JP2004150368A - High pressure fuel piping for internal combustion engine - Google Patents

High pressure fuel piping for internal combustion engine Download PDF

Info

Publication number
JP2004150368A
JP2004150368A JP2002317565A JP2002317565A JP2004150368A JP 2004150368 A JP2004150368 A JP 2004150368A JP 2002317565 A JP2002317565 A JP 2002317565A JP 2002317565 A JP2002317565 A JP 2002317565A JP 2004150368 A JP2004150368 A JP 2004150368A
Authority
JP
Japan
Prior art keywords
fuel
pipe
pressure
portions
communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002317565A
Other languages
Japanese (ja)
Other versions
JP4134681B2 (en
Inventor
Toshiyuki Koide
寿幸 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002317565A priority Critical patent/JP4134681B2/en
Priority to CNB200310104374XA priority patent/CN100472062C/en
Priority to CNU2003201038639U priority patent/CN2718242Y/en
Priority to DE60318799T priority patent/DE60318799T2/en
Priority to KR1020030076292A priority patent/KR100585361B1/en
Priority to EP03025053A priority patent/EP1416151B1/en
Publication of JP2004150368A publication Critical patent/JP2004150368A/en
Application granted granted Critical
Publication of JP4134681B2 publication Critical patent/JP4134681B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/02Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/02Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
    • F02M55/025Common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/04Means for damping vibrations or pressure fluctuations in injection pump inlets or outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/31Fuel-injection apparatus having hydraulic pressure fluctuations damping elements
    • F02M2200/315Fuel-injection apparatus having hydraulic pressure fluctuations damping elements for damping fuel pressure fluctuations

