JP2004150965A - Disturbance measuring device in optical interferometer, and high-precision light interference measuring arrangement - Google Patents

Disturbance measuring device in optical interferometer, and high-precision light interference measuring arrangement Download PDF

Info

Publication number
JP2004150965A
JP2004150965A JP2002316985A JP2002316985A JP2004150965A JP 2004150965 A JP2004150965 A JP 2004150965A JP 2002316985 A JP2002316985 A JP 2002316985A JP 2002316985 A JP2002316985 A JP 2002316985A JP 2004150965 A JP2004150965 A JP 2004150965A
Authority
JP
Japan
Prior art keywords
light
disturbance
phase difference
interference
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002316985A
Other languages
Japanese (ja)
Other versions
JP3621994B2 (en
Inventor
Makoto Yamauchi
真 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002316985A priority Critical patent/JP3621994B2/en
Publication of JP2004150965A publication Critical patent/JP2004150965A/en
Application granted granted Critical
Publication of JP3621994B2 publication Critical patent/JP3621994B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device which quantitatively evaluates the errors in a measured value caused by disturbance, and reduces its measurement error to an allowance or less, on the basis of that result, in measurement using an optical interferometer. <P>SOLUTION: A disturbance measuring device and a measuring device which uses the measured values, cause object light and reference light to have between them a phase difference which changes in the shape of a sawtooth wave, as a result cause the intensity of their interference light to change sinusoidally, in an interference optical system, measure the phase difference by utilizing that fact, and sample that phase difference by a predetermined frequency. In doing this, the frequency characteristics of the quantity of the error of the measured value caused by the disturbance can be evaluated. Moreover, the spatial distribution of the quantity of the error of the measured value caused by the disturbance can be evaluated, by dividing the interference light into two luminous fluxes, forming apertures at positions where the respective luminous fluxes correspond to different portions of a measuring object, and measuring the phase difference between the interference lights which have passed the apertures. On the basis of the result, the frequency of the phase difference in the shape of a saw toothwave necessary for attaining measurement accuracy is decided. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、光干渉測定装置において外部振動、空気ゆらぎ等の外乱が測定値に与える誤差を定量的に評価する装置に関するもので、レンズ、ミラー、レンズ成型用型などの鏡面表面を持つ物体の表面形状を高精度に測定するための光干渉計、及びガラス基盤、フィルム、光学素子、液晶層などを透過した光の波面を高精度に測定するための光干渉計に利用できる。
【0002】
【従来の技術】
光干渉計における測定において測定中に外乱が発生すると、干渉縞が乱れ、縞のコントラスト(ビジビリテイ)の低下が起こるので測定精度が低下する。特に外乱が大きく、干渉縞が1本以上揺らぐ場合には、測定不能になる。外乱のある測定環境においても測定が可能な光干渉計には、非特許文献1に示されるように、ただ1枚の干渉縞画像から形状等を測定するものと、非特許文献2及び3の例に示されるように、外乱を別途測定し、それを補償するシステムを有するものがある。また、特許文献1に示されるように、振動数の異なる光を用いる2色法によるものがある。
非特許文献1の光干渉計システムでは、外乱により干渉縞が乱れるよりも十分に早い露光時間で干渉縞画像を取り込み、外乱による干渉縞のコントラスト低下を抑えている。通常1枚の干渉縞画像から得られる光の波面の位相測定精度はπ程度であるが、干渉縞解析アルゴリズムの工夫により高精度化を図っている。非特許文献2及び3のシステムでは、波面検出器により外乱を測定し、光源であるレーザーの波長(非特許文献2)、あるいは参照光の光路長(非特許文献3)にフイードバックをかけることで、外乱による干渉縞の乱れを生じさせないようになっている。
また、特許文献1の2色法では、光路長を幾何学的長さに変換するものであることから2点間の光路にある空気すべての屈折率を補正するようにしている。
【0003】
【非特許文献1】
M.Melozzi,L.Pezzati,and A.Mazzoni,“Vibration−insensitive interferometer for on−line measurements,”Applied Optics 34,5595−5601(1995).
【非特許文献2】
0.Sasaki,K.Takahashi,and T.Suzuki,“Sinusoidal phase modulating laserdiode interferometer with a feedback control system to eliminate external disturbance,” Optical Engineering 29,1511−1515(1990).
【非特許文献3】
I.Yamaguchi,J.Liu,andJ.Kato,“Active phase−Shifting interferometers for Shape and deformation measurements,”Optical Engineering 35,2930−2937(1996).
【特許文献1】
特開平10−19508号公報
【0004】
【発明が解決しようとする課題】
しかしながら、ただ1枚の干渉縞画像から光の波面の位相を測定する方法では、上記のようにある程度の測定精度向上が望めるものの、通常光干渉計において測定精度向上のために行われる位相シフト法(あるいは位相変調干渉法、縞走査法、ヘテロダイン法)と比較して測定精度の向上度合いが小さい。また、フイードバックシステムを備えた干渉計測方法においても、外乱のある場合の測定精度は外乱のない場合に比較して多少なりとも低下しており、その低下度合いがどの程度であるか定量的に見積もることができない。また、2色法においては全光路にわたって屈折率の補正ができるものの精度が落ちるという問題がある。
さらに、いずれの方法によっても、外乱による測定誤差がどのような空間的分布を持っているかを把握することができないという問題があった。
【0005】
本発明は、このような従来技術の課題を解決するため、光干渉計による測定と同等の光学系を用いて、外乱の大きさを時間的、及び空間的な関数として測定する方法を提供することで、外乱による測定誤差を見積もることが可能な高精度光干渉計測装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するため本発明の光干渉計における外乱の測定装置は、物体光と参照光との間に鋸波状に変化する位相差を与え、その結果干渉光強度が正弦波的に変化することを利用して、得られた正弦波の位相と最初に与えた鋸波状信号との位相差から物体光と参照光の位相差を測定する光干渉計において、物体光と参照光の位相差を異なるサンプリング周波数においてそれぞれ複数回サンプリングするとともに、得られたサンプリング値から外乱が測定値に与える誤差量の周波数特性を評価する手段を設けることを特徴とする。
また、本発明の光干渉計における外乱の測定装置は、物体光と参照光とからなる干渉光を複数の光束に分け、それぞれの光束が測定物の異なる部分に対応するような位置に複数の開口を設け、該開口を通過した干渉光同士の位相差を測定し、測定値に与える誤差量の空間的分布を評価する手段を設けることを特徴とする。
また、本発明の高精度光干渉計測装置は、物体光と参照光との間に鋸波状に変化する位相差を与え、その結果干渉光強度が正弦波的に変化することを利用して、得られた正弦波の位相と最初に与えた鋸波状信号との位相差から物体光と参照光の位相差を測定する光干渉計において、外乱がある時の計測精度が外乱がない時の計測精度と同程度になるように物体光と参照光との間に与える鋸波状位相差の周波数を設定する手段を設け、高速度カメラを介して得られた干渉縞を取り込むようにしたことを特徴とする。
【0007】
【発明の実施の形態】
以下、本発明による実施の形態を図面に基づき説明する。
〔実施の形態1〕
図1を用いて、干渉光の位相を検出するために本発明で利用する高速位相変調法の原理を説明する。この原理は、例えば、文献M.Yamauchi,A.Marquez,J.A.Davis,and D.J.Franich,“Interferometric phase measurements for polarizationeigenvectors in twisted nematic liquid crystal spatial light modulators,”Optics Communications 181,1−6(2000)においてマッハツェンダー型の干渉計に対して用いられている。レーザー光源1を出射した光線は、高速位相変調素子2を透過した後、拡大され、平行光となって偏光マイケルソン型干渉計へと入射する。干渉計中の偏光ビームスプリッタ3により、紙面に垂直な方向の偏光成分(以後S偏光と呼ぶ)は上方へ反射される。反射したS偏光は、4分の1波長板4により円偏光となり、参照平面5で反射された後、再び4分の1波長板4を透過し、今度は紙面に平行な方向の直線偏光(以後P偏光と呼ぶ)となって偏光ビームスプリッタ3を透過し、下方へ出射する。この光線が干渉計の参照光となる。一方干渉計へ入射したP偏光は、最初に偏光ビームスプリッタ3を透過し左方向へ進んで物体光となる。物体光も参照光と同様、4分の1波長板6を透過して円偏光となり、測定面7で反射され、再び4分の1波長板6を透過して直線偏光に戻る。ただしこの時の直線偏光はS偏光となっているので、今度は偏光ビームスプリッタ3で反射されて下方へ進む。物体光と参照光は共に検光子8を透過して干渉縞を形成し、開口9を透過後、光検出器10へと到達する。
【0008】
高速位相変調素子2では、入射したレーザー光線のS偏光成分とP偏光成分との間に、鋸波状の位相差を設ける。こうすれば、光検出器10に到達した干渉光の強度Iは、
【数1】

