JP2004150753A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2004150753A
JP2004150753A JP2002318174A JP2002318174A JP2004150753A JP 2004150753 A JP2004150753 A JP 2004150753A JP 2002318174 A JP2002318174 A JP 2002318174A JP 2002318174 A JP2002318174 A JP 2002318174A JP 2004150753 A JP2004150753 A JP 2004150753A
Authority
JP
Japan
Prior art keywords
oxygen
carbon dioxide
concentration
air conditioner
room
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002318174A
Other languages
Japanese (ja)
Inventor
Ikuo Akamine
育雄 赤嶺
Tokuya Asada
徳哉 浅田
Satoshi Tokura
聡 十倉
Tsugio Kubo
次雄 久保
Yoshikazu Nishihara
義和 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002318174A priority Critical patent/JP2004150753A/en
Publication of JP2004150753A publication Critical patent/JP2004150753A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To detect carbon dioxide content corresponding to a change in indoor oxygen content; to control an oxygen feeder according to the carbon dioxide content; and to maintain the indoor oxygen content constant with an air conditioner comprising the oxygen feeder. <P>SOLUTION: This air conditioner comprises a CO2 sensor 3 detecting carbon dioxide content in the air, an oxygen enriching membrane unit 11, a vacuum pump 13 and an oxygen feeding control means 2 and controls operation of the vacuum pump 13 according to the carbon dioxide content. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、酸素供給機能を有する空気調和機に関するものである。
【0002】
【従来の技術】
従来、室内の酸素濃度を制御する装置としては、例えば、特許文献1に記載されているようなものがあった。図4は前記特許文献に記載された従来の空気調和機を示している。図4において、121は室内ユニット、119は酸素タンク、118は酸素供給用配管、108は開閉弁、120は酸素吹出口、101は酸素濃度検知器である。この構成において、酸素濃度検出器101により酸素濃度に比例した信号を取り出し、この信号によって開閉弁108を駆動し酸素量を制御し、室内空気中の酸素濃度を一定に保っている。
【0003】
【特許文献1】
特開平7−4703(第2頁、第4図)
【0004】
【発明が解決しようとする課題】
しかしながら、前記従来の構成では、酸素濃度検出器□□で室内の酸素濃度を検出しているが、人が在室しているときに変化する酸素濃度は大きくても3000〜5000ppm程度であり、通常約210000ppmもある酸素濃度の中で、この程度の変化を精度良く検出することはかなりの難しさがあった。
【0005】
本発明は、上記課題を解決するために、二酸化炭素濃度を検出する手段を用いて、人の呼吸によって消費される酸素とは反対に増加する二酸化炭素を精度よく検出し、室内の酸素濃度を推定し、酸素供給を制御する。その結果、人の在室負荷に関わらず酸素濃度を一定にした室内環境を提供することができる。
【0006】
【課題を解決するための手段】
上記の課題を解決するため、本発明の空気調和機の制御装置は、室内空気中に含まれる二酸化炭素の濃度を検出する二酸化炭素濃度検出手段と、室内に酸素を供給する酸素供給手段と、検出された二酸化炭素濃度により酸素供給手段の供給制御を行う酸素供給制御手段を設けたことを特徴としたものである。
【0007】
【発明の実施の形態】
以下に、本発明の実施の形態について、図面を参照しながら説明する。なお、以下の実施の形態では酸素供給を行う装置を居住空間の空気調和に用いる分離型の空気調和機に適用した場合について説明するが、例えば車両用空気調和機、一体形空気調和機、空気清浄機等に用いた場合に適用しても同様の効果を奏するものである。
【0008】
(実施の形態1)
まず図1、図2を用いて本発明の実施の形態1について説明する。最初に図1を用いて本実施の形態に係る装置の構成について説明する。
【0009】
図1は、本発明にかかる酸素供給装置の図である。同図において、空気調和機は室内機1と室外機10より構成され、冷媒ガスが循環するように接続配管(図示せず)で接続されている。室内機1にはファン5と、室内の二酸化炭素濃度を検出するCO2センサ3と、CO2センサ3の検出信号に基づき酸素供給手段の供給制御を行う酸素供給制御手段2と、室内へ酸素を供給する酸素吹出口4が設けられている。一方室外機10は圧縮機14、熱交換器17、ファン16が具備されていると共に、送風回路の一部を構成する仕切り板15の送風回路側に酸素富化膜ユニット11を設け、真空側酸素接続管12を介して真空ポンプ13の真空側ポートに接続されている。また、真空ポンプ13の大気圧側ポートには、室内へ酸素を供給する酸素供給主管6が接続され、室内機1に設けられている酸素吹出口4と接続されている。さらに、真空ポンプ13には、酸素供給制御手段2から酸素の供給制御ができるように接続線7が電気的に接続されている。
【0010】
ここで、空気調和機の冷凍サイクルの構成及び動作については本発明に関連しないため詳細な説明は省略する。
【0011】
次に上記構成の酸素供給装置を用いて、酸素供給を行う動作と共に、本発明に係る動作について図1、及び2を用いて説明する。
【0012】
上記構成において、真空ポンプ13が運転されると矢印20で示す様に酸素富化膜ユニット11を通過した空気が真空側酸素接続管12を通過して真空ポンプ13に吸い込まれ、酸素富化された空気が酸素供給主管6を介して室内機1に送出され、酸素吹出口4より吹き出され主流の送風と混合して室内へ供給される。
【0013】
ここで、本発明における酸素供給装置は上述のような酸素富化膜ユニットを用いたもの以外に、吸着剤を用いたPSA方式や、中空糸方式や、酸素ボンベ方式など室内に酸素を供給できる方式であれば何でもよい。
【0014】
図2は本発明にかかる実施の形態1を示す制御仕様例を示す図である。図2では、室内にM人在室しているときの二酸化炭素濃度と酸素濃度の変化特性を示している。いま、時間T0でM人が入室したとすると、人間の呼吸により排出される二酸化炭素により二酸化炭素濃度は除々に上昇し、逆に酸素は呼吸によって消費されるために除々に減少していく。このとき、二酸化炭素の増加と酸素の減少度合いとは一定の関係が存在するために、二酸化炭素の濃度を検出することによって、酸素の濃度を推定することが可能である。時間T0においてCO2センサ3によって検出された二酸化炭素濃度がCO2_0であったものが、時間T1でCO2_1まで上昇し、これに対応して、酸素濃度はO2_0がO2_1まで減少していると推定される。そこで、CO2センサ3によって検出された二酸化炭素濃度が所定の濃度、この場合はC02_1まで上昇したときに、酸素供給制御手段2によって真空ポンプ13への運転ON信号が出され真空ポンプ13が起動する。真空ポンプ13が起動すると酸素富化膜ユニット11を通過して酸素富化された空気が酸素供給主管6を通って室内へと送出され室内の酸素濃度が上昇し、初期とほぼ同程度の濃度まで回復する。ここで、破線は酸素供給装置がないときの室内の酸素濃度の減少特性を示している。このように、CO2センサ3で室内の二酸化炭素濃度を検出し、この検出結果に基づき酸素供給制御手段2で酸素濃度を推定し真空ポンプ13の運転をON/OFF制御することによって、室内の酸素濃度を人がいないときと同じ、つまり自然界とほぼ同じ濃度に維持することができる。