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Branch Pipes, Bends, And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the fluctuation of fuel injection amount in high pressure fuel piping for an internal combustion engine. <P>SOLUTION: The high pressure fuel piping for distributing fuel supplied from a fuel tank to a plurality of fuel injection devices, comprises a piping main body 100, first and second fuel flow passages 101, 102 divided with a partitioning wall 111 formed integrally with an outer peripheral wall of the piping main body 100 and are formed in approximately parallel to each other in the piping main body 100, a fuel introduction portion 103 which is formed to communicate with the first fuel flow passage 101 and introduces the fuel supplied from the fuel tank, a plurality of inserting portions 104a-104d formed to communicate with the first or second fuel flow passage 101, 102 and into which the fuel injection devices can be inserted, and a plurality of communication portions 105a-105d through which the first and second fuel flow passages 101, 102 communicate with each other. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の高圧燃料配管、特に、燃料タンクから供給される燃料を複数の燃料噴射装置に分配するための高圧燃料配管に関する。
【0002】
【従来の技術】
特許文献1に記載の燃料配管は、配管本体内部を仕切板にて上下の燃料流路に分割し、両端部において上下の燃料流路を連通させておき、上部から下部の燃料流路に両端から燃料を供給することにより、燃料噴射直後の各燃料噴射装置間での燃圧回復の遅れを均一化し、燃料噴射量のばらつきを低減している。
【0003】
特許文献2に記載の燃料配管は、配管本体内部を上下の燃料流路に分割し、下部の燃料通路に燃料の導入部を設け、上部の燃料流路に燃料の排出部を設け、排出部にプレッシャーレギュレータを配置し、下部の燃料流路から導入した燃料を上部の燃料流路の排出部及びプレッシャーレギュレータを介して燃料タンクに戻すことにより、燃料噴射直後の各燃料噴射装置間での燃圧回復の遅れを均一化し、燃料噴射量のばらつきを低減している。
【0004】
【特許文献1】
特開平9−296768号公報(第3−4頁、第1図)
【0005】
【特許文献2】
特開平7−208298号公報(第2−3頁、第1図)
【0006】
【発明が解決しようとする課題】
内燃機関の高圧燃料配管では、燃圧により内壁が受けるフープ応力は、下式(1)により表される。
σmax=p(r +r )/(r ―r )・・・(1)
σmax:最大フープ応力(燃圧により配管が受ける応力)、p:配管燃圧、r:配管内径、r:配管外径
配管燃圧pが高い場合、噴射量のばらつきや脈動異音を低減するために配管容積を大きくする必要があるが、内径r及び外径rを大きくすると式(1)よりフープ応力が2乗で大きくなる。このため、配管の強度を確保するために配管肉厚を厚くする必要がある。しかし、配管肉厚を厚くすると、高圧燃料配管の重量化、大型化及びコストアップを招く恐れがある。また、高圧燃料配管の大型化により、エンジンレイアウトを満たさない恐れがある。
【0007】
上記特許文献1に記載の高圧燃料配管では、配管内を単に仕切板で分けているだけで配管内の燃圧は配管壁のみで受ける構造となっているため、配管が受けるフープ応力は配管本体の内径と外径とから決まり、前述のごとく配管肉厚を厚くする必要がある。
【0008】
一方、上記特許文献2に記載の高圧燃料配管では、配管本体を分割している壁は配管壁と一体で形成されて燃圧を受ける構造となっている。このためフープ応力は各々分割された配管内の内径と外径との関係で作用する。前述のごとく、フープ応力は径の2乗で作用するため、1つの配管の径が小さくなることによって配管全体に作用するフープ応力が小さくなる。しかしながら、両端部付近と中央付近の燃料噴射装置間では、燃料が導入される部分からの距離が異なり、燃料供給の速度が異なるため、配管本体内部の燃圧が高圧になる程、燃料噴射直後の各燃料噴射装置間での燃圧回復の遅れの均一化が困難になり、燃料噴射量の均一化が困難になる。
【0009】
本発明の目的は、内燃機関の高圧燃料配管において、高燃圧下においても燃料噴射量のばらつきを低減することにある。
【0010】
また本発明の目的は、高燃圧下において燃料噴射量のばらつきを低減できる内燃機関の高圧燃料配管を簡易に製造し、コストダウンを図ることにある。
【0011】
【課題を解決するための手段】
本発明に係る高圧燃料配管は、燃料タンクから供給される燃料を複数の燃料噴射装置に分配するための高圧燃料配管であって、配管本体と、第1及び第2燃料流路と、燃料導入部と、複数の挿入部と、複数の連通部とを備えている。配管本体は、外周壁と、外周壁と一体に形成された仕切壁とを有する。第1及び第2燃料流路は、配管本体の仕切壁により区分けされ、配管本体内部に互いに略平行に形成されている。燃料導入部は、第1燃料流路に連通して形成され、燃料タンクから供給される燃料を導入する。複数の挿入部は、第1又は第2燃料流路の燃料流路に連通して形成され、燃料噴射装置を挿入可能である。複数の連通部は、第1及び第2燃料流路を互いに連通する。
【0012】
この高圧燃料配管では、燃料タンクからの高圧燃料が燃料導入部から導入され、複数の連通部を介して第1及び第2燃料流路内に燃料が供給される。これにより、配管本体内に燃料が満たされ、燃圧が調節されて燃料が燃料噴射装置から噴射される。また、高燃圧下において燃料噴射直後にも、複数の連通部を介して挿入部に速やかに燃料が供給され、各燃料噴射装置間の燃圧を速やかに回復する。
【0013】
【発明の効果】
本発明によれば、高燃圧下の高圧燃料配管において、燃料噴射直後に複数の連通部より各燃料噴射装置に速やかに燃料が供給されるため、燃料噴射装置間での燃圧回復の遅れを均一化でき、燃料噴射量のばらつきを低減できる。
【0014】
また本発明によれば、高燃圧下の高圧燃料配管において、複数の燃料流路によりフープ応力を分散するため必要な配管強度を低減でき、配管肉厚を薄くできる。これにより、高圧燃料配管の軽量化、小型化及びコストダウンを図れる。
【0015】
【発明の実施の形態】
(1)第1実施形態
(1−1)構成
〔燃料供給システム〕
図1は、本発明に係る内燃機関の高圧配管が適用される燃料供給システムのブロック図である。この燃料供給システムは、内燃機関の高圧配管としてのコモンレール1000と、燃料噴射装置2と、燃料タンク10とを主に備えている。
【0016】
コモンレール1000は、配管本体100と、仕切壁111と、第1燃料流路101と、第2燃料流路102と、燃料導入部103と、挿入部104a〜dと、連通部105a〜dとを有している。第1燃料流路101及び第2燃料流路102は、仕切壁111により配管本体100内部を上下に分割して形成されており、互いに略平行に配置される中空空間として形成されている。燃料導入部103は、第1燃料流路101の一端部に設けられ、高圧供給管3に接続されている。ここでは、燃料導入部103は、第1燃料流路101の左端部に形成しているが、エンジンレイアウトに応じて適宜変更しても良い。例えば、燃料導入部103は、第1燃料流路101の右端部に形成しても良いし、第2燃料流路102のいずれかの端部に形成しても良いし、第1燃料流路101又は第2燃料流路102の途中に形成しても良い。挿入部104a〜dは、各気筒に対応する燃料噴射装置2a〜dを挿入する開口を有する。連通部105a〜dは、第1燃料流路101と第2燃料流路102とを互いに連通させる。ここでは、連通部105a〜dの数は、挿入部104a〜dの数と同数としているが、挿入部104a〜dの数よりも少なくしても良い。また、第1燃料流路101には、配管本体100内部の燃圧を検出するための燃圧センサ5が設けられている。
【0017】
燃料噴射装置2a〜2dは、それぞれ挿入部104a〜dに挿入されており、入力側が燃料流路102側に配置され、出力側が各気筒のシリンダに挿入されており、配管本体100内部の燃料を各気筒のシリンダに噴射する。
【0018】
燃料タンク10は燃料を蓄積しており、蓄積されている燃料は低圧ポンプ9によりプレッシャーレギュレータ11に送られる。プレッシャーレギュレータ11は、低圧供給管7を介して高圧ポンプ6に接続されており、低圧ポンプ9から送られた燃料の圧力を調節して高圧ポンプ6に送る。また、プレッシャーレギュレータ11には低圧リターン管12が接続されており、プレッシャーレギュレータ11は低圧リターン管12を介して余分な燃料を燃料タンク10に戻すことにより、燃圧を調節した燃料を低圧ポンプ6に送出する。高圧ポンプ6は、高圧供給管3、燃料導入部103を介して第1燃料流路101に接続されており、プレッシャーレギュレータ11から送られる燃料を昇圧し、第1燃料流路101に送る。
【0019】
また、第1燃料流路101には、リリーフバルブ4が設けられており、リリーフバルブ4はリターン管8を介して燃料タンク10に接続されている。リリーフバルブ4は、燃圧センサ5の検出値が所定値以上になった場合に開放され、配管本体100内の燃料を燃料タンク10に戻すことにより、配管本体100内の燃圧が所定値を超えないようにしている。ここでは、リリーフバルブ4は、第1燃料流路101の上部に設けられているが、エンジンレイアウトに応じて適宜変更しても良い。例えば、リリーフバルブ4は、第1燃料流路101又は第2燃料流路102のいずれかの端部に配置しても良いし、第1燃料流路101又は第2燃料流路102の途中に配置しても良い。
【0020】
〔コモンレール〕
図2はコモンレール1000の斜視図であり、図3はコモンレール1000のiii−iii’における断面図である。図2及び図3において、図1と同一符号は同一
の構成を示すものとする。
【0021】
このコモンレール1000はアルミダイキャスト工法を使用して製造される。具体的には、左右から挿入される中子及び上下方向から挿入される中子を用いて、第1燃料流路101及び第2燃料流路102、挿入部104a〜d、連通部105a〜d、燃料排出部106の開口部及びセンサ取付部107の開口部を形成する。
【0022】
仕切壁111は、鋳造の際に中子により第1燃料流路101及び第2燃料流路102を形成した場合に、配管本体100の外周壁112と一体に形成される。第1燃料流路101及び第2燃料流路102は、配管本体100内部に仕切壁111により区分けされ、互いに略平行に形成されている。第1燃料流路101の左端部は長手方向に向かって開口する開口部103を有しており、この開口部103が燃料導入部103を構成する。また第1燃料流路101の右端部側には、上方に延びて一体に形成された燃料排出部106が設けられている。燃料排出部106は開口部を有しており、この開口部は第1燃料流路101に連通かつ上方に開口している。この開口部にリリーフバルブ4が取り付けられる。第1燃料流路101の左端部側には、上方に延びて一体に形成されたセンサ取付部107が設けられている。センサ取付部107は開口部を有しており、この開口部は第1燃料流路101と連通かつ上方に開口している。この開口部に燃圧センサ5が取り付けられる。また、第2燃料流路102は、右端部において長手方向に向かって開口する開口部108を有しており、この開口部108には栓109が嵌合されて閉鎖されている。第2燃料流路102には、下方に延びて一体に形成された挿入部104a〜dが設けられている。挿入部104a〜dは開口部を有しており、これらの開口部は第2燃料流路102に連通かつ下方に開口している。これらの開口部には、燃料噴射装置2a〜dが挿入される。
【0023】
連通部105a〜dは、第1燃料流路101と第2燃料流路102とを連通している。また連通部105a〜dは、挿入部104a〜dに対応する位置に配置されており、挿入部104a〜dの挿入方向(図2及び図3の矢印方向)から見ると、連通部105a〜dの開口は、挿入部104a〜dの開口範囲内に含まれる。
【0024】
図4は、図2及び図3の矢印方向から見た挿入部104aと連通部105aとの関係を説明する図である。ここでは、一例として挿入部104a及び連通部105aの関係を示している。他の挿入部104b〜d及び連通部105b〜dの関係も同様である。同図(a)は、挿入部104a及び連通部105aの開口の軸が同軸であり、連通部105aの開口が挿入部104aよりも小さい場合である。同図(b)は、挿入部104a及び連通部105aの開口の軸が同軸でなく、連通部105aの開口が挿入部104aの開口よりも小さい場合である。同図(c)は、挿入部104aの開口と連通部105aの開口とが同軸かつ同径の場合である。連通部105a〜dの開口は、同図(a)〜(c)のいずれかの大きさ又は位置関係に形成する。
【0025】
このように連通部105a〜dの開口を挿入部104a〜dの開口範囲に含まれるように形成するので、コモンレール1000をアルミダイキャスト工法により製造する場合、共通の中子を用いて、互いに対応する連通部105a〜dと挿入部104a〜dとを同時に形成する。連通部105a〜d及び挿入部104a〜dの開口が同軸かつ同径の場合には、中子の形成が簡易である。また、鋳造工程の後、切削ドリルにより挿入部104a〜dを開口した後、その開口部を介して切削ドリルにより連通部105a〜dを開口しても良い。連通部105a〜d及び挿入部104a〜dの開口が同軸かつ同径の場合には、一度の開口作業で連通部105a〜d及び挿入部104a〜dの開口を同時に形成できる。
【0026】
また、配管本体100の側面には上下方向に延びる本体取付部110a〜dが設けられており、本体取付部110a〜dは上下方向に貫通する貫通孔を有している。コモンレール1000の取付の際には、本体取付部110a〜dの貫通孔にボルトを貫通させ、ボルトをシリンダブロックに締め付けて、配管本体100を固定する。このとき、挿入部104a〜dに挿入された燃料噴射装置2a〜dは上方の配管本体100と下方のシリンダとにより、上下から挟まれて固定される。
【0027】
(1−2)作用
本実施形態に係るコモンレール1000では、燃料タンク10からの燃料が燃料導入部103から導入され、連通部105a〜dを介して、第1燃料流路101及び第2燃料流路102内に満たされる。そして、第1燃料流路101及び第2燃料流路102に燃料が蓄積されて燃圧センサ5が所望の値になると、燃料噴射装置2a〜dから各気筒のシリンダに燃料を噴射する。また、燃料噴射直後には、燃料噴射装置2a〜dの真上に位置する連通部105a〜dを介して、燃料噴射装置2a〜dに速やかに燃料が供給される。
【0028】
また、燃圧が所定値を超えると、リリーフバルブ4を開放し、配管本体100内の燃料を燃料タンク10に戻し、配管本体100内の燃圧が所定値以上になるのを防止する。
【0029】
また、第1燃料流路101及び第2燃料流路102の2本の燃料流路を設けて、配管本体100内壁に加わるフープ応力を分散させる。従来のように燃料流路を1本で同容積を確保し、配管の強度を確保するには5.5mmの配管肉厚が必要となるが、本実施形態では、2本の燃料流路によりフープ応力を分散することで必要な強度を低減させ、配管肉厚を4mmにした。これにより、コモンレール1000の軽量化、小型化及びコストダウンを実現する。
【0030】
(1−3)効果
本実施形態に係るコモンレール1000によれば、燃料噴射により挿入部104a〜d付近の燃圧が低下したとしても、挿入部104a〜dの開口範囲内にある連通部105a〜dを介して、挿入部104a〜dに速やかに燃料が供給される。これにより、燃料噴射直後における各燃料噴射装置2a〜d間での燃圧回復の遅れを均一化でき、燃料噴射量のばらつきを低減できる。
【0031】
また第1燃料流路101に高圧供給管3とリターン管8とを連通させているので、燃料噴射により生じる脈動を第2燃料流路102内と仕切壁111とで低減し、第1燃料流路を介して高圧供給管3やリターン管8へ伝搬される脈動を小さくすることができる。
