JP2004149850A - Method for improving corrosion resistance of zinc plated steel sheet - Google Patents
Method for improving corrosion resistance of zinc plated steel sheet Download PDFInfo
- Publication number
- JP2004149850A JP2004149850A JP2002316326A JP2002316326A JP2004149850A JP 2004149850 A JP2004149850 A JP 2004149850A JP 2002316326 A JP2002316326 A JP 2002316326A JP 2002316326 A JP2002316326 A JP 2002316326A JP 2004149850 A JP2004149850 A JP 2004149850A
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- zinc
- corrosion resistance
- based alloy
- plated steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Coating With Molten Metal (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、亜鉛系合金めっき鋼板の耐食性の改善方法に関し、詳しくは、亜鉛系合金めっき鋼板の加工部の耐食性を向上させる方法に関する。
【0002】
【従来の技術】
鋼板の耐食性を向上させるために、鋼板表面に亜鉛系合金、例えば、Zn−Al系、Zn−Al−Mg系、Zn−Al−Mg−Si系合金などを、電解法や溶融めっき金属への浸漬法などの方法によりめっきすることが広く行なわれている。
【0003】
これらのめっき鋼板は、その優れた耐食性によって、自動車、建材など多くの部材として使用されている。特に、屋外において直接腐食環境に曝される建材などでは、Zn−Al−Si系のやや硬質なめっき層を形成したものを使用することが多い。これらの用途として使用される場合、めっき鋼板は、切断、曲げ、張り出し、溶接などの加工が施される。
【0004】
亜鉛系合金めっき層は、加工性には優れているものの、これらの加工によってめっき層に微小の亀裂が発生することは避けられない。
【0005】
亜鉛系合金めっき層に亀裂が入ると、亀裂部分の隙間に沿ってめっき層の腐食が進行し、白錆が発生し、また、この腐食がめっき層を貫通して基板の鋼板に達すると、赤錆が発生し美観を損ねるのみならず、腐食がさらに進行し、鋼板自体の耐食性を劣化させる。このような亜鉛系合金めっき層の耐食性の劣化を防止するために、めっき層にさらに塗装を施したりして、めっき層の微小亀裂からの腐食の進行を防止したものがある。
【0006】
ところで、溶接製品の溶接部の強度を向上させ、応力集中や、微小応力欠陥を抑制する応力パターンを形成するために超音波衝撃エネルギにより処理する方法が知られている(例えば、特許文献1参照)。
【0007】
【特許文献1】
米国特許第6,171,415号明細書
【0008】
【発明が解決しようとする課題】
このように、亜鉛系合金めっき層の上に防錆のための皮膜を形成する方法は、めっき処理した後の鋼板にほぼ全面にわたって塗装被覆されており、塗装被覆のためのコストがきわめて高いものとなる。さらに、この塗装被覆した亜鉛系合金めっき鋼板も、鋼板を所定の形状に加工した際にめっきに亀裂が入ると共に、塗装皮膜にも亀裂がはいることがあり、塗装皮膜の亀裂を通してめっき層、さらには基板の鋼板にまで腐食が進展する。従って、この塗装被覆した亜鉛系合金めっき鋼板でも、めっき鋼板の耐食性向上のための十分な対策とはなりえない。本発明は、亜鉛系合金めっき鋼板の加工によって生じるめっき層の亀裂の進展を効率的に防止し、亜鉛系合金めっき鋼板の耐食性を改善する方法を提供することを課題とする。
【0009】
【課題を解決するための手段】
本発明は、上記の課題を解決するものであって、超音波で先端を振幅20〜60μm、周波数19kHz〜60kHz、出力0.2〜3kwで振動させる工具を用いて亜鉛系合金めっき鋼板を打撃する超音波衝撃処理を、鋼板を加工した後の加工部に施すことによって、亜鉛系合金めっき層の表層を塑性変形させ、よって耐食性を改善するものである。その要旨とするところは、以下のとおりである。
【0010】
(1)鋼板の表面に、質量%で亜鉛を30%以上含有する亜鉛系合金めっきを施した鋼板において、該鋼板を加工した後に、該鋼板の加工部分に、超音波衝撃処理を施すことを特徴とする亜鉛系合金めっき鋼板の耐食性改善方法。
【0011】
(2)亜鉛系合金めっき鋼板のめっき層が、55%アルミニウム−亜鉛合金のめっき層であることを特徴とする(1)記載の亜鉛系合金めっき鋼板の耐食性改善方法。
【0012】
(3)亜鉛系合金めっき鋼板のめっき層が、質量%で、1〜20%のアルミニウム、0.5〜10%のMgを含有する亜鉛系合金めっき層であることを特徴とする(1)記載の亜鉛系合金めっき鋼板の耐食性改善方法。
【0013】
(4)さらに、亜鉛系合金めっき鋼板のめっき層が質量%で、Si:0.01〜1%を含有する亜鉛系合金めっき層であることを特徴とする(3)に記載の亜鉛系合金めっき鋼板の耐食性改善方法。
【0014】
【発明の実施の形態】
本発明の方法は、亜鉛系合金めっき鋼板を加工して使用する構造製品、例えば、自動車の構造部材、電気製品用部材、建築部材などに広く適用されるものである。特に、曲げ加工、張り出し加工など、表面が厳しい引張加工を受けるものに有用である。このような構造製品部材の加工途上において、めっき鋼板が上記のような厳しい引張加工を受けると、めっき鋼板のめっき層の表面に微小な亀裂が発生する。この微小な亀裂が湿潤空気、水滴などが存在すると、亀裂部分とそれ以外の部分との間に電位差が生じて、亜鉛系合金めっき層の腐食が起こり、腐食生成物としての白錆(酸化亜鉛)が発生する。この腐食がさらに進行し亀裂がめっき層を貫通して下地の鋼板にまで達すると、鋼板が腐食し生成物として赤錆(酸化鉄)が発生する。このように加工によって形成されためっき表面の亀裂がめっき鋼板の耐食性を著しく低下させる。