Figure 2004150965
のように正弦的に変化する。ここでAは干渉光強度の直流成分、B は交流成分の振幅、fは与えた鋸波状の位相差の変調周波数、φは物体光と参照光との位相差である。この位相差は、例えば形状測定においては測定面7の高さを表しており、測定面上のある基準点の高さをhとすると、測定点の高さhは、
【数2】
Figure 2004150965
と求めることができる。ここで、λは使用するレーザー光の波長、φは基準点での物体光と参照光との位相差である。数式2において、右辺第2項は、往復光路のため、基準点と測定点での片道光路長差の2倍となっている。形状測定においては通常、図1において開口9の位置を走査するか、あるいは開口9を設けず、CCDカメラ等、面で光量を検出できる装置を用いて測定面7の高さの分布を求めている。
【0009】
本発明では、例えば物体光中の4分の1波長板6と測定面7との間に空気揺らぎがあるなど、ランダムに変動する外乱11がある状況で上記干渉計を用いて形状測定することを考える。この場合、外乱11により発生する物体光と参照光との間の位相差をεとすれば、光検出器10で測定される干渉光強度Iは、数式1の代わりに
【数3】
Figure 2004150965
となる。干渉光強度から、物体光と参照光の位相差を一定の周期でn回測定する。その測定値をξ(i=1,2,3,,,n)とすれば
【数4】
Figure 2004150965
となる。また測定値の平均値は
【数5】
Figure 2004150965
となる。ここで、平均値を<>で表した。
【0010】
外乱の発生はランダムであり、多数回の平均で0になると考えると、<ξ>=φであり、測定値の標準偏差σξ
【数6】
Figure 2004150965
となる。数式6は、測定値の標準偏差が外乱の標準偏差と等しいことを表している。したがって、このn回測定での測定値の標準偏差σξは、外乱11の大きさと考えることができる。このように、上記光学系を用いて、一定の周期で多数回の測定(サンプリング)を行い、その標準偏差を求めれば、その測定時間中に発生した外乱11の大きさを評価することが可能となる。またこのような測定を、サンプリング周期を変えて実施することにより、外乱11の大きさの周波数特性を測定することが可能となる。
【0011】
〔実施の形態2〕
次に、図2に示す光学系を考える。この光学系は図1とほば同様であるが、干渉光をビームスプリッタ12で2光束に分け、それぞれの光束中に開口13、14を設けることにより、それぞれの開口位置に応じて、測定面7での異なる部分から反射した光線の位相差を測定することが可能となる。片方の開口を移動ステージ上に置き、開口位置を走査すれば、測定面7上の位置により外乱11の大きさがどのように変化するかを測定することができる。すなわち、外乱11の大きさの空間的特性を測定することが可能である。
【0012】
干渉縞画像を取り込み、位相シフト法により形状測定等を行う干渉計において、このように測定された外乱11の大きさが、干渉光の位相測定にどのような影響を与えるかを考える。位相シフト法において一定量の位相シフトを行って多数枚の干渉縞画像を取り込むことは、鋸波状の位相変調を行うシステムにおいては、一定の時間間隔で干渉縞画像を取り込むことに対応している。そのとき、図1の光学系で測定された外乱11の大きさは、各画像における位相シフト量のランダムな誤差と考えることができる。位相シフト法には多くのアルゴリズムが考えられるが、文献K.Hibino,“Susceptibility of systematic error−compensatingalgorithms to random noise in phase−Shifting interferometry,” Applied Optics 36,2084−2093(1997)によれば、適当なアルゴリズムを選択することにより、ランダムな位相シフト量の誤差σεがある時、位相シフト法によって計算される位相の誤差δφは、
【数7】
Figure 2004150965
程度に抑えることが可能である。ただし、mは取り込む画像の枚数であり、通常3〜9程度の整数である。したがって、最終的に決定される位相の誤差は、本提案における装置で測定された外乱の大きさ程度以下であると評価することができる。
一方図2の光学系で測定された外乱の空間的分布は、位相シフト法等で得られた位相に、誤差として直接加算される。したがって、外乱の空間的分布により生じる測定誤差は、図2の光学系で測定された外乱の大きさ以下であると評価することができる。
【0013】
【実施例】
〔実施例1〕外乱の周波数特性の測定
平面度の形状測定を例にとり、本発明にかかる光干渉測定装置の全体構成を図3に示す。光学系部分は、波長633nmの直線偏光レーザー光を出射するHe−Neレーザー光源1、物体光と参照光の光量を調整するための2分の1波長板17、レーザー光線のS偏光成分のみに鋸波状位相変調を与える高速位相変調素子2、集光レンズ18、ピンホール19、ピンホールから出射した光を平行光にするコリメーターレンズ20、物体光と参照光を分割する偏光ビームスプリッタ3、2個の4分の1波長板4、6、参照平面5、測定平面7、検光子8、開口9、及び光検出器10から構成される。光学系以外の部分は、鋸波を発生させるファンクションジェネレータ21、ファンクションジェネレータ21からの信号を、高速位相変調素子2において2πの位相変調が可能となるよう増幅するアンプ22、信号波形を確認するためのオシロスコープ23、干渉光の位相を検出するロックインアンプ24、及びロックインアンプ24で測定された位相差を一定周期でサンプリングを行い、データを保存するためのパーソナルコンピュータ25からなる。
【0014】
高速位相変調素子2としては、電気光学素子を用いることができる。電気光学素子は、ADP(NHPO)などの光学結晶を内蔵しており、内蔵した光学結晶には、電圧を印加することによりポッケルス効果などが生じ、結晶軸方向によって異なる屈折率変化を起こすので、結晶を透過する光線の特定の偏光成分のみに位相変調をかけることが可能である。S偏光成分に鋸波状の位相変調を行い、変調をかけないP偏光成分と干渉させる。このように直交した偏光を干渉させるため、検光子8が必要となる。干渉光を光検出器10に入射させると、数式1で表されるような、正弦的に変化する信号が検出される。
【0015】
ファンクションジェネレータ21で発生した信号と、光検出器10で検出された信号を、オシロスコープ23に映した例を図4に示す。図4(a)の信号がファンクションジェネレータ21からの鋸波状信号、図4(c)が光検出器10からの信号である。これらの信号をそれぞれロックインアンプ24の参照信号及び入力信号とすれば、入力信号である図4(c)の波形の位相を検出することができる。
検出された位相の値は、GP−IB(General Purpose Inteface Bus)を通して、一定の周期でパソコン25に取り込まれる。
【0016】
鋸波状の位相変調の周波数fを1kHzとし、パソコン25に取り込む位相値のサンプリング周波数を1Hz〜1kHzに変化させて、それぞれ10回ずつ測定を行った結果の例を図5(a)に示す。この実験は、図3の光学系部分を、空気除震装置付の光学定盤上に置いて行った。サンプリング周波数が10Hz以上のときはほとんど安定した測定が行われているが、1Hzのときは測定のたびに得られる値が変化しており、このように振動の影響をほとんど受けない実験室環境においても、測定値が外乱の影響を受けていることが分かる。
同様の実験を、強制的な空気揺らぎの外乱を起こした測定環境で行った結果を図5(b)に示す。具体的には、図3の光学系中、4分の1波長板6と測定平面7との間の光路の下に使い捨てカイロを置き、室温とカイロ表面との間に約20℃の温度差を設けて、空気の対流を発生させた。図5(b)を見て分かるとおり、このように大きな空気ゆらぎがある時は、100Hzの周波数でサンプリングを行っても測定値が変化する。図5の各グラフにおける10回測定での標準偏差を外乱の大きさの指標とすることが可能であり、以後外乱による位相誤差量と呼ぶ。強制的外乱のある場合とない場合において、外乱による位相誤差量をサンプリング周波数の関数として測定した結果を図6に示す。このように、本発明における方法及び装置により、外乱による位相誤差量の周波数特性を測定することができる。
【0017】
〔実施例2〕外乱の空間分布特性の測定
図7に示される装置を用いて、外乱11による位相誤差量の空間分布特性を測定する。上記実施例1と比較して、干渉光をビームスプリッタ12により2つの光線に分け、2つの光検出器15、16により各光線の光強度を検出している点、ロックインアンプ24ヘの参照信号の入力信号が、ファンクションジェネレータ21からではなく、片方の光検出器15からの信号となっている点、及びもう片方の光検出器16の前に配置された開口14が移動ステージ26上に載っており、開口14位置を移動可能にしている点が異なっている。ここでは、光検出器16の受光面の大きさは、開口14の移動範囲をカバーするものとしているが、開口14と光検出器16を同時に移動ステージ26により移動させることも可能である。
【0018】
検光子8は、図7のようにビームスプリッタ12と開口14の間に置くこともできるが、図2のように偏光ビームスプリッタ3とビームスプリッタ12との間に置いても差し支えない。またロックインアンプ24ヘの参照信号は、片方の光検出器15からの信号を直接入力することもできるが、信号波形が乱れる、あるいは信号が弱いなどの理由でロックインアンプ24のロックが安定しない場合には、図7にあるように、参照信号へ入力する前に、プログラマブルフィルタ27により適当なフィルタリングを行って波形を整え、あるいは適当な信号強度に増幅すると良い。
【0019】
この時得られる信号をオシロスコープ上に映し出した例を図8に示す。図8の(a)はファンクションジェネレータ21からの信号、(b)は、プログラマブルフィルタ27を通した後の片方の光検出器15からの信号、(c)は、もう一方の光検出器16からの信号を表している。ロックインアンプ24では、(b)と(c)の信号の位相差を検出する。各光検出器15、16の前に置かれた開口13、14の位置が、測定平面7の同じ位置に対応しているときは、外乱の有無にかかわらず図8のようにこれらの信号は同位相となる。開口13と開口14の位置が測定平面7の異なる位置に対応しているときには、測定平面7と参照平面5との間に形状差がある場合、測定平面7と参照平面5からの光波面が完全には平行でない場合、あるいは外乱のある場合、図4のようにこれらの信号の間に位相差が生じる。
【0020】
実施例1と同様に、鋸波状の変調周波数を1kHzとし、サンプリング周波数を変えて各10回ずつの位相差測定を行った。使い捨てカイロを放置して強制的な空気揺らぎを発生させ、2つの開口13、14を、対応する測定平面7の同位置及び4mm離れた位置に置いたとき、測定値の標準偏差(外乱による位相誤差量)がサンプリング周波数に対してどのように変化するかを図9に示す。このような測定により、外乱による位相誤差量の空間的分布を知ることができる。
【0021】
〔実施例3〕平面形状の測定
実際に平面などの形状を測定するときは、図10に示す装置を用いて行う。光学系の配置は実施例1とほぼ同様であるが、開口を設置せず、光検出器の代わりに高速度カメラ28を設置して、干渉縞を2次元の画像として取り込む。その際、実施例1及び実施例2の測定結果から、外乱による位相誤差量がどれ程であったかを確実に推定し、外乱による位相誤差量が、外乱がない時の装置全体の計測精度と同じ程度になるよう、鋸波状の位相変調周波数を適当な値に設定する。
画像の取り込みは、鋸波状の位相変調と同期して行われ、例えば位相変調周波数の4倍の周波数で画像を取り込めば、位相シフト量π/2毎の干渉縞画像を連続的に得ることができる。干渉縞のコントラスト(ビジビリテイ)の低下をおこさせないよう、各画像の露光時間は、画像取り込み間隔よりも十分に短い時間で行う必要があるが、ゲート式イメージインテンシフアイア、マイクロチャンネルプレート等を用いれば、相当に高い周波数においてもそのような画像の取り込みは可能である。取り込まれた画像はパソコン25に送信され、位相シフト法など通常の干渉縞の解析を行って形状を測定する。高速度カメラの画像取り込みスピードが速く、送信が間に合わないときは、一旦メモリなどで画像の蓄積を行ってからパソコン25に転送する。表面が鏡面となっている反射物体であれば、球面等の形状も同様の装置で測定可能である。29はカメラコントローラである。
【0022】
〔実施例4〕透過物体の測定
本発明は、マイケルソン干渉計だけではなく、マッハツェンダー干渉計を用いた透過物体の波面測定にも用いることが可能である。図11に、レンズの集光性能を検査する例を示す。He−Neレーザーから出射した光線は、実施例1と同様に物体光と参照光の光量を調節用の2分の1波長板17を透過後、高速位相変調素子2により鋸波状の位相変調を受け、偏光ビームスプリッタ3により物体光と参照光に分けられる。物体光は集光レンズ18、被検レンズ30を透過後、ビームを拡大して平行光となった参照光と干渉する。ここで生じる干渉縞は、被検レンズ30によって生じる波面収差を表しており、干渉縮を解析して位相分布を求めることにより波面収差量が測定できる。
本実施例においても、実施例3と同様、実施例1及び実施例2の測定結果から、外乱による位相誤差量がどれ程であったかを確実に推定し、外乱による位相誤差量が、外乱がない時の装置全体の計測精度と同じ程度になるよう、鋸波状の位相変調周波数を適当な値に設定する。
なお、実施例1および実施例2の測定は、実施例3および実施例4の測定の前後、あるいは同時に行うことが可能である。
【0023】
【発明の効果】
本発明は以下の効果を奏する。
(1)請求項1記載の発明によれば、外乱が測定値に与える誤差量の周波数特性を評価することが可能となる。
(2)請求項2記載の発明によれば、外乱が測定値に与える誤差量の空間的分布を評価することが可能となる。
(3)請求項1および請求項2記載の発明によれば、測定物体の大きさ及び測定誤差の許容値を設定すれば、位相シフト法により形状測定を行うとき、許容値以下の測定精度を達成するために必要な、鋸波状位相差の周波数を決定することが可能となる。
(4)請求項3記載の発明によれば、外乱による位相誤差量が、外乱がない時の装置全体の計測精度と同じ程度になるよう、鋸波状の位相変調周波数を適当な値に設定して測定を行うものであるから、測定誤差のない信頼性のある測定値を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係る高速位相変調法の原理を示す概略図である。
【図2】本発明の実施の形態2に係る光学系を示す概略図である。
【図3】本発明の実施例1に係る外乱の周波数特性の測定のための光干渉測定装置の全体構成を示す図である。
【図4】実施例1および実施例2において、ファンクションジェネレータで発生した信号と、光検出器で検出された信号を、オシロスコープに映した例を示す図である。
【図5】鋸波状の位相変調の周波数fを1kHzとし、パソコンに取り込む位相値のサンプリング周波数を1Hz〜1kHzに変化させて、それぞれ10回ずつ測定を行った結果の例を示す図である。
【図6】強制的外乱のある場合とない場合において、外乱による位相誤差量をサンプリング周波数の関数として測定した結果を示す図である。
【図7】本発明の実施例2に係る外乱による位相誤差量の空間分布特性を測定するための装置を示す図である。
【図8】実施例2において、得られる信号をオシロスコープ上に映し出した例を示す図である。
【図9】実施例2において、使い捨てカイロを放置して強制的な空気揺らぎを発生させ、2つの開口を、対応する測定平面の同位置及び4mm離れた位置に置いたとき、測定の標準偏差(外乱による位相誤差量)がサンプリング周波数に対してどのように変化するかを示す図である。
【図10】本発明の実施例3に係る平面形状を測定するための装置を示す図である。
【図11】本発明の実施例4に係る透過物体を測定するための装置を示す図である。
【符号の説明】
1 レーザー光源
2 高速位相変調素子
3 偏光ビームスプリッタ
4 4分の1波長板
5 参照面
6 4分の1波長板
7 測定面(測定平面)
8 検光子
9 開口
10 光検出器
11 外乱
12 ビームスプリッタ
13 開口
14 開口
15 光検出器1
16 光検出器2
17 2分の1波長板
18 集光レンズ
19 ピンホール
20 コリメーターレンズ
21 ファンクションジェネレータ
22 アンプ
23 オシロスコープ
24 ロックインアンプ
25 パソコン
26 移動ステージ
27 プログラマブルフィルタ
28 高速度カメラ