【0032】
また、本実施形態に係るコモンレール1000によれば、複数の連通部105a〜dにより燃料噴射装置2a〜d間での燃料噴射量のばらつきを低減できるので、燃料リターンシステムを構成するためにプッシャーレギュレータなどを別途設ける必要がなく、部品点数を低減し、コストダウンを図ることができる。
【0033】
また、本実施形態に係るコモンレール1000によれば、複数の燃料流路(第1燃料流路101及び第2燃料流路102)によりフープ応力を分散するため必要な配管強度を低減でき、配管肉厚を薄くできる。これにより、コモンレール1000の軽量化、小型化及びコストダウンを図れる。また、コモンレール1000の小型化により、エンジンレイアウト条件の影響を受け難くなり、脈動異音の低減のために十分な容積を確保できるようになる。この結果、脈動異音対策のために防音プロテクタを別途用意する必要がなくなり、部品点数の低減、コストダウンを図ることができる。また、アルミダイキャスト工法によりコモンレール1000を製造する場合、配管本体100の肉厚が厚いと、引け巣や密度のばらつきが発生する恐れがあるが、本実施形態のコモンレール1000によれば、配管本体100の肉厚を薄くでき、引け巣や密度のばらつきを防止できる。
【0034】
また、本実施形態に係るコモンレール1000によれば、仕切壁111を外周壁112と一体に形成するので、部品点数を低減でき、製造工程を簡略化し、コストダウンを図ることができる。
【0035】
また、本実施形態に係るコモンレール1000では、連通部105a〜dの開口を挿入部104a〜dの開口範囲に含まれるように形成するので、共通の中子を用いて、互いに対応する連通部105a〜dと挿入部104a〜dとを同時に鋳造することができる。または、鋳造工程の後、切削ドリルにより挿入部104a〜d及び連通部105a〜dを開口することにより、連通部105a〜d及び挿入部104a〜dを簡易に形成することができる。これにより、製造工程を簡略化し、コストダウンを図ることができる。
(2)第2実施形態
(2−1)構成
図5は第2実施形態に係るコモンレール2000の斜視図であり、図6はそのvi−vi’における断面図である。本実施形態では、各連通部205a〜dは、各
挿入部204a〜dに対応する位置ではなく、各挿入部204a〜dからずれた位置に形成する。
【0036】
(2−2)作用効果
本実施形態に係るコモンレール2000では、挿入部204a〜dの真上には連通部205a〜dが配置されていないので、燃料噴射直後に挿入部204a〜d付近に生じる圧力脈動を仕切壁211に乱反射させ低減することができる。これにより、圧力脈動が連通部205a〜dを介して高圧供給管3やリターン管8に伝達され、異音が発生するのを防止する。
(3)第3実施形態
(3−1)構成
図7は第3実施形態に係るコモンレール3000の斜視図であり、図8はそのviii−viii’における断面図である。本実施形態では、第1燃料流路301から上方
に連通する燃料排出部106,206を形成せず、また第2燃料流路302の右端部に開口部108,208を形成せず、第2燃料流路302の左端部に開口部308を形成する。そして、開口部303を燃料導入部303とし、開口部308を燃料排出部308とし、燃料導入部303に高圧供給管3を接続し、燃料排出部308にリリーフバルブ4を配置する。これとは逆に、開口部303を燃料排出部303とし、開口部308を燃料導入部308とし、燃料排出部303にリリーフバルブ4を配置し、燃料導入部308に高圧供給管3を接続しても良い。
【0037】
(3−2)作用効果
本実施形態に係るコモンレール3000によれば、第1燃料流路301及び第2燃料流路302を形成すると同時に、燃料導入部303及び燃料排出部308を形成することができる。また、燃料導入部106,206を別途形成する必要がない。これにより、製造工程が簡略化され、コストダウンを図ることができる。
(4)第4実施形態
(4−1)構成
図9は第4実施形態に係るコモンレール4000の斜視図であり、図10はそのx−x’における断面図である。本実施形態では、連通部405a〜cの数を挿入部404a〜dの数よりも少なくする。ここでは、各連通部405a〜cは、配管本体400の長手方向に沿って各挿入部404a〜dのほぼ中間に配置している。
【0038】
(4−2)作用効果
本実施形態に係るコモンレール4000では、連通部405a〜cの数は挿入部404a〜dの数よりも少ないが、この場合でも、従来の様に両端部からのみ燃料を供給する場合に比較すれば、挿入部404a〜dの近傍に配置された複数の連通部405a〜cによって燃料噴射装置2a〜dの燃圧回復のばらつきを低減でき、燃料噴射量の均一化を図ることができる。
(5)他の実施形態
上記実施形態では燃料流路を2つ設けたが、燃料流路を3つ以上設け、燃料導入部を何れかの燃料流路に連通させて形成し、複数の挿入部を何れかの燃料流路に連通させて形成し、互いに隣接する燃料流路を複数の連通部により連通するようにしても良い。この場合、コモンレール内壁に加わるフープ応力をさらに分散させ、配管肉厚を薄くすることができる。
【図面の簡単な説明】
【図1】本発明の内燃機関の高圧配管が適用される燃料供給システム。
【図2】第1実施形態に係るコモンレールの斜視図。
【図3】図2のiii−iii’における断面図。
【図4】連通部及び挿入部の関係を説明する図。
【図5】第2実施形態に係るコモンレールの斜視図。
【図6】図5のvi―vi’における断面図。
【図7】第3実施形態に係るコモンレールの斜視図。
【図8】図7のviii−viii’における断面図。
【図9】第4実施形態に係るコモンレールの斜視図。
【図10】図9のx−x’における断面図。
【符号の説明】
1000,2000,3000,4000 コモンレール
2 燃料噴射装置(フューエルインジェクタ)
3 高圧供給管
4 リリーフバルブ
5 燃圧センサ
6 高圧ポンプ
7 低圧供給管
8 リターン管
9 低圧ポンプ
10 燃料タンク
11 プレッシャーレギュレータ
12 低圧リターン管
100,200,300,400 本体
101,102,201,202,301,302,401,402 燃料流路
103,108,203,208,303,308,403,408 開口部
104a〜d,204a〜d,304a〜d,404a〜d 挿入部
105a〜d,205a〜d,305a〜d,405a〜c 連通部
106,206,406 燃料排出部
107,207,307,407 センサ取付部
109,209,409 栓
110a〜d,210a〜d,310a〜d,410a〜d 本体取付部
111,211,311,411 仕切壁
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-pressure fuel pipe for an internal combustion engine, and more particularly to a high-pressure fuel pipe for distributing fuel supplied from a fuel tank to a plurality of fuel injection devices.
[0002]
[Prior art]
In the fuel pipe described in Patent Document 1, the inside of the pipe body is divided into upper and lower fuel flow paths by a partition plate, and the upper and lower fuel flow paths are communicated at both ends, and both ends are connected to the lower to upper fuel flow paths. By supplying the fuel from the fuel injection device, the delay in the recovery of the fuel pressure between the fuel injection devices immediately after the fuel injection is made uniform, and the variation in the fuel injection amount is reduced.
[0003]
The fuel pipe described in Patent Literature 2 divides the inside of the pipe body into upper and lower fuel passages, provides a fuel introduction section in a lower fuel passage, provides a fuel discharge section in an upper fuel passage, and provides a discharge section. The fuel pressure between each fuel injection device immediately after fuel injection is returned by returning the fuel introduced from the lower fuel passage to the fuel tank via the discharge part of the upper fuel passage and the pressure regulator. The recovery delay is made uniform, and the variation in fuel injection amount is reduced.
[0004]
[Patent Document 1]
JP-A-9-296768 (page 3-4, FIG. 1)
[0005]
[Patent Document 2]
JP-A-7-208298 (page 2-3, FIG. 1)
[0006]
[Problems to be solved by the invention]
In a high-pressure fuel pipe of an internal combustion engine, a hoop stress applied to an inner wall by a fuel pressure is represented by the following equation (1).
σmax = p (r 2 2 + r 1 2) / (r 2 2 -r 1 2) ··· (1)
σmax: maximum hoop stress (stress on the pipe due to fuel pressure), p: pipe fuel pressure, r 1 : pipe inner diameter, r 2 : pipe outer diameter When the pipe fuel pressure p is high, to reduce variation in injection quantity and pulsation noise. Although it is necessary to increase the piping volume, when the inner diameter r 1 and the outer diameter r 2 are increased, the hoop stress increases by the square of Equation (1). For this reason, it is necessary to increase the thickness of the pipe in order to secure the strength of the pipe. However, if the pipe thickness is increased, there is a possibility that the weight, size, and cost of the high-pressure fuel pipe will increase. In addition, the engine layout may not be satisfied due to the large-sized high-pressure fuel pipe.
[0007]
The high-pressure fuel pipe described in Patent Document 1 has a structure in which the pipe is simply divided by a partition plate, and the fuel pressure in the pipe is received only by the pipe wall. It is determined from the inner diameter and the outer diameter, and it is necessary to increase the pipe wall thickness as described above.
[0008]
On the other hand, in the high-pressure fuel pipe described in Patent Literature 2, the wall dividing the pipe main body is formed integrally with the pipe wall to receive the fuel pressure. For this reason, the hoop stress acts on the relation between the inner diameter and the outer diameter in each divided pipe. As described above, the hoop stress acts on the square of the diameter, so that the smaller the diameter of one pipe, the smaller the hoop stress acting on the entire pipe. However, between the fuel injection devices near the both ends and near the center, the distance from the part where the fuel is introduced is different, and the speed of fuel supply is different, so that as the fuel pressure inside the pipe body becomes higher, It is difficult to equalize the delay in fuel pressure recovery between the fuel injection devices, and it is difficult to equalize the fuel injection amount.
[0009]
SUMMARY OF THE INVENTION It is an object of the present invention to reduce a variation in fuel injection amount even under a high fuel pressure in a high-pressure fuel pipe of an internal combustion engine.
[0010]
Another object of the present invention is to easily manufacture a high-pressure fuel pipe of an internal combustion engine that can reduce the variation in the fuel injection amount under a high fuel pressure, and to reduce the cost.
[0011]
[Means for Solving the Problems]