【0015】
従って、加工によって生じた亀裂を修復するか、亀裂の開口部が環境と接触しないように閉塞すれば腐食の進行を防止することができることがわかる。
【0016】
このようなめっき層の亀裂の発生は、厳しい加工を受けた箇所が主であるため、少なくともこの箇所に対してめっき層の亀裂を修復し、或いは、その開口部が環境と接触しないように閉塞する処理を施せばよいことになる。
【0017】
ところで、亀裂を修復ないしは、その開口部を閉塞する方法として、超音波衝撃処理を適用することに想到した。この処理は、超音波で先端のハンマー部を振幅20〜50μm、周波数19〜60kHz、出力0.2〜3kwで振動させる装置により金属表面を打撃してピーニングを行なうものであって、基本的にはハンマーピーニングと同じであるが、一回一回の打撃のエネルギーは小さいかわりに、1秒間に1万回を超える回数の打撃を加えることによって、金属に塑性変形を与えるものである。
【0018】
この打撃処理により、めっき層の表層部を塑性変形させ、よって、亀裂の密着させて、これをなくし或いは、亀裂の開口部を閉塞することにより、亀裂への腐食物質の侵入を防ぐことができる。すなわち、図1(a)、図1(b)は、鋼板1に亜鉛系合金めっき層2を有するめっき鋼板1の加工部に対して、超音波衝撃処理を施す場合の、(a)処理前と(b)処理後のめっき層の性状変化を説明する断面模式図であるが、処理前にあっためっき層の亀裂4は、超音波衝撃処理により、亀裂が解消し、或いは小さくなり、或いは開口部が閉塞されたものとなっている。
【0019】
これによって、めっき層の耐食性を向上させることが可能となる。
【0020】
超音波衝撃処理は、1回の打撃エネルギーが小さいため、先端部のハンマー形状は、小型にすることができ、微小な部分や、狭隘な部分に対しても打撃処理を施すことができる。この点において、曲げや張り出しなどの加工を受けた部分にでも処理が適用可能となる。この場合でも、上述のように打撃回数を極めて多くできることから、十分な塑性変形を与えることができる。
【0021】
また、この超音波衝撃処理は、金属表面に対して非常に多くの回数の打撃を与えているので、金属表面に対して従来のハンマーピーニングにはない効果をもあり、また、一回一回の打撃エネルギーショットは、ショットピーニングよりも大きいので、従来のショットピーニングにない効果もある。
【0022】
すなわち、先ず、打撃の回数が多いことで、処理の均一性が得られる。ハンマーピーニングでも数パスを同一線上で実施すればある程度の均一性が得られるが、超音波衝撃処理の打撃サイクル数は、19〜60kHzであり、その得られる均一性はハンマーピーニングのそれとは全く異なるレベルにあり、処理スピードが0.5m/分程度であれば、所要の金属表面のほとんどを均一にかつ欠陥を残すことなく仕上げることができる。
【0023】
このとき、一回一回の打撃力は小さいために、打撃装置に生じる反動は殆どなく、ハンマーピーニング装置に比べて使用性、施工性の面で優れている。
【0024】
めっき層の表層部を塑性変形させるために必要な変形のためのエネルギーはほぼ一定であるため、1サイクルの衝撃エネルギーを大きくして短時間に処理しても良いが、均一性を高めたい場合や、衝撃部位の位置をより精緻に制御し、過度な塑性変形を防止したい場合は、1サイクルの衝撃エネルギーを小さくし、二回以上の処理を同一箇所に対して行なうことが好ましい。
【0025】
また、衝撃エネルギーによって生じる塑性変形の厚さは、衝撃装置の先端のハンマーの曲率半径Rとも関係しており、1サイクルの衝撃エネルギーが同じでも、Rが小さければ、1サイクルの衝撃で生じる塑性変形の厚さは大きくなり、Rが大きければその厚さは小さくなる。
【0026】
また、ハンマーのRが小さければ、1サイクルで処理される範囲が狭いので繰り返し処理が必要となり、またRが大きければ、微小部分への衝撃制御が困難となることもある。従って、超音波打撃処理装置の先端のハンマーの形状は、処理対象とする鋼板の加工部の状況によって適宜選択する。
【0027】
超音波衝撃処理を施すにあたっては、亜鉛系合金めっき鋼板の処理対象箇所すなわち、加工部の形状、加工度などの性状に応じて、超音波打撃処理に必要なハンマーの形状、1サイクルの打撃エネルギー、サイクル数、処理回数などの処理条件を、予備試験などにより、予め設定しておき、これに従って超音波衝撃処理を行なうことにより、加工部のめっき層を塑性変形させ、亀裂を修復ないしは閉塞して耐食性を向上させることが出来る。
【0028】
加工部は、曲げ、張り出しなどに限らず、切断、絞りなど亜鉛系合金めっき層に亀裂を生ぜしめるような加工を加えた個所を含むものであり、少なくともこの加工部を含む周辺に施すことが好ましい。
【0029】
なお、この超音波衝撃処理を施した表面は、塑性変形によって微小な凹凸が形成されることになるため、その表面光沢は若干変化する。これによって、処理されたかどうかを判定することができる。
【0030】
なお、必要により、鋼板の加工部に超音波処理を施し、その後、加工部を含む鋼板の表面に塗装を行なっても良い。また、鋼板の加工部に塗装を施した後、超音波衝撃処理を施しても良い。
【0031】
しかしながら、めっき鋼板の超音波衝撃処理を施した部分に対しては、この箇所にさらに亀裂を生ぜしめるような加工は行なわないことが好ましい。超音波処理を施した後に、この箇所のめっき層に亀裂を生ぜしめるような引張、曲げ張り出しなどの加工を行なうと、再び亀裂が発生したり、閉塞した開口部が再び開口することがあり、耐食性を向上させる効果が減殺されるからである。
本発明が対象とするめっき鋼板は、亜鉛を主体として合金元素を多量に含有する亜鉛系合金めっき鋼板である。合金元素を多量に含有させることで耐食性や溶接性などの性能が向上する一方で、合金元素の多量添加は金属間化合物を形成するなどしてめっき層の硬さを上げ、加工時のめっき割れを促進することが多いからである。具体的には、55%アルミニウム−亜鉛めっき鋼板(JIS G 3321)、Zn−1〜20%Al−0.5〜10%Mgめっき鋼板、Zn−1〜20%Al−0.5〜10%Mg−0.01〜1%Siめっき鋼板、が挙げられる。