【0015】
(実施の形態2)
次に実施の形態2について図3用いて説明する。実施の形態2では、構成は実施の形態1と同じであるが、酸素供給制御手段2による真空ポンプ13の制御方法が異なる。時間T0でN人が入室在室し、これに対応してCO2センサ3で検出される室内の二酸化炭素濃度が初期のCO2_0から除々に上昇していく。このとき、所定の二酸化炭素濃度、つまりCO2_1以下であるため酸素供給制御手段2によって真空ポンプ13の運転がパワーセーブモードで駆動される。ここで、パワーセーブ(PS)は、ポンプモータの回転数を制御したり、あるいは、真空ポンプ13を断続的にON/OFFさせたりして、流量あるいは酸素濃度を制御するもので、この方法以外でも、流量や濃度を制御できるものであれば何でもよい。その後、時間T1において、M人(M>N)が在室すると、CO2センサ3で検出される二酸化炭素濃度は更に上昇していく。そいて、時間T2で、所定の二酸化炭素濃度CO2_1以上になったために、酸素供給制御手段2によって真空ポンプ13の駆動がフルパワー(FP)モードで駆動される。このように、CO2センサ3で検出される室内の二酸化炭素濃度より酸素供給制御手段2で酸素濃度を推定し、真空ポンプ13をパワーセーブモードやフルパワーモードで運転制御することにより、室内の在室人数が変化してもほぼ同じ酸素濃度を維持することができる。
【0016】
【発明の効果】
以上のように、本発明の空気調和機の制御装置によれば、室内の二酸化炭素濃度を高精度に検出し、室内の酸素濃度を精度良く推定して酸素供給手段を制御するために、室内の人数負荷に関わらず酸素濃度を維持し続けることができ、快適な室内環境を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態における酸素供給装置を具備した空気調和機の構成概念図
【図2】本発明の実施の形態1における制御仕様例を示す図
【図3】本発明の実施の形態2における制御仕様例を示す図
【図4】従来の酸素供給装置を具備した空気調和機の構成概念図
【符号の説明】
1 室内機
2 酸素供給制御手段
3 CO2センサ
4 酸素吹出口
6 酸素供給主管
10 室外機
11 酸素富化膜ユニット
12 真空側酸素接続管
13 真空ポンプ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an air conditioner having an oxygen supply function.
[0002]
[Prior art]
Conventionally, as an apparatus for controlling the oxygen concentration in a room, for example, there is an apparatus described in Patent Literature 1. FIG. 4 shows a conventional air conditioner described in the patent document. In FIG. 4, 121 is an indoor unit, 119 is an oxygen tank, 118 is an oxygen supply pipe, 108 is an on-off valve, 120 is an oxygen outlet, and 101 is an oxygen concentration detector. In this configuration, a signal proportional to the oxygen concentration is extracted by the oxygen concentration detector 101, and the on / off valve 108 is driven by the signal to control the amount of oxygen, thereby keeping the oxygen concentration in the room air constant.
[0003]
[Patent Document 1]
JP-A-7-4703 (Page 2, FIG. 4)
[0004]
[Problems to be solved by the invention]
However, in the above conventional configuration, the oxygen concentration in the room is detected by the oxygen concentration detector □□, but the oxygen concentration that changes when a person is present is at most about 3000 to 5000 ppm, It has been quite difficult to accurately detect such a change in an oxygen concentration of usually about 210,000 ppm.
[0005]
The present invention, in order to solve the above-described problems, uses a means for detecting carbon dioxide concentration, accurately detects carbon dioxide increasing opposite to oxygen consumed by human breathing, and measures indoor oxygen concentration. Estimate and control oxygen supply. As a result, it is possible to provide an indoor environment in which the oxygen concentration is constant irrespective of the occupancy load of the person.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the control device of the air conditioner of the present invention is a carbon dioxide concentration detection unit that detects the concentration of carbon dioxide contained in indoor air, an oxygen supply unit that supplies oxygen to the room, An oxygen supply control means for controlling the supply of the oxygen supply means based on the detected carbon dioxide concentration is provided.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, a case will be described in which a device for supplying oxygen is applied to a separation-type air conditioner used for air conditioning of a living space.For example, an air conditioner for a vehicle, an integrated air conditioner, Even when applied to a purifier or the like, the same effect can be obtained.
[0008]
(Embodiment 1)
First, a first embodiment of the present invention will be described with reference to FIGS. First, the configuration of the device according to the present embodiment will be described with reference to FIG.
[0009]
FIG. 1 is a diagram of an oxygen supply device according to the present invention. In FIG. 1, the air conditioner includes an indoor unit 1 and an outdoor unit 10, and is connected by a connection pipe (not shown) so that refrigerant gas circulates. The indoor unit 1 includes a fan 5, a CO2 sensor 3 for detecting the concentration of carbon dioxide in the room, an oxygen supply control unit 2 for controlling the supply of oxygen based on a detection signal from the CO2 sensor 3, and a supply of oxygen to the room. An oxygen outlet 4 is provided. On the other hand, the outdoor unit 10 is provided with a compressor 14, a heat exchanger 17, and a fan 16, and an oxygen-enriched membrane unit 11 is provided on the side of the ventilation circuit of a partition plate 15 constituting a part of the ventilation circuit. It is connected to a vacuum side port of a vacuum pump 13 via an oxygen connection pipe 12. An oxygen supply main pipe 6 for supplying oxygen to a room is connected to an atmospheric pressure side port of the vacuum pump 13, and is connected to an oxygen outlet 4 provided in the indoor unit 1. Further, a connection line 7 is electrically connected to the vacuum pump 13 so that the supply of oxygen from the oxygen supply control means 2 can be controlled.
[0010]
Here, since the configuration and operation of the refrigeration cycle of the air conditioner are not related to the present invention, a detailed description is omitted.
[0011]
Next, the operation according to the present invention will be described with reference to FIGS. 1 and 2 together with the operation of supplying oxygen using the oxygen supply device having the above-described configuration.
[0012]
In the above configuration, when the vacuum pump 13 is operated, the air that has passed through the oxygen-enriched membrane unit 11 passes through the vacuum-side oxygen connection pipe 12 and is sucked into the vacuum pump 13 as indicated by an arrow 20, thereby being enriched in oxygen. The discharged air is sent to the indoor unit 1 through the oxygen supply main pipe 6 and is blown out from the oxygen outlet 4 to be mixed with the mainstream air and supplied to the room.
[0013]
Here, the oxygen supply device in the present invention can supply oxygen to a room such as a PSA system using an adsorbent, a hollow fiber system, or an oxygen cylinder system in addition to the one using the oxygen-enriched membrane unit as described above. Any method can be used.
[0014]
FIG. 2 is a diagram showing an example of control specifications showing the first embodiment according to the present invention. FIG. 2 shows the change characteristics of the carbon dioxide concentration and the oxygen concentration when there are M persons in the room. Now, assuming that M people enter the room at time T0, the carbon dioxide concentration gradually increases due to carbon dioxide discharged by human respiration, and conversely, oxygen gradually decreases because it is consumed by respiration. At this time, since there is a certain relationship between the increase in carbon dioxide and the degree of decrease in oxygen, it is possible to estimate the concentration of oxygen by detecting the concentration of carbon dioxide. Although the carbon dioxide concentration detected by the CO2 sensor 3 at time T0 was CO2_0, it increased to CO2_1 at time T1, and in response to this, the oxygen concentration was estimated to decrease from O2_0 to O2_1. . Therefore, when the carbon dioxide concentration detected by the CO2 sensor 3 rises to a predetermined concentration, in this case, C02_1, an operation ON signal to the vacuum pump 13 is issued by the oxygen supply control means 2 and the vacuum pump 13 is started. . When the vacuum pump 13 is started, the oxygen-enriched air passes through the oxygen-enriched membrane unit 11 and is sent into the room through the oxygen supply main pipe 6, whereby the oxygen concentration in the room increases, and the oxygen concentration in the room is almost the same as the initial concentration. To recover. Here, the broken line indicates the characteristic of decreasing the oxygen concentration in the room when there is no oxygen supply device. As described above, the CO2 sensor 3 detects the concentration of carbon dioxide in the room, the oxygen supply control means 2 estimates the oxygen concentration based on the detection result, and ON / OFF controls the operation of the vacuum pump 13 to thereby control the oxygen concentration in the room. The density can be maintained at the same level as when no one is present, that is, at about the same level as in nature.
[0015]
(Embodiment 2)
Next, a second embodiment will be described with reference to FIG. In the second embodiment, the configuration is the same as that of the first embodiment, but the control method of the vacuum pump 13 by the oxygen supply control means 2 is different. At time T0, N persons enter the room, and in response to this, the concentration of carbon dioxide in the room detected by the CO2 sensor 3 gradually increases from the initial CO2_0. At this time, the operation of the vacuum pump 13 is driven in the power save mode by the oxygen supply control means 2 because the carbon dioxide concentration is equal to or lower than the predetermined carbon dioxide concentration, that is, CO2_1 or less. The power save (PS) controls the flow rate or the oxygen concentration by controlling the number of revolutions of the pump motor or by turning the vacuum pump 13 on and off intermittently. However, anything may be used as long as it can control the flow rate and concentration. Thereafter, at time T1, when M people (M> N) are present in the room, the carbon dioxide concentration detected by the CO2 sensor 3 further increases. Then, at time T2, since the carbon dioxide concentration has become equal to or higher than the predetermined carbon dioxide concentration CO2_1, the oxygen supply control means 2 drives the vacuum pump 13 in the full power (FP) mode. As described above, the oxygen supply control means 2 estimates the oxygen concentration from the carbon dioxide concentration in the room detected by the CO2 sensor 3, and controls the operation of the vacuum pump 13 in the power save mode or the full power mode. Even if the number of rooms changes, almost the same oxygen concentration can be maintained.
[0016]
【The invention's effect】
As described above, according to the control device for an air conditioner of the present invention, the indoor carbon dioxide concentration is detected with high accuracy, and the oxygen concentration in the room is accurately estimated to control the oxygen supply means. Therefore, the oxygen concentration can be maintained irrespective of the number of people, and a comfortable indoor environment can be provided.
[Brief description of the drawings]
FIG. 1 is a configuration conceptual diagram of an air conditioner provided with an oxygen supply device according to an embodiment of the present invention. FIG. 2 is a diagram showing an example of control specifications in Embodiment 1 of the present invention. FIG. FIG. 4 is a diagram showing an example of control specifications according to Embodiment 2. FIG. 4 is a conceptual diagram of a configuration of an air conditioner provided with a conventional oxygen supply device.
DESCRIPTION OF SYMBOLS 1 Indoor unit 2 Oxygen supply control means 3 CO2 sensor 4 Oxygen outlet 6 Oxygen supply main pipe 10 Outdoor unit 11 Oxygen enrichment membrane unit 12 Vacuum side oxygen connection pipe 13 Vacuum pump

Claims (1)

室内空気中に含まれる二酸化炭素の濃度を検出する二酸化炭素濃度検出手段と、室内に酸素を供給する酸素供給手段と、検出された二酸化炭素濃度により酸素供給手段の供給制御を行う酸素供給制御手段を具備した空気調和装置。Carbon dioxide concentration detecting means for detecting the concentration of carbon dioxide contained in the indoor air, oxygen supplying means for supplying oxygen to the room, and oxygen supply controlling means for controlling supply of the oxygen supplying means based on the detected carbon dioxide concentration An air conditioner comprising:
JP2002318174A 2002-10-31 2002-10-31 Air conditioner Pending JP2004150753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002318174A JP2004150753A (en) 2002-10-31 2002-10-31 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002318174A JP2004150753A (en) 2002-10-31 2002-10-31 Air conditioner

Publications (1)

Publication Number Publication Date
JP2004150753A true JP2004150753A (en) 2004-05-27

Family

ID=32461377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002318174A Pending JP2004150753A (en) 2002-10-31 2002-10-31 Air conditioner

Country Status (1)

Country Link
JP (1) JP2004150753A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100674132B1 (en) 2004-02-12 2007-01-26 산요덴키가부시키가이샤 Air conditioner
DE102021119183A1 (en) 2021-07-23 2023-01-26 Matthias Enzenhofer Apparatus and method for cleaning indoor air

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100674132B1 (en) 2004-02-12 2007-01-26 산요덴키가부시키가이샤 Air conditioner
DE102021119183A1 (en) 2021-07-23 2023-01-26 Matthias Enzenhofer Apparatus and method for cleaning indoor air

Similar Documents

Publication Publication Date Title
JP2004150753A (en) Air conditioner
JP2005172295A (en) Air conditioner
JP3897025B2 (en) Air conditioner
JP2004012022A (en) Air conditioner and air-conditioning method
JP2004148249A (en) Oxygen-enriched air supply apparatus and air blowing apparatus using the same
JP2007315724A (en) Air conditioner
JP3573159B2 (en) Gas enrichment equipment and air conditioners
JP2005188804A (en) Air conditioner
JP3534116B1 (en) Air conditioner
KR100707555B1 (en) Gas enrichment apparatus and air conditioner
JP7301011B2 (en) Ventilation device and ventilation control method
JP2004268033A (en) Gas enrichment device and air conditioner
JP2005199218A (en) Gas enriching device
JP3543817B1 (en) Air conditioner
JP2009198122A (en) Ventilation system
JP3512037B1 (en) Gas enrichment device and blower
JP3573157B2 (en) Gas enrichment equipment
JP3543818B1 (en) Gas enrichment equipment
JP4442233B2 (en) Selective gas enrichment device
JP2004358034A (en) Oxygen enrichment machine
JP2004218940A (en) Selective gas enriching device
JP3584936B2 (en) Air conditioner
WO2004039480A1 (en) Gas enriching device and blower with the device
KR20040027070A (en) Oxygen supply structure for vehicle
JP2006112678A (en) Gas enriching device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051031

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080708