A high-pressure fuel pipe according to the present invention is a high-pressure fuel pipe for distributing fuel supplied from a fuel tank to a plurality of fuel injection devices, and includes a pipe main body, first and second fuel flow paths, and a fuel introduction pipe. And a plurality of insertion sections and a plurality of communication sections. The pipe main body has an outer peripheral wall and a partition wall formed integrally with the outer peripheral wall. The first and second fuel passages are separated by a partition wall of the pipe main body, and are formed substantially parallel to each other inside the pipe main body. The fuel introduction unit is formed in communication with the first fuel flow path, and introduces fuel supplied from the fuel tank. The plurality of insertion portions are formed so as to communicate with the fuel flow path of the first or second fuel flow path, and can insert the fuel injection device. The plurality of communicating portions communicate the first and second fuel flow paths with each other.
[0012]
In this high-pressure fuel pipe, high-pressure fuel from a fuel tank is introduced from a fuel introduction part, and fuel is supplied to the first and second fuel flow paths through a plurality of communication parts. Thereby, the fuel is filled in the pipe main body, the fuel pressure is adjusted, and the fuel is injected from the fuel injection device. Also, immediately after fuel injection under a high fuel pressure, fuel is quickly supplied to the insertion portion via the plurality of communication portions, and the fuel pressure between the fuel injection devices is quickly recovered.
[0013]
【The invention's effect】
According to the present invention, in the high-pressure fuel pipe under the high fuel pressure, the fuel is promptly supplied to each fuel injection device from the plurality of communication portions immediately after the fuel injection, so that the delay in the recovery of the fuel pressure between the fuel injection devices is made uniform. And the variation of the fuel injection amount can be reduced.
[0014]
Further, according to the present invention, in a high-pressure fuel pipe under a high fuel pressure, necessary hoop stress can be reduced by dispersing hoop stress by a plurality of fuel flow paths, and the pipe wall thickness can be reduced. This makes it possible to reduce the weight, size, and cost of the high-pressure fuel pipe.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
(1) First Embodiment (1-1) Configuration [Fuel Supply System]
FIG. 1 is a block diagram of a fuel supply system to which a high-pressure pipe of an internal combustion engine according to the present invention is applied. This fuel supply system mainly includes a common rail 1000 as a high-pressure pipe of an internal combustion engine, a fuel injection device 2, and a fuel tank 10.
[0016]
The common rail 1000 includes a pipe main body 100, a partition wall 111, a first fuel flow path 101, a second fuel flow path 102, a fuel introduction section 103, insertion sections 104a to 104d, and communication sections 105a to 105d. Have. The first fuel passage 101 and the second fuel passage 102 are formed by dividing the inside of the pipe main body 100 into upper and lower parts by a partition wall 111, and are formed as hollow spaces arranged substantially in parallel with each other. The fuel introduction section 103 is provided at one end of the first fuel flow path 101 and is connected to the high-pressure supply pipe 3. Here, the fuel introduction section 103 is formed at the left end of the first fuel flow path 101, but may be appropriately changed according to the engine layout. For example, the fuel introduction section 103 may be formed at the right end of the first fuel flow path 101, may be formed at any end of the second fuel flow path 102, or may be formed at the first fuel flow path 102. It may be formed in the middle of the first fuel passage 101 or the second fuel passage 102. The insertion portions 104a to 104d have openings for inserting the fuel injection devices 2a to 2d corresponding to the respective cylinders. The communication portions 105a to 105d make the first fuel flow path 101 and the second fuel flow path 102 communicate with each other. Here, the number of communication sections 105a to 105d is the same as the number of insertion sections 104a to 104d, but may be smaller than the number of insertion sections 104a to 104d. The first fuel passage 101 is provided with a fuel pressure sensor 5 for detecting the fuel pressure inside the pipe main body 100.
[0017]
The fuel injection devices 2a to 2d are inserted into the insertion portions 104a to 104d, respectively. The input side is disposed on the fuel flow path 102 side, and the output side is inserted into the cylinder of each cylinder. Inject into the cylinder of each cylinder.
[0018]
The fuel tank 10 stores fuel, and the stored fuel is sent to the pressure regulator 11 by the low-pressure pump 9. The pressure regulator 11 is connected to the high-pressure pump 6 via the low-pressure supply pipe 7, and adjusts the pressure of the fuel sent from the low-pressure pump 9 to send the fuel to the high-pressure pump 6. A low-pressure return pipe 12 is connected to the pressure regulator 11. The pressure regulator 11 returns excess fuel to the fuel tank 10 through the low-pressure return pipe 12, so that the fuel whose fuel pressure has been adjusted is supplied to the low-pressure pump 6. Send out. The high-pressure pump 6 is connected to the first fuel flow path 101 via the high-pressure supply pipe 3 and the fuel introduction unit 103, and pressurizes the fuel sent from the pressure regulator 11 and sends the fuel to the first fuel flow path 101.
[0019]
Further, a relief valve 4 is provided in the first fuel flow path 101, and the relief valve 4 is connected to the fuel tank 10 via a return pipe 8. The relief valve 4 is opened when the detection value of the fuel pressure sensor 5 becomes equal to or more than a predetermined value, and returns the fuel in the pipe main body 100 to the fuel tank 10 so that the fuel pressure in the pipe main body 100 does not exceed the predetermined value. Like that. Here, the relief valve 4 is provided above the first fuel flow path 101, but may be appropriately changed according to the engine layout. For example, the relief valve 4 may be disposed at one end of the first fuel passage 101 or the second fuel passage 102, or may be provided in the middle of the first fuel passage 101 or the second fuel passage 102. It may be arranged.
[0020]
[Common rail]
FIG. 2 is a perspective view of the common rail 1000, and FIG. 3 is a cross-sectional view of the common rail 1000 taken along iii-iii '. 2 and 3, the same reference numerals as those in FIG. 1 indicate the same components.
[0021]
The common rail 1000 is manufactured by using an aluminum die casting method. Specifically, the first fuel flow path 101 and the second fuel flow path 102, the insertion portions 104a to 104d, and the communication portions 105a to 105d are formed by using a core inserted from the left and right and a core inserted from the up and down direction. The opening of the fuel discharge unit 106 and the opening of the sensor mounting unit 107 are formed.
[0022]
