JP2004149410A - Glass lens forming apparatus - Google Patents

Glass lens forming apparatus Download PDF

Info

Publication number
JP2004149410A
JP2004149410A JP2003350443A JP2003350443A JP2004149410A JP 2004149410 A JP2004149410 A JP 2004149410A JP 2003350443 A JP2003350443 A JP 2003350443A JP 2003350443 A JP2003350443 A JP 2003350443A JP 2004149410 A JP2004149410 A JP 2004149410A
Authority
JP
Japan
Prior art keywords
mold
glass lens
heated
forming apparatus
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003350443A
Other languages
Japanese (ja)
Other versions
JP4222922B2 (en
Inventor
Masayuki Takahashi
正行 高橋
Masatoshi Teranishi
正俊 寺西
Takayuki Nagahara
孝行 永原
Katsuki Shingu
克喜 新宮
Takeshi Muneyuki
健 宗行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003350443A priority Critical patent/JP4222922B2/en
Publication of JP2004149410A publication Critical patent/JP2004149410A/en
Application granted granted Critical
Publication of JP4222922B2 publication Critical patent/JP4222922B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • C03B11/122Heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/60Aligning press die axes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/80Simultaneous pressing of multiple products; Multiple parallel moulds

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass lens forming apparatus capable of manufacturing a low-cost high-precision formed glass lens by high-frequency induction heating without using a high-precision former. <P>SOLUTION: A forming tool A consisting of a barrel die 1, an upper die 2 and a lower die 3 is constructed so that the tool A is subjected to high-frequency induction heating, the lower die 3 is supported by a stationary part 4 and three protrusions 4a, 4b, 4c of a former B, and the upper die 2 is supported by a movable part 5 and one protrusion 5a of the former B. The barrel die 1, the upper die 2 and the lower die 3 are made of a ceramic material difficult to induction-heat, parts 2b, 3b for heating comprising a metallic material easy to induction-heat or elements for heating are disposed in the upper die 2 and the lower die 3, and by induction-heating these, a cavity is heated to form a glass lens. <P>COPYRIGHT: (C)2004,JPO

Description

本発明は、光学機器に用いられるガラスレンズの成形加工分野において、誘導加熱により成形されるガラスレンズ成形装置に関するものである。   The present invention relates to a glass lens forming apparatus that is formed by induction heating in the field of forming glass lenses used in optical instruments.

従来、ガラスレンズ用成形装置は、成形精度を向上させるために、成形型を成形機に固定しながらも、レンズの成形精度を維持するよう工夫しているもの(例えば、特許文献1参照。)と、成形金型を成形機に非固定にして、成形金型が成形機に影響されにくい構造にしているもの(例えば、特許文献2参照。)がある。また、多くの場合、高周波誘導加熱方式によるガラスレンズ成形が行われている(特許文献1、2にも記載。)が、例えば、特許文献3に記載されているものでは、ガラスレンズ面を成形する上下型に対して、これを取り巻く部材(保持部品等)を加熱する構成が採られている。また、特許文献4にも、対向した複数個の上下型をさらに外周から取り巻く部材を加熱してこれをレンズ成形部に伝熱する構成が採られている。さらに、特許文献1では、対向した複数個の上下型の外周にそれぞれ誘導コイルを設置する構成となっている。
特開平6−206732号公報(図2) 特開平5−24868号公報(図4、図6) 特許番号2509305 特開平5−163029号公報
2. Description of the Related Art Conventionally, in order to improve molding accuracy, a molding apparatus for glass lenses has been devised so as to maintain molding accuracy of a lens while fixing a molding die to a molding machine (for example, see Patent Document 1). There is a type in which a molding die is not fixed to a molding machine so that the molding die is hardly affected by the molding machine (for example, see Patent Document 2). In many cases, a glass lens is formed by a high-frequency induction heating method (also described in Patent Documents 1 and 2). For example, in Patent Document 3, a glass lens surface is formed. A configuration is adopted in which a member (a holding component or the like) surrounding the upper and lower molds is heated. Patent Document 4 also adopts a configuration in which a member surrounding a plurality of opposed upper and lower dies is further heated from the outer periphery and the heat is transferred to a lens molding portion. Further, Patent Document 1 discloses a configuration in which induction coils are provided on the outer peripheries of a plurality of opposed upper and lower dies.
JP-A-6-206732 (FIG. 2) JP-A-5-24868 (FIGS. 4 and 6) Patent No. 2509305 JP-A-5-163029

しかしながら、上記型固定式のものは、成形されるレンズ精度が成形機自体の精度に依存するため、高精度に組み立てられた成形機が必要となり、結果としてレンズコストが高くなる問題があった。   However, in the above-mentioned fixed mold type, since the precision of the formed lens depends on the precision of the molding machine itself, a molding machine assembled with high precision is required, and as a result, there is a problem that the lens cost is increased.

また上記型非固定式のものも、成形時の熱が成形機側に移り、成形機に熱歪が生じて成形精度を維持することが難しくなること、ならびに一般にロスの多い加熱構造となるため、昇温、降温に時間がかかり、成形サイクルが長くなること等の問題は解決できていなかった。   In addition, even in the above-mentioned non-fixed type, heat during molding is transferred to the molding machine side, and thermal distortion occurs in the molding machine, and it becomes difficult to maintain molding accuracy, and since the heating structure generally has a large loss, However, it has not been possible to solve the problems such as that it takes time to raise and lower the temperature, and the molding cycle becomes longer.

そして、誘導加熱による問題としては、特許文献3に示す構成では、ガラスレンズ成形のために対向させた上型、下型ではなく、それを取り巻く外周部材を主に誘導加熱することになる。そのため、温度は、外周部材の方が内部に保持される上下型よりも高くなる。このことから、高精度な同軸度等が要求される上記外周部材と内部の上下型の位置関係が高温下でクリアランスが広がることにより維持困難になる。従って、このような構成では、高い偏芯精度が要求される光学レンズの製造には問題がある。また、所定の温度に設定する必要があるガラスレンズ成形において、上下型を直接加熱せず、外周部材からの熱伝導による加熱であるため、昇温と降温に時間を要し、サイクルタイムが長くなるという問題も生じる。また、特許文献4に示された構成では、前記問題に加え、以下の問題も生じる。すなわち、誘導コイルによる加熱では、電流は被加熱物の表層に流れ、表面から加熱が行われる。そのため、一つの誘導コイル内に複数の上型・下型を配置する型構成では、前述の通り、型の半径方向に温度勾配が生じる。そのため、個々のガラスレンズを成形するための対向した上型、下型については、誘導コイルの内周寄りと外周寄りで温度が異なり、回転対称な工学レンズを得ることが困難になる。同様に、型内の複数個のレンズの特性を同一にすることが困難で、製造工程での歩留まりの悪化が問題となる。この解決に、特許文献1に示す構成が提案されているが、誘導コイルの構成が複雑となり、型構成の制約も多くなることから、実用化が困難である。   As a problem due to the induction heating, in the configuration shown in Patent Document 3, the outer peripheral member surrounding the upper die and the lower die, which are opposed to each other for forming the glass lens, is mainly induction-heated. Therefore, the temperature of the outer peripheral member is higher than that of the upper and lower molds held inside. For this reason, it is difficult to maintain the positional relationship between the outer peripheral member and the inner upper and lower dies, which require high-precision coaxiality and the like, because the clearance is widened at high temperatures. Therefore, in such a configuration, there is a problem in manufacturing an optical lens that requires high eccentricity. In addition, in glass lens molding which needs to be set to a predetermined temperature, since heating is performed by heat conduction from the outer peripheral member without directly heating the upper and lower molds, it takes time to raise and lower the temperature, and the cycle time is longer. The problem also arises. Further, in the configuration shown in Patent Document 4, the following problem occurs in addition to the above problem. That is, in the heating by the induction coil, the current flows to the surface layer of the object to be heated, and the heating is performed from the surface. Therefore, in a mold configuration in which a plurality of upper molds and lower molds are arranged in one induction coil, as described above, a temperature gradient occurs in the radial direction of the mold. Therefore, the temperature of the upper and lower dies facing each other for forming the individual glass lenses is different between the inner circumference and the outer circumference of the induction coil, which makes it difficult to obtain a rotationally symmetric engineering lens. Similarly, it is difficult to make the characteristics of a plurality of lenses in a mold the same, and the yield in the manufacturing process becomes a problem. To solve this problem, a configuration disclosed in Patent Literature 1 has been proposed. However, since the configuration of the induction coil is complicated and restrictions on the die configuration are increased, practical application is difficult.

本発明は、上記問題を解決し、成形機と成形型との関係ならびに誘導加熱方法の改善等により、昇温速度が速く、高精度なレンズが精度を必要としない成形機で効率よく成形できるガラスレンズ成形装置を提供することを目的とするものである。   The present invention solves the above-described problems, and by improving the relationship between the molding machine and the molding die and the induction heating method, the temperature rising speed is high, and a high-precision lens can be efficiently molded by a molding machine that does not require accuracy. It is an object to provide a glass lens forming apparatus.

