JP2004148454A - Method and device for grinding forming die of micro lens array - Google Patents

Method and device for grinding forming die of micro lens array Download PDF

Info

Publication number
JP2004148454A
JP2004148454A JP2002317191A JP2002317191A JP2004148454A JP 2004148454 A JP2004148454 A JP 2004148454A JP 2002317191 A JP2002317191 A JP 2002317191A JP 2002317191 A JP2002317191 A JP 2002317191A JP 2004148454 A JP2004148454 A JP 2004148454A
Authority
JP
Japan
Prior art keywords
grinding
workpiece
spindle
grinding wheel
rotation axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002317191A
Other languages
Japanese (ja)
Other versions
JP3938540B2 (en
JP2004148454A5 (en
Inventor
Hirofumi Suzuki
浩文 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2002317191A priority Critical patent/JP3938540B2/en
Publication of JP2004148454A publication Critical patent/JP2004148454A/en
Publication of JP2004148454A5 publication Critical patent/JP2004148454A5/ja
Application granted granted Critical
Publication of JP3938540B2 publication Critical patent/JP3938540B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a grinding method for precisely grinding a forming die of a micro lens array constituted by aggregating many micro lenses. <P>SOLUTION: A workpiece is mounted on a workpiece spindle and grinding stone provided on a grinding spindle installed at a right angle or inclined to a rotary shaft of the workpiece spindle is pressed on the workpiece. The grinding stone is turned in the same direction as rotation of the rotating workpiece and at the same speed, while keeping a distance between the rotary shaft of the workpiece spindle and a center of a machining point of the workpiece constant, to machine a spherical shaped hole of a concave surface. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、多数の凹面形状の球面で構成される複雑形状の工作物を高精度に加工する精密加工方法に関するものであり、特に多数のマイクロレンズを凝集して構成したマイクロレンズアレイの成形型を精密に研削する研削加工方法およびその装置に関するものである。
【0002】
【従来の技術】
多数のマイクロレンズを凝集して構成したマイクロレンズアレイは情報伝達量の大容量化や、次世代半導体露光装置における露光の微細化を実現することが可能であるため、その開発と高精度化が期待されている。
近年光通信デバイスの情報伝達量の大容量化や、次世代半導体露光装置における露光の微細化が進んでいる。これを実現するために有望視されているのが、特に多数のマイクロレンズを凝集したマイクロレンズアレイである。このマイクロレンズアレイを精密に量産するには、多数の凹面形状の穴が凝集されたマイクロレンズアレイレンズ成形型を用いて射出成形またはガラスプレス法を用いて量産する必要がある。この重要なマイクロレンズアレイ成形型として、特許文献1、非特許文献1に記載されているもの等が従来の代表的な精密加工方法である。
【0003】
【特許文献1】特開平12−246614号公報(請求項1)
【非特許文献1】2001年度精密学会学術講演論文集139ページ
【0004】
前記特許文献1に記載されたものは、軟らかい金属材料の型しか鏡面加工できず、さらに穴の形にそって全面をスキャンするため多数のレンズ穴を加工する場合には膨大な加工時間を要する等の問題がある。
【0005】
また、前記非特許文献1に開示されている加工方法を要約して述べると、図9に示すように、工作物の被加工面をΔX、ΔYのピッチで碁盤目状に分割し、それぞれの点を通過するように直線補間することにより、先端が円弧形状になったアールバイトをX方向に駆動する。さらにΔYの送りを与えてバイトを同様にX方向に駆動し、これらの一連の走査を繰り返して多数のレンズ形状を創成する。この際、アールバイトの刃先を切削点が円弧状に移動するため、刃先が円弧形状となったアールバイトの切れ刃半径とバイトのすくい角を考慮に入れて、複雑なバイトの軌跡を計算する必要がある。またこの従来法では工具に単結晶ダイヤモンドバイトを用いるため金属材料の型しか鏡面加工できず、強いては、成形レンズ材料は成形温度が低いプラスチックしか不可能である。また全面をスキャンするため膨大な加工時間を要するなど問題点がある。
【0006】
【発明が解決しようとする課題】
今後、マイクロレンズアレイは情報伝達量の大容量化や、次世代半導体露光装置における露光の微細化を実現することが可能であるためそのマイクロレンズアレイの開発と高精度化が必要となってくる。このようなデバイスの開発と高精度化には多数のマイクロレンズを凝集されたマイクロレンズアレイを成形する成形型を精密に加工する精密加工方法(研削方法)の開発が必要である。しかしながら、従来の方法では金属しか加工できず、強いては融点の高いガラスレンズは成形できず融点の低いプラスチックしか成形できない。また、全面をスキャンするため膨大な加工時間を要するなど問題点がある。
【0007】
そこで本発明は、マイクロレンズアレイを成形するために用いられる複数の凹面(球面)で構成されるマイクロレンズアレイの成形型の研削方法およびその装置を提供し、上記問題点を解決することを目的とする。
【0008】
本発明は、工作物スピンドルの回転軸に対して直角または傾斜させて設置した研削スピンドルに設けた研削砥石を工作物に押しつけ、工作物スピンドルの回転軸と工作物の加工点の中心との距離を一定にたもちながら、回転する工作物の回転と同じ方向に、かつ、同じ速度で前記研削砥石を旋回させて凹面の球面形状の穴を精密加工するものであり、この精密加工法によってマイクロレンズアレイを成形するために用いられる複数の凹面(球面)で構成されるマイクロレンズアレイ成形型を高精度に、すなわち形状精度(真球度)、表面あらさ、各レンズ間のピッチを高精度に加工することができる。
【0009】
【課題を解決するための手段】
このため、本発明が採用した技術開発手段は、
工作物を工作物スピンドルに取り付け、その工作物スピンドルの回転軸に対して直角または傾斜させて設置した研削スピンドルに設けた研削砥石を工作物に押しつけ、さらに、工作物スピンドルの回転軸と工作物の加工点の中心との距離を一定にたもちながら、回転する工作物の回転と同じ方向に、かつ、同じ速度で前記研削砥石を旋回させて凹面の球面形状の穴を加工することを特徴とするマイクロレンズアレイの成形型の研削方法である。
また、前記穴加工を、工作物の位置を変えて一連の動作を複数回繰り返すことにより、複数の凹面で構成されることを特徴とするマイクロレンズアレイの成形型の研削方法である。
また、前記研削砥石は、工作物スピンドルの回転軸と研削スピンドルの回転軸がなす角が直角の場合は、研削砥石として円盤状または球状の研削砥石のいずれか一つを用いて研削することを特徴とするマイクロレンズアレイの成形型の研削方法である。
また、前記研削砥石は、工作物スピンドルの回転軸と研削スピンドルの回転軸がなす角が45度の場合は、研削砥石として円柱状または楕円体状または球状の研削砥石のいずれか一つを用いて研削することを特徴とするマイクロレンズアレイの成形型の研削方法である。
また、前記研削砥石と工作物の間に遊離砥粒を附加して加工することを特徴とするマイクロレンズアレイの成形型の研削方法である。
また、工作物を保持する工作物スピンドルと、その工作物スピンドルの回転軸に対して直角または傾斜させて配置可能な研削スピンドルと、この研削スピンドルに取り付けた状態で工作物に対して押し付けることができる研削砥石とを備え、前記研削スピンドルは前記研削砥石を工作物スピンドルの回転軸と工作物の加工点の中心との距離を一定に保ちながら、回転する工作物の回転と同じ方向に、かつ、同じ速度で研削砥石を旋回させることができるように構成したこと特徴とするマイクロレンズアレイの成形型の研削装置である。
また、前記研削スピンドルは研削スピンドルをX軸方向、Y軸方向、Z軸方向に移動するテーブル上に設けられていることを特徴とするマイクロレンズアレイの成形型の研削装置である。
【0010】
【実施の形態】
以下本発明の実施形態を図面を参照して説明すると、図1は本発明にかかるマイクロレンズアレイの成形型の研削方法に用いる装置の構成図、図2は同装置の工作物と研削砥石の拡大図である。
図において1は仕上げ後にマイクロレンズアレイの成形型となる工作物、1aは工作物の回転基準、2は研削砥石、3は研削砥石2が取り付けられる研削スピンドル、4は工作物1が取り付けられる主軸(工作物スピンドル)、5は主軸モータ、6は回転する研削砥石と研削スピンドルをX軸方向に駆動するX軸テーブル、7はY軸テーブル、8はZ軸テーブル、9は研削砥石2により加工される研削痕(穴)である。マイクロレンズアレイの成形型となる工作物1は主軸4に取り付けられ仕上げ加工される。
【0011】
図3は目標工作物の形状の例で、マイクロレンズアレイ成形型の形状である。工作物1には球面形状(凹面)の穴9が加工される。X軸方向のピッチがΔX、Y軸方向のピッチがΔYである。このそれぞれの穴がレンズ型になる。ここでは図3に示すように5個×3列(計15個)のレンズ型が凝集されたマイクロレンズアレイ成形型の加工を例に挙げているが、本発明の適応工作物の形状はこれに限るものでなく、その数に限定されることはない。工作物のセッティングは工作物の回転基準1aを基準に主軸4に取り付けられている。
【0012】
上記装置を使用してX軸方向のピッチΔX、Y軸方向のピッチΔYで多数の球面形状(凹面)の穴が掘られたマイクロレンズアレイ成形型の加工原理を説明する。図4はマイクロレンズアレイにおける1つの球面形状(凹面)の穴を高精度に加工するための原理図(三次元)、図5は工作物の回転軸方向からみた正面図であり、これらの図を参照しながら加工原理を説明する。
【0013】
主軸(回転方向がC方向)4が回転するに伴い工作物1も回転する。それに応じて、研削砥石2もX軸とY軸を同時制御して円弧形状に軌跡を描かせながら駆動する。ここでは工作物の回転に伴う加工痕(球面形状の穴)の回転と、研削砥石の駆動軌跡が一致するように同期させながら駆動する。同時にさらにZ軸方向に切り込みを与えることにより、球面形状の穴を真球度かつ表面を良好に加工することができる。なお、前記研削砥石と工作物の間に適宜手段により遊離砥粒を附加して加工することにさらに高精度の研削が可能となる。
【0014】
このような穴加工は、一つの加工痕(球面形状の穴)を中心にみると研削砥石が旋回しながらZ軸方向に切り込むのと同等であり、研削砥石上の砥粒の切削方向が360度移動するため非常に良好な表面あらさが得られる。同様にして研削砥石と工作物の位置を変えて同様の走査を繰り返し、多数の加工痕(球面形状の穴)を作成し、マイクロレンズアレイ成形型が精度よく加工される。
【0015】
研削砥石の軌跡を図6を用いて数式的に説明する。
工作物上のあるひとつの(i ,j)番目の加工痕(球面形状の穴)において、工作物の回転基準1aを基準とした座標を(Xoi,Yoj)とすると、主軸上の回転半径rij,および回転角Coij は次式で表される。
【0016】
【数1】

Figure 2004148454
【0017】
【数2】
Figure 2004148454
工作物主軸の任意の回転角Cijにおける研削砥石の座標(Xij,Yij)は次式で表される。
【0018】
【数3】
Figure 2004148454
従って、上記式(1)(2)(3)を満たすように、研削砥石をZ方向に切り込むように研削砥石を同時4軸(X、Y、Z、C)制御すればよい。上記の制御は図示せぬコンピュータ等の制御手段により行う。
【0019】
用いる研削砥石形状について図7により説明する。
工作物スピンドル4の回転軸と研削スピンドル2の回転軸(研削砥石2の回転軸)がなす角度が直角の場合は、図7(a)(b)に示すように研削砥石として円盤状の砥石、楕円体状の砥石および球状の研削砥石を用いればよい。工作物スピンドル4の回転軸と研削スピンドル2の回転軸(研削砥石2の回転軸)がなす角が45度の場合は、図7(c)(d)に示すように円柱状の砥石、楕円体状および球状の砥石を用いればよい。いずれも工作物は高精度な球面(凹面)となる。
【0020】
続いてマイクロレンズアレイの成形型の研削方法を行う際の条件について説明する。
工作物にガラスレンズ成形材料である超硬合金に同形状を研削加工した事例で説明する。研削スピンドルには最大10万rpmの空気静圧軸受けを用い45度傾斜させ、砥石は外径1.6mmのダイヤモンド砥石を球状に成形して用いた。工作物上のレンズアレイの各ピッチはΔX=1.0mm、ΔY=1.0mmとし、レンズ数は5×3(計15個)とした。曲率半径は0.8mmとした。マイクロレンズアレイ成形型の3次元トポグラフィーと、加工後に非接触表面粗さ計で測定した結果を図8に示す。この結果からも判るように高精度なマイクロレンズアレイ成形型が得られる。
【0021】
以上本発明に係る実施形態について説明したが、被加工材は上記した超硬合金に限定されることなく、種々の材料を対象とすることができる。また研削砥石もダイヤモンド砥石に限定されることはない。また研削砥石をX軸とY軸を同時制御して円弧形状に軌跡を描かせながら駆動する機構も種々の機構を採用することができる。
さらに、本発明はその精神または主要な特徴から逸脱することなく、他のいかなる形でも実施できる。そのため、前述の実施形態はあらゆる点で単なる例示にすぎず限定的に解釈してはならない。
【0022】
【発明の効果】
以上の説明から明らかなように、本発明によれば、工作物を主軸(工作物スピンドル)に取りつけ、その主軸の回転軸に対して直角または傾斜させて設置した研削スピンドルに設けた研削砥石を工作物に押しつけ、さらに、主軸の回転軸と工作物の加工点の中心との距離を一定に保ちながら、回転する工作物の回転と同じ方向で、かつ、同じ速度で研削砥石を旋回させて凹面の球面形状の穴を精密加工し、さらに、工作物上の位置を変えて上記一連の動作を複数回繰り返すことを特徴とするため、マイクロレンズアレイ成形型を高精度に、良好な表面粗さに、良好なピッチ精度に精密研削することができる。
【図面の簡単な説明】
【図1】本発明に係るマイクロレンズアレイの成形型の研削方法に用いる装置の構成図である。
【図2】図1の装置の工作物と砥石の拡大図である。
【図3】目標工作物(マイクロレンズアレイの成形型)の形状の例
【図4】マイクロレンズアレイにおける一つの球面形状(凹面)の穴を高精度に加工するための原理図(3次元図)である。
【図5】工作物の回転軸方向からみた正面図である。
【図6】砥石の軌跡の説明図である。
【図7】砥石形状の図である。
【図8】マイクロレンズアレイ成形型加工結果の例である。
【図9】従来の代表的なマイクロレンズアレイ成形型の精密加工方法の説明図である。
【符号の説明】
1 工作物
1a 工作物の回転基準
2 研削砥石
3 研削スピンドル
4 主軸(工作物スピンドル)
5 主軸モータ
6 X軸テーブル
7 Y軸テーブル
8 Z軸テーブル
9 研削痕(球面状の穴)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a precision machining method for machining a workpiece having a complicated shape composed of a large number of concave spherical surfaces with high precision, and particularly relates to a mold for a microlens array formed by aggregating a large number of microlenses. The present invention relates to a grinding method and an apparatus therefor that precisely grinds steel.
[0002]
[Prior art]
A microlens array composed of a large number of microlenses is capable of increasing the amount of information transmitted and achieving finer exposure in next-generation semiconductor exposure equipment. Expected.
2. Description of the Related Art In recent years, the capacity of information transmission of optical communication devices has been increased, and miniaturization of exposure in next-generation semiconductor exposure apparatuses has been advanced. Promising for realizing this is a microlens array in which a large number of microlenses are aggregated. In order to mass-produce this microlens array precisely, it is necessary to mass-produce it by injection molding or a glass press method using a microlens array lens mold in which a large number of concave-shaped holes are aggregated. As this important microlens array mold, those described in Patent Literature 1 and Non-Patent Literature 1 are conventional representative precision processing methods.
[0003]
[Patent Document 1] JP-A-12-246614 (Claim 1)
[Non-Patent Document 1] Proceedings of the 2001 Precision Society Academic Lectures, 139 pages
In the method described in Patent Document 1, only a soft metal material mold can be mirror-finished, and a large amount of processing time is required when a large number of lens holes are machined because the entire surface is scanned along the shape of the hole. There are problems such as.
[0005]
In addition, to summarize the processing method disclosed in Non-Patent Document 1, as shown in FIG. 9, the work surface of the workpiece is divided into a grid pattern at a pitch of ΔX and ΔY, and By linearly interpolating so as to pass through the point, the round bit whose tip is formed in an arc shape is driven in the X direction. Further, the cutting tool is similarly driven in the X direction by giving a feed of ΔY, and a series of these scans is repeated to create a large number of lens shapes. At this time, since the cutting point moves in an arc shape on the cutting edge of the round tool, a complicated tool locus is calculated in consideration of the radius of the cutting edge of the round tool and the rake angle of the tool when the cutting edge becomes an arc shape. There is a need. Further, in this conventional method, since a single-crystal diamond tool is used as a tool, only a mold of a metal material can be mirror-finished, and only a plastic having a low molding temperature is possible as a molded lens material. In addition, there is a problem that an enormous processing time is required for scanning the entire surface.
[0006]
[Problems to be solved by the invention]
In the future, microlens arrays will be able to increase the amount of information transmitted and to achieve finer exposure in next-generation semiconductor lithography equipment. . In order to develop such a device and increase its precision, it is necessary to develop a precision processing method (grinding method) for precisely processing a mold for forming a microlens array in which a large number of microlenses are aggregated. However, in the conventional method, only a metal can be processed, and a glass lens having a high melting point cannot be formed, and only a plastic having a low melting point can be formed. In addition, there is a problem that an enormous processing time is required for scanning the entire surface.
[0007]
Accordingly, an object of the present invention is to provide a method and an apparatus for grinding a mold for a microlens array composed of a plurality of concave surfaces (spherical surfaces) used for molding a microlens array, and to solve the above problems. And
[0008]
According to the present invention, a grinding wheel provided on a grinding spindle installed at a right angle or at an angle to a rotation axis of a workpiece spindle is pressed against a workpiece, and a distance between the rotation axis of the workpiece spindle and the center of a processing point of the workpiece is adjusted. While maintaining a constant, in the same direction as the rotation of the rotating workpiece, and at the same speed, the grinding wheel is turned to precisely machine a concave spherical hole. The micro lens array mold composed of multiple concave surfaces (spherical surfaces) used to mold the array is processed with high precision, that is, the shape precision (sphericity), surface roughness, and the pitch between each lens are processed with high precision. can do.
[0009]
[Means for Solving the Problems]
For this reason, the technical development means adopted by the present invention are:
The workpiece is mounted on the workpiece spindle, and the grinding wheel provided on the grinding spindle installed at right angles or at an angle to the rotation axis of the workpiece spindle is pressed against the workpiece. While maintaining a constant distance to the center of the processing point, in the same direction as the rotation of the rotating workpiece, and, at the same speed, turning the grinding wheel to process a concave spherical hole. This is a method of grinding a mold for a microlens array.
Further, there is provided a grinding method of a mold for a microlens array, wherein a plurality of concave surfaces are formed by repeating a series of operations a plurality of times while changing the position of a workpiece, in the hole machining.
Further, when the angle between the rotation axis of the workpiece spindle and the rotation axis of the grinding spindle is a right angle, the grinding wheel may be ground using one of a disk-shaped or spherical grinding wheel as the grinding wheel. This is a method of grinding a molding die for a microlens array, which is a feature.
Further, when the angle between the rotation axis of the workpiece spindle and the rotation axis of the grinding spindle is 45 degrees, the grinding wheel uses one of a columnar, elliptical, or spherical grinding wheel as the grinding wheel. This is a method of grinding a mold for a microlens array, characterized in that grinding is performed.
Further, there is provided a method of grinding a mold for a microlens array, characterized in that free abrasive grains are added between the grinding wheel and the workpiece.
Also, a work spindle for holding the work, a grinding spindle that can be arranged at right angles or at an angle to the rotation axis of the work spindle, and pressing against the work with the grinding spindle attached. A grinding wheel that can rotate, while the grinding spindle maintains the grinding wheel at a constant distance between the rotation axis of the workpiece spindle and the center of the processing point of the workpiece, and in the same direction as the rotation of the rotating workpiece, and And a grinding device for forming a microlens array, wherein the grinding wheel can be turned at the same speed.
Further, the grinding spindle is provided on a table that moves the grinding spindle in the X-axis direction, the Y-axis direction, and the Z-axis direction.
[0010]
Embodiment
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of an apparatus used for a method of grinding a mold for a microlens array according to the present invention, and FIG. It is an enlarged view.
In the figure, reference numeral 1 denotes a workpiece serving as a mold for a microlens array after finishing, 1a denotes a rotation reference of the workpiece, 2 denotes a grinding wheel, 3 denotes a grinding spindle on which the grinding wheel 2 is mounted, and 4 denotes a main spindle on which the workpiece 1 is mounted. (Workpiece spindle), 5 is a spindle motor, 6 is an X-axis table that drives the rotating grinding wheel and the grinding spindle in the X-axis direction, 7 is a Y-axis table, 8 is a Z-axis table, and 9 is a processing by the grinding wheel 2. Grinding marks (holes). The workpiece 1 that is to be a mold for the microlens array is mounted on the main shaft 4 and is finished.
[0011]
FIG. 3 shows an example of the shape of a target workpiece, which is the shape of a microlens array mold. A hole 9 having a spherical shape (concave surface) is formed in the workpiece 1. The pitch in the X-axis direction is ΔX, and the pitch in the Y-axis direction is ΔY. Each of these holes becomes a lens type. Here, as shown in FIG. 3, the processing of a microlens array mold in which 5 × 3 rows (15 in total) of lens molds are aggregated is taken as an example. However, the present invention is not limited to this number. The setting of the workpiece is attached to the main shaft 4 based on the rotation reference 1a of the workpiece.
[0012]
The processing principle of a microlens array mold in which a number of spherical (concave) holes are dug at a pitch ΔX in the X-axis direction and a pitch ΔY in the Y-axis direction using the above apparatus will be described. FIG. 4 is a principle view (three-dimensional) for processing one hole of a spherical shape (concave surface) in the microlens array with high precision, and FIG. 5 is a front view seen from the rotation axis direction of the workpiece. The working principle will be described with reference to FIG.
[0013]
As the main shaft (rotation direction C direction) 4 rotates, the workpiece 1 also rotates. In response, the grinding wheel 2 is also driven while simultaneously controlling the X axis and the Y axis to draw a locus in an arc shape. Here, the drive is performed while synchronizing the rotation of the processing mark (spherical hole) with the rotation of the workpiece so that the driving trajectory of the grinding wheel coincides. At the same time, by providing a cut in the Z-axis direction, the spherical hole can be processed with good sphericity and good surface. In addition, it is possible to perform grinding with higher precision by adding free abrasive grains between the grinding wheel and the workpiece by appropriate means.
[0014]
Such a hole machining is equivalent to cutting in the Z-axis direction while turning the grinding wheel when one machining mark (spherical hole) is centered, and the cutting direction of the abrasive grains on the grinding wheel is 360. Very good surface roughness is obtained due to the degree of movement. In the same manner, the same scanning is repeated while changing the positions of the grinding wheel and the workpiece to form a large number of processing marks (spherical holes), and the microlens array mold is processed with high precision.
[0015]
The locus of the grinding wheel will be described mathematically with reference to FIG.
In a certain (i, j) th machining mark (spherical hole) on the workpiece, if the coordinates based on the rotation reference 1a of the workpiece are (X oi , Y oji ), the rotation on the main axis The radius r ij and the rotation angle C oij are represented by the following equations.
[0016]
(Equation 1)
Figure 2004148454
[0017]
(Equation 2)
Figure 2004148454
The coordinates (X ij , Y ij ) of the grinding wheel at an arbitrary rotation angle C ij of the workpiece spindle are represented by the following equation.
[0018]
[Equation 3]
Figure 2004148454
Therefore, the grinding wheel may be simultaneously controlled in four axes (X, Y, Z, C) so that the grinding wheel is cut in the Z direction so as to satisfy the above expressions (1), (2), and (3). The above control is performed by control means such as a computer (not shown).
[0019]
The shape of the grinding wheel used will be described with reference to FIG.
When the angle between the rotation axis of the workpiece spindle 4 and the rotation axis of the grinding spindle 2 (the rotation axis of the grinding wheel 2) is a right angle, a disk-shaped grinding wheel is used as the grinding wheel as shown in FIGS. An ellipsoidal grinding wheel and a spherical grinding wheel may be used. When the angle formed by the rotation axis of the workpiece spindle 4 and the rotation axis of the grinding spindle 2 (the rotation axis of the grinding wheel 2) is 45 degrees, as shown in FIGS. Body-shaped and spherical grinding wheels may be used. In each case, the workpiece becomes a highly accurate spherical surface (concave surface).
[0020]
Next, conditions for performing the method of grinding the mold for the microlens array will be described.
An example in which the same shape is ground on a cemented carbide as a glass lens molding material on a workpiece will be described. The grinding spindle used was an air static pressure bearing of 100,000 rpm at the maximum and was inclined at 45 degrees, and the grinding stone was a spherical diamond grinding stone with an outer diameter of 1.6 mm. Each pitch of the lens array on the workpiece was ΔX = 1.0 mm, ΔY = 1.0 mm, and the number of lenses was 5 × 3 (15 in total). The radius of curvature was 0.8 mm. FIG. 8 shows the three-dimensional topography of the microlens array mold and the results of measurement using a non-contact surface roughness meter after processing. As can be seen from this result, a highly accurate microlens array mold can be obtained.
[0021]
Although the embodiment according to the present invention has been described above, the work material is not limited to the above-mentioned cemented carbide, but may be any of various materials. Also, the grinding wheel is not limited to the diamond wheel. Also, various mechanisms can be employed for driving the grinding wheel while simultaneously controlling the X axis and the Y axis to draw a locus in an arc shape.
Furthermore, the present invention may be embodied in any other form without departing from its spirit or essential characteristics. Therefore, the above-described embodiment is merely an example in all aspects and should not be interpreted in a limited manner.
[0022]
【The invention's effect】
As is apparent from the above description, according to the present invention, a workpiece is mounted on a spindle (a workpiece spindle), and a grinding wheel provided on a grinding spindle installed at right angles or at an angle to a rotation axis of the spindle is provided. Pressing against the workpiece and further turning the grinding wheel in the same direction as the rotation of the rotating workpiece and at the same speed, while keeping the distance between the rotation axis of the main spindle and the center of the processing point of the workpiece constant It is characterized by precision machining of a concave spherical hole and repetition of the above series of operations multiple times by changing the position on the workpiece. In addition, precision grinding can be performed with good pitch accuracy.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an apparatus used for a method of grinding a mold for a microlens array according to the present invention.
FIG. 2 is an enlarged view of a workpiece and a grindstone of the apparatus of FIG.
FIG. 3 shows an example of a shape of a target workpiece (a mold for forming a microlens array). FIG. 4 is a principle diagram (three-dimensional diagram) for processing one spherical (concave) hole in the microlens array with high accuracy. ).
FIG. 5 is a front view of the workpiece viewed from a rotation axis direction.
FIG. 6 is an explanatory diagram of a locus of a grindstone.
FIG. 7 is a diagram of a grindstone shape.
FIG. 8 is an example of a processing result of a microlens array molding die.
FIG. 9 is an explanatory view of a precision processing method of a conventional typical microlens array molding die.
[Explanation of symbols]
Reference Signs List 1 Workpiece 1a Workpiece rotation reference 2 Grinding wheel 3 Grinding spindle 4 Spindle (workpiece spindle)
5 Spindle motor 6 X-axis table 7 Y-axis table 8 Z-axis table 9 Grinding marks (spherical holes)

Claims (7)

工作物を工作物スピンドルに取り付け、その工作物スピンドルの回転軸に対して直角または傾斜させて設置した研削スピンドルに設けた研削砥石を工作物に押しつけ、さらに、工作物スピンドルの回転軸と工作物の加工点の中心との距離を一定にたもちながら、回転する工作物の回転と同じ方向に、かつ、同じ速度で前記研削砥石を旋回させて凹面の球面形状の穴を加工することを特徴とするマイクロレンズアレイの成形型の研削方法。The workpiece is mounted on the workpiece spindle, and the grinding wheel provided on the grinding spindle installed at right angles or at an angle to the rotation axis of the workpiece spindle is pressed against the workpiece. While maintaining a constant distance to the center of the processing point of the same, in the same direction as the rotation of the rotating workpiece, and, at the same speed, turning the grinding wheel to machine a concave spherical hole. Grinding method for forming mold of micro lens array. 前記穴加工を、工作物の位置を変えて一連の動作を複数回繰り返すことにより、複数の凹面で構成されることを特徴とする請求項1に記載のマイクロレンズアレイの成形型の研削方法。2. The method according to claim 1, wherein a plurality of concave surfaces are formed by repeating a series of operations a plurality of times while changing the position of the workpiece. 前記研削砥石は、工作物スピンドルの回転軸と研削スピンドルの回転軸がなす角が直角の場合は、研削砥石として円盤状または球状の研削砥石のいずれか一つを用いて研削することを特徴とする請求項1または請求項2に記載のマイクロレンズアレイの成形型の研削方法。The grinding wheel is characterized in that when the angle between the rotation axis of the workpiece spindle and the rotation axis of the grinding spindle is a right angle, the grinding is performed using one of a disk-shaped or spherical grinding wheel as the grinding wheel. 3. The method for grinding a mold for a microlens array according to claim 1 or claim 2. 前記研削砥石は、工作物スピンドルの回転軸と研削スピンドルの回転軸がなす角が45度の場合は、研削砥石として円柱状または楕円体状または球状の研削砥石のいずれか一つを用いて研削することを特徴とする請求項1または請求項2に記載のマイクロレンズアレイの成形型の研削方法。When the angle between the rotation axis of the workpiece spindle and the rotation axis of the grinding spindle is 45 degrees, the grinding wheel is ground using one of a columnar, elliptical, or spherical grinding wheel as the grinding wheel. The method for grinding a mold for a microlens array according to claim 1, wherein the grinding is performed. 前記研削砥石と工作物の間に遊離砥粒を附加して加工することを特徴とする請求項1〜請求項4のいずれかに記載のマイクロレンズアレイの成形型の研削方法。The method for grinding a mold for a microlens array according to any one of claims 1 to 4, wherein processing is performed by adding loose abrasive grains between the grinding wheel and the workpiece. 工作物を保持する工作物スピンドルと、その工作物スピンドルの回転軸に対して直角または傾斜させて配置可能な研削スピンドルと、この研削スピンドルに取り付けた状態で工作物に対して押し付けることができる研削砥石とを備え、前記研削スピンドルは前記研削砥石を工作物スピンドルの回転軸と工作物の加工点の中心との距離を一定に保ちながら、回転する工作物の回転と同じ方向に、かつ、同じ速度で研削砥石を旋回させることができるように構成したこと特徴とするマイクロレンズアレイの成形型の研削装置。A workpiece spindle for holding the workpiece, a grinding spindle which can be arranged at right angles or at an angle to the rotation axis of the workpiece spindle, and a grinding which can be pressed against the workpiece while being mounted on the grinding spindle A grinding wheel, wherein the grinding spindle holds the grinding wheel in the same direction as the rotation of the rotating workpiece while maintaining a constant distance between the rotation axis of the workpiece spindle and the center of the processing point of the workpiece. A micro-lens array forming die grinding apparatus characterized in that the grinding wheel can be turned at a high speed. 前記研削スピンドルは研削スピンドルをX軸方向、Y軸方向、Z軸方向に移動するテーブル上に設けられていることを特徴とする請求項6に記載のマイクロレンズアレイの成形型の研削装置。The grinding apparatus according to claim 6, wherein the grinding spindle is provided on a table that moves the grinding spindle in the X-axis direction, the Y-axis direction, and the Z-axis direction.
JP2002317191A 2002-10-31 2002-10-31 Method and apparatus for grinding mold of microlens array Expired - Lifetime JP3938540B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002317191A JP3938540B2 (en) 2002-10-31 2002-10-31 Method and apparatus for grinding mold of microlens array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002317191A JP3938540B2 (en) 2002-10-31 2002-10-31 Method and apparatus for grinding mold of microlens array

Publications (3)

Publication Number Publication Date
JP2004148454A true JP2004148454A (en) 2004-05-27
JP2004148454A5 JP2004148454A5 (en) 2005-06-02
JP3938540B2 JP3938540B2 (en) 2007-06-27

Family

ID=32460646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002317191A Expired - Lifetime JP3938540B2 (en) 2002-10-31 2002-10-31 Method and apparatus for grinding mold of microlens array

Country Status (1)

Country Link
JP (1) JP3938540B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021692A (en) * 2005-07-20 2007-02-01 Makino Milling Mach Co Ltd Cutting method and device
JP2007253306A (en) * 2006-03-27 2007-10-04 Seibu Electric & Mach Co Ltd Nc machine tool
CN101875180A (en) * 2009-04-30 2010-11-03 松下电器产业株式会社 Processing unit (plant) and processing method
WO2011016299A1 (en) * 2009-08-03 2011-02-10 旭栄研磨加工株式会社 Grinding method for hard and brittle material
JP2016016464A (en) * 2014-07-04 2016-02-01 株式会社 東洋鐡工所 Nc machining apparatus
CN109807720A (en) * 2019-03-27 2019-05-28 哈尔滨工业大学 A kind of model accepted way of doing sth processing method of microlens array optical element

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021692A (en) * 2005-07-20 2007-02-01 Makino Milling Mach Co Ltd Cutting method and device
JP2007253306A (en) * 2006-03-27 2007-10-04 Seibu Electric & Mach Co Ltd Nc machine tool
JP4712586B2 (en) * 2006-03-27 2011-06-29 西部電機株式会社 NC machine tool
CN101875180A (en) * 2009-04-30 2010-11-03 松下电器产业株式会社 Processing unit (plant) and processing method
JP2010260110A (en) * 2009-04-30 2010-11-18 Panasonic Corp Machining apparatus and machining method
WO2011016299A1 (en) * 2009-08-03 2011-02-10 旭栄研磨加工株式会社 Grinding method for hard and brittle material
JP2011031508A (en) * 2009-08-03 2011-02-17 Kyokuei Kenma Co Ltd Method of grinding hard brittle material
JP2016016464A (en) * 2014-07-04 2016-02-01 株式会社 東洋鐡工所 Nc machining apparatus
CN109807720A (en) * 2019-03-27 2019-05-28 哈尔滨工业大学 A kind of model accepted way of doing sth processing method of microlens array optical element
CN109807720B (en) * 2019-03-27 2021-09-17 哈尔滨工业大学 Generating type processing method of micro-lens array optical element

Also Published As

Publication number Publication date
JP3938540B2 (en) 2007-06-27

Similar Documents

Publication Publication Date Title
JP2008042081A (en) Wafer grinding device
EP1773528A1 (en) Raster cutting technology for ophthalmic lenses
TW201038345A (en) Processing apparatus and processing method
CN109129031B (en) Grinding wheel path generation method for low-speed servo grinding of free-form surface
JP2006198743A (en) Small-diameter rotary tool, and method of cutting workpiece formed of high-hardness material
CN113618091B (en) Method for processing microsphere lens based on tool rotation processing
JP3938540B2 (en) Method and apparatus for grinding mold of microlens array
JP2007044817A (en) Apparatus for chamfering wafer, grinding wheel therefor and truing grinding wheel
JP3879891B2 (en) Offset rotary surface processing apparatus and method
KR20060007364A (en) Method for machining aspherical surface, method for forming aspherical surface, and system for machining aspherical surface
JP2004042188A (en) Working method of die
JP2005081476A (en) Processing device for optical waveguide mold and method of cutting arcuate groove on workpiece
CN113601257B (en) Microstructure array processing device and method based on variable-pitch fly cutter cutting
CN109299514B (en) Grinding wheel path generation method for grinding free curved surface by inclined shaft
JP2007090489A (en) Die cutting method and device therefor
JP2018043444A (en) Production method of metal mold and production method of microlens array
JP2004345017A (en) Method and device for grooving
JP2002321146A (en) Method for processing metal mold for diffraction optical element
JP2008142799A (en) Working method for diffraction groove
JP2004344957A (en) Method for manufacturing compound laser beam machine and precision worked product
JP2003231001A (en) Lens shape machining method and device thereof
JP2000052217A (en) Tool and processing method
JP3839326B2 (en) Axisymmetric aspheric grinding method
JP2009061525A (en) Hard brittle material grinding method, optical fiber array manufacturing method, and hard brittle material machining device
JPH11300757A (en) Method and apparatus for molding toric recessed shape

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040817

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070322

R150 Certificate of patent or registration of utility model

Ref document number: 3938540

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term