The partition wall 111 is formed integrally with the outer peripheral wall 112 of the pipe main body 100 when the first fuel flow path 101 and the second fuel flow path 102 are formed by a core during casting. The first fuel passage 101 and the second fuel passage 102 are partitioned by a partition wall 111 inside the pipe main body 100 and are formed substantially parallel to each other. The left end of the first fuel flow path 101 has an opening 103 that opens in the longitudinal direction, and the opening 103 forms a fuel introduction section 103. On the right end side of the first fuel passage 101, a fuel discharge portion 106 extending upward and integrally formed is provided. The fuel discharge portion 106 has an opening, and this opening communicates with the first fuel flow path 101 and opens upward. The relief valve 4 is attached to this opening. On the left end side of the first fuel flow path 101, a sensor mounting portion 107 extending upward and integrally formed is provided. The sensor mounting portion 107 has an opening, and this opening communicates with the first fuel flow path 101 and opens upward. The fuel pressure sensor 5 is attached to this opening. The second fuel flow path 102 has an opening 108 that opens in the longitudinal direction at the right end, and a plug 109 is fitted into the opening 108 and closed. The second fuel flow path 102 is provided with insertion portions 104a to 104d extending downward and integrally formed. The insertion portions 104a to 104d have openings, and these openings communicate with the second fuel flow path 102 and open downward. The fuel injection devices 2a to 2d are inserted into these openings.
[0023]
The communication portions 105a to 105d communicate the first fuel flow path 101 and the second fuel flow path 102. The communication parts 105a to 105d are arranged at positions corresponding to the insertion parts 104a to 104d, and when viewed from the insertion direction of the insertion parts 104a to 104d (the direction of the arrow in FIGS. 2 and 3), the communication parts 105a to 105d are formed. Are included in the opening ranges of the insertion portions 104a to 104d.
[0024]
FIG. 4 is a diagram illustrating the relationship between the insertion portion 104a and the communication portion 105a viewed from the direction of the arrows in FIGS. Here, the relationship between the insertion section 104a and the communication section 105a is shown as an example. The same applies to the relationship between the other insertion portions 104b to 104d and the communication portions 105b to 105d. FIG. 5A shows a case where the axes of the openings of the insertion portion 104a and the communication portion 105a are coaxial, and the opening of the communication portion 105a is smaller than the insertion portion 104a. FIG. 2B shows a case where the axes of the openings of the insertion portion 104a and the communication portion 105a are not coaxial, and the opening of the communication portion 105a is smaller than the opening of the insertion portion 104a. FIG. 3C shows a case where the opening of the insertion portion 104a and the opening of the communication portion 105a are coaxial and have the same diameter. The openings of the communicating portions 105a to 105d are formed in any size or positional relationship shown in FIGS.
[0025]
As described above, the openings of the communication portions 105a to 105d are formed so as to be included in the opening range of the insertion portions 104a to 104d. Therefore, when the common rail 1000 is manufactured by the aluminum die-casting method, the common cores are formed by using a common core. The communication portions 105a to 105d and the insertion portions 104a to 104d are formed at the same time. When the openings of the communication portions 105a to 105d and the insertion portions 104a to 104d are coaxial and have the same diameter, formation of the core is simple. After the casting process, the insertion portions 104a to 104d may be opened by a cutting drill, and then the communication portions 105a to 105d may be opened by a cutting drill through the openings. When the openings of the communication portions 105a to 105d and the insertion portions 104a to 104d are coaxial and have the same diameter, the openings of the communication portions 105a to 105d and the insertion portions 104a to 104d can be formed simultaneously by one opening operation.
[0026]
Further, main body mounting portions 110a to 110d extending in the vertical direction are provided on side surfaces of the piping main body 100, and the main body mounting portions 110a to 110d have through holes penetrating in the vertical direction. When mounting the common rail 1000, bolts are passed through the through holes of the main body mounting portions 110a to 110d, and the bolts are tightened to the cylinder block to fix the piping main body 100. At this time, the fuel injection devices 2a to 2d inserted into the insertion portions 104a to 104d are fixed by being sandwiched from above and below by the upper pipe main body 100 and the lower cylinder.
[0027]
(1-2) Operation In the common rail 1000 according to this embodiment, the fuel from the fuel tank 10 is introduced from the fuel introduction unit 103, and the first fuel flow path 101 and the second fuel flow are communicated through the communication units 105a to 105d. The road 102 is filled. When fuel is accumulated in the first fuel flow path 101 and the second fuel flow path 102 and the fuel pressure sensor 5 reaches a desired value, the fuel is injected from the fuel injection devices 2a to 2d to the cylinders of each cylinder. Immediately after fuel injection, fuel is quickly supplied to the fuel injection devices 2a to 2d via the communication portions 105a to 105d located directly above the fuel injection devices 2a to 2d.
[0028]
When the fuel pressure exceeds a predetermined value, the relief valve 4 is opened to return the fuel in the pipe main body 100 to the fuel tank 10 to prevent the fuel pressure in the pipe main body 100 from exceeding a predetermined value.
[0029]
Further, two fuel flow paths of the first fuel flow path 101 and the second fuel flow path 102 are provided to disperse the hoop stress applied to the inner wall of the pipe main body 100. In order to secure the same volume with one fuel flow path as in the related art and to secure the strength of the pipe, a pipe wall thickness of 5.5 mm is required. In the present embodiment, however, two fuel flow paths are used. The required strength was reduced by dispersing the hoop stress, and the pipe thickness was set to 4 mm. Thus, the weight, size, and cost of the common rail 1000 can be reduced.
[0030]
(1-3) Effects According to the common rail 1000 according to the present embodiment, even if the fuel pressure near the insertion portions 104a to 104d is reduced by the fuel injection, the communication portions 105a to 105d within the opening range of the insertion portions 104a to 104d. , Fuel is quickly supplied to the insertion portions 104a to 104d. As a result, the delay in fuel pressure recovery between the fuel injection devices 2a to 2d immediately after the fuel injection can be made uniform, and the variation in the fuel injection amount can be reduced.
[0031]
Further, since the high-pressure supply pipe 3 and the return pipe 8 communicate with the first fuel flow path 101, pulsation caused by fuel injection is reduced in the second fuel flow path 102 and the partition wall 111, and the first fuel flow The pulsation transmitted to the high-pressure supply pipe 3 and the return pipe 8 via the path can be reduced.
[0032]
In addition, according to the common rail 1000 according to the present embodiment, the variation of the fuel injection amount among the fuel injection devices 2a to 2d can be reduced by the plurality of communication portions 105a to 105d. There is no need to separately provide such components, so that the number of components can be reduced and cost can be reduced.
