JPH01270529A - Forming mold for glass optical element - Google Patents

Forming mold for glass optical element

Info

Publication number
JPH01270529A
JPH01270529A JP9629788A JP9629788A JPH01270529A JP H01270529 A JPH01270529 A JP H01270529A JP 9629788 A JP9629788 A JP 9629788A JP 9629788 A JP9629788 A JP 9629788A JP H01270529 A JPH01270529 A JP H01270529A
Authority
JP
Japan
Prior art keywords
mold
forming
optical element
glass material
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9629788A
Other languages
Japanese (ja)
Inventor
Hiroshi Ito
弘 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP9629788A priority Critical patent/JPH01270529A/en
Publication of JPH01270529A publication Critical patent/JPH01270529A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To prevent shrinkage, contrive high accuracy and improve shape copying properties of a forming surface by forming a thermally hardened glass material with a pair of forming molds having additionally provided heat insulating material on the outer periphery of at least one forming mold. CONSTITUTION:Outer peripheral parts (21b) and (22b) relatively adjacent to forming surfaces (21a) and (22a) of forming molds 21 and 22 in a forming device 20 are additionally provided with cylindrical heat insulating materials 27 and 28 consisting of, e.g., ZrO2 ceramic, and the top force 21 is fixed to a top plate 25. The bottom force 22 is passed through the bottom plate 26 and movably held in the vertical directions [direction of an arrow (A)] through a driving source and simultaneously constituted so as to enable temperature control at a prescribed temperature with heating heaters 23 and 24 at a controlled temperature. An optical glass material 34 is then placed in a drum type carrier 33 and fed into a heating furnace 36 with an arm 35 for conveying the drum type carrier and thermally softened through a heater 37 until a formable state is attained. The arm 35 is then advanced to convey the optical glass material 34 together with the carrier 33 to a gap between the top force 21 and the bottom force 22 and carry out press forming.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、成形可能に加熱軟化されたガラス素材を加圧
して光学素子を成形するガラス素子の成形型に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a mold for forming an optical element by pressurizing a glass material heated and softened so as to be moldable.

〔従来の技術〕[Conventional technology]

従来、ガラス素材を加熱軟化した後、ガラス素材を所望
の光学素子に加圧成形する一対の成形型を備えた光学素
子成形装置が、例えば特開昭62−288119号公報
に開示されている。
2. Description of the Related Art Conventionally, an optical element molding apparatus equipped with a pair of molds for heating and softening a glass material and then pressure-molding the glass material into a desired optical element has been disclosed, for example, in Japanese Patent Application Laid-Open No. 62-288119.

第9図aは、上記光学素子成形装置を示し、図示を省略
した温度制御装置により所定の温度に設定可能な上型1
と下型2の一対の成形型が対向配置され、上型1と下型
2間にガラス素材3を搬送する搬送用アーム4が設けら
れている。ガラス素材3ば、胴型キャリア5に保持され
つつ搬送用アーム4により加熱炉6内に搬送されて所定
温度に加熱軟化された後、上型1と下型2間に搬送され
、第9図すに示すように上型1と下型2により光学ガラ
ス素材3をプレスしてガラス光学素子を成形し得るよう
に構成されている。また、上型1と下型2は、その高温
となる部分の酸化を防止するため石英ガラス管7内に配
置され、石英ガラス管7内は、雰囲気ガス供給装置9に
より窒素ガス又は不活性ガスあるいは還元性ガス等の非
酸化性ガスが供給し得るように構成されている。
FIG. 9a shows the optical element molding apparatus described above, in which the upper mold 1 can be set to a predetermined temperature by a temperature control device (not shown).
A pair of molds, ie, a lower mold 2 and a lower mold 2, are arranged opposite to each other, and a transport arm 4 for transporting a glass material 3 is provided between the upper mold 1 and the lower mold 2. The glass material 3 is held by the body carrier 5 and transported into the heating furnace 6 by the transport arm 4, heated and softened to a predetermined temperature, and then transported between the upper mold 1 and the lower mold 2, as shown in FIG. As shown in the figure, the optical glass material 3 is pressed by an upper mold 1 and a lower mold 2 to form a glass optical element. In addition, the upper mold 1 and the lower mold 2 are placed in a quartz glass tube 7 to prevent oxidation of the high-temperature parts, and the inside of the quartz glass tube 7 is filled with nitrogen gas or inert gas by an atmospheric gas supply device 9. Alternatively, it is configured so that a non-oxidizing gas such as a reducing gas can be supplied.

〔発明が解決しようとする課B] しかしながら、従来の成形型にあっては、成形型1,2
の型表面から非酸化性ガスとの熱交換が行われるので、
成形型1.2の中心軸aを対称にして径方向に大きな温
度分布が生じ、成形型1゜2の中心軸a(」近で温度が
高く、成形型表面に近ずくに従い急激に温度が低くなる
[Problem B to be solved by the invention] However, in the conventional mold, molds 1 and 2
Since heat exchange with non-oxidizing gas takes place from the mold surface,
A large temperature distribution occurs in the radial direction symmetrically about the central axis a of the mold 1.2, with the temperature being high near the central axis a (') of the mold 1.2, and rapidly decreasing as it approaches the mold surface. It gets lower.

このため、ガラス光学素子の成形時に、加熱軟化された
ガラス素材にガラス素材より温度が低く保持された成形
型が接触すると、ガラス素材から成形型へ熱交換が行わ
れ、−船釣に熱の逃げにくいガラス素材の中央部が最終
的に最も温度が高くなるような温度分布となり、このた
めに熱収縮差による形状変化いわゆる「ヒケ」を生ずる
こととなる。したがって成形型に前記した大きな温度分
布が生じていると、ガラス素材の温度分布を助長させる
とともに、ガラス素材外周部の粘度」二昇が早くなり、
ガラス素材を加圧保持することによって、「ヒケ」を除
去修正する効果が妨げられ、ガラス光学素子に「ヒケ」
が発生ずる問題点があった。
For this reason, when a glass material that has been heated and softened comes into contact with a mold that is kept at a lower temperature than the glass material during molding of glass optical elements, heat exchange occurs from the glass material to the mold. The temperature distribution is such that the central part of the glass material, which is difficult to escape, is ultimately the highest in temperature, resulting in a shape change due to the difference in thermal contraction, so-called "sink marks". Therefore, if the above-mentioned large temperature distribution occurs in the mold, the temperature distribution of the glass material will be promoted, and the viscosity of the outer peripheral part of the glass material will increase quickly.
By holding the glass material under pressure, the effect of removing and correcting "sink marks" is hindered, causing "sink marks" on glass optical elements.
There was a problem that occurred.

そこで、本発明は、上記従来の問題点に鑑メてなされた
ものであって、成形型の温度分布を減少させ、ヒケのな
い光学素子を成形し得るガラス光学素子の成形型を擢供
することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and provides a mold for a glass optical element that can reduce the temperature distribution of the mold and mold an optical element without sink marks. With the goal.

(課題を解決するだめの手段) 上記目的を達成するために、本発明のガラス光学素子の
成形型は、第1図に示すように、成形可能に加熱軟化さ
れたガラス素材を加圧成形すべく対向配置された成形型
11.12の少なくとも一方の成形型外周部11a、1
2aに断熱材13.14を付設して構成されている。
(Means for Solving the Problems) In order to achieve the above object, the mold for the glass optical element of the present invention, as shown in FIG. At least one mold outer peripheral portion 11a, 1 of the molds 11.12 arranged to face each other
It is constructed by attaching heat insulating materials 13 and 14 to 2a.

(作用] 上記構成のガラス光学素子の成形型によれば、成形型1
1および/または成形型12の外周部11a、12aの
表面と非酸化性ガスとの熱交換が緩和され、成形型1.
1.12の中心軸aを対称とする成形型11.12の温
度分布が減少する。
(Function) According to the mold for a glass optical element having the above configuration, the mold 1
1 and/or the surfaces of the outer peripheral portions 11a and 12a of the mold 12 and the non-oxidizing gas is relaxed, and the mold 1.
The temperature distribution of the mold 11.12 symmetrical about the central axis a of 1.12 decreases.

[実施例] 以下、1面を用いて、本発明の実施例を詳細に説明する
[Example] Hereinafter, an example of the present invention will be described in detail using one page.

(第1実施例) 第2図は、本発明に係るガラス光学素子の成形型の第1
実施例を示すもので、図にあっては、本実施例の成形型
を用いた成形装置20を断面図で示しである。
(First Example) FIG. 2 shows a first example of a mold for a glass optical element according to the present invention.
This figure shows an example, and the figure shows a sectional view of a molding apparatus 20 using the mold of this example.

図において、21.22で示すのは成形型(上型21.
下型22)で、この成形型21.22番11、温度制御
された加熱し−タ23.24により所定の温度に制御さ
れるとともに、上型21が上板25に固定され、下型2
2が下板26を貫通して図示を省略した駆動fi(例え
ばシリンダ)により上下方向(矢印入方向)に移動自在
に保持され、」二型21と下型22とは、その軸心aが
一致するように設定構成されている。更に、上型21.
下型22には、その成形面21a、22bに比較的近接
した外周部21b、22bにジルコニアセラミンクから
なる円筒形状の断熱材27.28が取イ」けられ、成形
型21.22まわりの雰囲気ガスと成形型21.22と
の熱交換を弱め、成形型21.22の径方向に生ずる温
度分布(温度勾配)を軽減し得るように構成されている
In the figure, 21.22 indicates a mold (upper mold 21.22).
In the lower mold 22), this mold 21.22 No. 11 is controlled to a predetermined temperature by a temperature-controlled heating heater 23.24, and the upper mold 21 is fixed to the upper plate 25, and the lower mold 2
2 penetrates the lower plate 26 and is held movably in the vertical direction (in the direction of the arrow) by a drive fi (for example, a cylinder, not shown). The settings are configured to match. Furthermore, the upper mold 21.
The lower mold 22 has a cylindrical heat insulating material 27, 28 made of zirconia ceramic on its outer circumferential portions 21b, 22b that are relatively close to its molding surfaces 21a, 22b. It is configured to weaken the heat exchange between the atmospheric gas and the mold 21.22 and reduce the temperature distribution (temperature gradient) occurring in the radial direction of the mold 21.22.

前記成形型21.22は、石英ガラス管29で周囲が囲
まれ、石英ガラス管29の内部30に雰囲気ガス供給装
置31により窒素ガス又は不活性ガスあるいは還元性ガ
ス等の非酸化性ガスを供給し、成形型21.22の高温
となる部分の酸化するのが防止されている。なお、前記
上板25.下板26は図示しない部材で結合されており
、上板25と下板26間の相互の距離3位置が変化しな
い構成となっている。
The molds 21 and 22 are surrounded by a quartz glass tube 29, and a non-oxidizing gas such as nitrogen gas, an inert gas, or a reducing gas is supplied to the inside 30 of the quartz glass tube 29 by an atmospheric gas supply device 31. However, oxidation of the high-temperature parts of the molds 21 and 22 is prevented. Note that the upper plate 25. The lower plate 26 is connected by a member not shown, so that the mutual distance 3 positions between the upper plate 25 and the lower plate 26 does not change.

33は光学ガラス素材34及びプレス成形後の光学素子
を載置・搬送する胴型キャリアで、この胴型キャリア3
3は胴壁キャリア搬送用アーム35乙こより保持され、
図示しない温度制御装置によって所定の温度に設定し得
る加熱炉36中を移送され、前記上型21と下型22間
に搬送される。
Reference numeral 33 denotes a barrel-shaped carrier on which the optical glass material 34 and the optical element after press molding are placed and transported;
3 is held from the trunk wall carrier conveying arm 35,
The material is transferred through a heating furnace 36 that can be set to a predetermined temperature by a temperature control device (not shown), and is conveyed between the upper mold 21 and the lower mold 22.

次に前記成形装置によりガラス光学素子を成形する方法
について説明する。
Next, a method of molding a glass optical element using the molding apparatus will be described.

まず、胴型キャリア33内に光学ガラス素材34を載置
し、胴壁キャリア搬送用アーム35で加熱炉36内に搬
送し、上下のヒータ37を介して光学ガラス素材34を
成形可能状態になるまで(軟化点温度付近まで)加熱軟
化処理する。次に、前記アーJ、35を前進させ前記胴
型キャリア33とともに光学ガラス素材34を上型21
と下型22間に搬送せしめる。その後、前記下型22を
上動させ、前記成形型21.22を介して軟化状態にあ
る光学ガラス素材34をプレス成形し、上型21の成形
面21a、下型22の成形面22aにより光学素子を成
形する。成形後は前記下型22を下動して離型し、前記
加熱が36と反対側に設けた図示しない徐冷炉中に前記
胴壁キャリア搬送アーム35を介して搬送して前記プレ
ス成形された光学素子を冷却し、その後、前記胴壁キャ
リア33から光学素子を取り出す。なお、前記胴壁キャ
リア33及び光学素子の徐冷炉中への搬送は、前記胴壁
キャリア搬送アーム35からプレス成形後、受は渡しを
受けた別の胴壁キャリア搬送アーム(図示せず)により
行なうことができる。
First, the optical glass material 34 is placed inside the body-shaped carrier 33 and transported into the heating furnace 36 by the body wall carrier transport arm 35, and the optical glass material 34 becomes ready for molding via the upper and lower heaters 37. (near the softening point temperature). Next, the arm 35 is advanced and the optical glass material 34 is transferred together with the body carrier 33 to the upper mold 21.
and the lower die 22. Thereafter, the lower mold 22 is moved upward, and the softened optical glass material 34 is press-molded through the molds 21 and 22, and the molding surface 21a of the upper mold 21 and the molding surface 22a of the lower mold 22 are Molding the element. After molding, the lower mold 22 is moved downward to release the mold, and the press-molded optical fibers are transported via the shell carrier transport arm 35 into a slow cooling furnace (not shown) provided on the opposite side of the heating section 36. After cooling the element, the optical element is taken out from the body wall carrier 33. Note that the shell carrier 33 and the optical element are transferred into the lehr by another shell carrier carrier arm (not shown) which is transferred after being press-formed from the shell carrier carrier arm 35. be able to.

第3図は、前記構成からなる成形型21.22により押
圧成形したガラス光学素子の形状精度を示す干渉縞で、
かかるガラス光学素子は、光学ガラス素材34をL L
 F 6 、径18mm、B面曲率半径20mm、A面
平面、厚さ4 mmの平凸形状に形成し、加熱炉36内
を650°Cに設定して光学ガラス素材34を加熱軟化
し、雰囲気ガスにN2ガスを用いて毎分5Pの流量で供
給し、外形17mm。
FIG. 3 shows interference fringes showing the shape accuracy of the glass optical element press-molded by the molds 21 and 22 having the above configuration.
In such a glass optical element, the optical glass material 34 is L L
The optical glass material 34 is formed into a plano-convex shape with a diameter of 18 mm, a radius of curvature of the B surface of 20 mm, a flat surface of the A surface, and a thickness of 4 mm. N2 gas is used as the gas, supplied at a flow rate of 5P/min, and has an external diameter of 17 mm.

型温450°Cに設定したステンレス鋼の成形型21.
22により押圧成形されている。更に、断熱材27.2
8は内径16mm、外形20mm、長さ15mmの円筒
形状のジルコニアセラミック(熱伝導率0.007ca
l/cm、sec、 ’C)を成形型21.22の外周
部21b、22bに取付けられている。なお、断熱材は
、上型21.下型22のいずれが一方の外周部に設けて
実施できる。
21. Stainless steel mold with mold temperature set at 450°C.
22 is press molded. Furthermore, insulation material 27.2
8 is a cylindrical zirconia ceramic with an inner diameter of 16 mm, an outer diameter of 20 mm, and a length of 15 mm (thermal conductivity of 0.007 ca).
l/cm, sec, 'C) are attached to the outer peripheral parts 21b, 22b of the mold 21.22. Note that the heat insulating material is the upper mold 21. Either of the lower molds 22 can be provided on one outer periphery.

第4図は、前記光学素子の成形時における成形型21.
22の成形面24a’、22aの表面温度の分布状態を
示し、成形型21(22)の中心軸、径8mmおよび径
16mm上の温度を測定しである。
FIG. 4 shows the mold 21 during molding of the optical element.
The distribution state of the surface temperature of the molding surfaces 24a' and 22a of the mold 22 is shown, and the temperature on the central axis of the mold 21 (22), 8 mm in diameter, and 16 mm in diameter is measured.

なお、第5図および第6図に断熱材を用いず、上記と同
一条件にて光学素子をプレス成形した光学素子の干渉縞
および成形型4oの成形面40aの温度分布を示す。
5 and 6 show the interference fringes of an optical element press-molded under the same conditions as above without using a heat insulator and the temperature distribution of the molding surface 40a of the mold 4o.

本実施例によれば、第4図と第6図との比較がら明らか
なように、成形型の中心軸上の成形面温度を450°C
に設定した時、外周部(径16mmの位置)の温度は4
40°Cと430°Cになり、本実施例の温度分布状態
が、断熱材を用いない成形型に比し、10°ctt少し
ている。したがって、成形型の中心軸を対称とした温度
分布が減少して光学素子成形時の光学ガラス素材の温度
勾配を低下させるとともに、光学ガラス素材の外周部の
粘度上昇を遅らせて成形型による加圧保持時のヒケ修正
効果が大きくなり、断熱材を用いない場合にあっては、
第5図に示す如く中央部にヒケが生じているが、第3図
に示す如くヒケが発生しない高精度なガラス光学素子を
成形できる。
According to this example, as is clear from the comparison between FIG. 4 and FIG. 6, the temperature of the molding surface on the central axis of the mold is 450°
When set to
40°C and 430°C, and the temperature distribution state of this example is 10°ctt lower than that of a mold that does not use a heat insulating material. Therefore, the temperature distribution symmetrical about the central axis of the mold decreases, reducing the temperature gradient of the optical glass material during optical element molding, and slowing down the increase in viscosity at the outer periphery of the optical glass material, thereby increasing the pressure applied by the mold. The effect of correcting sink marks during holding becomes greater, and if no insulation material is used,
As shown in FIG. 5, a sink mark occurs in the central portion, but as shown in FIG. 3, a highly accurate glass optical element without sink marks can be molded.

(第2実施例) 本実施例の成形型は、断熱材を前記第1実施例の断熱材
と異なる材質を用いて形成してもので、その他の構成は
前記第1実施例と同一なので、図示を省略するとともに
、その説明を省略する。
(Second Embodiment) The mold of this embodiment is formed using a different material for the heat insulating material from the heat insulating material of the first embodiment, and the other configuration is the same as that of the first embodiment. Illustrations and explanations thereof will be omitted.

即ち、成形型は断熱材の材料として、石英ガラス(熱伝
導率0.0037cal/cm、sec、 ’C)を用
いて構成されている。
That is, the mold is constructed using quartz glass (thermal conductivity: 0.0037 cal/cm, sec, 'C) as a heat insulating material.

本実施例によれば、第1実施例と同様な温度分布が得ら
れ、ヒケの生じないガラス光学素子を成形できる。さら
に、ジルコニアセラミックに比し安価な石英ガラスを断
熱材に用いているので、比較的安価に実施できる。
According to this embodiment, a temperature distribution similar to that of the first embodiment can be obtained, and a glass optical element without sink marks can be molded. Furthermore, since quartz glass, which is cheaper than zirconia ceramic, is used as the heat insulating material, it can be implemented relatively inexpensively.

(第3実施例) 第7図は、本発明に係るガラス光学素子の成形型の第3
実施例を示す断面図である。
(Third Example) FIG. 7 shows a third example of a mold for a glass optical element according to the present invention.
It is a sectional view showing an example.

本実施例の成形型(上型45.下型46)は、上型成形
面45aおよび下型成形面46aの径に対して、断熱材
47.48を取付ける」二型45および下型46の外周
部45b、46bの径が大きく構成されている。即ち、
成形面45a、46aを径16mmに形成し、外周部4
5bと46bの径が24mmに形成されている。更に、
断熱材49゜50は、前記第1実施例、第2実施例と同
様に、ジルコニアセラミック又は石英ガラスにて形成さ
れ、その内径を24mm、外径を28mmの円筒形状に
構成され、成形型45.46の外周部45b、46bに
取合t IJられでいる。
The molds (upper mold 45 and lower mold 46) of this embodiment have heat insulating materials 47 and 48 attached to the diameters of the upper molding surface 45a and the lower molding surface 46a. The diameters of the outer peripheral portions 45b and 46b are configured to be large. That is,
The molding surfaces 45a and 46a are formed to have a diameter of 16 mm, and the outer peripheral portion 4
The diameters of 5b and 46b are 24 mm. Furthermore,
The heat insulating material 49° 50 is made of zirconia ceramic or quartz glass, as in the first and second embodiments, and has a cylindrical shape with an inner diameter of 24 mm and an outer diameter of 28 mm. It is connected to the outer peripheral parts 45b and 46b of .46.

上記構成によれば、断熱材49.50を取付ける成形型
45.46の外周部45b、46bの径を成形面45a
、46aの径に比し太き(形成して成形型45.46を
構成しであるので、成形面45a、46aと外周部45
b、46b間の温度勾配が低下するとともに、更に、断
熱+A’ 49 。
According to the above configuration, the diameter of the outer peripheral portions 45b, 46b of the mold 45, 46 to which the heat insulating material 49, 50 is attached is set to the molding surface 45a.
, 46a (formed to constitute the mold 45, 46), the molding surfaces 45a, 46a and the outer peripheral part 45
The temperature gradient between b and 46b decreases, and furthermore, the adiabatic +A' 49 .

50により雰囲気ガスとの熱交換が緩和させられるので
、成形面45a、46aの中心軸上(中央部)と外周部
45b、46bとの温度差を前記第1、第2実施例に比
し更に減少することができる。
50 relaxes the heat exchange with the atmospheric gas, the temperature difference between the central axes (center portions) of the molding surfaces 45a, 46a and the outer peripheral portions 45b, 46b is further reduced compared to the first and second embodiments. can be reduced.

第8図は前記第1、第2実施例と同一条件にて成形面4
5a(46a)の温度分布状態の実測値を示し、図から
明らかなように、温度差は前記第1実施例と比較し、3
°CX少しでいる。
FIG. 8 shows the molding surface 4 under the same conditions as the first and second embodiments.
5a (46a), and as is clear from the figure, the temperature difference is 3.
°CX It's a little bit.

本実施例によれば、前記実施例と同様にヒケのない高精
度なガラス光学素子を成形することができる。
According to this example, a highly precise glass optical element without sink marks can be molded as in the previous example.

〔発明の効果] 本発明によれば、成形型の中心軸を対称とじた温度分布
か減少するとともに、カラス素材の外周部の粘度上昇を
遅らせることができるので、ヒケのない、成形型の成形
面の形状方性を向上させた、高精度なガラス光学素子を
成形することができる。
[Effects of the Invention] According to the present invention, the temperature distribution symmetrically around the central axis of the mold can be reduced, and the increase in viscosity at the outer periphery of the glass material can be delayed, so that the mold can be molded without sink marks. It is possible to mold a highly precise glass optical element with improved surface orientation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るガラス光学素子の成形型を示す概
念図、第2図は本発明に係るガラス光学素子の成形型の
第1実施例を示す断熱材、第3図は、前記実施例の成形
型により成形したガラス光学素子の測定結果を示す干渉
縞図、第4図は成形型の温度分布を示す図、第5図、第
6図は従来の成形型による測定結果を示し、第5図は光
学素子の干渉縞図、第6図は成形型の温度分布を示す図
、第7圓は本発明に係るガラス光学素子の成形型の断面
図、第8図は上記成形型の温度分布を示す図、第9図a
、bは従来技術を示し、第9図aは成形装置を示す断面
図、第9図すは光学素子の押圧成形時を示す説明図であ
る。 11.12−・・成形型 11a、12a・・−成形型り)周部 13.14・・・断熱材
FIG. 1 is a conceptual diagram showing a mold for a glass optical element according to the present invention, FIG. 2 is a heat insulating material showing a first embodiment of a mold for a glass optical element according to the present invention, and FIG. 3 is a conceptual diagram showing a mold for a glass optical element according to the present invention. An interference fringe diagram showing the measurement results of a glass optical element molded with the example mold, FIG. 4 is a diagram showing the temperature distribution of the mold, and FIGS. 5 and 6 show the measurement results with the conventional mold. FIG. 5 is an interference fringe diagram of the optical element, FIG. 6 is a diagram showing the temperature distribution of the mold, the seventh circle is a cross-sectional view of the mold of the glass optical element according to the present invention, and FIG. 8 is the diagram of the mold. Diagram showing temperature distribution, Figure 9a
, b show the prior art, FIG. 9a is a sectional view showing a molding device, and FIG. 9 is an explanatory diagram showing the press molding of an optical element. 11.12--Molding molds 11a, 12a...-Molding molds) Periphery 13.14...Insulating material

Claims (1)

【特許請求の範囲】[Claims] 成形可能に加熱軟化されたガラス素材を加圧成形すべく
対向配置されたガラス光学素子の成形型において、上記
一対の成形型の少なくとも一方の成形型外周部に断熱材
を付設して構成したことを特徴とするガラス光学素子の
成形型。
A mold for a glass optical element, which is arranged to face each other in order to pressure-form a glass material that has been heated and softened so that it can be molded, is constructed by attaching a heat insulating material to the outer periphery of at least one of the pair of molds. A mold for glass optical elements characterized by:
JP9629788A 1988-04-19 1988-04-19 Forming mold for glass optical element Pending JPH01270529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9629788A JPH01270529A (en) 1988-04-19 1988-04-19 Forming mold for glass optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9629788A JPH01270529A (en) 1988-04-19 1988-04-19 Forming mold for glass optical element

Publications (1)

Publication Number Publication Date
JPH01270529A true JPH01270529A (en) 1989-10-27

Family

ID=14161105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9629788A Pending JPH01270529A (en) 1988-04-19 1988-04-19 Forming mold for glass optical element

Country Status (1)

Country Link
JP (1) JPH01270529A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04187530A (en) * 1990-11-20 1992-07-06 Canon Inc Production of optical part

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04187530A (en) * 1990-11-20 1992-07-06 Canon Inc Production of optical part

Similar Documents

Publication Publication Date Title
JPS60145919A (en) Press-molding of high-precision formed glass article
JP2001180946A (en) Method for forming optical glass element and forming apparatus for optical glass with method
JPH01270529A (en) Forming mold for glass optical element
JPH07330347A (en) Method for forming optical element
JP2718451B2 (en) Optical glass parts molding method
JP2504817B2 (en) Optical element molding method
JP3869231B2 (en) Press molding apparatus and optical element manufacturing method
JP2002128532A (en) Devise and method for forming optical element
JPH04367526A (en) Method for forming glass optical element
JP3187902B2 (en) Glass optical element molding method
JP2836230B2 (en) Lens molding equipment
JP3068261B2 (en) Glass optical element molding method
JPS6227336A (en) Forming device for optical parts
JPS6395131A (en) Glass-pressing apparatus
JP3130619B2 (en) Optical element molding method
JPH09286622A (en) Optical device producing device
JPS6146407B2 (en)
JPS6379727A (en) Method for forming optical element
JP3184584B2 (en) Glass lens molding method
JPH01208334A (en) Molding of optical element and mold therefor
JP2001261351A (en) Apparatus and method for forming optical element
JPH0333024A (en) Method and device for forming optical glass part
JPH02124727A (en) Method and device for molding glass lens
JPH0531503B2 (en)
JPH03193630A (en) Method for molding optical element