本発明におけるガラスレンズ成形装置は、ガラスレンズの光学面を形成するキャビティの一方を有し、上端に成形機の可動部より加圧力を受ける上型、この上型のキャビティの他方を有し、成形機の固定部により支持される下型ならびに上記上下型の周面に近接して、同上下型を上下方向に相対移動可能に保持する胴型とからなるガラスレンズの成形型と、上記成形型に近接して位置し、同成形型の上下型に形成した被加熱部を高周波誘導加熱する加熱手段と、上記加熱手段に近接して位置し、成形型を冷却する冷却手段と、上記成形型のキャビティに近接して設けられ、上記加熱手段ならびに冷却手段を制御するための温度検出手段とを有し、上記成形型の上型は、成形機の可動手段と1つの突起を介して加圧され、上記成形型の下型は、成形機の固定手段と3つの突起を介して支持されることを特徴とする。   The glass lens molding apparatus according to the present invention has one of the cavities forming the optical surface of the glass lens, and has an upper mold at the upper end which receives a pressing force from a movable portion of the molding machine, and has the other of the cavity of the upper mold, A molding die for a glass lens comprising: a lower die supported by a fixing portion of a molding machine; and a barrel die which is close to a peripheral surface of the upper and lower dies and holds the upper and lower dies so as to be relatively movable vertically. Heating means for high-frequency induction heating of a heated portion formed in the upper and lower molds of the same mold, cooling means for cooling the mold, which is located close to the heating means, and A temperature detecting means for controlling the heating means and the cooling means, which is provided in proximity to the cavity of the mold, wherein the upper mold of the molding die is added to the movable means of the molding machine via one projection; The lower mold of the above mold is Characterized in that it is supported via the fixing means and the three protrusions form machine.

また、本発明におけるガラスレンズ成形装置は、ガラスレンズの光学面を形成するキャビティの一方を有し、上端に成形機の可動部より加圧力を受ける上型、この上型のキャビティの他方を有し、成形機の固定部により支持される下型ならびに上記上下型の周面に近接して、同上下型を上下方向に相対移動可能に保持する胴型とからなるガラスレンズの成形型と、上記成形型に近接して位置し、同成形型の被加熱部を高周波誘導加熱する加熱手段と、上記加熱手段に近接して位置し、同加熱手段および成形型を冷却する冷却手段とを有し、上記上型と下型の被加熱部には誘導加熱容易な材料を、胴型には誘導加熱しにくい材料を用いたことを特徴とする。   Further, the glass lens forming apparatus according to the present invention has one of the cavities forming the optical surface of the glass lens, and has, at the upper end, an upper mold receiving a pressing force from a movable portion of the molding machine, and the other of the cavities of the upper mold. A molding die for a glass lens comprising a lower die supported by a fixing portion of the molding machine and a body die for holding the upper and lower dies so as to be relatively movable in the vertical direction in proximity to the peripheral surfaces of the upper and lower dies, The heating means includes a heating unit located in close proximity to the mold and for performing high-frequency induction heating of a heated portion of the mold, and a cooling unit located in proximity to the heating means and cooling the heating unit and the mold. The upper and lower molds are made of a material easily heated by induction heating, and the body mold is made of a material hardly heated by induction heating.

また、本発明におけるガラスレンズ成形装置は、上記成形型の上型と下型には、その一部に誘導加熱容易な材料を用いたことを特徴とする。   Further, the glass lens forming apparatus according to the present invention is characterized in that the upper mold and the lower mold of the above-mentioned mold are partially made of a material which can be easily subjected to induction heating.

また、本発明におけるガラスレンズ成形装置は、上記上型と下型にセラミック材料を用い、その表面に誘導加熱容易な金属材料を溶射したことを特徴とする。   Further, the glass lens forming apparatus according to the present invention is characterized in that a ceramic material is used for the upper mold and the lower mold, and a metal material which is easily induction-heated is sprayed on the surface.

また、本発明におけるガラスレンズ成形装置は、上記上型と下型の外周に溝部を設け、この溝部に誘導加熱容易な金属材料を配設したことを特徴とする。   Further, the glass lens forming apparatus according to the present invention is characterized in that a groove is provided on the outer periphery of the upper mold and the lower mold, and a metal material which is easily induction-heated is arranged in the groove.

また、本発明におけるガラスレンズ成形装置は、上記上型と下型に形成した溝部の深さが溝部に配設した金属材料の厚みより大きいことを特徴とする。   Further, the glass lens forming apparatus according to the present invention is characterized in that the depth of the groove formed in the upper mold and the lower mold is larger than the thickness of the metal material provided in the groove.

また、本発明におけるガラスレンズ成形装置は、上記誘導加熱される成形型の被加熱部は、上型の上部ならびに下型の下部に設け、これら被加熱部に対向して加熱手段を位置させたことを特徴とする。   Further, in the glass lens forming apparatus according to the present invention, the heated portion of the mold to be induction-heated is provided at an upper portion of the upper mold and a lower portion of the lower mold, and a heating means is positioned opposite to the heated portions. It is characterized by the following.

また、本発明におけるガラスレンズ成形装置は、上記加熱手段は、上型を加熱する上部加熱手段と、下型を加熱する下部加熱手段とを独立して設け、それぞれ別個に温度制御できるようにしたことを特徴とする。   Further, in the glass lens forming apparatus of the present invention, the heating means is provided with an upper heating means for heating the upper mold and a lower heating means for heating the lower mold independently, so that the temperature can be controlled separately. It is characterized by the following.

また、本発明におけるガラスレンズ成形装置の加熱手段は、上下方向に移動して加熱状態を変化できることを特徴とする。   Further, the heating means of the glass lens forming apparatus according to the present invention is characterized in that it can move up and down to change the heating state.

また、本発明におけるガラスレンズ成形装置の加熱手段は、円筒体に高周波誘導コイルを巻回すると共に、胴型の外周に対向する内周面に、スパイラル状の溝を形成し、この溝にガスを流通させて成形型を冷却することを特徴とする。   Further, the heating means of the glass lens forming apparatus according to the present invention winds a high-frequency induction coil around a cylindrical body and forms a spiral groove on an inner peripheral surface facing the outer periphery of the body mold, and forms a gas in this groove. To cool the mold.

また、本発明におけるガラスレンズ成形装置は、上型および下型の一方または両方に、キャビティに近接する位置まで穿設した穴を設け、この穴に、上記温度検出手段を配置したことを特徴とする。   Further, the glass lens forming apparatus according to the present invention is characterized in that one or both of the upper mold and the lower mold is provided with a hole drilled to a position close to the cavity, and the temperature detecting means is arranged in this hole. I do.

また、本発明におけるガラスレンズ成形装置は、成形型の胴型の軸方向の長さを同胴型の内径の3倍以上としたことを特徴とする。   Further, the glass lens forming apparatus according to the present invention is characterized in that the axial length of the barrel of the forming die is at least three times the inner diameter of the barrel.

また、本発明におけるガラスレンズ成形装置は、成形型の胴型の熱伝導率を上下型のそれより小としたことを特徴とする。   Further, the glass lens forming apparatus according to the present invention is characterized in that the thermal conductivity of the body mold of the forming die is smaller than that of the upper and lower molds.

さらにまた、本発明におけるガラスレンズ成形装置は、ガラスレンズのキャビティを形成するため、対向して配置される上型および下型の一方または両方の内部に誘導加熱容易な材質からなる被加熱体を配設し、この被加熱体を高周波誘導加熱して、この被加熱体の熱伝導によりキャビティ内のガラスレンズを加熱成形することを特徴とする。   Furthermore, the glass lens forming apparatus according to the present invention includes a heating target made of a material easily induced by induction heating inside one or both of an upper mold and a lower mold which are arranged to face each other to form a cavity of a glass lens. The heating target is subjected to high-frequency induction heating, and the glass lens in the cavity is heat-formed by heat conduction of the heating target.

また、本発明におけるガラスレンズ成形装置は、上型ならびに下型がセラミックからなり、内部に設けた被加熱体が鉄、ニッケル、コバルトのいずれかを含む磁性材料からなることを特徴とする。   Further, the glass lens forming apparatus according to the present invention is characterized in that the upper mold and the lower mold are made of ceramic, and the object to be heated provided therein is made of a magnetic material containing any of iron, nickel and cobalt.

また、本発明におけるガラスレンズ成形装置は、被加熱体が、キャビティを囲むように配設されることを特徴とする。   Further, the glass lens forming apparatus according to the present invention is characterized in that the object to be heated is disposed so as to surround the cavity.

また、本発明におけるガラスレンズ成形装置は、被加熱体が、キャビティから遠い側に位置して設けると共に、上記キャビティから近い側に位置して上記被加熱体より誘導加熱困難な材質からなる加熱緩和体を設けたことを特徴とする。   Further, in the glass lens forming apparatus according to the present invention, the object to be heated is provided at a position far from the cavity, and is heated at a position near the cavity so as to be made of a material that is harder to induction heat than the object to be heated. It is characterized by having a body.

また、本発明におけるガラスレンズ成形装置は、複数のキャビティを有する上型ならびに下型にそれぞれのキャビティに対応して被加熱体を配設したことを特徴とする。   Further, the glass lens forming apparatus according to the present invention is characterized in that a body to be heated is provided in each of the upper mold and the lower mold having a plurality of cavities in correspondence with the respective cavities.

また、本発明におけるガラスレンズ成形装置は、上記被加熱体に加えて複数のキャビティ全体を加熱する被加熱体を設けたことを特徴とする。   Further, the glass lens forming apparatus according to the present invention is characterized in that a heated body for heating the entire plurality of cavities is provided in addition to the heated body.