[0033]
Further, according to the common rail 1000 according to the present embodiment, the pipe strength required for dispersing the hoop stress by the plurality of fuel flow paths (the first fuel flow path 101 and the second fuel flow path 102) can be reduced, and the pipe wall thickness can be reduced. The thickness can be reduced. Thereby, the weight, size, and cost of the common rail 1000 can be reduced. In addition, the downsizing of the common rail 1000 makes it less likely to be affected by engine layout conditions, and secures a sufficient volume for reducing pulsating noise. As a result, it is not necessary to separately provide a soundproof protector for countermeasures for pulsating noise, and the number of parts and cost can be reduced. Further, when the common rail 1000 is manufactured by the aluminum die-casting method, if the thickness of the pipe body 100 is large, shrinkage cavities and variations in density may occur. 100 can be made thinner and shrinkage cavities and variations in density can be prevented.
[0034]
In addition, according to the common rail 1000 according to the present embodiment, since the partition wall 111 is formed integrally with the outer peripheral wall 112, the number of components can be reduced, the manufacturing process can be simplified, and the cost can be reduced.
[0035]
In the common rail 1000 according to the present embodiment, the openings of the communication portions 105a to 105d are formed so as to be included in the opening ranges of the insertion portions 104a to 104d. And the insertion portions 104a to 104d can be simultaneously cast. Alternatively, after the casting step, by opening the insertion portions 104a to 104d and the communication portions 105a to 105d with a cutting drill, the communication portions 105a to 105d and the insertion portions 104a to 104d can be easily formed. Thereby, the manufacturing process can be simplified and the cost can be reduced.
(2) Second Embodiment (2-1) Configuration FIG. 5 is a perspective view of a common rail 2000 according to the second embodiment, and FIG. 6 is a cross-sectional view taken along a line vi-vi ′. In the present embodiment, the communication portions 205a to 205d are formed not at positions corresponding to the insertion portions 204a to 204d but at positions shifted from the insertion portions 204a to 204d.
[0036]
(2-2) Effects In the common rail 2000 according to the present embodiment, since the communication portions 205a to 205d are not disposed right above the insertion portions 204a to 204d, they are generated near the insertion portions 204a to 204 immediately after fuel injection. The pressure pulsation can be reduced by irregular reflection on the partition wall 211. As a result, the pressure pulsation is transmitted to the high-pressure supply pipe 3 and the return pipe 8 via the communication portions 205a to 205d, thereby preventing generation of abnormal noise.
(3) Third Embodiment (3-1) Configuration FIG. 7 is a perspective view of a common rail 3000 according to the third embodiment, and FIG. 8 is a cross-sectional view along viii-viii ′. In the present embodiment, the second fuel flow path 302 does not have the fuel discharge portions 106 and 206 formed upward from the first fuel flow path 301 and the second fuel flow path 302 does not have the openings 108 and 208 at the right end thereof. An opening 308 is formed at the left end of the fuel flow path 302. The opening 303 is a fuel introduction section 303, the opening 308 is a fuel discharge section 308, the high pressure supply pipe 3 is connected to the fuel introduction section 303, and the relief valve 4 is arranged in the fuel discharge section 308. Conversely, the opening 303 is a fuel discharge section 303, the opening 308 is a fuel introduction section 308, the relief valve 4 is disposed in the fuel discharge section 303, and the high pressure supply pipe 3 is connected to the fuel introduction section 308. May be.
[0037]
(3-2) Function and Effect According to the common rail 3000 according to the present embodiment, the fuel introduction part 303 and the fuel discharge part 308 can be formed at the same time when the first fuel passage 301 and the second fuel passage 302 are formed. it can. Further, it is not necessary to separately form the fuel introduction portions 106 and 206. This simplifies the manufacturing process and reduces costs.
(4) Fourth Embodiment (4-1) Configuration FIG. 9 is a perspective view of a common rail 4000 according to a fourth embodiment, and FIG. 10 is a cross-sectional view taken along line xx ′. In the present embodiment, the number of communication portions 405a to 405c is smaller than the number of insertion portions 404a to 404d. Here, the communication portions 405a to 405c are arranged at substantially the middle of the insertion portions 404a to 404d along the longitudinal direction of the pipe main body 400.
[0038]
(4-2) Effects In the common rail 4000 according to the present embodiment, the number of the communication portions 405a to 405c is smaller than the number of the insertion portions 404a to 404d. Compared with the case of supplying, the plurality of communication portions 405a to 405c arranged near the insertion portions 404a to 404d can reduce the variation in the fuel pressure recovery of the fuel injection devices 2a to 2d, and achieve a uniform fuel injection amount. be able to.
(5) Other Embodiments In the above embodiment, two fuel flow paths are provided. However, three or more fuel flow paths are provided, and a fuel introduction portion is formed so as to communicate with any one of the fuel flow paths. The portion may be formed to communicate with any one of the fuel flow paths, and the fuel flow paths adjacent to each other may be connected by a plurality of communication portions. In this case, the hoop stress applied to the inner wall of the common rail can be further dispersed, and the wall thickness of the pipe can be reduced.
[Brief description of the drawings]
FIG. 1 is a fuel supply system to which a high-pressure pipe of an internal combustion engine according to the present invention is applied.
FIG. 2 is a perspective view of a common rail according to the first embodiment.
FIG. 3 is a sectional view taken along iii-iii ′ of FIG. 2;
FIG. 4 is a view for explaining the relationship between a communication unit and an insertion unit.
FIG. 5 is a perspective view of a common rail according to a second embodiment.
FIG. 6 is a sectional view taken along line vi-vi ′ of FIG. 5;
FIG. 7 is a perspective view of a common rail according to a third embodiment.
FIG. 8 is a sectional view taken along viii-viii ′ of FIG. 7;
FIG. 9 is a perspective view of a common rail according to a fourth embodiment.
FIG. 10 is a sectional view taken along line xx ′ of FIG. 9;
[Explanation of symbols]
1000, 2000, 3000, 4000 Common rail 2 fuel injection device (fuel injector)
3 High pressure supply pipe 4 Relief valve 5 Fuel pressure sensor 6 High pressure pump 7 Low pressure supply pipe 8 Return pipe 9 Low pressure pump 10 Fuel tank 11 Pressure regulator 12 Low pressure return pipe 100, 200, 300, 400 Main body 101, 102, 201, 202, 301 , 302, 401, 402 Fuel passages 103, 108, 203, 208, 303, 308, 403, 408 Openings 104a-d, 204a-d, 304a-d, 404a-d Insertions 105a-d, 205a-d , 305a-d, 405a-c Communication parts 106, 206, 406 Fuel discharge parts 107, 207, 307, 407 Sensor mounting parts 109, 209, 409 Plugs 110a-d, 210a-d, 310a-d, 410a-d Main body Mounting parts 111, 211, 311, 411 Partition wall