29 カメラコントローラ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus for quantitatively evaluating an error given to a measured value by disturbance such as external vibration and air fluctuation in an optical interference measuring apparatus, and relates to an object having a mirror surface such as a lens, a mirror, and a lens mold. The present invention can be used for an optical interferometer for measuring a surface shape with high accuracy and an optical interferometer for measuring a wavefront of light transmitted through a glass substrate, a film, an optical element, a liquid crystal layer, or the like with high accuracy.
[0002]
[Prior art]
If a disturbance occurs during the measurement in the optical interferometer, the interference fringes are disturbed and the contrast (visibility) of the fringes is reduced, so that the measurement accuracy is reduced. In particular, when disturbance is large and one or more interference fringes fluctuate, measurement becomes impossible. As shown in Non-Patent Document 1, optical interferometers capable of measurement even in a measurement environment with disturbance include those that measure the shape and the like from only one interference fringe image, and those of Non-Patent Documents 2 and 3. As shown in the example, some have a system that separately measures disturbance and compensates for it. Further, as disclosed in Patent Document 1, there is a method using a two-color method using lights having different frequencies.
The optical interferometer system disclosed in Non-Patent Document 1 captures an interference fringe image with an exposure time sufficiently shorter than disturbance fringes caused by disturbance, thereby suppressing a decrease in contrast of the interference fringes due to disturbance. Normally, the phase measurement accuracy of the wavefront of light obtained from one interference fringe image is about π, but the accuracy is improved by devising an interference fringe analysis algorithm. In the systems of Non-Patent Documents 2 and 3, disturbance is measured by a wavefront detector, and feedback is applied to the wavelength of the laser as the light source (Non-Patent Document 2) or the optical path length of the reference light (Non-Patent Document 3). In addition, interference fringes are not disturbed by disturbance.
Further, in the two-color method of Patent Document 1, since the optical path length is converted into a geometrical length, the refractive indexes of all air in the optical path between two points are corrected.
[0003]
[Non-patent document 1]
M. Melozzi, L .; Pezzati, and A.M. Mazzoni, "Vibration-insensitive interferometer for on-line measurements," Applied Optics 34, 5595-5601 (1995).
[Non-patent document 2]
0. Sasaki, K .; Takahashi, and T.W. Suzuki, "Sinusoidal phase modulating laser diode interferometer with a fedback control system to eliminate external disternance," 29-Eleven-Eleven-Eleven-Eleven-Eleven-Eleven-Eleven.
[Non-Patent Document 3]
I. Yamaguchi, J .; Liu, and J .; Kato, "Active phase-Shifting interferometers for Shape and deformation measurements," Optical Engineering 35, 2930-2937 (1996).
[Patent Document 1]
Japanese Patent Application Laid-Open No. H10-19508
[Problems to be solved by the invention]
However, in the method of measuring the phase of the wavefront of light from only one interference fringe image, although the measurement accuracy can be improved to some extent as described above, the phase shift method usually performed for improving the measurement accuracy in an optical interferometer is used. (Or phase modulation interference method, fringe scanning method, heterodyne method), the degree of improvement in measurement accuracy is small. Also, in the interference measurement method with the feedback system, the measurement accuracy in the presence of a disturbance is somewhat lower than that in the absence of the disturbance, and the degree of the reduction is quantitatively estimated. I can't. In the two-color method, there is a problem that the refractive index can be corrected over the entire optical path, but the accuracy is reduced.
Furthermore, there is a problem that it is not possible to grasp the spatial distribution of the measurement error due to the disturbance by any of the methods.
[0005]
The present invention provides a method for measuring the magnitude of a disturbance as a function of time and space using an optical system equivalent to the measurement by an optical interferometer in order to solve the problems of the related art. Accordingly, it is an object to provide a high-precision optical interference measurement device capable of estimating a measurement error due to disturbance.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the disturbance measuring apparatus in the optical interferometer of the present invention provides a phase difference that changes in a sawtooth shape between the object light and the reference light, so that the interference light intensity changes sinusoidally. By using this, in an optical interferometer that measures the phase difference between the object light and the reference light from the phase difference between the obtained sine wave phase and the initially given sawtooth signal, the phase difference between the object light and the reference light Are sampled a plurality of times at different sampling frequencies, and means are provided for evaluating the frequency characteristics of an error amount that a disturbance gives to a measured value from the obtained sampled value.
Further, the disturbance measuring device in the optical interferometer of the present invention divides the interference light including the object light and the reference light into a plurality of light fluxes, and a plurality of light fluxes at positions such that each light flux corresponds to a different part of the measurement object. An aperture is provided, a means for measuring a phase difference between the interference lights passing through the aperture, and evaluating a spatial distribution of an error amount given to the measured value is provided.
Further, the high-precision optical interference measurement apparatus of the present invention provides a phase difference that changes in a sawtooth manner between the object light and the reference light, and utilizes that the interference light intensity changes sinusoidally as a result. An optical interferometer that measures the phase difference between the object light and the reference light from the phase difference between the obtained sine wave and the initially applied sawtooth signal. A means for setting the frequency of the sawtooth phase difference given between the object light and the reference light so as to have the same accuracy as the accuracy is provided, and the interference fringes obtained through the high-speed camera are taken in. And
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Embodiment 1]
The principle of the high-speed phase modulation method used in the present invention for detecting the phase of the interference light will be described with reference to FIG. This principle is described, for example, in reference M. Yamauchi, A .; See Marquez, J .; A. Davis, and D.S. J. Franich, "Interferometric phase measurements for polarization eigenvectors in twisted nematic liquid crystal spatials, 1-type, 2000-spatial, and 1-cop. The light beam emitted from the laser light source 1 is transmitted through the high-speed phase modulation element 2 and then expanded, and becomes parallel light and enters the polarization Michelson interferometer. A polarization component (hereinafter, referred to as S-polarized light) in a direction perpendicular to the paper surface is reflected upward by the polarization beam splitter 3 in the interferometer. The reflected S-polarized light is converted into circularly polarized light by the quarter-wave plate 4, reflected by the reference plane 5, transmitted again through the quarter-wave plate 4, and then becomes linearly polarized light (in the direction parallel to the plane of the drawing). The light passes through the polarization beam splitter 3 and is emitted downward. This light beam becomes reference light for the interferometer. On the other hand, the P-polarized light that has entered the interferometer first passes through the polarization beam splitter 3 and proceeds to the left to become object light. Like the reference light, the object light also passes through the quarter-wave plate 6 to become circularly polarized light, is reflected by the measurement surface 7, passes through the quarter-wave plate 6 again, and returns to linearly polarized light. However, since the linearly polarized light at this time is S-polarized light, it is reflected by the polarization beam splitter 3 and proceeds downward. Both the object light and the reference light pass through the analyzer 8 to form interference fringes. After passing through the opening 9, they reach the photodetector 10.
[0008]
In the high-speed phase modulation element 2, a sawtooth-shaped phase difference is provided between the S-polarized component and the P-polarized component of the incident laser beam. In this case, the intensity I of the interference light reaching the photodetector 10 is
(Equation 1)
Figure 2004150965
It changes sinusoidally like Here, A is the DC component of the interference light intensity, B is the amplitude of the AC component, f is the modulation frequency of the given sawtooth phase difference, and φ is the phase difference between the object light and the reference light. This phase difference, for example, in the shape measurement represents the height of the measurement surface 7, and the height of the reference point with the upper measuring plane and h 0, the height h of the measurement points,
(Equation 2)
Figure 2004150965
You can ask. Here, λ is the wavelength of the laser light to be used, and φ 0 is the phase difference between the object light and the reference light at the reference point. In Expression 2, the second term on the right side is twice the one-way optical path length difference between the reference point and the measurement point because of the reciprocating optical path. In the shape measurement, usually, the position of the opening 9 is scanned in FIG. 1 or the height distribution of the measurement surface 7 is obtained by using a device such as a CCD camera which does not have the opening 9 and which can detect the amount of light. I have.
[0009]
In the present invention, the shape is measured using the interferometer in a situation where there is a randomly varying disturbance 11, for example, there is air fluctuation between the quarter-wave plate 6 and the measurement surface 7 in the object light. think of. In this case, assuming that the phase difference between the object light generated by the disturbance 11 and the reference light is ε, the interference light intensity I measured by the photodetector 10 is as follows:
Figure 2004150965
It becomes. From the intensity of the interference light, the phase difference between the object light and the reference light is measured n times at a constant cycle. If the measured value is i i (i = 1, 2, 3,..., N),
Figure 2004150965
It becomes. The average of the measured values is
Figure 2004150965
It becomes. Here, the average value was represented by <>.
[0010]
When it is considered that the occurrence of disturbance is random and becomes zero in a large number of times, <ξ> = φ, and the standard deviation σ 測定 of the measured value is
Figure 2004150965
It becomes. Equation 6 indicates that the standard deviation of the measured value is equal to the standard deviation of the disturbance. Therefore, the standard deviation σ of the measurement values in the n-times measurement can be considered as the magnitude of the disturbance 11. As described above, by using the above-described optical system, a large number of measurements (sampling) are performed at a fixed period, and the standard deviation is obtained, it is possible to evaluate the magnitude of the disturbance 11 generated during the measurement time. It becomes. Further, by performing such a measurement while changing the sampling period, it becomes possible to measure the frequency characteristic of the magnitude of the disturbance 11.
[0011]
[Embodiment 2]
Next, consider the optical system shown in FIG. This optical system is almost the same as that of FIG. 1, except that the interference light is divided into two light beams by a beam splitter 12 and apertures 13 and 14 are provided in each light beam, so that the measurement surface 7, it is possible to measure the phase difference of the light rays reflected from different parts. If one of the openings is placed on the moving stage and the position of the opening is scanned, it is possible to measure how the magnitude of the disturbance 11 changes depending on the position on the measurement surface 7. That is, it is possible to measure the spatial characteristics of the magnitude of the disturbance 11.
[0012]
In an interferometer that captures an interference fringe image and performs shape measurement or the like by a phase shift method, consider how the magnitude of the disturbance 11 measured in this way affects the phase measurement of the interference light. Capturing a large number of interference fringe images by performing a fixed amount of phase shift in the phase shift method corresponds to capturing interference fringe images at fixed time intervals in a system that performs sawtooth phase modulation. . At that time, the magnitude of the disturbance 11 measured by the optical system in FIG. 1 can be considered as a random error of the phase shift amount in each image. Many algorithms can be considered for the phase shift method. Hibino, "Susceptibilities of systematic error-compensating algorithmicities to random noise in phase-Shifting interferometry." When there is ε , the phase error δφ calculated by the phase shift method is
(Equation 7)
Figure 2004150965
It is possible to suppress to the extent. Here, m is the number of images to be taken, and is usually an integer of about 3 to 9. Therefore, it can be evaluated that the finally determined phase error is equal to or less than the magnitude of the disturbance measured by the apparatus according to the present proposal.
On the other hand, the spatial distribution of the disturbance measured by the optical system of FIG. 2 is directly added as an error to the phase obtained by the phase shift method or the like. Therefore, it can be evaluated that the measurement error caused by the spatial distribution of the disturbance is equal to or smaller than the magnitude of the disturbance measured by the optical system in FIG.
[0013]
【Example】
Embodiment 1 FIG. 3 shows an overall configuration of an optical interference measuring apparatus according to the present invention, taking shape measurement of a measured flatness of a frequency characteristic of a disturbance as an example. The optical system includes a He-Ne laser light source 1 that emits linearly polarized laser light having a wavelength of 633 nm, a half-wave plate 17 for adjusting the amounts of object light and reference light, and a saw only for the S-polarized component of the laser light. A high-speed phase modulation element 2 for giving a wave-like phase modulation, a condenser lens 18, a pinhole 19, a collimator lens 20 for converting light emitted from the pinhole into parallel light, and polarization beam splitters 3, 2 for splitting object light and reference light It comprises a quarter-wave plate 4, 6, a reference plane 5, a measurement plane 7, an analyzer 8, an aperture 9, and a photodetector 10. The parts other than the optical system are used to check the function generator 21 for generating a sawtooth wave, the amplifier 22 for amplifying the signal from the function generator 21 so that the high-speed phase modulation element 2 can perform 2π phase modulation, and the signal waveform. , An oscilloscope 23, a lock-in amplifier 24 for detecting the phase of the interference light, and a personal computer 25 for sampling the phase difference measured by the lock-in amplifier 24 at a fixed period and storing the data.
[0014]
As the high-speed phase modulation element 2, an electro-optical element can be used. The electro-optical element has a built-in optical crystal such as ADP (NH 4 H 2 PO 4 ). When a voltage is applied to the built-in optical crystal, a Pockels effect or the like occurs, and the refractive index varies depending on the crystal axis direction. Due to the change, it is possible to apply phase modulation only to certain polarization components of the light beam passing through the crystal. Saw-wave phase modulation is performed on the S-polarized component to interfere with the unmodulated P-polarized component. In order to cause the orthogonal polarization to interfere, an analyzer 8 is required. When the interference light is made incident on the photodetector 10, a signal that changes sinusoidally as represented by Expression 1 is detected.
[0015]
FIG. 4 shows an example in which a signal generated by the function generator 21 and a signal detected by the photodetector 10 are displayed on an oscilloscope 23. 4A shows a sawtooth signal from the function generator 21, and FIG. 4C shows a signal from the photodetector 10. If these signals are used as the reference signal and the input signal of the lock-in amplifier 24, respectively, the phase of the waveform of the input signal shown in FIG. 4C can be detected.
The detected phase value is taken into the personal computer 25 at a constant cycle through a GP-IB (General Purpose Interface Bus).
[0016]
FIG. 5A shows an example of the result of measuring ten times each with the sampling frequency of the phase value taken into the personal computer 25 being changed from 1 Hz to 1 kHz while the frequency f of the sawtooth phase modulation is 1 kHz. In this experiment, the optical system shown in FIG. 3 was placed on an optical base equipped with an air isolator. When the sampling frequency is 10 Hz or more, almost stable measurement is performed. However, when the sampling frequency is 1 Hz, the value obtained at each measurement changes, and thus in a laboratory environment that is hardly affected by vibration. It can also be seen that the measured values are affected by disturbance.
FIG. 5B shows the result of a similar experiment performed in a measurement environment in which disturbance of forced air fluctuation was caused. Specifically, in the optical system of FIG. 3, a disposable body warmer is placed under the optical path between the quarter-wave plate 6 and the measurement plane 7, and a temperature difference of about 20 ° C. between room temperature and the surface of the body warmer. To generate air convection. As can be seen from FIG. 5B, when there is such a large air fluctuation, the measured value changes even if sampling is performed at a frequency of 100 Hz. The standard deviation of ten measurements in each graph of FIG. 5 can be used as an index of the magnitude of the disturbance, and is hereinafter referred to as a phase error amount due to the disturbance. FIG. 6 shows the results of measuring the amount of phase error due to the disturbance as a function of the sampling frequency with and without the forced disturbance. As described above, the frequency characteristic of the phase error amount due to the disturbance can be measured by the method and the apparatus according to the present invention.
[0017]
Embodiment 2 Measurement of Spatial Distribution Characteristics of Disturbance The spatial distribution characteristics of the phase error amount due to the disturbance 11 are measured using the apparatus shown in FIG. Compared with the first embodiment, the interference light is divided into two light beams by the beam splitter 12 and the light intensity of each light beam is detected by the two photodetectors 15 and 16. The point that the input signal of the signal is not the signal from the function generator 21 but the signal from the one photodetector 15 and the opening 14 arranged in front of the other photodetector 16 are located on the moving stage 26. In that the position of the opening 14 can be moved. Here, the size of the light receiving surface of the photodetector 16 covers the moving range of the opening 14, but the opening 14 and the photodetector 16 can be moved by the moving stage 26 at the same time.
[0018]
The analyzer 8 can be placed between the beam splitter 12 and the aperture 14 as shown in FIG. 7, but may be placed between the polarization beam splitter 3 and the beam splitter 12 as shown in FIG. As the reference signal to the lock-in amplifier 24, a signal from one of the photodetectors 15 can be directly input. However, the lock of the lock-in amplifier 24 is stable because the signal waveform is disturbed or the signal is weak. If not, as shown in FIG. 7, before input to the reference signal, the waveform may be adjusted by performing appropriate filtering by the programmable filter 27, or may be amplified to an appropriate signal strength.
[0019]
FIG. 8 shows an example in which the signal obtained at this time is displayed on an oscilloscope. 8A shows a signal from the function generator 21, FIG. 8B shows a signal from one of the photodetectors 15 after passing through the programmable filter 27, and FIG. 8C shows a signal from the other photodetector 16. Of the signal. The lock-in amplifier 24 detects the phase difference between the signals (b) and (c). When the positions of the openings 13 and 14 placed in front of the photodetectors 15 and 16 correspond to the same position on the measurement plane 7, these signals are obtained as shown in FIG. It has the same phase. When the positions of the openings 13 and 14 correspond to different positions on the measurement plane 7, if there is a shape difference between the measurement plane 7 and the reference plane 5, the light wavefront from the measurement plane 7 and the reference plane 5 When the signals are not perfectly parallel or when there is a disturbance, a phase difference occurs between these signals as shown in FIG.
[0020]
As in the case of the first embodiment, the sawtooth modulation frequency was set to 1 kHz, and the sampling frequency was changed, and the phase difference was measured ten times each. When the disposable body warmer is left to generate forced air fluctuations and the two openings 13 and 14 are placed at the same position and 4 mm apart on the corresponding measurement plane 7, the standard deviation of the measured values (phase due to disturbance) FIG. 9 shows how the error amount changes with respect to the sampling frequency. Through such measurement, the spatial distribution of the phase error amount due to the disturbance can be known.
[0021]
Embodiment 3 Measurement of Planar Shape When actually measuring the shape of a plane or the like, it is performed using the apparatus shown in FIG. The arrangement of the optical system is almost the same as that of the first embodiment, except that no aperture is provided and a high-speed camera 28 is provided in place of the photodetector to capture interference fringes as a two-dimensional image. At that time, from the measurement results of Example 1 and Example 2, it is reliably estimated how much the phase error amount due to the disturbance was, and the phase error amount due to the disturbance is the same as the measurement accuracy of the entire apparatus when there is no disturbance. The sawtooth-shaped phase modulation frequency is set to an appropriate value so as to be about the same.
The image is captured in synchronization with the sawtooth phase modulation. For example, if the image is captured at a frequency four times the phase modulation frequency, an interference fringe image for each phase shift amount π / 2 can be continuously obtained. it can. The exposure time of each image must be sufficiently shorter than the image capture interval so as not to lower the contrast (visibility) of the interference fringes. However, a gate-type image intensifier, a microchannel plate, or the like is used. Such image capture is possible, even at considerably higher frequencies. The captured image is transmitted to the personal computer 25, and the shape is measured by analyzing a normal interference fringe such as a phase shift method. If the high-speed camera captures an image at a high speed and cannot send the image in time, the image is temporarily stored in a memory or the like and then transferred to the personal computer 25. If it is a reflective object whose surface is a mirror surface, the shape of a spherical surface or the like can be measured by a similar device. 29 is a camera controller.
[0022]
[Embodiment 4] Measurement of a transmitted object The present invention can be used not only for a Michelson interferometer but also for a wavefront measurement of a transmitted object using a Mach-Zehnder interferometer. FIG. 11 shows an example of inspecting the light collecting performance of a lens. The light beam emitted from the He-Ne laser passes through the half-wave plate 17 for adjusting the light amounts of the object light and the reference light in the same manner as in the first embodiment, and then is subjected to sawtooth phase modulation by the high-speed phase modulation element 2. The polarization beam splitter 3 splits the received light into object light and reference light. After passing through the condenser lens 18 and the test lens 30, the object light expands the beam and interferes with the reference light that has become parallel light. The interference fringes generated here represent the wavefront aberration generated by the test lens 30, and the amount of the wavefront aberration can be measured by analyzing the interference reduction and obtaining the phase distribution.
In the present embodiment, as in the third embodiment, it is reliably estimated from the measurement results of the first and second embodiments how much the phase error amount due to the disturbance is. The sawtooth phase modulation frequency is set to an appropriate value so that the measurement accuracy of the entire apparatus at the time is about the same.
The measurements in Examples 1 and 2 can be performed before, after, or simultaneously with the measurements in Examples 3 and 4.
[0023]
【The invention's effect】
The present invention has the following effects.
(1) According to the first aspect of the present invention, it is possible to evaluate the frequency characteristic of an error amount that a disturbance gives to a measured value.
(2) According to the second aspect of the present invention, it is possible to evaluate a spatial distribution of an error amount that a disturbance gives to a measured value.
(3) According to the first and second aspects of the present invention, when the size of the measurement object and the allowable value of the measurement error are set, when the shape measurement is performed by the phase shift method, the measurement accuracy less than the allowable value is obtained. It is possible to determine the frequency of the sawtooth phase difference required to achieve.
(4) According to the third aspect of the present invention, the sawtooth-shaped phase modulation frequency is set to an appropriate value so that the phase error amount due to the disturbance becomes approximately the same as the measurement accuracy of the entire apparatus when there is no disturbance. Therefore, a reliable measurement value without a measurement error can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing the principle of a fast phase modulation method according to Embodiment 1 of the present invention.
FIG. 2 is a schematic diagram showing an optical system according to Embodiment 2 of the present invention.
FIG. 3 is a diagram illustrating an overall configuration of an optical interference measurement apparatus for measuring a frequency characteristic of a disturbance according to the first embodiment of the present invention.
FIG. 4 is a diagram illustrating an example in which a signal generated by a function generator and a signal detected by a photodetector are displayed on an oscilloscope in the first and second embodiments.
FIG. 5 is a diagram showing an example of a result of performing measurement ten times each with a frequency f of sawtooth phase modulation being 1 kHz and a sampling frequency of a phase value to be taken into a personal computer being changed from 1 Hz to 1 kHz.
FIG. 6 is a diagram showing a result of measuring a phase error amount due to a disturbance as a function of a sampling frequency in a case where there is a forced disturbance and in a case where there is no forced disturbance.
FIG. 7 is a diagram illustrating an apparatus for measuring a spatial distribution characteristic of a phase error amount due to a disturbance according to the second embodiment of the present invention.
FIG. 8 is a diagram illustrating an example in which an obtained signal is displayed on an oscilloscope in the second embodiment.
FIG. 9 shows a standard deviation of measurement when a disposable body warmer is left in Example 2 to generate forced air fluctuation and two openings are placed at the same position and 4 mm apart on the corresponding measurement plane. FIG. 9 is a diagram illustrating how (a phase error amount due to disturbance) changes with respect to a sampling frequency.
FIG. 10 is a diagram illustrating an apparatus for measuring a planar shape according to a third embodiment of the present invention.
FIG. 11 is a diagram illustrating an apparatus for measuring a transmission object according to a fourth embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Laser light source 2 High-speed phase modulation element 3 Polarization beam splitter 4 Quarter-wave plate 5 Reference surface 6 Quarter-wave plate 7 Measurement surface (measurement plane)
Reference Signs List 8 analyzer 9 aperture 10 photodetector 11 disturbance 12 beam splitter 13 aperture 14 aperture 15 photodetector 1
16 Photodetector 2
17 Half-wave plate 18 Condenser lens 19 Pinhole 20 Collimator lens 21 Function generator 22 Amplifier 23 Oscilloscope 24 Lock-in amplifier 25 Personal computer 26 Moving stage 27 Programmable filter 28 High-speed camera 29 Camera controller

Claims (3)

物体光と参照光との間に鋸波状に変化する位相差を与え、その結果干渉光強度が正弦波的に変化することを利用して、得られた正弦波の位相と最初に与えた鋸波状信号との位相差から物体光と参照光の位相差を測定する光干渉計において、物体光と参照光の位相差を異なるサンプリング周波数においてそれぞれ複数回サンプリングするとともに、得られたサンプリング値から外乱が測定値に与える誤差量の周波数特性を評価する手段を設けることを特徴とする光干渉計における外乱の測定装置。By giving a phase difference that changes in a sawtooth shape between the object light and the reference light, and using the fact that the interference light intensity changes sinusoidally, the obtained sine wave phase and the first given sawtooth In an optical interferometer that measures the phase difference between the object light and the reference light from the phase difference with the wavy signal, the phase difference between the object light and the reference light is sampled a plurality of times at different sampling frequencies, and disturbance is calculated from the obtained sampling value. A means for evaluating a frequency characteristic of an error amount given to a measured value by the optical interferometer. 物体光と参照光とからなる干渉光を複数の光束に分け、それぞれの光束が測定物の異なる部分に対応するような位置に複数の開口を設け、該開口を通過した干渉光同士の位相差を測定し、測定値に与える誤差量の空間的分布を評価する手段を設けることを特徴とする請求項1記載の光干渉計における外乱の測定装置。The interference light composed of the object light and the reference light is divided into a plurality of light beams, and a plurality of openings are provided at positions where each light beam corresponds to a different part of the object to be measured, and a phase difference between the interference lights passing through the openings is provided. 2. A device for measuring disturbance in an optical interferometer according to claim 1, further comprising means for measuring a spatial distribution of an error amount given to the measured value. 物体光と参照光との間に鋸波状に変化する位相差を与え、その結果干渉光強度が正弦波的に変化することを利用して、得られた正弦波の位相と最初に与えた鋸波状信号との位相差から物体光と参照光の位相差を測定する光干渉計において、外乱があるときの計測精度が外乱がない時の計測精度と同程度になるように物体光と参照光との間に与える鋸波状位相差の周波数を設定する手段を設け、高速度カメラを介して得られた干渉縞を取り込むようにしたことを特徴とする高精度光干渉計測装置。By giving a phase difference that changes in a sawtooth shape between the object light and the reference light, and using the fact that the interference light intensity changes sinusoidally, the obtained sine wave phase and the first given sawtooth In an optical interferometer that measures the phase difference between the object light and the reference light from the phase difference with the wavy signal, the object light and the reference light are adjusted so that the measurement accuracy when there is disturbance is almost the same as the measurement accuracy when there is no disturbance. And a means for setting a frequency of a sawtooth phase difference given between the first and second optical discs, so as to capture interference fringes obtained through a high-speed camera.
JP2002316985A 2002-10-31 2002-10-31 Disturbance measuring device and high-precision optical interference measuring device in optical interferometer Expired - Lifetime JP3621994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002316985A JP3621994B2 (en) 2002-10-31 2002-10-31 Disturbance measuring device and high-precision optical interference measuring device in optical interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002316985A JP3621994B2 (en) 2002-10-31 2002-10-31 Disturbance measuring device and high-precision optical interference measuring device in optical interferometer

Publications (2)

Publication Number Publication Date
JP2004150965A true JP2004150965A (en) 2004-05-27
JP3621994B2 JP3621994B2 (en) 2005-02-23

Family

ID=32460488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002316985A Expired - Lifetime JP3621994B2 (en) 2002-10-31 2002-10-31 Disturbance measuring device and high-precision optical interference measuring device in optical interferometer

Country Status (1)

Country Link
JP (1) JP3621994B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009002823A (en) * 2007-06-22 2009-01-08 Bridgestone Corp Three-dimensional shape measuring system and three-dimensional shape measuring method
KR100994590B1 (en) 2008-05-27 2010-11-15 한국수력원자력 주식회사 Apparatus and method for measuring microdeformation using interference of light
JP2011242304A (en) * 2010-05-19 2011-12-01 Niigata Univ Surface shape measuring method and measuring device
CN103994784A (en) * 2014-05-26 2014-08-20 天津大学 Distributed optical fiber sensing positioning method based on zero crossing point analysis
WO2020098227A1 (en) * 2018-11-14 2020-05-22 哈尔滨工业大学 Method and device for correcting non-linear errors of single-frequency laser interferometer
CN116379961A (en) * 2023-06-05 2023-07-04 广东普洛宇飞生物科技有限公司 Phase measurement system and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10508898B2 (en) 2017-03-23 2019-12-17 Hitachi, Ltd. Interference measurement device having a variable phase element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009002823A (en) * 2007-06-22 2009-01-08 Bridgestone Corp Three-dimensional shape measuring system and three-dimensional shape measuring method
KR100994590B1 (en) 2008-05-27 2010-11-15 한국수력원자력 주식회사 Apparatus and method for measuring microdeformation using interference of light
JP2011242304A (en) * 2010-05-19 2011-12-01 Niigata Univ Surface shape measuring method and measuring device
CN103994784A (en) * 2014-05-26 2014-08-20 天津大学 Distributed optical fiber sensing positioning method based on zero crossing point analysis
WO2020098227A1 (en) * 2018-11-14 2020-05-22 哈尔滨工业大学 Method and device for correcting non-linear errors of single-frequency laser interferometer
CN116379961A (en) * 2023-06-05 2023-07-04 广东普洛宇飞生物科技有限公司 Phase measurement system and method
CN116379961B (en) * 2023-06-05 2023-08-11 广东普洛宇飞生物科技有限公司 Phase measurement system and method

Also Published As

Publication number Publication date
JP3621994B2 (en) 2005-02-23

Similar Documents

Publication Publication Date Title
US20210364451A1 (en) Optical phase measurement method and system
US7564568B2 (en) Phase shifting interferometry with multiple accumulation
US7933025B2 (en) Sinusoidal phase shifting interferometry
TWI401414B (en) Phase-shifting interferometry method and system
US6717680B1 (en) Apparatus and method for phase-shifting interferometry
US20100238455A1 (en) Error compensation in phase shifting interferometry
JP3569726B2 (en) Apparatus and method for measuring geometric thickness and refractive index of sample
Trivedi et al. Measurement of focal length using phase shifted moiré deflectometry
WO2020128423A1 (en) Full-field heterodyne interferometer for inspecting an optical surface
JP2009506330A (en) Apparatus and method for measuring and correcting atmospheric turbulence effects in wavefront interference
JP5428538B2 (en) Interfering device
JP3621994B2 (en) Disturbance measuring device and high-precision optical interference measuring device in optical interferometer
Broistedt et al. Random-phase-shift Fizeau interferometer
US20230062525A1 (en) Heterodyne light source for use in metrology system
JPH1089912A (en) Interference microscope
Pavel et al. Comparison of digital holographic method for very small amplitudes measurement with single point laser interferometer and laser doppler vibrometer
JPH11194011A (en) Interference apparatus
Trolinger Ultrahigh resolution interferometry
JP5307683B2 (en) Semiconductor inspection equipment
JP3493329B2 (en) Planar shape measuring device, planar shape measuring method, and storage medium storing program for executing the method
Lee et al. Measurements of phase retardation and principal axis angle using an electro-optic modulated Mach–Zehnder interferometer
JP3325078B2 (en) Non-contact three-dimensional shape measuring device
KR20200018250A (en) Inspection apparatus and inspection method
JP2529901B2 (en) Phase shift Fize-interferometer error correction method
US20230069087A1 (en) Digital holography metrology system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041026

R150 Certificate of patent or registration of utility model

Ref document number: 3621994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term