【0032】
めっき層がZnを30%以上含有するものとするのは、Zn含有量が40%未満ではめっき層の耐食性が不充分となるからである。
【0033】
Zn−Al合金めっき鋼板において、Alはめっきの耐食性を高める目的で添加され、55%Al−Znめっき鋼板(JIS G 3321)はその代表例としてよく知られている。めっき層中のAl含有量が70%を超えると湿潤環境での耐食性が低下する。
【0034】
Zn−Al−Mg合金めっき鋼板において、AlおよびMgは耐食性を高める目的で添加されるが、Al含有量が1%未満、Mg含有量が0.5%未満では耐食性向上効果が充分ではない。Al含有量が20%を超えるか、Mg含有量が10%を超えると、めっき層が脆くなりすぎて、超音波衝撃処理を施しても耐食性の改善効果が充分ではない。Mg含有量はより好ましくは5%を上限とする。
【0035】
Zn−Al−Mg合金めっき鋼板には、必要に応じてさらに耐食性を向上させる目的で、Siを添加し得る。SiはZn−Al−Mg合金めっき鋼板の耐食性を一段と向上させる効果があるが、含有量が0.1%未満ではその効果が充分ではない。Si含有量が1%を超えて添加することはめっきの外観を著しく損なうので、Siを添加する場合の上限含有量は1%とする。
【0036】
本願発明におけるZn系合金めっきにおいては、耐食性、めっき密着性、成形性などを改善する目的で、めっき層中にさらにPb,Sb,C,P,Fe,Sn,Mn,Ni,Cr,Co,Cu,Ca,Li,Ti,B、希土類元素の1種または2種以上を総和で25%以下含有させることができる。あるいは不純物として上記の元素を混入したZnめっきであっても、支障を来すことはない。また、S,As等の元素、酸化物、炭化物、硫化物等の化合物を分散させためっきとすることもできる。
【0037】
本願発明が対象とするめっき鋼板の下地鋼板の成分は特に限定されるものではなく、必要な強度、加工性、成形性などに応じて適切な成分を選択することができる。
【0038】
さらに、本発明に適用される鋼板は通常のプロセスで製造される冷延鋼板、熱延鋼板のいずれであってもその効果は充分に発揮されるものであり、鋼板の履歴によって効果が大きく変化するものでもない。
【0039】
当然のことながら、本発明が対象とするめっき鋼板上に、各種の処理を付加して施すことも勿論可能であり、例えば、潤滑性向上処理、樹脂塗布処理、溶接性向上処理、りん酸塩処理、りん酸塩処理性を向上させるための処理、等を施したとしても、本願発明の範囲を逸脱するものではなく、付加して必要とする特性に応じて、各種の処理を施しても本願発明の効果は何ら変わるところはない。
【0040】
本発明が対象とするめっき鋼板の強度としては、引張強度が300N/mm2未満の普通鋼あるいは超深絞り用鋼板から、300N/mm2以上の高強度鋼(300,340,400,440,590,780,980,1180,1450N/mm2級など)などの広範囲にわたるものである。
【0041】
なお、亜鉛系合金めっき鋼板の製造方法は、特に限定するものではないが、鋼板を上記の亜鉛系合金の溶融めっき浴に浸漬してめっきすることが一般的である。
【0042】
【実施例】
亜鉛系合金めっきを施した板厚1.0mmの亜鉛系合金めっき鋼板から曲げ試験片(1.0mm(板厚)×20mm(幅)×100mm(長さ))を採取し、めっき面が曲げの外側となるようにして曲げを施した。曲げは、JIS G 3321に準拠した。次いで、本発明の例においては、この試験片の曲げ面に、半径が1.5mmのハンマーを備えた超音波打撃装置により、振幅30μm、周波数30kHzにて0.5m/minの速度で、超音波衝撃処理を行なった。また、比較例として、曲げ面に、ショット粒径7mm、ショット速度10m/sで、2分間のショットピーニングを施したもの、および曲げ状態のまま(無処理)のものを準備し、これらの試験片について大気中での曝露試験を行なった。
【0043】
その結果を表1に示す。
【0044】
表1から判るように、ショットピーニングを施した比較例1,2では35日で白錆が、120日で赤錆が認められ、特に処理を施さなかった比較例2,3では、30〜40日で白錆が、100〜130日で赤錆が認められた。これに対して、本発明の試験片には、長期間白錆、赤錆が発生せず、超音波衝撃処理により耐食性が向上しているのがわかる。
【0045】
【表1】
【0046】
【発明の効果】
本発明の方法によれば、亜鉛系合金めっき鋼板の加工部に発生する耐食性の劣化を抑制することができるので、亜鉛めっき鋼板を使用した構造製品の耐久性を向上させることができる。本発明の方法は、ハンマーピーニング装置などに比して使用性に優れた超音波打撃装置を使用するので、加工部という限られた箇所、微小な箇所、狭隘な箇所に対して適用でき、構造製品の耐食性を向上させるための処理として効率的であり、経済的にも優れた方法である。
【図面の簡単な説明】
【図1】本発明の方法による亜鉛系合金めっき鋼板の加工部の性状変化を説明する断面模式図であり、(a)は、超音波衝撃処理前、(b)は、超音波衝撃処理後の亀裂の性状を示す。
【符号の説明】
1…亜鉛系合金めっき鋼板
2…鋼板
3…亜鉛系合金めっき層
4…亀裂[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for improving the corrosion resistance of a zinc-based alloy-coated steel sheet, and more particularly, to a method for improving the corrosion resistance of a processed portion of a zinc-based alloy-coated steel sheet.
[0002]
[Prior art]
In order to improve the corrosion resistance of the steel sheet, a zinc-based alloy, for example, a Zn-Al-based, Zn-Al-Mg-based, Zn-Al-Mg-Si-based alloy, etc. Plating by a method such as an immersion method is widely performed.
[0003]
These plated steel sheets are used as many members such as automobiles and building materials due to their excellent corrosion resistance. In particular, in the case of building materials which are directly exposed to a corrosive environment outdoors, those having a Zn-Al-Si-based somewhat hard plating layer formed thereon are often used. When used for these applications, the plated steel sheet is subjected to processing such as cutting, bending, overhanging, and welding.
[0004]
Although the zinc-based alloy plating layer is excellent in workability, it is unavoidable that a minute crack is generated in the plating layer due to such processing.
[0005]
When the zinc-based alloy plating layer cracks, the corrosion of the plating layer progresses along the gap of the cracked part, white rust is generated, and when this corrosion penetrates the plating layer and reaches the steel plate of the board, Red rust not only impairs aesthetic appearance, but also promotes further corrosion and deteriorates the corrosion resistance of the steel sheet itself. In order to prevent the corrosion resistance of the zinc-based alloy plating layer from deteriorating, there is a type in which the coating layer is further coated to prevent the progress of corrosion from micro cracks in the plating layer.
[0006]
By the way, there is known a method of processing with ultrasonic impact energy in order to improve the strength of a welded portion of a welded product and to form a stress pattern for suppressing stress concentration and minute stress defects (for example, see Patent Document 1). ).
[0007]
[Patent Document 1]
US Patent No. 6,171,415
[Problems to be solved by the invention]
As described above, the method of forming a film for rust prevention on a zinc-based alloy plating layer is that the steel sheet after plating is coated and coated almost over the entire surface, and the cost for coating is extremely high. It becomes. In addition, this coated zinc-based alloy-plated steel sheet also has cracks in the plating when the steel sheet is processed into a predetermined shape, and the coating film may also have cracks. Furthermore, corrosion progresses to the steel plate of the substrate. Therefore, even the zinc-coated alloy coated steel sheet coated with the paint cannot be a sufficient measure for improving the corrosion resistance of the coated steel sheet. An object of the present invention is to provide a method for efficiently preventing the growth of a crack in a plating layer caused by processing of a zinc-based alloy-plated steel sheet and improving the corrosion resistance of the zinc-based alloy-plated steel sheet.
[0009]
[Means for Solving the Problems]
The present invention solves the above-described problems, and strikes a zinc-based alloy-plated steel sheet using a tool that vibrates the tip with an ultrasonic wave at an amplitude of 20 to 60 μm, a frequency of 19 to 60 kHz, and an output of 0.2 to 3 kw. By applying the ultrasonic impact treatment to the processed portion after processing the steel plate, the surface layer of the zinc-based alloy plating layer is plastically deformed, and thus the corrosion resistance is improved. The summary is as follows.
[0010]
(1) In a steel sheet having a zinc-based alloy plating containing 30% or more by mass of zinc on the surface of the steel sheet, after processing the steel sheet, performing an ultrasonic impact treatment on a processed portion of the steel sheet. A method for improving the corrosion resistance of zinc-based alloy-coated steel sheets.
[0011]
(2) The method for improving corrosion resistance of a zinc-based alloy plated steel sheet according to (1), wherein the plated layer of the zinc-based alloy plated steel sheet is a 55% aluminum-zinc alloy plated layer.
[0012]
(3) The plating layer of the zinc-based alloy-plated steel sheet is a zinc-based alloy plating layer containing 1 to 20% of aluminum and 0.5 to 10% of Mg by mass%. The method for improving corrosion resistance of a zinc-based alloy-coated steel sheet according to the above description.
[0013]
(4) The zinc-based alloy according to (3), wherein the plating layer of the zinc-based alloy-plated steel sheet is a zinc-based alloy plating layer containing 0.01% to 1% by mass of Si. A method for improving the corrosion resistance of plated steel sheets.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
INDUSTRIAL APPLICABILITY The method of the present invention is widely applied to structural products processed and used for zinc-based alloy-plated steel sheets, for example, structural members of automobiles, members for electric appliances, building members, and the like. In particular, it is useful for those whose surfaces are subjected to severe tensile processing such as bending and overhanging. During the processing of such a structural product member, when the plated steel sheet is subjected to the severe tensile processing as described above, a minute crack is generated on the surface of the plating layer of the plated steel sheet. If these minute cracks have moist air, water droplets, etc., a potential difference occurs between the cracked portions and other portions, causing corrosion of the zinc-based alloy plating layer, and white rust (zinc oxide) as a corrosion product ) Occurs. When the corrosion further progresses and the crack penetrates the plating layer and reaches the base steel sheet, the steel sheet is corroded and red rust (iron oxide) is generated as a product. The cracks on the plating surface formed by such processing significantly reduce the corrosion resistance of the plated steel sheet.
[0015]
Therefore, it is understood that the progress of corrosion can be prevented by repairing the crack generated by the processing or closing the opening of the crack so as not to contact the environment.
[0016]
Such cracks in the plating layer are mainly generated in places where severe processing has been performed, so at least the cracks in the plating layer are repaired at this location, or the openings are closed so that they do not come into contact with the environment. That is, the process of
[0017]
By the way, as a method of repairing a crack or closing an opening thereof, it has been conceived to apply an ultrasonic impact treatment. In this processing, the hammer portion at the tip is vibrated at an amplitude of 20 to 50 μm, a frequency of 19 to 60 kHz, and an output of 0.2 to 3 kw with an ultrasonic wave to strike the metal surface to perform peening. Is the same as hammer peening, except that the energy of each impact is small, but the metal is plastically deformed by applying more than 10,000 impacts per second.
[0018]
By this impact treatment, the surface layer portion of the plating layer is plastically deformed, so that the cracks are brought into close contact with each other and eliminated, or the opening of the crack is closed, so that the invasion of a corrosive substance into the crack can be prevented. . That is, FIGS. 1 (a) and 1 (b) show (a) before treatment in the case where a processed portion of a plated
[0019]
This makes it possible to improve the corrosion resistance of the plating layer.
[0020]
In the ultrasonic impact processing, since the impact energy for one impact is small, the shape of the hammer at the tip can be made small, and the impact processing can be performed even on a minute portion or a narrow portion. In this regard, the processing can be applied to a portion that has undergone processing such as bending or overhang. Even in this case, since the number of impacts can be extremely large as described above, sufficient plastic deformation can be given.
[0021]
In addition, since this ultrasonic impact treatment gives a very large number of hits to the metal surface, it has an effect that the conventional hammer peening does not have on the metal surface. Since the impact energy shot is larger than shot peening, there is also an effect that is not provided by conventional shot peening.
[0022]
That is, first, since the number of hits is large, uniformity of processing can be obtained. Some uniformity can be obtained by performing several passes on the same line in hammer peening, but the number of impact cycles of ultrasonic impact treatment is 19 to 60 kHz, and the obtained uniformity is completely different from that of hammer peening. If the processing speed is about 0.5 m / min, the required metal surface can be almost uniformly finished without leaving any defects.
[0023]
At this time, since the impact force of each impact is small, there is almost no recoil generated in the impact device, and the usability and workability are superior to the hammer peening device.
[0024]
Since the energy required for plastic deformation of the surface layer of the plating layer is almost constant, it is possible to increase the impact energy in one cycle and process it in a short time. Alternatively, when it is desired to control the position of the impact portion more precisely and to prevent excessive plastic deformation, it is preferable to reduce the impact energy of one cycle and perform two or more processes on the same portion.
[0025]
The thickness of the plastic deformation caused by the impact energy is also related to the radius of curvature R of the hammer at the tip of the impact device. The thickness of the deformation increases, and the larger the R, the smaller the thickness.
[0026]
Further, if the radius R of the hammer is small, the range of processing in one cycle is narrow, so that repeated processing is necessary. If the radius R is large, it may be difficult to control the impact on a minute portion. Therefore, the shape of the hammer at the tip of the ultrasonic impact processing device is appropriately selected depending on the condition of the processed portion of the steel plate to be processed.
[0027]
In applying the ultrasonic impact treatment, the shape of the hammer required for the ultrasonic impact treatment, one cycle of the impact energy, depends on the processing target location of the zinc-based alloy plated steel sheet, that is, the shape of the processed part, the degree of work, etc. The processing conditions, such as the number of cycles and the number of times of processing, are set in advance by preliminary tests and the like, and by performing ultrasonic impact treatment in accordance therewith, the plated layer of the processed portion is plastically deformed and cracks are repaired or closed. Corrosion resistance can be improved.
[0028]
The processed part is not limited to bending, overhanging, etc., but also includes parts that have been subjected to processing such as cutting, drawing, etc. that cause cracks in the zinc-based alloy plating layer, and can be applied at least to the periphery including this processed part. preferable.
[0029]
Since the surface subjected to the ultrasonic impact treatment has minute irregularities formed by plastic deformation, the surface gloss slightly changes. This makes it possible to determine whether or not the processing has been performed.
[0030]
If necessary, the processed portion of the steel sheet may be subjected to ultrasonic treatment, and thereafter, the surface of the steel sheet including the processed portion may be coated. Further, after applying a coating to the processed portion of the steel sheet, an ultrasonic impact treatment may be applied.
[0031]
However, it is preferable not to perform a process for generating a further crack in this portion of the plated steel sheet subjected to the ultrasonic impact treatment. After performing the ultrasonic treatment, if the plating layer of this location is subjected to processing such as tension, bending overhanging to cause a crack, or a crack may be generated again, or the closed opening may be opened again. This is because the effect of improving the corrosion resistance is reduced.
The plated steel sheet targeted by the present invention is a zinc-based alloy-coated steel sheet mainly containing zinc and containing a large amount of alloying elements. Inclusion of a large amount of alloying elements improves the performance such as corrosion resistance and weldability, while addition of a large amount of alloying elements increases the hardness of the plating layer by forming intermetallic compounds, etc. Is often promoted. Specifically, 55% aluminum-zinc plated steel sheet (JIS G 3321), Zn-1-20% Al-0.5-10% Mg plated steel sheet, Zn-1-20% Al-0.5-10% Mg-0.01% to 1% Si-plated steel sheet.
[0032]
The reason why the plating layer contains Zn at 30% or more is that if the Zn content is less than 40%, the corrosion resistance of the plating layer becomes insufficient.
[0033]
In a Zn-Al alloy plated steel sheet, Al is added for the purpose of enhancing the corrosion resistance of plating, and a 55% Al-Zn plated steel sheet (JIS G 3321) is well known as a typical example. If the Al content in the plating layer exceeds 70%, the corrosion resistance in a wet environment decreases.
[0034]
In a Zn-Al-Mg alloy plated steel sheet, Al and Mg are added for the purpose of enhancing corrosion resistance. However, if the Al content is less than 1% and the Mg content is less than 0.5%, the effect of improving corrosion resistance is not sufficient. If the Al content exceeds 20% or the Mg content exceeds 10%, the plating layer becomes too brittle, and the effect of improving corrosion resistance is not sufficient even when subjected to ultrasonic impact treatment. The upper limit of the Mg content is more preferably 5%.
[0035]
Si may be added to the Zn-Al-Mg alloy plated steel sheet for the purpose of further improving the corrosion resistance as needed. Si has the effect of further improving the corrosion resistance of the Zn—Al—Mg alloy plated steel sheet, but if the content is less than 0.1%, the effect is not sufficient. If the Si content exceeds 1%, the appearance of the plating is significantly impaired, so the upper limit of the content when Si is added is 1%.
[0036]
In the Zn-based alloy plating of the present invention, Pb, Sb, C, P, Fe, Sn, Mn, Ni, Cr, Co, and Pb are further added to the plating layer for the purpose of improving corrosion resistance, plating adhesion, formability, and the like. One, two or more of Cu, Ca, Li, Ti, B, and rare earth elements can be contained in a total amount of 25% or less. Alternatively, there is no problem even with Zn plating in which the above elements are mixed as impurities. Further, plating may be performed in which compounds such as elements such as S and As, oxides, carbides, and sulfides are dispersed.
[0037]
The component of the base steel sheet of the plated steel sheet targeted by the present invention is not particularly limited, and an appropriate component can be selected according to the required strength, workability, formability, and the like.
[0038]
Furthermore, the effect of the steel sheet applied to the present invention is sufficiently exhibited regardless of whether it is a cold-rolled steel sheet or a hot-rolled steel sheet manufactured by a normal process, and the effect greatly varies depending on the history of the steel sheet. Nothing to do.
[0039]
It goes without saying that various treatments can be added to the plated steel sheet to which the present invention is applied, for example, lubrication improving treatment, resin coating treatment, weldability improving treatment, phosphate, etc. Even if a treatment, a treatment for improving the phosphatability, etc., is performed, it does not deviate from the scope of the present invention, and various treatments may be performed according to the characteristics required additionally. The effect of the present invention does not change at all.
[0040]
The strength of the plated steel sheet to which the present invention is directed, the tensile strength of ordinary steel or super deep drawing steel sheet for less than 300N / mm 2, 300N / mm 2 or more high-strength steels (300,340,400,440, 590, 780, 980, 1180, 1450 N / mm class 2 ).
[0041]
The method for producing the zinc-based alloy-plated steel sheet is not particularly limited, but it is general that the steel sheet is immersed in a hot-dip bath of the above-mentioned zinc-based alloy for plating.
[0042]
【Example】
A bending test piece (1.0 mm (thickness) x 20 mm (width) x 100 mm (length)) is sampled from a zinc-based alloy-plated steel sheet having a thickness of 1.0 mm and subjected to zinc-based alloy plating. Was bent so as to be outside. The bending was based on JIS G 3321. Next, in the example of the present invention, an ultrasonic striker equipped with a hammer having a radius of 1.5 mm was applied to the bending surface of the test piece at an amplitude of 30 μm, a frequency of 30 kHz, and a speed of 0.5 m / min. A sonic impact treatment was performed. In addition, as comparative examples, a test piece prepared by subjecting a bent surface to shot peening for 2 minutes at a shot particle size of 7 mm and a shot speed of 10 m / s, and a test piece in a bent state (untreated) were prepared. The pieces were subjected to an atmospheric exposure test.
[0043]
Table 1 shows the results.
[0044]
As can be seen from Table 1, in Comparative Examples 1 and 2 subjected to shot peening, white rust was observed at 35 days and red rust was observed at 120 days, and in Comparative Examples 2 and 3 not particularly treated, 30 to 40 days. And red rust was observed in 100 to 130 days. On the other hand, it can be seen that the test piece of the present invention did not generate white rust and red rust for a long period of time, and the corrosion resistance was improved by the ultrasonic impact treatment.
[0045]
[Table 1]
[0046]
【The invention's effect】
According to the method of the present invention, it is possible to suppress the deterioration of the corrosion resistance generated in the processed part of the zinc-based alloy-plated steel sheet, so that the durability of the structural product using the galvanized steel sheet can be improved. Since the method of the present invention uses an ultrasonic hitting device having excellent usability as compared with a hammer peening device, it can be applied to a limited portion such as a processed portion, a minute portion, a narrow portion, and has a structure. This is an efficient and economical method for improving the corrosion resistance of products.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view illustrating a change in the properties of a processed portion of a zinc-based alloy-plated steel sheet according to the method of the present invention, where (a) is before ultrasonic impact treatment, and (b) is after ultrasonic impact treatment. This shows the nature of the cracks.
[Explanation of symbols]
DESCRIPTION OF
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002316326A JP3740112B2 (en) | 2002-10-30 | 2002-10-30 | Method for improving corrosion resistance of zinc-based alloy-plated steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002316326A JP3740112B2 (en) | 2002-10-30 | 2002-10-30 | Method for improving corrosion resistance of zinc-based alloy-plated steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004149850A true JP2004149850A (en) | 2004-05-27 |
JP3740112B2 JP3740112B2 (en) | 2006-02-01 |
Family
ID=32460069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002316326A Expired - Fee Related JP3740112B2 (en) | 2002-10-30 | 2002-10-30 | Method for improving corrosion resistance of zinc-based alloy-plated steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3740112B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014231070A (en) * | 2013-05-29 | 2014-12-11 | 日新製鋼株式会社 | PROCESSING METHOD FOR Zn-BASED PLATING COMPONENTS |
WO2016027293A1 (en) * | 2014-08-22 | 2016-02-25 | 日新製鋼株式会社 | Method for processing galvanized component |
CN110512156A (en) * | 2019-08-12 | 2019-11-29 | 江苏大学 | A kind of aluminium alloy based composites Nano surface treatment method |
JP2022089152A (en) * | 2020-12-03 | 2022-06-15 | 攀▲鋼▼集▲団▼研究院有限公司 | HOT-DIP Zn-Al-Mg ALLOY PLATED STEEL SHEET FOR SUPER DEEP DRAWING AND METHOD FOR MANUFACTURING THE SAME |
CN116547405A (en) * | 2021-12-03 | 2023-08-04 | 日本制铁株式会社 | Zn-based coated steel sheet |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07266230A (en) * | 1994-03-29 | 1995-10-17 | Toshiba Corp | Method and device for reforming structural material |
JPH11189843A (en) * | 1997-12-25 | 1999-07-13 | Sumitomo Metal Ind Ltd | Resistance welded steel tube excellent in hot dip galvanizing crack resistance, and its production |
US6171415B1 (en) * | 1998-09-03 | 2001-01-09 | Uit, Llc | Ultrasonic impact methods for treatment of welded structures |
JP2001349982A (en) * | 2000-06-06 | 2001-12-21 | Toshiba Corp | Method for inhibiting development of stress corrosion cracking |
-
2002
- 2002-10-30 JP JP2002316326A patent/JP3740112B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07266230A (en) * | 1994-03-29 | 1995-10-17 | Toshiba Corp | Method and device for reforming structural material |
JPH11189843A (en) * | 1997-12-25 | 1999-07-13 | Sumitomo Metal Ind Ltd | Resistance welded steel tube excellent in hot dip galvanizing crack resistance, and its production |
US6171415B1 (en) * | 1998-09-03 | 2001-01-09 | Uit, Llc | Ultrasonic impact methods for treatment of welded structures |
JP2001349982A (en) * | 2000-06-06 | 2001-12-21 | Toshiba Corp | Method for inhibiting development of stress corrosion cracking |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014231070A (en) * | 2013-05-29 | 2014-12-11 | 日新製鋼株式会社 | PROCESSING METHOD FOR Zn-BASED PLATING COMPONENTS |
WO2016027293A1 (en) * | 2014-08-22 | 2016-02-25 | 日新製鋼株式会社 | Method for processing galvanized component |
CN106852160A (en) * | 2014-08-22 | 2017-06-13 | 日新制钢株式会社 | The processing method of Zn systems plated part |
US20170266708A1 (en) * | 2014-08-22 | 2017-09-21 | Nisshin Steel Co., Ltd. | Method for processing galvanized component |
US10207306B2 (en) | 2014-08-22 | 2019-02-19 | Nisshin Steel Co., Ltd. | Method for processing galvanized component |
CN106852160B (en) * | 2014-08-22 | 2019-03-15 | 日新制钢株式会社 | The processing method of Zn system plated part |
CN110512156A (en) * | 2019-08-12 | 2019-11-29 | 江苏大学 | A kind of aluminium alloy based composites Nano surface treatment method |
JP2022089152A (en) * | 2020-12-03 | 2022-06-15 | 攀▲鋼▼集▲団▼研究院有限公司 | HOT-DIP Zn-Al-Mg ALLOY PLATED STEEL SHEET FOR SUPER DEEP DRAWING AND METHOD FOR MANUFACTURING THE SAME |
JP7315634B2 (en) | 2020-12-03 | 2023-07-26 | 攀▲鋼▼集▲団▼研究院有限公司 | Hot-dip Zn-Al-Mg alloy plated steel sheet for ultra-deep drawing and its manufacturing method |
CN116547405A (en) * | 2021-12-03 | 2023-08-04 | 日本制铁株式会社 | Zn-based coated steel sheet |
Also Published As
Publication number | Publication date |
---|---|
JP3740112B2 (en) | 2006-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101707984B1 (en) | HOT-DIP Al-Zn COATED STEEL SHEET | |
JP6176424B1 (en) | Plated steel | |
CN101128614B (en) | Coated steel sheet or coil | |
JP5754993B2 (en) | Plating steel material and steel pipe having high corrosion resistance and excellent workability, and manufacturing method thereof | |
JP2020056099A (en) | Steel sheet coated with aluminum-based metal coating | |
WO2012070694A1 (en) | Al-Zn-BASED HOT-DIP PLATED STEEL SHEET AND MANUFACTURING METHOD THEREOF | |
WO2004094684A1 (en) | Hot press formed product and method for production thereof | |
WO2019180853A1 (en) | Hot stamp molded body | |
JP5880260B2 (en) | Manufacturing method of welded structure | |
JP2003277992A (en) | Automobile fuel tank or oil feeding pipe made of stainless steel having excellent corrosion resistance | |
JP7107327B2 (en) | Press-molded product manufacturing method and press-molded product | |
KR102527548B1 (en) | plated steel | |
JP3740112B2 (en) | Method for improving corrosion resistance of zinc-based alloy-plated steel sheet | |
KR20180021125A (en) | Method for producing hot-pressed member | |
JPH06256903A (en) | Galvannealed steel sheet excellent in press workability and plating peeling resistance | |
JP2841889B2 (en) | Manufacturing method of alloyed hot-dip galvanized steel sheet | |
KR101267705B1 (en) | Alloyed hot-dip galvanized steel sheet and method for producing same | |
JP2007314858A (en) | Hot dip galvannealed steel sheet and production method therefor | |
JP2002004018A (en) | High strength hot-dip galvanized steel sheet having good corrosion resistance after coating and good press- workability, and coated steel sheet | |
JP3163986B2 (en) | Galvannealed steel sheet | |
JP2707952B2 (en) | Alloyed hot-dip galvanized steel sheet excellent in interfacial adhesion and method for producing the same | |
JP2022130469A (en) | Method for manufacturing coated steel sheet | |
JP2014240510A (en) | Galvanized steel sheet and production method thereof | |
JP2004277839A (en) | Zinc based metal-coated steel | |
JP2803566B2 (en) | Alloyed galvanized steel sheet with excellent film destruction resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041217 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051014 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051025 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051104 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081111 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091111 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101111 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101111 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111111 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111111 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121111 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121111 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131111 Year of fee payment: 8 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131111 Year of fee payment: 8 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131111 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |