistant sheet, method for protecting substrate front surface when forming substrate rear film, and semiconductor substrate holding method

Similar Documents

Publication Publication Date Title
US9401344B2 (en) Substrates with transferable chiplets
TWI258184B (en) Device transfer method, and device array method and image display unit production method using the same
TW546721B (en) Element transfer method, element arrangement method using the same, and manufacturing method of image display device
WO2021184688A1 (en) Die bond method for led chip, and display device
US20070082427A1 (en) Method for manufacturing a compound semiconductor device having an improved via hole
JP2006135272A (en) Substrate support plate and peeling method of support plate
JP3959988B2 (en) Element transfer method
JP2004527915A (en) Thin film and method for producing the same
JP2003077940A (en) Method of transferring device, method of arranging device using same, and method of manufacturing image display device unit
JP4239974B2 (en) Semiconductor device manufacturing method and ring-shaped reinforcing member
JP6035468B2 (en) Semiconductor-on-diamond wafer handle and manufacturing method
TW201119081A (en) Substrate structure including functional region and method for transferring functional region
JP2007266419A (en) Semiconductor device and manufacturing method thereof
JPH1187200A (en) Semiconductor substrate and manufacture of semiconductor device
JP2003203886A (en) Method for isolating element, and method for transferring the element
TW202118589A (en) Setting method of protective component and manufacturing method of protective component
JP2002368282A (en) Method of transferring element and method of arranging element using the same, and method of manufacturing image display
JP2004119718A (en) Method of manufacturing thin semiconductor chip
JP7016445B2 (en) Manufacturing method of semiconductor device
JP2002343944A (en) Transferring method of electronic part, arraying method of element, and manufacturing method of image display device
JP6524564B2 (en) Method of manufacturing element chip and substrate heating apparatus
JP2004153052A (en) Manufacturing method of semiconductor device
WO2020258644A1 (en) Microled chip transferring method
JP2005175207A (en) Manufacturing method of semiconductor device, reinforcement member for grinding and bonding method thereof
JP2002158237A (en) Method for transferring element and method for mounting element