Claims (8)

燃料タンクから供給される燃料を複数の燃料噴射装置に分配するための高圧燃料配管であって、
外周壁と前記外周壁と一体に形成された仕切壁とを有する配管本体と、
前記配管本体の仕切壁により区分けされ、前記配管本体内部に互いに略平行に形成されている第1及び第2燃料流路と、
前記第1燃料流路に連通して形成され、前記燃料タンクから供給される燃料を導入する燃料導入部と、
前記第1又は第2燃料流路に連通して形成され、前記燃料噴射装置を挿入可能な複数の挿入部と、
前記第1及び第2燃料流路を互いに連通する複数の連通部と、
を備える高圧燃料配管。
A high-pressure fuel pipe for distributing fuel supplied from a fuel tank to a plurality of fuel injection devices,
A pipe main body having an outer peripheral wall and a partition wall formed integrally with the outer peripheral wall,
First and second fuel flow paths separated by a partition wall of the pipe main body and formed substantially parallel to each other inside the pipe main body;
A fuel introduction unit formed in communication with the first fuel flow path and configured to introduce fuel supplied from the fuel tank;
A plurality of insertion portions formed in communication with the first or second fuel flow passage and capable of inserting the fuel injection device;
A plurality of communicating portions that communicate the first and second fuel flow paths with each other;
A high-pressure fuel pipe.
前記複数の連通部は、前記複数の挿入部に対応する位置において、前記挿入部の挿入方向から見て挿入部の開口範囲内に前記連通部の開口が含まれる様に配置されている、請求項1に記載の高圧燃料配管。The plurality of communication portions are arranged at positions corresponding to the plurality of insertion portions so that the opening of the communication portion is included in an opening range of the insertion portion when viewed from an insertion direction of the insertion portion. Item 2. A high-pressure fuel pipe according to item 1. 前記複数の連通部は、前記複数の挿入部のいずれかに対応する位置において、対応する挿入部と同軸上に配置されている、請求項2に記載の高圧燃料配管。3. The high-pressure fuel pipe according to claim 2, wherein the plurality of communication sections are arranged coaxially with the corresponding insertion section at a position corresponding to any of the plurality of insertion sections. 4. 前記連通部の数は前記挿入部の数と同数である、請求項2又は3に記載の高圧燃料配管。The high-pressure fuel pipe according to claim 2, wherein the number of the communication portions is the same as the number of the insertion portions. 前記複数の連通部は、前記配管本体の長手方向に沿って、前記複数の挿入部のいずれともずれて配置されている、請求項1に記載の高圧燃料配管。2. The high-pressure fuel pipe according to claim 1, wherein the plurality of communication sections are arranged along the longitudinal direction of the pipe main body so as to be shifted from any of the plurality of insertion sections. 3. 前記連通部の数は前記挿入部の数よりも少ない、請求項2又は5に記載の高圧燃料配管。The high-pressure fuel pipe according to claim 2, wherein the number of the communication portions is smaller than the number of the insertion portions. 前記複数の挿入部は前記第2燃料流路に連通して形成される、請求項1から6のいずれかに記載の高圧燃料配管。The high-pressure fuel pipe according to any one of claims 1 to 6, wherein the plurality of insertion portions are formed to communicate with the second fuel flow path. 前記第1及び第2燃料流路に略平行に配置され、前記両燃料流路のいずれか一方に連通する少なくとも1つの燃料流路をさらに備えている、請求項1から7のいずれかに記載の高圧燃料配管。8. The fuel cell system according to claim 1, further comprising at least one fuel flow path arranged substantially parallel to the first and second fuel flow paths and communicating with one of the two fuel flow paths. 9. High pressure fuel piping.
JP2002317565A 2002-10-31 2002-10-31 High pressure fuel piping for internal combustion engines Expired - Fee Related JP4134681B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002317565A JP4134681B2 (en) 2002-10-31 2002-10-31 High pressure fuel piping for internal combustion engines
CNB200310104374XA CN100472062C (en) 2002-10-31 2003-10-27 Pressure oil pipe of I.C. engine
CNU2003201038639U CN2718242Y (en) 2002-10-31 2003-10-30 High pressure oil tube for internal combustion engine
DE60318799T DE60318799T2 (en) 2002-10-31 2003-10-30 High pressure common rail for an internal combustion engine
KR1020030076292A KR100585361B1 (en) 2002-10-31 2003-10-30 Highly pressurized fuel piping for internal combustion engine
EP03025053A EP1416151B1 (en) 2002-10-31 2003-10-30 Highly pressurized common rail for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002317565A JP4134681B2 (en) 2002-10-31 2002-10-31 High pressure fuel piping for internal combustion engines

Publications (2)

Publication Number Publication Date
JP2004150368A true JP2004150368A (en) 2004-05-27
JP4134681B2 JP4134681B2 (en) 2008-08-20

Family

ID=32089572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002317565A Expired - Fee Related JP4134681B2 (en) 2002-10-31 2002-10-31 High pressure fuel piping for internal combustion engines

Country Status (5)

Country Link
EP (1) EP1416151B1 (en)
JP (1) JP4134681B2 (en)
KR (1) KR100585361B1 (en)
CN (2) CN100472062C (en)
DE (1) DE60318799T2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006077716A (en) * 2004-09-10 2006-03-23 Denso Corp Method for jointing joint member used accumulator fuel injection system and method for jointing mounting stay
JP2011069255A (en) * 2009-09-24 2011-04-07 Daihatsu Motor Co Ltd Fuel delivery pipe for internal combustion engine
JP2011069254A (en) * 2009-09-24 2011-04-07 Daihatsu Motor Co Ltd Fuel delivery pipe for internal combustion engine

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1705366A1 (en) * 2005-03-03 2006-09-27 Siemens Aktiengesellschaft High-pressure fuel storage unit
US7699041B2 (en) * 2007-12-11 2010-04-20 Delphi Technologies, Inc. Fuel distribution tube for direct injection fuel rail assemblies
DE102010051004A1 (en) * 2010-11-10 2012-05-10 Poppe & Potthoff Gmbh Fuel rail for fuel rail assembly, for use in fuel injection system, has cross hole, which guides from inside of fuel rail through its wall to its outer side
CN101984248B (en) * 2010-11-30 2012-01-04 天津雷沃动力股份有限公司 High-pressure oil rail with novel structure
DE102011112376A1 (en) 2011-09-02 2013-03-07 Poppe & Potthoff Gmbh Fuel rail for use in common-rail injection system of diesel engine, has connection fittings connected to outer side of base body, where one of fittings connect high-pressure supply line and branch pipe that is attached with branch line
DE102012206984A1 (en) * 2012-04-26 2013-10-31 Bayerische Motoren Werke Aktiengesellschaft High pressure fuel rail for a fuel injection system for an internal combustion engine
DE102013214965A1 (en) * 2013-07-31 2015-02-05 Robert Bosch Gmbh Fuel distributor and fuel injection system
GB201514053D0 (en) * 2015-08-10 2015-09-23 Delphi Int Operations Lux Srl Novel fuel rail for injection system
GB2570114A (en) * 2018-01-10 2019-07-17 Delphi Tech Ip Ltd Fuel common rail
DE102018209130A1 (en) * 2018-06-08 2019-12-12 Robert Bosch Gmbh Fuel storage arrangement and internal combustion engine with such an arrangement
CN109973269A (en) * 2018-12-11 2019-07-05 上海威克迈龙川汽车发动机零件有限公司 A kind of distribution pipe and its processing technology and engine high pressure oil rail assembly
DE102019204150A1 (en) * 2019-03-26 2020-10-01 Robert Bosch Gmbh High pressure accumulator for fuels, fuel system
CN110206668B (en) * 2019-04-19 2022-12-16 浙江派尼尔科技股份有限公司 Intelligent oil rail suitable for digital air pressurization and adjustment of V6 engine
CN113931763A (en) * 2021-09-30 2022-01-14 东风商用车有限公司 High-pressure common rail pipe

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4601275A (en) * 1982-08-23 1986-07-22 General Motors Corporation Fuel rail
US5035221A (en) * 1989-01-11 1991-07-30 Martin Tiby M High pressure electronic common-rail fuel injection system for diesel engines
JP3355699B2 (en) * 1993-06-11 2002-12-09 株式会社デンソー Accumulator
JPH07208298A (en) * 1994-01-27 1995-08-08 Aisin Seiki Co Ltd Fuel distributing pipe for internal combustion engine
JPH09296768A (en) * 1996-05-01 1997-11-18 Denso Corp Fuel supply device for internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006077716A (en) * 2004-09-10 2006-03-23 Denso Corp Method for jointing joint member used accumulator fuel injection system and method for jointing mounting stay
JP2011069255A (en) * 2009-09-24 2011-04-07 Daihatsu Motor Co Ltd Fuel delivery pipe for internal combustion engine
JP2011069254A (en) * 2009-09-24 2011-04-07 Daihatsu Motor Co Ltd Fuel delivery pipe for internal combustion engine

Also Published As

Publication number Publication date
CN2718242Y (en) 2005-08-17
DE60318799T2 (en) 2008-06-05
CN100472062C (en) 2009-03-25
DE60318799D1 (en) 2008-03-13
CN1499072A (en) 2004-05-26
EP1416151A3 (en) 2005-06-01
JP4134681B2 (en) 2008-08-20
KR20040038832A (en) 2004-05-08
KR100585361B1 (en) 2006-06-01
EP1416151B1 (en) 2008-01-23
EP1416151A2 (en) 2004-05-06

Similar Documents

Publication Publication Date Title
JP2004150368A (en) High pressure fuel piping for internal combustion engine
US5297523A (en) Tuned actuating fluid inlet manifold for a hydraulically-actuated fuel injection system
KR101100957B1 (en) High-pressure accumulator body with integrated distributor block
US7249591B2 (en) Fuel injection apparatus for internal combustion engine
US11248514B2 (en) Liquid-cooled internal combustion engine
US5592968A (en) Pressure supply device
JP5918238B2 (en) Fuel rail to attenuate radiation noise
US7131427B2 (en) Fuel injection device having two separate common rails
JP2006170201A (en) Common rail type fuel supply device
JPWO2003008796A1 (en) Fuel pressure pulsation suppression system
US6637407B1 (en) Common rail
MXPA04012547A (en) Pressure wave attenuator for a rail.
JP2001193599A (en) Fuel distribution device in fuel injection device for multi-cylinder engine
EP0999362A2 (en) Fuel system
JP5008023B2 (en) Saddle riding vehicle
US6935315B2 (en) High volume actuating fluid rail
JPH08158932A (en) Cooling water passage device of engine
JPH08144889A (en) Fuel feeder of v-engine
DE50111637D1 (en) COOLING CIRCUIT ARRANGEMENT FOR A MULTI-CYLINDER INTERNAL COMBUSTION ENGINE
JPH0666221A (en) Fuel injector for internal combustion engine
JP6992556B2 (en) Engine fuel supply
JP2001193595A (en) Fuel injection device
JPS60209623A (en) Air intake apparatus for v-type engine
US20090095571A1 (en) High pressure oil manifold for a diesel engine
JPH07208298A (en) Fuel distributing pipe for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees