JP2002128532A - Devise and method for forming optical element - Google Patents

Devise and method for forming optical element

Info

Publication number
JP2002128532A
JP2002128532A JP2000319236A JP2000319236A JP2002128532A JP 2002128532 A JP2002128532 A JP 2002128532A JP 2000319236 A JP2000319236 A JP 2000319236A JP 2000319236 A JP2000319236 A JP 2000319236A JP 2002128532 A JP2002128532 A JP 2002128532A
Authority
JP
Japan
Prior art keywords
mold
optical element
regulating member
molding
glass material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000319236A
Other languages
Japanese (ja)
Inventor
Toshiya Tomisaka
俊也 富阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP2000319236A priority Critical patent/JP2002128532A/en
Publication of JP2002128532A publication Critical patent/JP2002128532A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould
    • C03B11/122Heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/50Structural details of the press-mould assembly
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/69Controlling the pressure applied to the glass via the dies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a devise and method that can stably produce an optical element having excellent thickness and surface accuracies with compact and easy constitution. SOLUTION: This device is comprised of a pair of upper and lower metal molds 1 and 2, the former having a flange part 7 that restricts movement of the mold, the latter supported/fixed to a bottom end, cylinder mold 3 containing the metal molds and a control member 4 surrounding the exterior of the cylinder mold with longer axial length, restricting approach/movement of the upper/lower metal molds by having bottom end supported/fixed and upper end contacting the flange. Shrinkage amount of the control member is not smaller than that of upper/lower metal molds and glass material 6 combined. Using this forming devise, a heated glass material that keeps a fixed temperature between upper/ lower metal molds is pressed by lowering the upper metal mold. After the lowering movement of the mold is restricted by the control member, the glass is cooled to form an optical element while keeping the pressure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光学素子の成形装置
に関する。
The present invention relates to an optical element molding apparatus.

【0002】[0002]

【従来の技術】光学ガラス素子の成形装置としては、上
部にフランジ部が形成された上金型および下部にフラン
ジ部が形成された下金型を摺動可能に収容する胴型を含
む構成の装置が一般的である。そのような構成の装置に
おいては、成形時において上下金型の少なくとも一方を
移動させる際、移動される金型のフランジ部を胴型の上
端面または下端面に当接させることによって該金型の移
動を規制し、成形品の厚みを規定していた。しかしなが
ら、成形後、冷却する際、ガラス製の成形品はわずかに
収縮し、成形品表面が金型成形面から離型するため、成
形品の面精度が悪化していた。
2. Description of the Related Art An apparatus for molding an optical glass element includes a body mold that slidably accommodates an upper mold having a flange formed on an upper part and a lower mold having a flange formed on a lower part. The device is common. In the apparatus having such a configuration, when at least one of the upper and lower molds is moved during molding, the flange portion of the moved mold is brought into contact with the upper end face or the lower end face of the body mold to thereby form the mold. The movement was regulated and the thickness of the molded product was regulated. However, when cooled after molding, the glass molded product shrinks slightly, and the surface of the molded product is released from the mold molding surface, so that the surface accuracy of the molded product is deteriorated.

【0003】厚み精度と面精度が良好な光学素子を得る
ための種々の装置が提案されている。例えば、特開平4-
74727号公報では、上下金型を摺動可能に収容する胴型
に1またはそれ以上の貫通孔を上下方向に設け、該貫通
孔にピンを配置し、さらに該ピンの駆動手段を設けた構
成の装置が開示されている。そのような装置では、ピン
の長さを胴型の上下方向長さより長く設定して、該ピン
の上端面と上金型のフランジ部とを当接させることによ
り上金型の下方への移動を制限して厚みを規定してい
た。さらには冷却工程において上金型に適用されていた
押圧力を解除し、ピンを下方移動させてピンによる上金
型の下方移動の制限を解除し、上金型を実質的に自重に
よって成形品の収縮に従動させ、成形品表面の金型成形
面からの離型を回避していた。しかしながら、上記の装
置は構成が複雑であり、また実際には上金型を安定して
成形品の収縮に追従移動させるのは困難であった。
Various devices have been proposed for obtaining an optical element having good thickness accuracy and surface accuracy. For example, JP-A-4-
No. 74727 discloses a configuration in which one or more through-holes are provided in a vertical direction in a body mold that slidably accommodates an upper and lower mold, a pin is arranged in the through-hole, and a driving means for the pin is further provided. Is disclosed. In such an apparatus, the length of the pin is set to be longer than the length in the vertical direction of the body mold, and the upper end surface of the pin is brought into contact with the flange portion of the upper mold to move the upper mold downward. And the thickness was regulated. Further, the pressing force applied to the upper mold in the cooling step is released, the pin is moved downward, the restriction of the downward movement of the upper mold by the pin is released, and the upper mold is substantially molded by its own weight. In the mold, and the mold is prevented from being released from the mold surface. However, the above apparatus has a complicated structure, and it is actually difficult to stably move the upper mold to follow the contraction of the molded product.

【0004】また、特開平7-215721号公報では、上下金
型を摺動可能に収容する胴型の上部、中央部または下部
に、ガラス材料より膨張係数が大きい継ぎ足し部を設け
た構成の装置が開示されている。そのような装置におい
ては、胴型または継ぎ足し部の上端面と上金型のフラン
ジ部を当接させることにより上金型の下方への移動を制
限して厚みを規定していた。さらに上記装置では、ガラ
ス材料と継ぎ足し部との膨張係数の差に基づいて冷却工
程で継ぎ足し部がガラス材料より大きく収縮する構成と
し、常に上金型成形面でガラス素材を押圧させて面精度
を規定していた。しかしながら、実際には以下のような
問題があった。 ガラス屈伏点(At)〜ガラス転移点(Tg)までの冷却
工程で継ぎ足し部の収縮量をガラス材料の収縮量より大
きくするためには、継ぎ足し部の長さをかなり長く設定
する必要があり、成形装置が全体として大きすぎた。 また、上述のように継ぎ足し部が長いと温度調整され
たヒータから遠ざかり、継ぎ足し部およびガラス材料の
温度制御が困難で、成形サイクルごとにそれらの膨張量
および収縮量にバラツキが生じるため、十分な厚み精度
および面精度を有する光学素子を安定して得ることはで
きなかった。
Japanese Patent Application Laid-Open No. 7-215721 discloses an apparatus having a structure in which a top portion having a larger expansion coefficient than that of a glass material is provided at an upper portion, a center portion, or a lower portion of a body which slidably accommodates upper and lower molds. Is disclosed. In such an apparatus, the upper mold is brought into contact with the upper end surface of the body mold or the refilling part to restrict the downward movement of the upper mold so as to regulate the thickness. Further, in the above-described apparatus, the replenishing portion is configured to contract more greatly than the glass material in the cooling step based on the difference in expansion coefficient between the glass material and the replenishing portion, and the glass material is constantly pressed on the upper mold forming surface to improve surface accuracy. Had prescribed. However, there are actually the following problems. In order to make the shrinkage amount of the refill portion larger than the shrinkage amount of the glass material in the cooling process from the glass yielding point (At) to the glass transition point (Tg), the length of the refill portion must be set to be considerably longer. The molding equipment was too large as a whole. Further, as described above, if the replenishment part is long, it is difficult to control the temperature of the replenishment part and the glass material away from the heater whose temperature has been adjusted, and the amount of expansion and contraction of the material varies with each molding cycle. An optical element having thickness accuracy and surface accuracy could not be stably obtained.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記事情に鑑
みなされたものであって、コンパクトで簡単な構成であ
りながら、厚み精度および面精度に優れた光学素子を得
ることができる光学素子の成形装置および成形方法を提
供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and is directed to an optical element capable of obtaining an optical element having excellent thickness accuracy and surface accuracy while having a compact and simple structure. An object is to provide a molding device and a molding method.

【0006】本発明はまた、コンパクトで簡単な構成で
ありながら、厚み精度および面精度に優れた光学素子を
安定して得ることができる光学素子の成形装置および成
形方法を提供することを目的とする。
Another object of the present invention is to provide a molding apparatus and a molding method for an optical element capable of stably obtaining an optical element having excellent thickness accuracy and surface accuracy while having a compact and simple structure. I do.

【0007】[0007]

【課題を解決するための手段】本発明は、一方の金型が
端部で支持固定され、他方の金型が端部に移動制限され
るためのフランジ部を有してなる一対の上下金型、該金
型を収容する筒状胴型、および該胴型の外周面の外側に
胴型の金型軸方向長さ以上の金型軸方向長さを有しなが
ら配置され、一端で支持固定されながら他端で上記フラ
ンジ部と当接することによって上下金型の接近移動を制
限する規制部材を含んでなり、規制部材の収縮量が上下
金型の収縮量とガラス材料の収縮量との和以上であるこ
とを特徴とする光学素子の成形装置に関する。
According to the present invention, there is provided a pair of upper and lower molds each having one mold supported and fixed at an end and a flange for restricting movement of the other mold at the end. A mold, a cylindrical body mold for accommodating the mold, and disposed outside the outer peripheral surface of the body mold while having a mold axial length equal to or greater than the mold axial length of the body mold, and supported at one end. A regulating member for restricting approach movement of the upper and lower molds by being in contact with the flange portion at the other end while being fixed, wherein the amount of contraction of the regulating member is the difference between the amount of contraction of the upper and lower molds and the amount of contraction of the glass material. The present invention relates to an optical element molding apparatus characterized by being equal to or greater than the sum.

【0008】本発明また、上記成形装置を用いて光学素
子を成形する方法であって、上下金型間で加熱されたガ
ラス材料を一定温度に保持しながら、上金型を下方移動
させて加圧する工程、および上金型の下方移動が規制部
材によって制限された後、加圧を継続しながら冷却を行
う工程を含む光学素子の成形方法に関する。
The present invention also relates to a method for molding an optical element using the molding apparatus, wherein the upper mold is moved downward while the glass material heated between the upper and lower molds is maintained at a constant temperature. The present invention relates to a method for molding an optical element including a step of pressing and a step of cooling while continuing to press after the downward movement of an upper mold is restricted by a regulating member.

【0009】[0009]

【発明の実施の形態】本発明の成形装置を図面を参照し
ながら説明する。図1(a)は本発明の成形装置の一例
の概略構成図を示し、図1(b)は図1(a)の装置の水
平面A-Bにおける概略断面図を示している。図1の装置
は、ガラス材料(プリフォーム)6を加圧成形するため
の一対の上下金型(1、2)、該金型を収容するための筒
状胴型3、および上金型の下方移動を制限するための規
制部材4を含んでなり、通常さらに加熱体5を含む。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A molding apparatus according to the present invention will be described with reference to the drawings. FIG. 1 (a) shows a schematic configuration diagram of an example of the molding apparatus of the present invention, and FIG. 1 (b) shows a schematic cross-sectional view of a horizontal plane AB of the apparatus of FIG. 1 (a). The apparatus shown in FIG. 1 includes a pair of upper and lower dies (1, 2) for press-molding a glass material (preform) 6, a cylindrical body mold 3 for accommodating the dies, and an upper mold. It comprises a regulating member 4 for restricting downward movement, and usually further comprises a heating element 5.

【0010】上金型1は上端にフランジ部7を有し、下方
移動の際にフランジ部7の下面が規制部材4の上端と当接
することによって下方移動が制限されるようになってい
る。下金型2は下端にフランジ部8を有し、フランジ部8
の上面で規制部材4および胴型3を保持固定するようにな
っている。上下金型の成形面はいかなる形状を有してい
て良く、所望の面精度に加工されている。また、上下金
型の材料は公知の材料が使用可能であり、例えば、酸化
アルミニウム、超硬合金等が挙げられる。
The upper mold 1 has a flange portion 7 at the upper end, and the downward movement is restricted by the lower surface of the flange portion 7 contacting the upper end of the regulating member 4 when moving downward. The lower mold 2 has a flange portion 8 at the lower end, and the flange portion 8
The holding member 4 and the body mold 3 are held and fixed on the upper surface of the member. The molding surfaces of the upper and lower molds may have any shape, and are processed to a desired surface accuracy. Known materials can be used for the upper and lower molds, and examples thereof include aluminum oxide and cemented carbide.

【0011】胴型3は上下金型中心軸のずれおよび傾き
を抑制しながら上下金型を収容するようになっている。
胴型の材料は公知の材料が使用可能であり、例えば、超
硬合金、炭化ケイ素等が挙げられる。
The body mold 3 accommodates the upper and lower molds while suppressing the displacement and inclination of the center axis of the upper and lower molds.
Known materials can be used as the material of the body, and examples thereof include a cemented carbide and silicon carbide.

【0012】規制部材4は下端部で下金型2のフランジ部
8の上面によって支持固定され、上金型1の下方移動の際
に該規制部材4の上端に上金型1のフランジ部7の下面を
当接させることによって上金型1の下方移動を制限する
ようになっている。また、規制部材4は非加熱時におい
て胴型3の金型軸方向長さ以上の金型軸方向長さを有し
ながら、胴型3の外周面の外側に配置されている。当該
長さを、非加熱時において上金型1のフランジ部7の下面
が規制部材4の上端と当接できる範囲内で、適宜選択す
ることによって、得られる光学素子(成形品)の厚みを
制御できる。規制部材が胴型の外周面の内側、例えば、
胴型の内周面と外周面との間に配置されると、規制部材
に熱が伝わりにくく、温度分布が生じるため、十分な厚
み精度および面精度を有する光学素子を得ることができ
ない。
The lower end of the regulating member 4 is a flange of the lower mold 2.
The upper mold 8 is supported and fixed, and when the upper mold 1 is moved downward, the lower surface of the flange 7 of the upper mold 1 is brought into contact with the upper end of the regulating member 4 to limit the downward movement of the upper mold 1. It is supposed to. In addition, the regulating member 4 is arranged outside the outer peripheral surface of the body mold 3 while having a length in the mold axis direction longer than the length of the body mold 3 in the mold axis direction when not heated. By appropriately selecting the length within a range in which the lower surface of the flange portion 7 of the upper mold 1 can be in contact with the upper end of the regulating member 4 when not heated, the thickness of the obtained optical element (molded product) is reduced. Can control. The regulating member is located inside the outer peripheral surface of the body mold, for example,
If it is arranged between the inner peripheral surface and the outer peripheral surface of the body mold, heat is less likely to be transmitted to the regulating member and a temperature distribution occurs, so that an optical element having sufficient thickness accuracy and surface accuracy cannot be obtained.

【0013】また、規制部材4は収縮量が、上下金型
(1、2)の収縮量とガラス材料6の収縮量との和以上で
ある。このため、上金型1のフランジ部7の下面が規制部
材4の上端と当接して光学素子の厚みが規定された後、
冷却工程において上金型1は成形されたガラス材料(成
形品)の収縮に追従でき、上金型成形面と成形品表面と
の離型を回避できる。規制部材の収縮量が上下金型の収
縮量とガラス材料の収縮量との和より小さいと、冷却工
程で上金型成形面と成形品の表面との間で離型が起こ
り、得られる光学素子の面精度が低下する。
The amount of contraction of the regulating member 4 is equal to or greater than the sum of the amount of contraction of the upper and lower molds (1, 2) and the amount of contraction of the glass material 6. For this reason, after the lower surface of the flange portion 7 of the upper mold 1 is in contact with the upper end of the regulating member 4 and the thickness of the optical element is defined,
In the cooling step, the upper mold 1 can follow the shrinkage of the formed glass material (molded product), and can avoid mold release between the upper mold forming surface and the molded product surface. If the amount of contraction of the regulating member is smaller than the sum of the amount of contraction of the upper and lower molds and the amount of contraction of the glass material, mold release occurs between the upper mold molding surface and the surface of the molded product in the cooling step, and the obtained optical The surface accuracy of the element decreases.

【0014】本明細書中、「収縮量」とは冷却時におけ
る金型軸方向の変位長さ、詳しくは成形温度から常温に
冷却するときにおける金型軸方向の変位長さを意味す
る。上記収縮量は材料の熱膨張係数、冷却時の温度差お
よび非加熱時の金型軸方向長さにも依存するため、規制
部材の収縮量が上下金型の収縮量とガラス材料の収縮量
との和以上となるように、規制部材および上下金型の材
料および金型軸方向長さ、ガラス材料の種類、所望の成
形品の最大厚み、および冷却工程での温度差を適宜選択
する必要があるが、本発明においては、規制部材の熱膨
張係数が上金型、下金型およびガラス材料の熱膨張係数
より大きければ良い。そのような熱膨張係数の関係を有
する規制部材、上下金型およびガラス材料を用いれば、
通常、規制部材の収縮量が上下金型の収縮量とガラス材
料の収縮量との和以上となる。上記関係を有する材料の
組み合わせとして、例えば、規制部材としてのステンレ
ス(熱膨張係数;18×10-6)と上下金型としての酸化ア
ルミニウム(熱膨張係数;5×10-6)とガラス材料とし
てのランタン系ガラス(熱膨張係数;8×10-6)の組み
合わせが例示できる。
In the present specification, the "shrinkage amount" means the displacement length in the mold axis direction during cooling, more specifically, the displacement length in the mold axis direction when cooling from the molding temperature to room temperature. Since the above-mentioned shrinkage amount also depends on the thermal expansion coefficient of the material, the temperature difference during cooling, and the length in the axial direction of the mold during non-heating, the shrinkage amount of the regulating member is the shrinkage amount of the upper and lower molds and the shrinkage amount of the glass material. It is necessary to appropriately select the material of the regulating member and the upper and lower molds, the axial length of the mold, the type of glass material, the maximum thickness of the desired molded product, and the temperature difference in the cooling step so as to be equal to or more than the sum of However, in the present invention, it is sufficient that the thermal expansion coefficient of the regulating member is larger than the thermal expansion coefficients of the upper mold, the lower mold, and the glass material. If a regulating member having such a relationship of thermal expansion coefficient, upper and lower molds and a glass material are used,
Usually, the amount of contraction of the regulating member is equal to or more than the sum of the amount of contraction of the upper and lower molds and the amount of contraction of the glass material. As a combination of materials having the above relationship, for example, stainless steel (coefficient of thermal expansion: 18 × 10 −6 ) as a regulating member, aluminum oxide (coefficient of thermal expansion; 5 × 10 −6 ) as upper and lower molds, and glass material Lanthanum-based glass (thermal expansion coefficient: 8 × 10 −6 ).

【0015】図1(a)において規制部材4は筒状形状を
有し、胴型3を収容するように配置されているが、上金
型の下方移動を制限でき、かつ胴型の外周面の外側に配
置されれば、その形状および設置位置は特に制限されな
い。
In FIG. 1 (a), the regulating member 4 has a cylindrical shape and is arranged so as to accommodate the body mold 3, but it can restrict the downward movement of the upper mold, and the outer peripheral surface of the body mold. If it is arranged outside, the shape and the installation position are not particularly limited.

【0016】筒状形状を有する規制部材は金型軸方向長
さ全域にわたって連続的に間隙9(図1(b)参照)が形
成されていることが好ましい。このように筒状規制部材
が「C」型の横断面形状を有することによって、胴型外
周面との接触が有効に確保されるため、伝達された熱を
さらに胴型に有効に伝達することができ、熱伝導効率が
向上する。
It is preferable that the regulating member having a cylindrical shape has a gap 9 (see FIG. 1B) continuously formed over the entire length in the axial direction of the mold. Since the cylindrical regulating member has the “C” -shaped cross-sectional shape, the contact with the outer peripheral surface of the barrel mold is effectively secured, so that the transmitted heat can be further effectively transmitted to the barrel mold. And heat conduction efficiency is improved.

【0017】筒状形状を有する規制部材4は上端および
下端がそれぞれ1の水平面内に位置している。筒状形状
を有する規制部材はそのように加工することが比較的容
易である。
The upper and lower ends of the regulating member 4 having a cylindrical shape are each located within one horizontal plane. A regulating member having a cylindrical shape is relatively easy to process as such.

【0018】加熱は誘導加熱で行なうので、加熱体は胴
型の外周面の外側に配置されている。十分な厚み精度お
よび面精度を有する光学素子を安定して得る観点から
は、規制部材は胴型の外周面の外側に配置され、かつ規
制部材と接触していることが好ましい。規制部材が筒状
形状を有し、胴型を収容するように配置されている場
合、さらは好ましくは、図1(a)に示すように加熱体5
もまた筒状形状を有し、規制部材4を収容するように配
置される。加熱体として、例えば、カーボン、タングス
テン合金等のような誘導加熱され得る導電性材料が好ま
しく使用される。
Since the heating is performed by induction heating, the heating body is arranged outside the outer peripheral surface of the barrel mold. From the viewpoint of stably obtaining an optical element having sufficient thickness accuracy and surface accuracy, it is preferable that the restricting member is disposed outside the outer peripheral surface of the body mold and is in contact with the restricting member. When the regulating member has a cylindrical shape and is arranged so as to accommodate the body mold, it is more preferable that the heating member 5 be arranged as shown in FIG.
Also has a cylindrical shape, and is arranged to accommodate the regulating member 4. As the heating body, for example, a conductive material that can be induction-heated, such as carbon or a tungsten alloy, is preferably used.

【0019】図1(a)に示すように、規制部材4の内周
面は胴型3の外周面と、加熱体5の内周面は規制部材4の
外周面と接触していることが好ましい。加熱時および冷
却時の熱伝導が効率よく行われるためである。
As shown in FIG. 1 (a), the inner peripheral surface of the regulating member 4 is in contact with the outer peripheral surface of the body mold 3, and the inner peripheral surface of the heating element 5 is in contact with the outer peripheral surface of the regulating member 4. preferable. This is because heat conduction during heating and cooling is performed efficiently.

【0020】図1(a)の装置の操作手順について説明
する。まず、上下金型(1、2)間でガラス材料(プリフ
ォーム)6を加熱し、ガラス材料6が所定の温度(成形温
度)に達すれば当該温度をしばらく維持する。このとき
の状態を図1(a)は示している。次いで、ガラス材料6
を上記温度で維持しながら、上金型1を図示しない駆動
手段によって下方移動させて加圧する。そして、上金型
1の下方移動が規制部材4によって制限された後、すなわ
ち上金型1のフランジ部7の下面が規制部材4の上端に当
接した後、加圧を継続しながら冷却を行う。このとき、
規制部材4の収縮量は上下金型(1、2)の収縮量とガラ
ス材料6の収縮量との和以上であり、上金型1は成形され
たガラス材料(成形品)の収縮に追従するため、上金型
成形面と成形品表面との接触を確保でき、結果として成
形品の面精度が優れる。
The operation procedure of the apparatus shown in FIG. 1A will be described. First, the glass material (preform) 6 is heated between the upper and lower molds (1, 2), and when the glass material 6 reaches a predetermined temperature (forming temperature), the temperature is maintained for a while. FIG. 1A shows this state. Then, the glass material 6
While maintaining the temperature at the above temperature, the upper mold 1 is moved downward by a driving means (not shown) to apply pressure. And the upper mold
After the downward movement of 1 is restricted by the regulating member 4, that is, after the lower surface of the flange portion 7 of the upper mold 1 comes into contact with the upper end of the regulating member 4, cooling is performed while the pressurization is continued. At this time,
The amount of shrinkage of the regulating member 4 is equal to or more than the sum of the amount of shrinkage of the upper and lower molds (1, 2) and the amount of shrinkage of the glass material 6, and the upper mold 1 follows the shrinkage of the formed glass material (molded product). Therefore, contact between the upper mold forming surface and the surface of the molded product can be ensured, and as a result, the surface accuracy of the molded product is excellent.

【0021】冷却は、単に加熱を止めることによって達
成される自然冷却であってもよいし、または加熱を止め
た後、加熱体に冷却風を吹き付けることによって達成さ
れる強制冷却であってもよい。
The cooling may be natural cooling achieved simply by stopping the heating, or forced cooling achieved by blowing the cooling air to the heating body after the heating is stopped. .

【0022】加圧は成形品の温度が常温になるまで継続
されることが好ましいが、成形時間の短縮の観点から成
形品の温度が約(ガラス転移点-100)℃になるまで継続
されればよい。加圧力は、レンズの大きさにより範囲が
異なるが、上金型1の下方移動が規制部材4によって制限
されるまでは、約0.5〜3kgf/cm2の範囲内で一定に維持
されればよく、規制部材による制限後は、約0.5〜4kgf/
cm2の範囲内で一定に維持されればよい。
The pressurization is preferably continued until the temperature of the molded article reaches room temperature, but from the viewpoint of shortening the molding time, the pressure is continued until the temperature of the molded article becomes about (glass transition point -100) ° C. I just need. The pressure range varies depending on the size of the lens, but may be maintained within a range of about 0.5 to 3 kgf / cm 2 until the downward movement of the upper mold 1 is restricted by the regulating member 4. After the restriction by the regulating member, about 0.5-4kgf /
It may be maintained constant within the range of cm 2 .

【0023】本操作手順は、上金型1の下方移動が規制
部材4によって制限された後、加圧を終了して冷却を行
うことを妨げるものではないが、面精度および厚み精度
のさらなる向上の観点からは加圧を継続しながら冷却を
行うことが好ましい。
This operation procedure does not prevent the cooling from being performed after the pressurization is finished after the downward movement of the upper mold 1 is restricted by the regulating member 4, but the surface accuracy and the thickness accuracy are further improved. From the viewpoint of, it is preferable to perform cooling while continuing pressurization.

【0024】図2を用いて本発明の別の具体例について
説明する。図2(a)は本発明の成形装置の一例の概略
構成図を示し、図2(b)は図2(a)の装置の水平面A-
Bにおける概略断面図を示している。図2の装置は、筒状
形状を有する加熱体5が直接的に胴型3を収容するように
配置されていること、規制部材14がピン形状を有し、該
規制部材14が加熱体5を金型中心軸方向に貫通して形成
された孔に配置されていること以外、図1の装置と同様
である。したがって、図2における図1と同じ符号は図1
における説明と同様であるため、それらの説明を省略す
る。
Another embodiment of the present invention will be described with reference to FIG. FIG. 2 (a) shows a schematic configuration diagram of an example of the molding apparatus of the present invention, and FIG. 2 (b) shows a horizontal plane A- of the apparatus shown in FIG. 2 (a).
1 shows a schematic cross-sectional view at B. The apparatus shown in FIG. 2 has a configuration in which the heating element 5 having a cylindrical shape is disposed so as to directly accommodate the body mold 3, the regulating member 14 has a pin shape, and the regulating member 14 is This is the same as the apparatus of FIG. 1 except that the hole is formed in a hole formed penetrating in the direction of the center axis of the mold. Therefore, the same reference numerals in FIG.
Are the same as those described above, and the description thereof is omitted.

【0025】図2(b)においては、ピン形状を有する3
つの規制部材14が加熱体横断面において金型軸を中心と
した1の円周上に等間隔で配置されているが、上金型1の
下方移動の際にピン形状を有する2以上の規制部材がそ
れらの上端で上金型1のフランジ部7の下面と当接できれ
ば、規制部材の数および設置位置は特に制限されない。
上下金型の中心軸のずれおよび傾きをより有効に抑制
し、かつより容易に成形装置を得る観点からは、ピン形
状を有する2以上、好ましくは3〜4の規制部材が加熱体
横断面において金型軸を中心とした1の円周上略等間隔
で配置されることが望ましい。なお、ピン形状を有する
規制部材14は加熱体5の上記孔に嵌合されている。ま
た、使用される全ての規制部材14は上端と下端がそれぞ
れ1の水平面内に位置する。
In FIG. 2B, a pin 3
The two regulating members 14 are arranged at equal intervals on the circumference of one around the mold axis in the cross section of the heating body, but two or more regulating members having a pin shape when the upper mold 1 moves downward. As long as the members can contact the lower surface of the flange portion 7 of the upper mold 1 at their upper ends, the number and the installation positions of the regulating members are not particularly limited.
From the viewpoint of more effectively suppressing the deviation and inclination of the central axis of the upper and lower molds, and from the viewpoint of more easily obtaining a molding device, two or more, preferably 3 to 4 regulating members having a pin shape are provided in the heating element cross section. It is desirable that they are arranged at substantially equal intervals on one circumference centered on the mold axis. Note that the regulating member 14 having a pin shape is fitted in the hole of the heating element 5. In addition, all the regulating members 14 used have their upper ends and lower ends located in one horizontal plane.

【0026】規制部材14は形状が異なること以外、図1
における規制部材4と同様であり、従って、「形状」を
除く、「長さ」、「収縮量」および「材料」等の記載は
図1の説明を準用する。
The regulating member 14 is different from that of FIG.
Therefore, the description of “length”, “shrinkage amount”, “material”, etc., except for “shape”, apply the description of FIG. 1 mutatis mutandis.

【0027】図2(a)に示すように、加熱体5の内周面
は胴型3の外周面と接触していることが好ましい。加熱
時および冷却時の熱伝導が効率よく行われるためであ
る。
As shown in FIG. 2A, it is preferable that the inner peripheral surface of the heating element 5 is in contact with the outer peripheral surface of the drum mold 3. This is because heat conduction during heating and cooling is performed efficiently.

【0028】図2(a)の装置の操作手順は、図1(a)
を図2(a)に、規制部材4を規制部材14に読み替えて、
図1(a)の装置の操作手順を適用するものとする。
The operation procedure of the apparatus shown in FIG. 2A is shown in FIG.
FIG. 2 (a), the regulating member 4 is replaced with the regulating member 14,
The operation procedure of the device shown in FIG.

【0029】また、図1(a)および図2(a)においては
胴型3および規制部材(4または14)の下端部を下金型2
のフランジ部8の上面によって支持固定する構成が示さ
れているが、下金型にフランジ部を設けずに新たに固定
板を設け、該固定板の上面によって胴型、規制部材およ
び下金型の下端部を支持固定する構成であってもよい。
In FIGS. 1A and 2A, the lower end of the body die 3 and the regulating member (4 or 14) is connected to the lower die 2.
Although the configuration for supporting and fixing is shown by the upper surface of the flange portion 8, a new fixing plate is newly provided without providing the flange portion on the lower mold, and the body mold, the regulating member and the lower mold are provided by the upper surface of the fixing plate. May be configured to support and fix the lower end of the.

【0030】以上に例示した具体例の中でも、規制部材
が筒状形状を有する装置が最も好ましい。厚み精度およ
び面精度に優れた光学素子をより安定して得ることがで
きるためである。
Among the specific examples described above, an apparatus in which the regulating member has a cylindrical shape is most preferable. This is because an optical element having excellent thickness accuracy and surface accuracy can be more stably obtained.

【0031】以上のような本発明の成形装置において規
制部材は「上下金型の金型軸方向長さの和」にほぼ等し
い金型軸方向長さを確保できるため、規制部材の収縮量
を上下金型の収縮量とガラス材料の収縮量との和以上に
比較的容易に制御できる。そのため、装置全体のコンパ
クト化を容易に達成できる。
In the molding apparatus of the present invention as described above, the regulating member can secure a length in the mold axial direction substantially equal to "the sum of the lengths of the upper and lower dies in the axial direction of the mold". It is relatively easy to control the sum of the shrinkage of the upper and lower molds and the shrinkage of the glass material. Therefore, the entire device can be easily made compact.

【0032】[0032]

【実施例】(実施例1)図1(a)に示す構成の成形装置
を用いて、直径7mmの球状ガラスプリフォーム(材料;L
aF71、熱膨張係数7.5×10-6)から、心厚2.5mm、上凸面
曲率半径9mm、下凸面曲率半径10mmの両凸レンズを成形
した。図1(a)において、上金型1および下金型2の材
料は酸化アルミニウムであり、直径は10mm、金型軸方向
長さは25mmであった。胴型3の材料は超硬合金であり、
内径は10mm、金型軸方向長さは20mmであった。規制部材
4の材料はステンレスであり、内径は18mm、金型軸方向
長さは21mmであった。加熱体5の材料はカーボンであ
り、内径は21mm、金型軸方向長さは20mmであった。
(Example 1) A spherical glass preform having a diameter of 7 mm (material; L) was formed by using a molding apparatus having the structure shown in FIG.
Based on aF71 and a coefficient of thermal expansion of 7.5 × 10 −6 ), a biconvex lens having a core thickness of 2.5 mm, an upper convex surface curvature radius of 9 mm, and a lower convex surface curvature radius of 10 mm was molded. In FIG. 1A, the material of the upper mold 1 and the lower mold 2 was aluminum oxide, the diameter was 10 mm, and the length in the mold axial direction was 25 mm. The material of the torso 3 is cemented carbide,
The inner diameter was 10 mm, and the length in the mold axial direction was 20 mm. Control member
The material of No. 4 was stainless steel, the inner diameter was 18 mm, and the length in the mold axial direction was 21 mm. The material of the heating element 5 was carbon, the inner diameter was 21 mm, and the length in the mold axial direction was 20 mm.

【0033】まず、加熱体5を誘導加熱して、上下金型
(1、2)間でガラス材料(プリフォーム)6を加熱し、
ガラス材料6が約715℃に達すれば当該温度をしばらく維
持した。加熱体由来の熱は規制部材4および胴型5を介し
てガラス材料6に伝わった。次いで、ガラス材料6を上記
温度で維持しながら、上金型1を図示しない駆動手段に
よって下方移動させて0.5kgf/cm2で加圧した。そして、
上金型1のフランジ部7の下面が規制部材4の上端に当接
した後、0.5kgf/cm2の加圧を継続しながら自然冷却を行
った。加圧および冷却を成形品の温度が約580℃になる
まで継続し、無負荷の状態で更に80℃まで冷却した後、
上金型1を上方移動して、成形品を取り出した。
First, the heating element 5 is induction-heated to heat the glass material (preform) 6 between the upper and lower molds (1, 2).
When the temperature of the glass material 6 reached about 715 ° C., the temperature was maintained for a while. Heat from the heating body was transmitted to the glass material 6 via the regulating member 4 and the body mold 5. Next, while maintaining the glass material 6 at the above-mentioned temperature, the upper mold 1 was moved downward by a driving means (not shown) and pressed at 0.5 kgf / cm 2 . And
After the lower surface of the flange portion 7 of the upper mold 1 came into contact with the upper end of the regulating member 4, natural cooling was performed while continuing to apply a pressure of 0.5 kgf / cm 2 . Pressing and cooling are continued until the temperature of the molded article reaches about 580 ° C, and after further cooling to 80 ° C with no load,
The upper mold 1 was moved upward to take out the molded product.

【0034】100個のプリフォームを成形し、得られた
全てのレンズを評価したところ、心厚のばらつきはσ=
0.0005mmと非常に小さかった。また、成形面を干渉計で
測定したところ、面精度がλ/6以上のレンズの割合が92
%以上であった。
When 100 preforms were molded and all the obtained lenses were evaluated, the variation of the core thickness was σ =
It was very small, 0.0005mm. When the molded surface was measured with an interferometer, the ratio of lenses with surface accuracy of λ / 6 or more was 92%.
% Or more.

【0035】(実施例2)図2(a)に示す構成の成形装
置を用いて、実施例1と同様のプリフォームから、実施
例1と同様の両凸レンズを成形した。図2(a)におい
て、上金型1および下金型2の材料は酸化アルミニウムで
あり、直径は20mm、金型軸方向長さは35mmであった。胴
型3の材料は超硬合金であり、内径は20mm、金型軸方向
長さは30mmであった。規制部材14の材料はステンレスで
あり、直径は3mm、金型軸方向長さは32mmであった。加
熱体5の材料はカーボンであり、内径は30mm、金型軸方
向長さは30mmであった。
Example 2 A biconvex lens similar to that of Example 1 was molded from the same preform as that of Example 1 using a molding apparatus having the structure shown in FIG. 2A. In FIG. 2A, the material of the upper mold 1 and the lower mold 2 was aluminum oxide, the diameter was 20 mm, and the length in the mold axial direction was 35 mm. The material of the barrel mold 3 was a cemented carbide, the inner diameter was 20 mm, and the length in the mold axial direction was 30 mm. The material of the regulating member 14 was stainless steel, the diameter was 3 mm, and the length in the mold axial direction was 32 mm. The material of the heating element 5 was carbon, the inner diameter was 30 mm, and the length in the mold axial direction was 30 mm.

【0036】まず、加熱体5を誘導加熱して、上下金型
(1、2)間でガラス材料(プリフォーム)6を加熱し、
ガラス材料6が約715℃に達すれば当該温度をしばらく維
持した。加熱体由来の熱は胴型5を介してガラス材料6に
伝わった。次いで、ガラス材料6を上記温度で維持しな
がら、上金型1を図示しない駆動手段によって下方移動
させて1.5kgf/cm2で加圧した。そして、上金型1のフラ
ンジ部7の下面が規制部材14の上端に当接した後、2kgf/
cm2の加圧を継続しながら自然冷却を行った。加圧およ
び冷却を成形品の温度が約580℃になるまで継続し、無
負荷の状態で更に80℃まで冷却した後、上金型1を上方
移動して、成形品を取り出した。
First, the heating element 5 is induction-heated to heat the glass material (preform) 6 between the upper and lower molds (1, 2).
When the temperature of the glass material 6 reached about 715 ° C., the temperature was maintained for a while. The heat from the heating body was transmitted to the glass material 6 via the shell 5. Next, while maintaining the glass material 6 at the above-mentioned temperature, the upper mold 1 was moved downward by a driving means (not shown) and pressed at 1.5 kgf / cm 2 . Then, after the lower surface of the flange portion 7 of the upper mold 1 contacts the upper end of the regulating member 14, 2 kgf /
Natural cooling was performed while the pressurization of cm 2 was continued. Pressing and cooling were continued until the temperature of the molded article reached about 580 ° C., and after further cooling to 80 ° C. with no load, the upper mold 1 was moved upward to take out the molded article.

【0037】150個のプリフォームを成形し、得られた
全てのレンズを評価したところ、心厚のばらつきはσ=
0.0006mmと非常に小さかった。また、成形面の面精度が
λ/6以上のレンズの割合が90%以上であった。
When 150 preforms were molded and all the obtained lenses were evaluated, the variation of the core thickness was σ =
It was very small, 0.0006mm. The ratio of lenses having a surface accuracy of λ / 6 or more of the molded surface was 90% or more.

【0038】(比較例1)規制部材14がないこと以外、
実施例2で用いた成形装置と同様の装置を用いて150個の
プリフォームを成形したところ、心厚のばらつきは、σ
=0.012mmと大きいものだった。また、成形面の面精度
がλ/6以上のレンズの割合が78%以下であった。
(Comparative Example 1) Except for the absence of the regulating member 14,
When 150 preforms were molded using the same apparatus as the molding apparatus used in Example 2, the variation in core thickness was σ
= 0.012mm. The ratio of lenses having a surface accuracy of λ / 6 or more of the molded surface was 78% or less.

【0039】[0039]

【発明の効果】本発明は、レンズ材料と金型の膨張係数
に対し、規制部材の膨張係数を大きく設定すること、お
よび規制部材を胴型と別構成とすることにより、成形レ
ンズの厚み精度と面精度を向上させることができる。さ
らに、規制部材を加熱体に接触させることにより、規制
部材の膨張量を均一化でき、厚み精度と面精度に優れた
成形レンズを安定して得ることができる。
According to the present invention, the thickness accuracy of the molded lens is improved by setting the expansion coefficient of the regulating member larger than the expansion coefficient of the lens material and the mold, and by forming the regulating member different from the body mold. And surface accuracy can be improved. Furthermore, by contacting the regulating member with the heating element, the amount of expansion of the regulating member can be made uniform, and a molded lens having excellent thickness accuracy and surface accuracy can be stably obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 (a)は本発明の成形装置の一例の概略構成
図を示し、(b)は(a)の装置の水平面A-Bにおける
概略断面図を示す。
FIG. 1A is a schematic configuration diagram of an example of a molding apparatus of the present invention, and FIG. 1B is a schematic cross-sectional view of a horizontal plane AB of the apparatus of FIG.

【図2】 (a)は本発明の成形装置の一例の概略構成
図を示し、(b)は(a)の装置の水平面A-Bにおける
概略断面図を示す。
2A is a schematic configuration diagram of an example of a molding apparatus of the present invention, and FIG. 2B is a schematic cross-sectional view of the apparatus of FIG.

【符号の説明】[Explanation of symbols]

1:上金型、2:下金型、3:胴型、4:規制部材、5:加
熱体、6:プリフォーム、7:フランジ部、8:フランジ
部、9:間隙、14:規制部材。
1: upper mold, 2: lower mold, 3: body mold, 4: regulating member, 5: heating element, 6: preform, 7: flange, 8: flange, 9: gap, 14: regulating member .

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 一方の金型が端部で支持固定され、他方
の金型が端部に移動制限されるためのフランジ部を有し
てなる一対の上下金型、 該金型を収容する筒状胴型、および該胴型の外周面の外
側に胴型の金型軸方向長さ以上の金型軸方向長さを有し
ながら配置され、一端で支持固定されながら他端で上記
フランジ部と当接することによって上下金型の接近移動
を制限する規制部材を含んでなり、 規制部材の収縮量が上下金型の収縮量とガラス材料の収
縮量との和以上であることを特徴とする光学素子の成形
装置。
1. A pair of upper and lower dies having one flange fixedly supported at an end and a flange for restricting movement of the other die to the end, and accommodating the dies. A cylindrical body die, and disposed outside the outer peripheral surface of the body die while having a length in the mold axial direction not less than the length of the body die in the axial direction, and supported and fixed at one end while the flange at the other end. A restricting member that restricts the approaching movement of the upper and lower molds by contacting the upper and lower portions, wherein the amount of contraction of the restricting member is equal to or more than the sum of the amount of contraction of the upper and lower molds and the amount of contraction of the glass material. For forming optical elements.
【請求項2】 規制部材が上下金型およびガラス材料の
熱膨張係数より大きな熱膨張係数の材料からなっている
請求項1に記載の光学素子の成形装置。
2. The molding device for an optical element according to claim 1, wherein the regulating member is made of a material having a thermal expansion coefficient larger than that of the upper and lower molds and the glass material.
【請求項3】 胴型の外周面の外側に配置された加熱体
をさらに含み、該加熱体に規制部材が接触している請求
項1または2に記載の光学素子の成形装置。
3. The molding device for an optical element according to claim 1, further comprising a heating element disposed outside the outer peripheral surface of the body mold, wherein the regulating member is in contact with the heating element.
【請求項4】 筒状形状を有する規制部材が胴型を収容
するように配置され、筒状形状を有する加熱体が規制部
材を収容するように配置されてなる請求項3に記載の光
学素子の成形装置。
4. The optical element according to claim 3, wherein the regulating member having a cylindrical shape is arranged to accommodate the body mold, and the heating element having a cylindrical shape is arranged to accommodate the regulating member. Molding equipment.
【請求項5】 規制部材が金型軸方向長さ全域にわたっ
て連続的に形成されてなる間隙を有する請求項4に記載
の光学素子の成形装置。
5. The molding device for an optical element according to claim 4, wherein the regulating member has a gap formed continuously over the entire length in the axial direction of the mold.
【請求項6】 筒状形状を有する加熱体が胴型を収容す
るように配置され、ピン形状を有する少なくとも2以上
の規制部材が、加熱体を金型中心軸方向に貫通して形成
された孔に配置されてなる請求項3に記載の光学素子の
成形装置。
6. A heating element having a cylindrical shape is arranged so as to accommodate a body mold, and at least two or more regulating members having a pin shape are formed by penetrating the heating element in a central axis direction of the mold. 4. The optical element molding apparatus according to claim 3, wherein the apparatus is arranged in a hole.
【請求項7】 ピン形状を有する少なくとも2以上の規
制部材が加熱体横断面において金型軸を中心とした1の
円周上略等間隔で配置されてなる請求項6に記載の光学
素子の成形装置。
7. The optical element according to claim 6, wherein at least two or more regulating members having a pin shape are arranged at substantially equal intervals on one circumference centered on a mold axis in a cross section of the heating body. Molding equipment.
【請求項8】 請求項1〜7いずれかに記載の光学素子の
成形装置を用いて光学素子を成形する方法であって、 上下金型間で加熱されたガラス材料を一定温度に保持し
ながら、上金型を下方移動させて加圧する工程、および
上金型の下方移動が規制部材によって制限された後、加
圧を継続しながら冷却を行う工程を含む光学素子の成形
方法。
8. A method of molding an optical element using the optical element molding apparatus according to claim 1, wherein the glass material heated between the upper and lower molds is maintained at a constant temperature. An optical element forming method comprising: a step of moving the upper mold downward to pressurize; and a step of cooling while continuing to pressurize after the downward movement of the upper mold is restricted by the restricting member.
JP2000319236A 2000-10-19 2000-10-19 Devise and method for forming optical element Pending JP2002128532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000319236A JP2002128532A (en) 2000-10-19 2000-10-19 Devise and method for forming optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000319236A JP2002128532A (en) 2000-10-19 2000-10-19 Devise and method for forming optical element

Publications (1)

Publication Number Publication Date
JP2002128532A true JP2002128532A (en) 2002-05-09

Family

ID=18797730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000319236A Pending JP2002128532A (en) 2000-10-19 2000-10-19 Devise and method for forming optical element

Country Status (1)

Country Link
JP (1) JP2002128532A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254234A (en) * 2006-03-24 2007-10-04 Olympus Corp Method for producing molding die for optical element
JP2011136901A (en) * 2011-02-04 2011-07-14 Olympus Corp Method for manufacturing optical element
WO2013100152A1 (en) * 2011-12-29 2013-07-04 Hoya株式会社 Method for manufacturing glass blank for magnetic disk and method for manufacturing glass substrate for magnetic disk
CN111646675A (en) * 2019-03-04 2020-09-11 Hoya株式会社 Press molding device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0977521A (en) * 1995-09-13 1997-03-25 Asahi Optical Co Ltd Optical element forming device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0977521A (en) * 1995-09-13 1997-03-25 Asahi Optical Co Ltd Optical element forming device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254234A (en) * 2006-03-24 2007-10-04 Olympus Corp Method for producing molding die for optical element
JP2011136901A (en) * 2011-02-04 2011-07-14 Olympus Corp Method for manufacturing optical element
WO2013100152A1 (en) * 2011-12-29 2013-07-04 Hoya株式会社 Method for manufacturing glass blank for magnetic disk and method for manufacturing glass substrate for magnetic disk
CN111646675A (en) * 2019-03-04 2020-09-11 Hoya株式会社 Press molding device

Similar Documents

Publication Publication Date Title
US5250099A (en) Glass molding process and molding apparatus for the same
KR101468756B1 (en) Method of producing glass molding product and mold press molding device
JP2002128532A (en) Devise and method for forming optical element
JP2001180946A (en) Method for forming optical glass element and forming apparatus for optical glass with method
JP4559784B2 (en) Optical element manufacturing method
JP3188676B2 (en) Method for manufacturing glass molded body
JPH1129333A (en) Pressing machine for optical element glass and pressing optical element glass
JP2006240943A (en) Apparatus and method for hot press molding
JPH11180722A (en) Forming device for optical element
JP3585260B2 (en) Apparatus and method for manufacturing optical element
JP4227050B2 (en) Glass lens molding method and apparatus
KR100212916B1 (en) Apparatus for optical glass
JP3614902B2 (en) Preform for glass molded lens and manufacturing method thereof
JP2005263554A (en) Method and apparatus for machining glass material
JPH06166526A (en) Apparatus for forming optical element
JP2778648B2 (en) Heating furnace for optical element molding
JPH11255529A (en) Molding apparatus for optical element
JP3187903B2 (en) Glass optical element molding equipment
JP2001335330A (en) Method for forming optical elements
JP2007238389A (en) Method and apparatus for molding optical component
JPH0757697B2 (en) Glass lens molding method
JP2001354435A (en) Formed die and formed method for optical element
JPH0725629A (en) Mold for forming optical lens
JPH01270529A (en) Forming mold for glass optical element
JP2000044262A (en) Optical element forming device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050622

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070809

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100622