本発明によれば、ガラスレンズの成形型が成形機に組み付けられるにあたり、成形型を成形機に固定することなく、成形機の固定部とは、3点の突起を介して成形型を支持しているので、一意的に成形型の姿勢が決まり、ぐらつき等の問題を排除できる。一方、成形機の可動部とは、1点の突起を介して成形型を加圧するようにしているので、成形機の可動部の平行度に影響されること無く加圧することができ、成形機の精度に依存することなく、成形型の精度を基準にした成形が可能となる。また、下型の3点支持と上型の1点加圧を突起により行っているため、成形型と成形機との接触面積は小さく、成形型の加熱、冷却時の成形機への伝熱量を極力少なくすることができるため、熱移動による成形サイクルタイムの増大化を防ぎ、低コストで、高速のガラスレンズ成形が可能となる。また、成形型の上型を水平方向、回転方向に調芯可能に構成することにより、成形機の加圧部分の平行度、直角度等の機械精度に依存することなく、高精度で安定した成形を行うことができる。   According to the present invention, when the molding die of the glass lens is assembled to the molding machine, the fixing portion of the molding machine supports the molding die through three projections without fixing the molding die to the molding machine. Therefore, the position of the mold is uniquely determined, and problems such as wobble can be eliminated. On the other hand, since the movable part of the molding machine presses the molding die through one point of projection, it can be pressurized without being affected by the parallelism of the movable part of the molding machine. Molding can be performed based on the precision of the mold without depending on the precision of the mold. Also, since the lower mold is supported at three points and the upper mold is pressed at one point by the projections, the contact area between the mold and the molding machine is small, and the heat transfer to the molding machine during heating and cooling of the mold. Can be reduced as much as possible, thereby preventing an increase in the molding cycle time due to heat transfer and enabling high-speed glass lens molding at low cost. In addition, by configuring the upper die of the forming die so that it can be centered in the horizontal direction and the rotating direction, it is highly accurate and stable without depending on the machine accuracy such as the parallelism of the pressurized part of the forming machine, squareness, etc. Molding can be performed.

そして、本発明によれば、成形型への加熱は、高周波誘導加熱で行い、誘導コイルを成形型の外周部もしくは上下面より上下型を直接的に加熱するよう構成しているため、成形型の周りに位置する構造物への加熱を少なくして、加熱を効率的に行うことができる。また、胴型が誘導加熱されることの無い材料、例えばセラミックス製として、上下型を集中的に加熱することができるため、上下型のキャビティ部の昇温時間の短縮が可能となる。また、胴型ならびに上下型をセラミックスで構成し、上下型の外周部に高周波誘導容易な金属を配設することにより、高度な嵌め合いで構成された胴型と上下型のクリアランスを、成形型外周部からの伝熱を排除して、高温下でも安定して維持できる。具体的には、上下型の外周部に溝部を設け、この溝内に上記金属を溶射すれば、容易に精度の高い被加熱部を形成できる。   According to the present invention, the heating of the mold is performed by high-frequency induction heating, and the induction coil is configured to directly heat the upper and lower molds from the outer peripheral portion or the upper and lower surfaces of the mold. Heating can be efficiently performed by reducing heating to a structure located around the object. In addition, since the upper and lower dies can be intensively heated by using a material in which the body die is not induction-heated, for example, made of ceramics, it is possible to reduce the time required to heat the cavity of the upper and lower dies. In addition, the body mold and the upper and lower molds are made of ceramics, and the high-frequency induction-friendly metal is arranged on the outer periphery of the upper and lower molds, so that the clearance between the body mold and the upper and lower molds, which is configured with a high degree of fitting, can be molded Heat transfer from the outer peripheral portion is eliminated, and stable operation can be maintained even at high temperatures. Specifically, if a groove is provided in the outer peripheral portion of the upper and lower molds and the metal is sprayed in the groove, a highly accurate heated portion can be easily formed.

また、高周波誘導コイルを2系統にすることにより、上型、下型の温度を独立して制御し、きめ細かい熱コントロールを可能にする。また、加熱手段を上下動可能にすることにより、上下型の加熱状態を変化させることができる。また、これらの高周波誘導装置は、上型、下型の一方もしくは両方の中心部に設けた穴を利用して温度検出手段を配置し、リアルタイムで温度計測を行うことにより、精密な温度制御ができる。また、成形型の胴型の軸方向の長さを胴型の内径の3倍以上とすることにより、レンズの偏芯精度を向上することができる。さらにまた、胴型の熱伝導率を上下型のそれより小としたことにより、胴型からの放熱が少なくなることで、上型と下型間のキャビティ内の温度のばらつきが小さくなり、より高精度なガラス成形が可能になる。   Further, by using two high-frequency induction coils, the temperatures of the upper mold and the lower mold are independently controlled, and fine heat control is enabled. Further, the heating state of the upper and lower molds can be changed by making the heating means vertically movable. In addition, these high-frequency induction devices use a hole provided in the center of one or both of the upper mold and the lower mold to arrange temperature detection means, and perform temperature measurement in real time, so that precise temperature control is possible. it can. Further, by setting the axial length of the barrel of the molding die to be at least three times the inner diameter of the barrel, the eccentricity of the lens can be improved. Furthermore, by making the thermal conductivity of the body mold smaller than that of the upper and lower molds, heat radiation from the body mold is reduced, so that the temperature variation in the cavity between the upper mold and the lower mold is reduced, High-precision glass molding becomes possible.

また、本発明によれば、上下型の一方又は両方の内部に、誘導加熱容易な材質からなる被加熱体を1個ないし複数個設けたことにより、誘導加熱による所定温度に到達する昇温時間の短縮が可能である。   Further, according to the present invention, by providing one or a plurality of objects to be heated made of a material which can be easily subjected to induction heating in one or both of the upper and lower molds, the time required for the temperature to reach a predetermined temperature by induction heating is increased. Can be shortened.

また、本発明によれば、上下型に形成されるキャビティを取り巻くように誘導加熱容易な材質からなる被加熱体を設けたことにより、昇温時間の短縮とガラス成形面内の温度分布の均一化を図ることができる。   Further, according to the present invention, by providing a heated body made of a material which is easily induction-heated so as to surround the cavity formed in the upper and lower molds, the time required for heating can be reduced and the temperature distribution in the glass forming surface can be uniform. Can be achieved.

また、本発明によれば、誘導加熱容易な材質からなる被加熱体と、これと比較して誘導加熱困難な材質からなる加熱緩和体を組み合わせて構成することにより、局所加熱を回避してガラス成形面内の温度分布の均一化が可能となる。   Further, according to the present invention, by combining a heated body made of a material that is easily induction-heated and a heat relaxation body made of a material that is more difficult to induction-heat in comparison with this, glass that avoids local heating can be avoided. The temperature distribution in the molding surface can be made uniform.

さらに、本発明によれば、上下型に複数個のレンズ形成用のキャビティを有する場合にも、誘導加熱容易な材質からなる被加熱体を個々のキャビティを取り巻くように複数個配設することにより、同じく昇温時間の短縮とガラス成形面内の温度分布の均一化を図ることができる。   Furthermore, according to the present invention, even when the upper and lower molds have a plurality of lens forming cavities, a plurality of objects to be heated, which are made of a material easily induced by induction heating, are arranged so as to surround the individual cavities. Similarly, it is possible to shorten the time required for raising the temperature and to make the temperature distribution in the glass forming surface uniform.

以上、総合して本発明によれば、ガラス成形機の精度によらず、成形型の精度のみで、高精度なガラスレンズが低コストで成形でき、また本発明による高周波誘導加熱により、効率よく上下型を加熱でき、高品質、高精度なガラスレンズが成形できる効果を奏する。   As described above, according to the present invention, a high-precision glass lens can be molded at low cost only by the precision of a molding die, regardless of the precision of a glass molding machine, and efficiently by high-frequency induction heating according to the present invention. The upper and lower molds can be heated, so that a high-quality, high-precision glass lens can be formed.

(実施形態1)
以下に本発明の第1の実施形態について、図1を参照して説明する。図1は、ガラスレンズ成形型ならびにその成形装置を示し、このガラスレンズ成形型Aは、円筒状の胴型1とこの胴型1に上側から上下動可能に挿入される上型2と上記胴型1の下側から上下動可能に挿入される下型3からなっている。上型2の下面と下型3の上面には、ガラスレンズの光学面を転写してガラスレンズを成形するキャビティ2a、3aが形成されている。上記胴型1の軸方向の長さは、胴型1と上下型2、3の嵌合状態を密にして、成形されたレンズの偏芯精度を向上するために、上下型2、3の直径の3倍以上であることが実験的に望ましい。
(Embodiment 1)
Hereinafter, a first embodiment of the present invention will be described with reference to FIG. FIG. 1 shows a glass lens molding die and a molding device thereof. The glass lens molding die A includes a cylindrical trunk die 1, an upper die 2 which is inserted into the trunk die 1 from the upper side so as to be vertically movable, and the above-mentioned trunk. A lower mold 3 is inserted from the lower side of the mold 1 so as to be vertically movable. On the lower surface of the upper mold 2 and the upper surface of the lower mold 3, cavities 2a and 3a for transferring the optical surface of the glass lens to form the glass lens are formed. The length of the body mold 1 in the axial direction is set to be smaller than that of the upper and lower molds 2 and 3 in order to make the fitted state of the body mold 1 and the upper and lower molds 2 and 3 dense and improve the eccentricity of the molded lens. It is experimentally desirable that the diameter is three times or more.

下型3は、成形機Bの固定部4に設けた突起4a、4b、4cで3点支持されている。上記突起4a、4b、4cの位置は、成形機の加圧中心軸を中心とする円の円周上に頂点を有する三角形を形成するよう選択され、正三角形となる位置が好ましい。これにより、成形時に成形型Aがぐらつくことなく、確実に支持すると共に、突起4a、4b、4cの成形型Aとの接触面積が極めて少ないことから、成形型Aと成形機Bとの間の熱移動を少なくすることができる。   The lower mold 3 is supported at three points by protrusions 4a, 4b, and 4c provided on the fixing portion 4 of the molding machine B. The positions of the protrusions 4a, 4b, and 4c are selected so as to form a triangle having an apex on the circumference of a circle centered on the pressing center axis of the molding machine, and a position that becomes an equilateral triangle is preferable. As a result, the mold A is securely supported without shaking during molding, and the contact area of the protrusions 4a, 4b, 4c with the mold A is extremely small. Heat transfer can be reduced.

上型2は、成形時、成形機Bの可動部5により加圧されるが、本実施形態では、可動部5に設けた突起5aで1点支持されており、その位置は、成形機の加圧中心軸上がよく、可能な限り近接した位置が望ましい。これにより、可動部5と上型2の上面との平行度を気にすることなく成形でき、成形されたガラスレンズの精度に影響しない利点が発揮される。また同時に、突起4a、4b、4cの場合と同様の理由で成形型Aと成形機Bとの間の熱移動も極力小さくできる。   The upper mold 2 is pressurized by the movable part 5 of the molding machine B at the time of molding. In the present embodiment, the upper mold 2 is supported at one point by the projection 5a provided on the movable part 5, and its position is It is preferable that the position be on the center axis of the pressure and be as close as possible. Thereby, the molding can be performed without worrying about the parallelism between the movable portion 5 and the upper surface of the upper mold 2, and an advantage that does not affect the accuracy of the molded glass lens is exhibited. At the same time, the heat transfer between the molding die A and the molding machine B can be minimized for the same reason as in the case of the projections 4a, 4b, 4c.

なお、上記突起4a、4b、4cならびに5aは、本実施形態では、成形機の固定部4ならびに可動部5に設けたが、下型3ならびに上型2に設けてもよく、また別体、例えば鋼球を固定部と下型の間、可動部と上型の間に介在させてもかまわない。   In the present embodiment, the projections 4a, 4b, 4c and 5a are provided on the fixed part 4 and the movable part 5 of the molding machine. However, they may be provided on the lower mold 3 and the upper mold 2, For example, a steel ball may be interposed between the fixed part and the lower mold, and between the movable part and the upper mold.

胴型1、上型2、下型3は、セラミックスで形成されており、熱伝導率の良い窒化アルミや炭化珪素が望ましいが、アルミナ等のセラミックスでも支障はない。熱伝導率の良い材料ほど、急速加熱、急速冷却が可能であり、レンズ成形時のサイクルタイムを短くすることができる。また胴型、上型、下型で、セラミックスの種類を変えることも可能である。例えば、上型、下型の材質よりも、熱伝導率の値が小さいセラミックスで胴型を製作することにより、胴型からの放熱が少なくなることで、上型と下型間のキャビティ内の温度のばらつきが小さくなり、より高精度なガラス成形が可能になる。具体的な材質として、胴型を窒化珪素で製作し、上型下型を炭化珪素で製作するとよい。それぞれの熱伝導率は、炭化珪素が、一般的に50〜150W/m・Kなのに対し、窒化珪素のそれは、20〜30W/m・Kと小さな値である。   The body mold 1, the upper mold 2, and the lower mold 3 are made of ceramics, and are preferably made of aluminum nitride or silicon carbide having good thermal conductivity, but ceramics such as alumina do not cause any problem. As the material has a better thermal conductivity, rapid heating and rapid cooling are possible, and the cycle time during lens molding can be shortened. In addition, it is also possible to change the type of ceramic in the body type, the upper type, and the lower type. For example, by manufacturing the body mold from a ceramic having a smaller thermal conductivity value than the material of the upper mold and the lower mold, heat radiation from the body mold is reduced, so that the inside of the cavity between the upper mold and the lower mold is reduced. Variations in temperature are reduced, and more accurate glass forming is enabled. As a specific material, the body mold may be made of silicon nitride, and the upper mold and the lower mold may be made of silicon carbide. The thermal conductivity of silicon carbide is generally 50 to 150 W / m · K, whereas that of silicon nitride is as small as 20 to 30 W / m · K.

6は、上記成形型Aを高周波誘導加熱する加熱手段で、成形型Aの胴型1の外側部に位置してセラミックス製の円筒体6aに高周波誘導コイル6bが巻き付けられており、上型2、下型3にそれぞれ対応して上部加熱手段6cと下部加熱手段6dに分けられ、独立して制御可能に構成されている。   Numeral 6 denotes a heating means for high-frequency induction heating of the molding die A. A high-frequency induction coil 6b is wound around a ceramic cylindrical body 6a which is located outside the body die 1 of the molding die A. , The lower mold 3 is divided into an upper heating means 6c and a lower heating means 6d, which are independently controllable.

円筒体6aの内周面には、胴型1の外周面に対向してスパイラル状の溝7が形成されており、成形型1の急冷、誘導コイル6bの過熱保護等のため、冷却ノズルCから胴型1と円筒体6aの間に流通する冷却用窒素ガスの案内となる。   A spiral groove 7 is formed on the inner peripheral surface of the cylindrical body 6a so as to face the outer peripheral surface of the body die 1. The cooling nozzle C is provided for rapid cooling of the molding die 1 and protection of the induction coil 6b from overheating. From the cylinder die 1 and the cylindrical body 6a.

また加熱手段6の外側には、誘導コイル6bが成形型Aからの熱で損傷を受けないように、冷却手段9が設けられ、冷却水が通るウオータージャケット9aが配置されている。   Outside the heating means 6, a cooling means 9 is provided so that the induction coil 6b is not damaged by heat from the mold A, and a water jacket 9a through which cooling water passes is arranged.

そして上記加熱手段6に対応して、成形型Aの上型2と下型3には、誘導加熱容易な材質からなる被加熱部2b、3bが設けられている。被加熱部2b、3bは、高周波誘導加熱に適した材料がよく、具体的には、Fe、Ni、Co等を多く含んだ強磁性材料が適している。本実施例では、セラミックス製の上型2、下型3に、SUS410を溶射により付着加工して、被加熱部2b、3bを形成している。   In correspondence with the heating means 6, the upper mold 2 and the lower mold 3 of the molding die A are provided with heated parts 2b, 3b made of a material which can be easily induction heated. The heated portions 2b and 3b are preferably made of a material suitable for high-frequency induction heating, and more specifically, a ferromagnetic material containing a large amount of Fe, Ni, Co, or the like. In this embodiment, SUS410 is attached to the upper and lower dies 2 and 3 made of ceramics by thermal spraying to form the heated portions 2b and 3b.

なお本実施形態では、被加熱部2b、3bは、上型2ならびに下型3に設けたが、胴型1に被加熱部を設けても加熱の機能は発揮されるが、上下型2、3への温度のレスポンスが悪くなると共に、胴型1の熱膨張により上下型2、3と胴型1間のクリアランスが大きくなり、成形時の偏芯精度が悪くなる傾向がある。   In the present embodiment, the heated portions 2b and 3b are provided in the upper mold 2 and the lower mold 3, but the heating function is exhibited even when the heated portion is provided in the body mold 1. As the temperature response to the mold 3 becomes worse, the clearance between the upper and lower molds 2 and 3 and the mold 1 becomes large due to the thermal expansion of the mold 1, and the eccentricity at the time of molding tends to deteriorate.

また上型2および下型3には、中央部に、軸方向に上下型2、3のキャビティ2a、3aの近傍に至る穴2c、3cが設けられており、この穴2c、3cに成形時の型温度を計測する熱電対からなる温度検出手段8a、8bが挿入されている。   The upper mold 2 and the lower mold 3 are provided with holes 2c, 3c extending in the axial direction to the vicinity of the cavities 2a, 3a of the upper and lower molds 2, 3, respectively. Temperature detecting means 8a and 8b composed of thermocouples for measuring the mold temperature are inserted.

以上のガラスレンズ成形装置において、その成形プロセスについて説明する。まず上型2と下型3との間のキャビティ2a、3aにガラス素材を挟み込む。この状態で、図1に示すように胴型1、上下型2、3、加熱手段6、冷却手段9を組み立てて、成形機Bの中に組み付ける。   The molding process of the above-described glass lens molding apparatus will be described. First, a glass material is sandwiched between the cavities 2a and 3a between the upper mold 2 and the lower mold 3. In this state, as shown in FIG. 1, the body mold 1, the upper and lower molds 2 and 3, the heating means 6, and the cooling means 9 are assembled and assembled in the molding machine B.

次に加熱手段6の高周波誘導コイル6bに最適な高周波電流を流し、成形型Aの被加熱部2b、3bを加熱する。この加熱状態は、温度検出手段8a、8bからの温度データを基に、最適な温度上昇カーブとなるように制御される。上型2、下型3が最適な温度になった時点で、成形機Bを駆動して、ガラス素材をプレスする。プレス量については、予め設定したプレス位置もしくはプレス力になった時点でプレス動作を止め、加圧状態を保持する。その後、冷却ノズルCから窒素ガスを供給し、胴型1の外周面に、スパイラル状の溝7を通して流動させ、成形型Aを冷却し、所定の温度に達した時点で、プレス力を開放するように動作させる。取り出し温度に達した時に、上型2、下型3のいずれかを抜いて、ガラスレンズを取り出す。   Next, an optimal high-frequency current is applied to the high-frequency induction coil 6b of the heating means 6 to heat the heated portions 2b and 3b of the mold A. This heating state is controlled based on the temperature data from the temperature detecting means 8a and 8b so as to obtain an optimum temperature rise curve. When the upper mold 2 and the lower mold 3 reach the optimum temperature, the molding machine B is driven to press the glass material. As for the press amount, the press operation is stopped when the press position or the press force reaches a preset press position, and the pressurized state is maintained. Thereafter, a nitrogen gas is supplied from the cooling nozzle C and flows through the spiral groove 7 on the outer peripheral surface of the body mold 1, cools the mold A, and releases the pressing force when a predetermined temperature is reached. To work. When the temperature reaches the removal temperature, one of the upper mold 2 and the lower mold 3 is removed, and the glass lens is removed.

(実施形態2)
図2は、高周波誘導加熱を行う構成における本発明の第2の実施形態を示し、この場合は、加熱手段16は、上部加熱手段16cが上型12の上側に、下部加熱手段16dが下型13の下側に設けられ、これらに対向して上下型12、13の被加熱部12b、13bがそれぞれ上型12の上面と下型13の下面に形成されている。
(Embodiment 2)
FIG. 2 shows a second embodiment of the present invention in a configuration in which high-frequency induction heating is performed. In this case, the heating means 16 has an upper heating means 16c above the upper mold 12 and a lower heating means 16d having a lower mold. The heated portions 12b and 13b of the upper and lower molds 12 and 13 are formed on the upper surface of the upper mold 12 and the lower surface of the lower mold 13 respectively.

(実施形態3)
図3は、高周波誘導加熱を行う構成における本発明の第3の実施形態を示し、この場合は、加熱手段26は、胴型21、上型22、下型23に対し、上下軸方向に移動可能に構成されており、この加熱手段26の上下移動により、上下型22、23への加熱の状態を変化させることが出来る。なお、22b、23bは、図1の被加熱部2b、3bと同様に形成された被加熱部である。
(Embodiment 3)
FIG. 3 shows a third embodiment of the present invention in a configuration for performing high-frequency induction heating. In this case, the heating means 26 moves in the vertical axis direction with respect to the body mold 21, the upper mold 22, and the lower mold 23. The heating state of the upper and lower dies 22, 23 can be changed by the vertical movement of the heating means 26. In addition, 22b and 23b are heated parts formed similarly to the heated parts 2b and 3b of FIG.

(実施形態4)
図4は、高周波誘導加熱を行うための下型の詳細な実施の形態を示す(上型についても同様であるので説明を省略する。)。下型3には、外周上に一定の溝深さgを有する溝部3dを設ける。この溝部3dに誘導加熱が容易な金属、例えば、SUS410を溶射して付着させる。この時、溶射皮膜30の厚みtは必ず溝深さgより小さくする必要がある。
(Embodiment 4)
FIG. 4 shows a detailed embodiment of a lower mold for performing high-frequency induction heating (the same applies to the upper mold, and a description thereof will be omitted). The lower die 3 is provided with a groove 3d having a constant groove depth g on the outer periphery. A metal which is easy to induction heat, for example, SUS410 is sprayed and adhered to the groove 3d. At this time, the thickness t of the thermal spray coating 30 must be always smaller than the groove depth g.

以上のように構成することで、次のような作用がある。一般に下型3の材質と溝部3dに設けた溶射皮膜30の材質が異なると、加熱時に熱膨張率の差により溶射皮膜30が剥離しやすくなる。このような場合であっても、溝部3dを設け、この溝部3d内にのみ溶射皮膜30を形成することで、溝部3dに溶射した金属を拘束することになり、剥離を防ぐことができる。   With the above configuration, the following operation is provided. Generally, when the material of the lower mold 3 and the material of the thermal spray coating 30 provided in the groove 3d are different, the thermal spray coating 30 is easily peeled off due to a difference in thermal expansion coefficient during heating. Even in such a case, by providing the groove 3d and forming the thermal spray coating 30 only in the groove 3d, the metal sprayed on the groove 3d is restrained, and peeling can be prevented.

また、溝部3dの深さgよりも溶射皮膜30の厚みtを小さくすることで、加熱時に、溶射皮膜30が熱膨張して厚みがtからt+Δtに変化しても、溝深さgより大きくなら
ないことにより、胴型(図示せず。)を破壊したりすることなく、スムーズに軸方向への動作が可能となり、この結果、良好なガラス成形が可能とする。
Further, by making the thickness t of the thermal spray coating 30 smaller than the depth g of the groove 3d, even if the thermal spray coating 30 thermally expands during heating and the thickness changes from t to t + Δt, it is larger than the groove depth g. By not doing so, the operation in the axial direction can be performed smoothly without breaking the body mold (not shown), and as a result, good glass forming can be performed.

上記構成の下型や上型の溶射皮膜30は、図1、図3の被加熱部3b、23b、2b、22bとして適用することができ、また同様の構造を図2の被加熱部12b、13bに応用することができる。   The lower and upper thermal spray coatings 30 of the above configuration can be applied as the heated portions 3b, 23b, 2b, and 22b in FIGS. 1 and 3, and have the same structure as the heated portions 12b and 13b.

(実施形態5)
図5は、本発明におけるガラスレンズ成形装置の第5の実施形態を示し、特に調芯機能を有する構成について説明する(図1に示す構成と同一部分については、図1と同一符号を付す。)。
(Embodiment 5)
FIG. 5 shows a fifth embodiment of the glass lens forming apparatus according to the present invention. In particular, a configuration having a centering function will be described (the same components as those in FIG. 1 are denoted by the same reference numerals as in FIG. 1). ).

本実施の形態では、成形機の可動部5の突起5aと上型2の上面との間に加圧ブロック100が設けられ、これを介して成形機Bの加圧力が成形型Aに伝えられる。上記加圧ブロック100は、上型2の上面に接触する円板状の加圧板100aと上記可動部5の突起5aに接触する円板状の調芯板100bとこの加圧板100aと調芯板100bを平行に連結する連結部100cからなっている。上記調芯板100bは、下面より複数の鋼球101で支えられており、この鋼球101は、プレート102を介してばね103により、上方に付勢されている。これにより、胴型1に上型2を挿入する時、またガラスレンズを成形する時、軸心がずれている場合は、加圧ブロック100を水平方向に移動し、直角度がずれている場合は、加圧ブロック100を回転することにより、調芯を行うことが出来、成形機の加圧部分の平行度、直角度等の機械精度に依存することなく、高精度で安定した成形を行うことが出来る。   In the present embodiment, a pressing block 100 is provided between the projection 5a of the movable part 5 of the molding machine and the upper surface of the upper mold 2, and the pressing force of the molding machine B is transmitted to the molding die A via this. . The pressure block 100 includes a disk-shaped pressure plate 100a that contacts the upper surface of the upper die 2, a disk-shaped alignment plate 100b that contacts the protrusion 5a of the movable portion 5, and a pressure plate 100a that is in contact with the pressure plate 100a. It comprises a connecting part 100c for connecting the parts 100b in parallel. The alignment plate 100b is supported by a plurality of steel balls 101 from the lower surface, and the steel balls 101 are urged upward by a spring 103 via a plate 102. Thereby, when the upper mold 2 is inserted into the body mold 1 or when the glass lens is formed, when the axis is misaligned, the pressing block 100 is moved in the horizontal direction and the squareness is misaligned. Can perform centering by rotating the pressing block 100, and perform high-precision and stable molding without depending on the machine precision such as the parallelism and the squareness of the pressing portion of the molding machine. I can do it.

(実施形態6)
図6、7に示す本発明の第6の実施形態について説明する。
(Embodiment 6)
A sixth embodiment of the present invention shown in FIGS.

図6において、61は、炭化珪素製の下型、62は、下型61内に設けられる円筒状の被加熱体で、高周波誘導加熱するため、SUS420製の金属材料で形成されている。63は、被加熱体62と同様に下型61内に設けられ、同一の金属材料(SUS420)で形成された円柱状の被加熱体で、共に下型61と同一軸上に配置されている。本実施形態では、被加熱体62,63は、下型61に設けた例を示しているが、上型に設けてもよく、図7に示すように上下型に共に設けてもよい。図7には、内部に被加熱体62、63を有する炭化珪素製の上下型61、61が対向して設置されており、両者間にガラスレンズ成形のためのキャビティ65が形成されている。この上下型61、61をガイドするように同じく炭化珪素製の胴型64が設けられている。上下型、胴型を取り巻くように高周波誘導コイル(加熱体)66が設けられ、通電する電源部、成形のための機構部等が配置されている(図示せず。)。高周波誘導コイル66に高周波の交流電源を通電すると、成形型の軸方向に交番する磁束が発生し、それぞれの上下型61、61の内部に設けた被加熱体62、63を高温に加熱する。本実施形態では、レンズとなるガラス素材の近傍に被加熱体62、63を設置し、かつ熱伝導率の高い炭化珪素製の上下型と組み合わせて誘導加熱することで、短時間にガラス素材近傍を600℃付近の所定温度に加熱することができる。そして、キャビティ65近傍の温度を測定し、そのデータに基づいて高周波誘導コイル66を制御することにより、高精度なガラスレンズを歩留まりよく製造することができる。また、この加熱は、被加熱体62、63を介してキャビティ65部を昇温することになることから、従来法に見られるような、上下型の外周部から熱伝導により加熱するものと異なり、胴型64の温度が上下型61、61の温度より高くなって胴型64との間のクリアランスが広がることが無いので、より同軸度の高いレンズが成形できる。   In FIG. 6, reference numeral 61 denotes a lower die made of silicon carbide, and 62 denotes a cylindrical object to be heated provided in the lower die 61, which is made of a metal material made of SUS420 for high-frequency induction heating. Reference numeral 63 denotes a columnar heated body provided in the lower mold 61 in the same manner as the heated body 62 and formed of the same metal material (SUS420), and both are arranged on the same axis as the lower mold 61. . In the present embodiment, the example in which the heated objects 62 and 63 are provided in the lower mold 61 is shown, but they may be provided in the upper mold, or may be provided in both the upper and lower molds as shown in FIG. In FIG. 7, upper and lower dies 61, 61 made of silicon carbide and having bodies to be heated 62, 63 are provided facing each other, and a cavity 65 for molding a glass lens is formed between the two. A body mold 64 also made of silicon carbide is provided to guide the upper and lower molds 61, 61. A high-frequency induction coil (heating body) 66 is provided so as to surround the upper and lower molds and the body mold, and a power supply unit to be energized, a mechanical unit for molding, and the like are arranged (not shown). When a high-frequency AC power supply is supplied to the high-frequency induction coil 66, magnetic flux alternating in the axial direction of the molding die is generated, and the heated bodies 62, 63 provided inside the upper and lower dies 61, 61 are heated to a high temperature. In the present embodiment, the objects to be heated 62 and 63 are installed in the vicinity of a glass material to be a lens and combined with an upper and lower mold made of silicon carbide having a high thermal conductivity to perform induction heating, so that the vicinity of the glass material can be reduced in a short time. Can be heated to a predetermined temperature around 600 ° C. Then, by measuring the temperature near the cavity 65 and controlling the high-frequency induction coil 66 based on the data, a highly accurate glass lens can be manufactured with high yield. In addition, since this heating raises the temperature of the cavity 65 through the heated members 62 and 63, unlike the conventional method in which the heating is performed by heat conduction from the outer peripheral portions of the upper and lower dies as in the conventional method. Since the temperature of the body mold 64 does not become higher than the temperature of the upper and lower molds 61 and 61, and the clearance between the body mold 64 and the body mold 64 does not expand, a lens with higher coaxiality can be formed.

なお、上下型61、61の一方または両方に、円筒状の被加熱体62のみを設けたり、あるいは円柱状の被加熱体63のみを設けたりすることが可能である。   It should be noted that only one or both of the upper and lower dies 61, 61 may be provided with only the cylindrical heated object 62 or only the columnar heated object 63.

(実施形態7)
図8に示す本発明の第7の実施形態について説明する。図8において、71、72は、ガラスレンズ成形のためのキャビティ73を形成するよう上下に対向して設置された炭化珪素製の上型、下型、74は、この上型71、下型72をガイドする炭化珪素製の胴型、75は、成形型の外周を取り巻くように設置された高周波誘導コイル(加熱体)、76は、上記上下型71、72内に同軸的に設けられた円柱状の被加熱体で、誘導加熱の容易な材料SUS420製で形成されている。77は、上下型71、72に同軸的に設けられた円筒状の被加熱体で、同じくSUS420製で形成され、キャビティ73を取り巻くように配置されている。78は、上記被加熱体77の内側に同軸的に密着して配置された円筒状の加熱緩和体で、上記被加熱体77に比べて誘導加熱困難な材質が用いられ、非磁性のSUS316やインコネルに代表される耐熱合金、銅合金、タングステン、超硬合金、セラミックス等が選択される。
(Embodiment 7)
A seventh embodiment of the present invention shown in FIG. 8 will be described. In FIG. 8, reference numerals 71 and 72 denote upper and lower molds 74 made of silicon carbide, which are vertically opposed to each other to form a cavity 73 for molding a glass lens. Is a high-frequency induction coil (heating body) provided so as to surround the outer periphery of the forming die; and 76 is a circle provided coaxially in the upper and lower dies 71 and 72. It is a pillar-shaped object to be heated and is made of SUS420, which is a material that can be easily heated by induction. Reference numeral 77 denotes a cylindrical object to be heated provided coaxially with the upper and lower dies 71 and 72, which is also made of SUS420 and is arranged so as to surround the cavity 73. Reference numeral 78 denotes a cylindrical heating relaxation body coaxially and closely disposed inside the above-mentioned heated body 77, which is made of a material which is more difficult to conduct induction heating than the above-mentioned heated body 77, such as non-magnetic SUS316 or Heat-resistant alloys represented by Inconel, copper alloys, tungsten, cemented carbides, ceramics and the like are selected.

上記構成において、誘導コイル75に高周波の交流電源を通電すると、成形型の軸方向に交番する磁束が発生し、上型71、下型72の内部に設けた被加熱体76が加熱される。この熱はガラス素材の置かれたキャビティ73に伝達し、所定の温度に達した時、押圧成形される。ここで、キャビティ73内の温度分布に着目すると、キャビティ73の最外周では、外部の空気に触れるため、温度が低くなり、キャビティ73の半径方向に温度勾配が生じる。そこで、本実施形態では、キャビティ73の外周を取り巻くように被加熱体77が設けられており、この被加熱体77が被加熱体76と同様に交番磁界により発熱し、キャビティ73の外周からも加熱されるので、キャビティ73内での温度分布を均一化することができると共に、実施形態6の構成に比較して昇温時間が短くなる効果も生じる。また、本実施形態では、被加熱体77の内側に接して加熱緩和体78を設けているが、これは、誘導加熱される被加熱体77が誘導加熱の表層効果により表面から昇温してキャビティ73の最外周側の温度が高くなるのを緩和し、熱伝導によりキャビティ73の外周部を加熱するようにしたものである。   In the above configuration, when a high-frequency AC power is supplied to the induction coil 75, a magnetic flux that alternates in the axial direction of the molding die is generated, and the heated body 76 provided inside the upper die 71 and the lower die 72 is heated. This heat is transmitted to the cavity 73 in which the glass material is placed, and when it reaches a predetermined temperature, it is pressed and formed. Here, paying attention to the temperature distribution in the cavity 73, the outermost periphery of the cavity 73 comes into contact with outside air, so that the temperature decreases, and a temperature gradient occurs in the radial direction of the cavity 73. Therefore, in the present embodiment, the heated body 77 is provided so as to surround the outer periphery of the cavity 73, and the heated body 77 generates heat by an alternating magnetic field similarly to the heated body 76, and also from the outer periphery of the cavity 73. Since the heating is performed, the temperature distribution in the cavity 73 can be made uniform, and the effect of shortening the temperature rise time as compared with the configuration of the sixth embodiment also occurs. Further, in the present embodiment, the heating relaxation body 78 is provided in contact with the inside of the heated body 77, but this is because the heated body 77 to be subjected to induction heating is heated from the surface by the surface layer effect of induction heating. In this case, the temperature on the outermost peripheral side of the cavity 73 is prevented from increasing, and the outer peripheral portion of the cavity 73 is heated by heat conduction.

以上のように、本実施形態では、実施形態6の構成に加えて、上下型71、72のキャビティ73を取り巻くように誘導加熱容易な材質からなる被加熱体77を配設することにより、キャビティ73内の温度分布をより均一にし、また高速で所定の温度まで昇温できることで、より速いサイクルタイムでの成形を可能とする。   As described above, in the present embodiment, in addition to the configuration of the sixth embodiment, by providing the heated body 77 made of a material that is easily induction-heated so as to surround the cavity 73 of the upper and lower dies 71 and 72, By making the temperature distribution in 73 more uniform and increasing the temperature to a predetermined temperature at a high speed, molding with a faster cycle time is possible.

(実施形態8)
図9に示す本発明の第8の実施形態について説明する。本実施形態の特徴は、実施形態7の構成と比較し、上型、下型を対向させて形成されるキャビティを複数個有している点である。以下、下型に関してのみ説明する。図9において、81は、上型(図示せず。)とでガラスレンズの成形面を形成する複数個のキャビティ81aを有する下型で、この下型81の内部には、同軸的に円筒状の被加熱体82が配置され、誘導加熱されて下型81全体を加熱する。83は、上記複数個のキャビティ81aを個々に取り巻くように配置された誘導加熱容易な材質からなる円筒状の被加熱体、84は、上記個々の被加熱体83の内周面に密着して配置された誘導加熱困難な材質からなる円筒状の加熱緩和体で、それぞれの機能、具体的な材料等は、前記実施形態7におけるものと変わりはない。しかし、上下型を含む成形型を取り囲むように配置された誘導コイル(図示せず。)に通電すると、実施形態7におけるように、上下型の中央軸心上にキャビティがあるような場合、たとえ、キャビティ内に温度勾配が生じても、半径方向には対称な温度分布になる。これに対し、本実施形態における場合のように、キャビティが上下型の中央軸心上にない場合は、1つのガラス成形面内でみると、温度勾配が上下型の軸心内側と外側で異なることになる。このような温度分布状態では、高精度なガラス成形レンズを歩留まり良く生産することはできない。そこで、本実施形態では、被加熱体82に加えて、複数個のキャビティ81aを取り巻くように、それぞれに被加熱体83と加熱緩和体84を設けているので、被加熱体82だけでは個々のキャビティ内に生じる温度勾配を被加熱体83により補正することができる。また、所定温度に達する昇温時間が短くなる利点もある。
(Embodiment 8)
An eighth embodiment of the present invention shown in FIG. 9 will be described. The feature of this embodiment is that it has a plurality of cavities formed with the upper die and the lower die facing each other as compared with the configuration of the seventh embodiment. Hereinafter, only the lower mold will be described. In FIG. 9, reference numeral 81 denotes a lower die having a plurality of cavities 81a forming a molding surface of a glass lens with an upper die (not shown). Of the lower die 81 is heated by induction heating. Reference numeral 83 denotes a cylindrical object to be heated which is arranged so as to individually surround the plurality of cavities 81a and is made of a material which can be easily subjected to induction heating, and 84 is in close contact with the inner peripheral surface of the individual object to be heated 83. The cylindrical heat relaxation member is made of a material that is difficult to conduct induction heating, and its functions, specific materials, and the like are the same as those in the seventh embodiment. However, when power is supplied to an induction coil (not shown) arranged so as to surround the molding die including the upper and lower dies, as in the seventh embodiment, if there is a cavity on the central axis of the upper and lower dies, Even if a temperature gradient occurs in the cavity, the temperature distribution becomes symmetric in the radial direction. On the other hand, when the cavity is not on the center axis of the upper and lower molds as in the case of the present embodiment, the temperature gradient is different between the inside and the outside of the axis of the upper and lower molds in one glass molding surface. Will be. In such a temperature distribution state, a highly accurate glass molded lens cannot be produced with high yield. Therefore, in the present embodiment, in addition to the heated body 82, the heated body 83 and the heating relaxation body 84 are provided so as to surround the plurality of cavities 81a, respectively. The temperature gradient generated in the cavity can be corrected by the heated object 83. Further, there is an advantage that the time required for the temperature to reach the predetermined temperature is shortened.

本発明は、ガラスレンズの成形に限らず、精密プラスチック部品の成形等の分野に利用可能である。   INDUSTRIAL APPLICABILITY The present invention is applicable not only to the molding of glass lenses but also to the field of molding precision plastic parts.

本発明の第1の実施形態におけるガラスレンズ成形装置の概略説明図である。FIG. 1 is a schematic explanatory view of a glass lens forming apparatus according to a first embodiment of the present invention. 本発明の第2の実施形態におけるガラスレンズ成形装置の加熱構成の概略説明図である。It is a schematic explanatory view of a heating configuration of a glass lens forming device in a second embodiment of the present invention. 本発明の第3の実施形態におけるガラスレンズ成形装置の加熱構成の概略説明図である。It is a schematic explanatory view of a heating configuration of a glass lens forming apparatus in a third embodiment of the present invention. 本発明の第4の実施形態におけるガラスレンズ成形装置の概略説明図である。It is a schematic explanatory view of a glass lens forming device in a fourth embodiment of the present invention. 本発明の第5の実施形態におけるガラスレンズ成形装置の概略説明図である。It is a schematic explanatory view of a glass lens forming device in a fifth embodiment of the present invention. 本発明の第6の実施形態におけるガラスレンズ成形装置の要部の説明図で、(a)は、断面図、(b)は、分解斜視図である。It is explanatory drawing of the principal part of the glass lens shaping | molding apparatus in 6th Embodiment of this invention, (a) is sectional drawing, (b) is an exploded perspective view. 本発明の第6の実施形態におけるガラスレンズ成形装置の概略説明図である。It is a schematic explanatory view of a glass lens forming device in a sixth embodiment of the present invention. 本発明の第7の実施形態におけるガラスレンズ成形装置の概略説明図である。It is a schematic explanatory view of a glass lens forming device in a seventh embodiment of the present invention. 本発明の第8の実施形態におけるガラスレンズ成形装置の概略説明図で、(a)は、上面図、(b)は、断面図である。It is the schematic explanatory drawing of the glass lens shaping | molding apparatus in 8th Embodiment of this invention, (a) is a top view, (b) is sectional drawing.

符号の説明Explanation of reference numerals

1、11、21 胴型
2、12、22 上型
2a キャビティ
2b、12b 被加熱部
2c 穴
3、13、23 下型
3a キャビティ
3b、13b 被加熱部
3c 穴
4 固定部
4a、4b、4c 突起
5 可動部
5a 突起
6、16、26 加熱手段
6a 円筒体
6b 高周波誘導コイル
6c、16c 上部加熱手段
6d、16d 下部加熱手段
7 スパイラル状の溝
8a、8b 温度検出手段
9 冷却手段
A 成形型
B 成形機
C 冷却ノズル
61、81 上型、下型
65、73、81a キャビティ
62、63、76、77、82、83 被加熱体
78 加熱緩和体
1, 11, 21 Body mold 2, 12, 22 Upper mold 2a Cavity 2b, 12b Heated part 2c Hole 3, 13, 23 Lower mold 3a Cavity 3b, 13b Heated part 3c Hole 4 Fixed part 4a, 4b, 4c Projection 5 Movable part 5a Projection 6, 16, 26 Heating means 6a Cylindrical body 6b High frequency induction coil 6c, 16c Upper heating means 6d, 16d Lower heating means 7 Spiral grooves 8a, 8b Temperature detecting means 9 Cooling means A Mold B Molding Machine C Cooling nozzles 61, 81 Upper die, Lower die 65, 73, 81a Cavities 62, 63, 76, 77, 82, 83 Heated body 78 Heat relaxation body

Claims (21)

ガラスレンズの光学面を形成するキャビティの一方を有し、上端に成形機の可動部より加圧力を受ける上型、この上型のキャビティの他方を有し、成形機の固定部により支持される下型ならびに上記上下型の周面に近接して、同上下型を上下方向に相対移動可能に保持する胴型とからなるガラスレンズの成形型と、上記成形型に近接して位置し、同成形型の上下型に形成した被加熱部を高周波誘導加熱する加熱手段と、上記加熱手段に近接して位置し、成形型を冷却する冷却手段と、上記成形型のキャビティに近接して設けられ、上記加熱手段ならびに冷却手段を制御するための温度検出手段とを有し、上記成形型の上型は、成形機の可動手段と1つの突起を介して加圧され、上記成形型の下型は、成形機の固定手段と3つの突起を介して支持されることを特徴とするガラスレンズ成形装置。 An upper mold having one of the cavities forming the optical surface of the glass lens and having an upper end receiving a pressing force from a movable portion of the molding machine, and having the other of the cavity of the upper mold and supported by a fixed section of the molding machine. A molding die for a glass lens, comprising a lower mold and a body mold for holding the upper and lower molds so as to be relatively movable in the vertical direction, in proximity to the peripheral surface of the upper and lower molds; Heating means for high-frequency induction heating of a heated portion formed on the upper and lower molds of the mold, cooling means for cooling the mold located close to the heating means, and provided near the cavity of the mold. , A temperature detecting means for controlling the heating means and the cooling means, wherein the upper mold of the molding die is pressurized through the movable means of the molding machine and one projection, and the lower mold of the molding die is Is supported by the fixing means of the molding machine and three projections. Glass lens molding apparatus characterized in that it is. 上記成形機の可動部と上型の間に設けた1つの突起は、成形機の略加圧中心軸上に位置させると共に、上記成形機の固定部と下型の間に設けた3つの突起は、成形機の加圧中心軸を中心とする円の円周上に頂点を有する略正三角形を形成するよう位置させることを特徴とする請求項1に記載のガラスレンズ成形装置。 One projection provided between the movable part of the molding machine and the upper mold is positioned substantially on the central axis of the pressing machine, and three projections provided between the fixed part of the molding machine and the lower mold. The glass lens forming apparatus according to claim 1, wherein the glass lens forming apparatus is positioned so as to form a substantially equilateral triangle having an apex on a circumference of a circle centered on a pressing central axis of the forming machine. 上記成形型の上型を水平方向ならびに回転方向に調芯できるよう構成したことを特徴とする請求項1に記載のガラスレンズ成形装置。 2. The glass lens molding apparatus according to claim 1, wherein the upper mold of the molding die is configured to be capable of centering in a horizontal direction and a rotation direction. ガラスレンズの光学面を形成するキャビティの一方を有し、上端に成形機の可動部より加圧力を受ける上型、この上型のキャビティの他方を有し、成形機の固定部により支持される下型ならびに上記上下型の周面に近接して、同上下型を上下方向に相対移動可能に保持する胴型とからなるガラスレンズの成形型と、上記成形型に近接して位置し、同成形型の上下型の一部に形成した被加熱部を高周波誘導加熱する加熱手段と、上記加熱手段に近接して位置し、成形型を冷却する冷却手段とを有し、上記上型と下型の被加熱部には誘導加熱容易な材料を、胴型には誘導加熱しにくい材料を用いたことを特徴とするガラスレンズ成形装置。 An upper mold having one of the cavities forming the optical surface of the glass lens and having an upper end receiving a pressing force from a movable portion of the molding machine, and having the other of the cavity of the upper mold and supported by a fixed section of the molding machine. A molding die for a glass lens, comprising a lower mold and a body mold for holding the upper and lower molds so as to be relatively movable in the vertical direction, in proximity to the peripheral surface of the upper and lower molds; A heating unit for high-frequency induction heating of a heated portion formed in a part of the upper and lower molds of the molding die, and a cooling unit for cooling the molding die positioned close to the heating unit; A glass lens forming apparatus characterized in that a material that is easily induction-heated is used for a portion to be heated of a mold, and a material that is difficult to induction-heat is used for a body mold. 上記成形型の上型と下型には、その外周部に誘導加熱容易な材料からなる被加熱部を形成したことを特徴とする請求項4に記載のガラスレンズ成形装置。 5. The glass lens forming apparatus according to claim 4, wherein the upper and lower dies of the forming die are formed with a heated portion made of a material which is easily induction-heated on an outer peripheral portion thereof. 上記上型と下型にセラミック材料を用い、その表面に誘導加熱容易な金属材料を溶射したことを特徴とする請求項5に記載のガラスレンズ成形装置。 6. The glass lens forming apparatus according to claim 5, wherein a ceramic material is used for the upper mold and the lower mold, and a metal material that is easily induction-heated is sprayed on the surface. 上記上型と下型の外周に溝部を設け、この溝部に誘導加熱容易な金属材料を配設したことを特徴とする請求項4に記載のガラスレンズ成形装置。 5. The glass lens forming apparatus according to claim 4, wherein a groove is provided on the outer periphery of the upper mold and the lower mold, and a metal material which is easily induction-heated is arranged in the groove. 上記上型と下型に形成した溝部の深さが溝部に配設した金属材料の厚みより大きいことを特徴とする請求項7に記載のガラスレンズ成形装置。 8. The glass lens forming apparatus according to claim 7, wherein the depth of the groove formed in the upper mold and the lower mold is larger than the thickness of the metal material provided in the groove. 上記誘導加熱される成形型の被加熱部は、上型の上部ならびに下型の下部に設け、これら被加熱部に対向して加熱手段を位置させたことを特徴とする請求項4に記載のガラスレンズ成形装置。 The heated part of the molding die subjected to the induction heating is provided at an upper part of the upper mold and a lower part of the lower mold, and a heating means is located opposite to the heated part. Glass lens molding equipment. 上記加熱手段は、上型を加熱する上部加熱手段と、下型を加熱する下部加熱手段とを独立して設け、それぞれ別個に温度制御できるようにしたことを特徴とする請求項1または4に記載のガラスレンズ成形装置。 5. The method according to claim 1, wherein the heating means is provided with an upper heating means for heating the upper mold and a lower heating means for heating the lower mold independently so that the temperature can be controlled separately. The glass lens forming apparatus as described in the above. 上記加熱手段は、上下方向に移動して上型と下型の加熱状態を変化できることを特徴とする請求項1または4に記載のガラスレンズ成形装置。 The glass lens forming apparatus according to claim 1, wherein the heating unit moves in a vertical direction to change a heating state of the upper mold and the lower mold. 上記加熱手段は、円筒体に高周波誘導コイルを巻回すると共に、胴型の外周に対向する内周面に、スパイラル状の溝を形成し、この溝にガスを流通させて成形型を冷却することを特徴とする請求項1または4に記載のガラスレンズ成形装置。 The heating means winds the high-frequency induction coil around the cylindrical body, forms a spiral groove on the inner peripheral surface facing the outer periphery of the body mold, and cools the mold by flowing gas through the groove. The glass lens forming apparatus according to claim 1, wherein: 上型および下型の一方または両方に、キャビティに近接する位置まで穿設した穴を設け、この穴に、上記温度検出手段を配置したことを特徴とする請求項1に記載のガラスレンズ成形装置。 2. A glass lens forming apparatus according to claim 1, wherein one or both of the upper mold and the lower mold is provided with a hole drilled to a position close to the cavity, and the temperature detecting means is arranged in the hole. . 上記成形型の胴型の軸方向の長さは、同胴型の内径の3倍以上としたことを特徴とする請求項1または4に記載のガラスレンズ成形装置。 The glass lens forming apparatus according to claim 1, wherein an axial length of the barrel of the mold is at least three times an inner diameter of the barrel. 上記成形型の胴型の熱伝導率を上下型のそれより小としたことを特徴とする請求項4に記載のガラスレンズ成形装置。 5. The glass lens forming apparatus according to claim 4, wherein the thermal conductivity of the barrel of the forming die is smaller than that of the upper and lower dies. ガラスレンズのキャビティを形成するため、対向して配置される上型および下型の一方または両方の内部に誘導加熱容易な材質からなる被加熱体を配設し、この被加熱体を高周波誘導加熱して、この被加熱体の熱伝導によりキャビティ内のガラスレンズを加熱成形することを特徴とするガラスレンズ成形装置。 In order to form the cavity of the glass lens, a heated body made of a material that is easily induction-heated is disposed inside one or both of the upper mold and the lower mold that are opposed to each other, and the heated body is subjected to high-frequency induction heating. A glass lens forming apparatus characterized in that the glass lens in the cavity is formed by heat by the heat conduction of the object to be heated. 上型ならびに下型がセラミックからなり、内部に設けた被加熱体が鉄、ニッケル、コバルトのいずれかを含む磁性材料からなる請求項16に記載のガラスレンズ成形装置。 17. The glass lens forming apparatus according to claim 16, wherein the upper mold and the lower mold are made of ceramic, and the object to be heated provided inside is made of a magnetic material containing any of iron, nickel and cobalt. 被加熱体は、キャビティを囲むように配設されることを特徴とする請求項16に記載のガラスレンズ成形装置。 17. The glass lens forming apparatus according to claim 16, wherein the object to be heated is provided so as to surround the cavity. 被加熱体は、キャビティから遠い側に位置して設けると共に、上記キャビティから近い側に位置して上記被加熱体より誘導加熱困難な材質からなる加熱緩和体を設けたことを特徴とする請求項16に記載のガラスレンズ成形装置。 The object to be heated is provided on a side far from the cavity, and a heating moderator made of a material that is harder to induction heat than the object to be heated is provided on a side closer to the cavity. 17. The glass lens forming apparatus according to item 16. 複数のキャビティを有する上型ならびに下型にそれぞれのキャビティに対応して被加熱体を配設したことを特徴とする請求項16に記載のガラスレンズ成形装置。 17. The glass lens forming apparatus according to claim 16, wherein an object to be heated is provided in each of the upper mold and the lower mold having a plurality of cavities. 複数のキャビティ全体を加熱する被加熱体を設けたことを特徴とする請求項20に記載のガラスレンズ成形装置。

21. The glass lens forming apparatus according to claim 20, wherein a heated body that heats the entire plurality of cavities is provided.

JP2003350443A 2002-10-10 2003-10-09 Glass lens molding equipment Expired - Fee Related JP4222922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003350443A JP4222922B2 (en) 2002-10-10 2003-10-09 Glass lens molding equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002297325 2002-10-10
JP2003350443A JP4222922B2 (en) 2002-10-10 2003-10-09 Glass lens molding equipment

Publications (2)

Publication Number Publication Date
JP2004149410A true JP2004149410A (en) 2004-05-27
JP4222922B2 JP4222922B2 (en) 2009-02-12

Family

ID=32473555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003350443A Expired - Fee Related JP4222922B2 (en) 2002-10-10 2003-10-09 Glass lens molding equipment

Country Status (1)

Country Link
JP (1) JP4222922B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143483A (en) * 2004-11-16 2006-06-08 Hoya Corp Mold press-forming die, its production method, and method of producing optical element
JP2006160529A (en) * 2004-12-02 2006-06-22 Matsushita Electric Ind Co Ltd Glass lens forming apparatus
KR101836415B1 (en) * 2016-10-18 2018-03-13 주식회사 엠알케이 Curved glass molding apparatus and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143483A (en) * 2004-11-16 2006-06-08 Hoya Corp Mold press-forming die, its production method, and method of producing optical element
JP4549820B2 (en) * 2004-11-16 2010-09-22 Hoya株式会社 Mold press mold, method for manufacturing the same, and method for manufacturing optical element
JP2006160529A (en) * 2004-12-02 2006-06-22 Matsushita Electric Ind Co Ltd Glass lens forming apparatus
JP4572672B2 (en) * 2004-12-02 2010-11-04 パナソニック株式会社 Glass lens molding equipment
KR101836415B1 (en) * 2016-10-18 2018-03-13 주식회사 엠알케이 Curved glass molding apparatus and method

Also Published As

Publication number Publication date
JP4222922B2 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
CN107592856B (en) Glass forming apparatus and method
US5125945A (en) Method and apparatus for parallel alignment of opposing mold surfaces by controlling the thermal expansion of the apparatus
JP4222922B2 (en) Glass lens molding equipment
JP2005138366A (en) Precise die
TWI331987B (en) Press-molding apparatus, press-molding method and method of producing an optical element
JP5883317B2 (en) Mold press molding apparatus and optical element manufacturing method
JP4266115B2 (en) Mold press molding apparatus and glass optical element manufacturing method
JP3932985B2 (en) Press molding apparatus and press molding method
JP2003104741A (en) Press forming apparatus for optical element and method for manufacturing optical element
JP6081630B2 (en) Mold press molding apparatus and optical element manufacturing method
KR20000070298A (en) Sintering method and sintering apparatus
JP3255864B2 (en) Press forming heating apparatus and press forming heating method
JP6987601B2 (en) Induction heating device
JP7199987B2 (en) induction heating device
JP2003226529A (en) Method and apparatus for manufacturing glass substrate
Nelson et al. Tool Materials and Tooling Package Design
JP2009234161A (en) Mold and forming apparatus and method using the same
JP2017128777A (en) Quenching method and quenching device
JP2536881Y2 (en) Heating device for mold for optical element molding
JP2010234637A (en) Molding apparatus
JP2004026574A (en) Molding equipment
JP5121553B2 (en) Optical element molding method
KR20090029318A (en) Quick heating and quick cooling for mold
JP2005179084A (en) Induction heating molding apparatus
JP2002128532A (en) Devise and method for forming optical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees