JP2004146612A - Semiconductor integrated circuit and method for measuring amount of supply voltage drop - Google Patents

Semiconductor integrated circuit and method for measuring amount of supply voltage drop Download PDF

Info

Publication number
JP2004146612A
JP2004146612A JP2002310172A JP2002310172A JP2004146612A JP 2004146612 A JP2004146612 A JP 2004146612A JP 2002310172 A JP2002310172 A JP 2002310172A JP 2002310172 A JP2002310172 A JP 2002310172A JP 2004146612 A JP2004146612 A JP 2004146612A
Authority
JP
Japan
Prior art keywords
supply voltage
power supply
oscillation
circuit
circuits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002310172A
Other languages
Japanese (ja)
Other versions
JP4407110B2 (en
Inventor
Shuichi Oda
尾田 修一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002310172A priority Critical patent/JP4407110B2/en
Publication of JP2004146612A publication Critical patent/JP2004146612A/en
Application granted granted Critical
Publication of JP4407110B2 publication Critical patent/JP4407110B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Tests Of Electronic Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure the supply voltage drop by a simple method with high accuracy without appreciably increasing the chip size of an integrated circuit. <P>SOLUTION: This integrated circuits includes oscillation circuits 4A to 4E which are arranged in prescribed positions of the integrated circuit 1 to measure the supply voltage drop, and in which oscillation frequencies f of output signals SOA to SOE change according to the drop of the supply voltage Vdd at a prescribed position in the operation time of the integrated circuit 1, and an output part (e.g., an I/O pad for measurement arranged at an I/O circuit part 3) which outputs an output signal of the oscillation circuit or a signal SO according to the output signal to the external to measure the supply voltage drop. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、集積回路内の所定の位置における電源電圧の降下量を測定する手段を有する半導体集積回路と、電源電圧の降下量の測定方法とに関する。
【0002】
【従来の技術】
近年の大規模で電源電圧が低減された半導体集積回路において、動作時の電源電圧の降下量を予め予測することは確実な回路動作を保証するために重要である。
従来、半導体集積回路内部の電源電圧の降下量については各種のCAD(Computer Aided Design)を用いたシミュレーションにより求めていた。予測される電源電圧の降下量が求まると、これを半導体集積回路の設計に反映させ、電源電圧の降下が要所で抑制されるように配線を設計し、あるいは当該低い電源電圧でも確実に動作するように集積回路の特性を決めていた。
【0003】
【発明が解決しようとする課題】
上述した電源電圧の降下量はあくまでもシミュレーションの値であり、想定するプロセスのもとで理想的に集積回路が形成されている場合の目安でしかない。したがって、近年の高速で大規模、しかも電源電圧が低い半導体集積回路(以下、LSI)においては、電源電圧の降下量を実際に測定し、これを設計にフィードバックする必要がでてくる。
【0004】
実際に形成された半導体集積回路に対し、その必要な箇所で電源電圧の降下量を測定する方法としては、次の2つの方法が考えられる。
【0005】
第1に、電源電圧の降下量を調べたいLSIチップ内の箇所に、予め測定用のプローブを立てるパッドを用意し、ウエハ状態のLSIに対し上記パッドにプローブを立てて行う動作試験時に、そのウエハ内箇所で供給した電源電圧がどの程度低下しているかを調べる方法が考えられる。
第2に、比較基準の電圧が外部から与えられる電圧測定用のコンパレータを設計時に予め必要な箇所に用意しておき、LSIをウエハ状態で、あるいはパッケージに組み立てた後に、電圧測定用のコンパレータを用いて、供給した電源電圧がどの程度低下しているかを調べる方法も考えられる。
【0006】
ところが、第1の測定パッドを予め形成する方法では、測定パッドが必要となる。この測定パッドの形成において、微小な電圧差を測定するときに配線の電圧降下の影響をなくすため電源電圧の降下量を求める所定の機能回路ブロックの近くに余分な空き領域を確保する必要がある。とくに、プローブを立てるためのパッドはかなり大きな面積を占有するため、LSIのロジック回路等に実際に半導体回路として用いられない無駄な領域が形成されてしまう。また、プローブの接触抵抗が大きく、微小な電圧降下量を正確に測定することが難しい。さらに、ウエハ状態の試験では個々の機能テストを個別に調べることが主で、LSIを使用時と同様な状態での試験ではないことが多い。この場合、実使用時での電源電圧の降下量を実測できない。
【0007】
また、第2の電圧測定用のコンパレータセルを用いる方法では、このセルがアナログ回路から構成されることから、ディジタルLSIにおいては、このためだけにアナログ回路のプロセスを付加するのはプロセスコストの面で現実的でない。また、アナログ回路では精度を上げるためのトランジスタサイズが大きくなりセル面積が大きく、大きなエリアペナルティを被る。さらに、与えられた基準電圧より大きいか否かの判断であるため、基準電圧を変化させて何度も測定する必要があり、測定時間が長くなる。
【0008】
これらの方法は、上述した理由により現実的でなく、微小な電源電圧の降下量をLSIの面積を余り増大させず、簡単な方法で精度よく測定する技術が求められていた。
【0009】
本発明は、このような要請に応じてなされてものであり、その目的とするところは、微小な電源電圧の降下量を半導体集積回路の面積を余り増大させず、簡単な方法で精度よく測定することにある。
【0010】
【課題を解決するための手段】
本発明に係る半導体集積回路は、上記目的を達成するためのものであり、集積回路内の所定の位置に配置され、当該集積回路の動作時の上記所定の位置における電源電圧の降下により出力信号の発振周波数が変化する電源電圧降下量の測定用の発振回路と、上記発振回路の出力または出力に応じた信号を外部に出力させる電源電圧降下量の測定用の出力部と、を有する。
【0011】
本発明において、好ましくは、上記発振回路が、いわゆるリング発振器からなる。
本発明において、好ましくは、複数の上記発振回路が上記集積回路内の所定の位置に分散して配置され、当該複数の発振回路のそれぞれが発振の開始と停止を制御する制御入力を有し、複数の発振回路の上記制御入力に接続され、入力される選択信号に応じて複数の上記発振回路のうち特定の発振回路を選択し発振させるデコーダをさらに有する。
【0012】
本発明に係る電源電圧降下量の測定方法は、前述した目的を達成するためのものであり、半導体回路内の所定の位置における電源電圧の降下量を測定する測定方法であって、上記所定の位置に配置した電源電圧降下量の測定用の発振回路を、上記半導体回路の他の部分は動作させない非動作状態で、印加する電源電圧値を変えて発振させ、発振周波数と電源電圧値との関係を求める工程と、所定の電源電圧値を印加した上記半導体回路の動作状態で、前記発振回路の発振周波数を測定する工程と、上記非動作状態で求めた発振周波数と電源電圧値の上記関係から上記動作状態の発振周波数における電源電圧の降下量を求める工程と、を含む。
【0013】
本発明の半導体集積回路によれば、電源電圧の降下量を求めたい位置に発振回路を予め設けておく。発振回路として好適なリング発振器は、奇数個の反転論理ゲート回路(インバータ)を含む複数の論理ゲート回路が環状に接続されている構成を有し、いわゆるディジタル集積回路のプロセスで形成される。また、この半導体集積回路は、発振回路の出力または出力に応じた信号を外部に出力させる電源電圧降下量の測定用の出力部を有する。
【0014】
本発明の電源電圧降下量の測定方法によれば、発振回路の周囲の他の回路部分を動作させない非動作状態で、電源電圧を変化させながら発振回路を発振させ、発振周波数と電源電圧との関係を測定する。その後、所定の電源電圧を印加した状態で半導体回路を動作させ、この動作状態で、発振回路の発振周波数を測定する。動作状態では、発振回路の周囲の回路がダイナミックに動作していることから電源電圧降下が起こり、非動作状態で求めた発振周波数と電源電圧との関係からずれが生じる。即ち、通常、非動作状態から動作状態に移行すると発振周波数が低下し、回路に実際に付与される電源電圧値が異なってくる。この所定の発振周波数における動作状態と非動作状態との電源電圧差が、求める動作時の電源電圧降下量である。
この測定では、電源電圧降下量の測定用の出力部から出力される発振回路の出力信号の周波数、または周期を測定する。出力部が発振回路から離れて信号遅延が生じていても、周波数や周期の測定は正確に行える。
【0015】
【発明の実施の形態】
以下、発振回路としてリングオシレータ(以下、ROSC回路と表記)を用いる場合を例とした本発明の実施の形態を、図面を参照しつつ説明する。
【0016】
図1は、5つのROSC回路を分散して配置した本発明の一実施形態の半導体集積回路の概念図である。
図1に図解した半導体集積回路(以下、LSI)1はディジタルICであり、大別すると、内部ロジック回路部2と、その周囲の入出力回路部3から構成されている。
入出力回路部3には、特に図示しないが、各種I/Oピンが接続されるI/Oパッド、入出力回路(バッファ等)、電源回路等が配置されている。
内部ロジック回路部2には、特に図示しないが、当該LSIの種類に応じてCPU等を含む必要な機能ブロックが適宜配置され、また、ROM、RAM等のメモリ部が必要に応じて配置されている。
【0017】
本実施の形態のLSIにおいて、内部ロジック回路部2内に複数の発振回路、例えば複数のROSC回路が設けられている。
発振回路の個数、配置場所および発振周波数は任意である。電源電圧の降下量を測定したいブロックの近くに固有の周波数で発振する発振回路を配置することができる。また、単にLSI内の電源電圧降下量の分布を調べたいときは所定の周波数で発振する複数の発振回路を内部ロジック回路部2内で均等に配置することもできる。
【0018】
図1に図解した例では、5つのROSC回路4A,4B,4C,4D,4Eを有している。たとえば、そのうちROSC回路4Cが内部ロジック回路部2内のほぼ中央付近に配置され、他の4つのROSC回路4A,4B,4D,4Eが内部ロジック回路部2の4隅の近くに配置されている。
また、内部ロジック回路部2内の任意の位置に、5つのROSC回路の何れか1つを動作させるデコーダ5と、動作しているROSC回路の出力信号を選択して外部に出力するためのセレクタ6とが設けられている。本例のようにデコーダ5が5つのROSC回路の何れか1つを動作させる場合、セレクタ6を省略することもできる。デコーダ5が複数のROSC回路を同時に動作させてもよく、この場合、セレクタ6は必須となる。以下、デコーダ5によりROSC回路の何れか1つを動作させ、セレクタ6により出力を選択する場合を例として説明する。
【0019】
デコーダ5の出力が5つのROSC回路4A〜4Eの各入力に接続され、ROSC回路4A〜4Eの各出力がセレクタ6の入力に接続されている。デコーダ5の入力およびセレクタ6の制御入力に、ROSC回路の何れか一を選択し、その発振した出力信号(以下、発振出力ともいう)S0を外部に出力させるための選択信号S1が入力される。
デコーダ5は、制御信号S1を基にROSC回路4A〜4Eの何れかを選択し、所定の周波数で発振させる。セレクタ6は、制御信号S1を基に、選択されたROSC回路(発振回路)の出力信号S0または出力信号に応じた信号S0の外部への出力を許可する。ここで、“発振回路の出力信号に応じた信号”とは、後述するように、発振回路の出力信号の周波数を所定の分周比により落とした信号、あるいは発振回路の出力信号の一定期間のパルス数をカウントした時のカウンタの出力信号などを言う。
【0020】
図2は、ROSC回路の配置位置をより詳細に示す図である。また、図3および図4は、一般的なスタンダードセルアレイからなるLSIの説明図である。
通常、スタンダードセルは、電源電圧Vddと基準電圧Vssを供給する“ベンチ”と称される1対の配線10d,11dを有している。スタンダードセルをLSI内に配置した状態では、ベンチ10d,11dが、例えば図3に示すように、アレイ全体で水平方向に長い平行配線として形成される。
また、LSIの内部ロジック回路部2の周囲に電源電圧Vddを供給する基幹電源電圧供給線10bと基準電圧Vssを供給する基幹基準電圧供給線11bが形成されている。基幹電源電圧供給線10bは電源電圧Vddを供給する各ベンチ10dおよび電源電圧供給パッド10aに接続され、基幹基準電圧供給線11bは基準電圧Vssを供給する各ベンチ11dおよび基準電圧供給パッド11aに接続されている。これらの電圧供給線(以下、基幹線という)10b,11bは電圧降下を防ぐために十分に配線抵抗が低い太い配線である。
特に大規模LSIでは、例えば図4に示すように、内部ロジック回路部2の周囲の基幹線10b,11bから遠く離れた位置での電圧降下を防止するための補強線を有する。図4に示す例では、補強線として、基幹電源電圧供給線10bを水平または垂直の方向で接続する電源電圧補強線10cと、基幹基準電圧供給線11bを水平または垂直の方向で接続する基準電圧補強線11cとを有する。なお、これらの補強線10c,11cは、ベンチの配線方向と交差する方向、即ち垂直方向にのみ配置してもよい。補強線10c,11cは、通常、基幹線10b,11bより細いが、ベンチ10d,11dより十分に太く配線抵抗が低減されている。なお、図4においてはベンチの図示を省略している。
【0021】
5つのROSC回路4A〜4Eは、望ましくは、図2に例示するように、基幹電源電圧供給線10bおよび基幹基準電圧供給線11bの近くに配置する。または、図に示す中央のROSC回路4Cのように補強線10c,11cの近くにROSC回路を配置する。これは、電源電圧の降下量に含まれる配線による電圧降下を無視できるほど小さくする目的に照らして望ましい要件である。回路規模が小さく、あるいはベンチと称されるセル内の配線の抵抗が十分小さい場合で、測定精度に配線による電圧降下がほとんど影響しない場合は、この限りでない。また、基幹線10b,11bあるいは補強線10c,11cの近くであれば、発振回路の配置は図2に示す位置に限定されるものではない。
【0022】
所望周波数にて発振するROSC回路4A〜4Eは、少なくとも反転論理回路を奇数段有する。ROSC回路4A〜4Eとして、例えば、奇数段の反転論理回路と任意の段数の正論理回路とを論理的に環状に接続した回路を用いる。この論理的に環状に接続した回路は各論理回路に電圧を印加することにより発振を起こし、それぞれの回路の段数(または、素子数、信号遅延値)を増減させることにより、半導体回路内で測定したい箇所で所定の周波数でパルスが繰り返された発振信号を生成する。
【0023】
図5は、ROSC回路4A〜4Eの基本構成の一実施の形態を示す回路図である。
この図示例のROSC回路4A〜4Eは、縦続接続された奇数n段のインバータ41−1,41−2,…,41−(n−1),41−nと、1つのNANDゲート回路42、および、イネーブル回路43を有する。インバータおよびNANDゲート回路に、電源電圧供給線の幹線または補強線10b,10cから電源電圧Vddが供給され、基準電圧供給線の幹線または補強線11b,11cから基準電圧Vssが供給される。
NANDゲート回路42の一方の入力に、イネーブル回路43の出力が接続されている。イネーブル回路43は、選択信号S1をデコードしたデコーダ5からの信号S2を入力し、信号S2に応じて、選択時に“H(ハイ)”レベル、非選択時に“L(ロー)”レベルのイネーブル信号S3をNANDゲート回路42の一方の入力に出力する。
【0024】
図6は、信号S1とS2に応じてデコーダで選択されるROSC回路と信号との対応例を示す図表である。
選択信号S1を3ビットとしたときに、図6に示すようにビットの組み合わせ態様が8通りある。このうち選択信号S1が“001”のときデコーダ5によりROSC回路4Aが選択され、“010”のときROSC回路4Bが選択され、“011”のときROSC回路4Cが選択され、“100”のときROSC回路4Dが選択され、“101”のときROSC回路4Eが選択される。デコーダ5から出力される信号S2は5ビットの信号であり、そのLSB(least significant bit)に“1”が立ったときにROSC回路4Aが選択される。同様に、LSBの次のビットに“1”が立ったとROSC回路4Bが選択され、以後同様に、ROSC回路4C,4D,4Eが選択される。図5のイネーブル回路43は、信号S2の対応するビットに“1”が立った場合のみ出力の信号S3を“H”とし、それ以外の場合は“L”とし、発振の開始と停止を制御する。
【0025】
図7は、信号S1に応じてデコーダで出力が許可されるROSC回路とその出力との対応例を示す図表である。
図7に示すように、選択信号S1が“001”のときセレクタ6よりROSC回路4Aの発振出力SOAの出力が許可され、本発明の出力部(例えば電源電圧降下量の測定用のI/Oパッド)から外部に出力可能となる。同様に、選択信号S1が“010”のときROSC回路4Bの発振出力SOBの出力が許可され、選択信号S1が“011”のときROSC回路4Cの発振出力SOCの出力が許可され、選択信号S1が“100”のときROSC回路4Dの発振出力SODの出力が許可され、選択信号S1が“101”のときROSC回路4Eの発振出力SOEの出力が許可され、それぞれ出力部から外部に出力可能となる。
【0026】
図6および図7の図表において、選択信号S1が上記以外の“000”、“110”または“111”の場合は、デコーダ5が何れのROSC回路も選択しないし、セレクタ6も出力を許可しない。当該LSIの通常使用モードでは、選択信号S1が“000”、“110”または“111”に設定される。一方、電源電圧の降下量を測定するテストモード時には、その他の5通りのビットの組み合わせの何れかが設定される。
【0027】
つぎに、電源電圧の降下量を測定するテスト方法について説明する。
最初に、テストモードの非動作状態を選択する。ここで、非動作状態とは、図1に図解した5つのROSC回路4A〜4E、デコーダ5およびセレクタ6以外の周囲の回路を一切動作させないモードをいう。非動作状態において、それぞれのROSC回路4A〜4Eの静特性(発振周波数の電源電圧依存性)を測定する。
【0028】
図8および図9に、静特性の一例を示す。本発明で発振周波数というときに、発振信号の周期を等価的に含むものとする。
図8は、発振信号の周期T[ns]の電源電圧Vdd[V]の依存性を示すグラフである。図9は、図8の縦軸を発振周波数f[MHz]に変換したグラフである。
ROSC回路4A〜4Eに供給する電源電圧Vddを上げていくと、ROSC回路4A〜4Eの出力信号の発振周波数fが上昇し、それに伴って当該出力信号のパルスの周期Tが短くなる。ROSC回路4A〜4Eのそれぞれは、望ましくは、所定の電源電圧を印加したとき、その最も近い機能ブロックの発振周波数で発振するようにインバータの段数、全体の遅延量が設定されている。したがって、この場合、図8または図9に示す静特性を、ROSC回路4A〜4Eのそれぞれについて、与える電源電圧Vddを変化させながら測定する。このとき、それぞれの所定の発振周波数を中心として、正と負の必要なポイントで発振周波数が変化するような電源電圧Vddの与え方が望ましい。この測定結果は、LSI内の記憶部、例えばRAM内にテーブルとして、あるいは特性式として保存される。なお、測定結果を、その都度あるいは一括して、外部に出力するようにしてもよい。
【0029】
つぎに、テストモードにおいて、非動作状態から、必要な全ての回路を通常動作させる動作状態、即ち、通常使用する電源電圧、温度(例えば、室温)等の条件下でLSIを動作させる。ここで、“必要な全ての回路”とは、その通常使用動作が、ある着目するROSC回路の動作時の電源電圧の降下に影響するような全ての回路であり、電源電圧の降下に殆ど無関係と思われる回路機能を停止させることは構わない。
このような動作状態において、5つのROSC回路4A〜4Eのそれぞれの発振周波数f(または、発振パルスの周期T)を測定する。
【0030】
特に同じ電源電圧の幹線に接続された回路部分のダイナミック動作により電源電圧が低下し、この低下した電源電圧でROSC回路も発振する。したがって、静特性で調べた発振周波数fと電源電圧Vddとの対応関係を示すグラフ上で動作ポイントにずれが生じる。それぞれのROSC回路において固有の発振周波数をf0、電源電圧供給パッド10a(図2)に印加した電圧をVdd0とする。このとき、セレクタ5の出力信号SOの発振周波数f(または周期T)を、出力部のパッドに接続したテスタにより計測する。
なお、テスタが周波数カウンタの機能を有する場合は、パルス数をカウントして発振周波数fを求める。この機能を有しない場合は、セレクタ5の後段、あるいは、個々のROSC回路4A〜4Eの出力段にパルス数を計数するカウンタを設けてもよい。また、発振周波数が高い場合、高価なテスタを用いる必要性をなくし、あるいは、測定精度を高めるために、セレクタ5の後段、あるいは個々のROSC回路4A〜4Eの出力段に所定の分周比で周波数を落とす分周器を設けてもよい。
【0031】
この測定の結果、図9に示すように、テストの出力信号SOの周波数ftは、固有の発振周波数f0からΔfだけ低下したとする。この時、図9の関係式において周波数変化分Δfに対応する電源電圧Vddの変化量ΔVが求める電源電圧Vdd0の降下量となる。
このような測定を、選択信号S1に応じてデコーダ5とセレクタ6を切り替えながら繰り返すと、5つのROSC回路4A〜4Eの全てにおいて電源電圧の降下量ΔVを求めることができる。
以上の回路構成、及び手法により半導体集積回路内の実動作を考慮した電源電圧の降下量の測定が可能となる。
【0032】
なお、プロセスのばらつき等を考慮にいれるのであれば、ばらつきに強いタイプのトランジスタを使用するという手法もとり得る。
たとえば、同じ構成の回路をそれぞれのROSC回路4A〜4Eに使用したとしても、上層および下層の配線も含め周りの配線やROSC回路以外に用いた周りのトランジスタの配置の状況により、あるいは、プロセスばらつきに依存して、それぞれのROSC回路4A〜4Eの特性が著しく異なるということがある。そのため、たとえ同じ構成のROSC回路であっても、その発振周波数の電圧依存特性が異なることがある。このような特性変動を極力抑制したい場合は、トランジスタのゲート長が大きいトランジスタを使用するなどで対処することができる。
【0033】
本発明の実施の形態によれば、以下の利点が得られる。
第1に、実動作における電源電圧の降下量を正確に測定することができる。即ち、出力部が発振回路から離れて信号遅延が生じていても、周波数や周期の測定は正確に行えるため、求めた電源電圧の降下量は精度が高い。したがって、出力部は集積回路の周囲に設けられる入出力部に通常の入出力(I/O)端子と同じように設けることができ、プローブを立てるためのパッドほど大きな面積は不要である。
第2に、内部に周囲の回路の動作周波数と等価な発振周波数を有する発振回路、例えばROSC回路を必要な個数、必要な箇所に予め形成することが出来る。このため、例えば、発振周波数が特に高い機能ブロックに限定し、あるいは、電源電圧供給線を用いた電荷の充放電の頻度が高い機能ブロックに限定したテストが可能となる。通常、これらの限られた機能ブロックにおける電源電圧の降下量をモニタできれば全体の安全な動作確保という観点で十分な場合も多い。そのため、無駄なテストをやらないですむ。
第3に、複数の発振回路を切り替える手段としてデコーダ5およびセレクタ6を有していることから、測定のためのパッド数が必要最低限ですむ。
第4に、発振回路として奇数段接続のインバータと、1つのNANDゲート回路を用いたリングオシレータを用いている。このようなリングオシレータ(ROSC回路)は、入出力線のレイヤのみ特別に設計すれば通常のスタンダードセルの集合として構築できるため、設計が容易であり、占有面積もアナログ回路のコンパレータに比較して小さい。また、ディジタル回路のプロセスで他の回路と一括して形成できる。したがって、設計コスト、および、プロセスコストを含めたチップコストの増大が十分抑制されたものとなる。
以上より、本実施の形態の電源電圧の降下量の測定用の回路構成、および測定方法を用いることによって、特に半導体プロセスの立ち上げの際のプロセスの出来具合、あるいは、電源配線設計の結果をシミュレーションから求める際のCADの誤差を見積もることが極めて容易となる。また、動作時の電源電圧の降下量を正確に測定可能となるため、実際の半導体集積回路(製品)に、この機能を取り入れ、テストモード付きの製品として付加価値を高めることも可能である。
【0034】
【発明の効果】
本発明に係る半導体集積回路および電源電圧の降下量の測定方法によれば、電源電圧の降下量を集積回路の面積を余り増大させず、簡単な方法で精度よく測定することが可能となる。
【図面の簡単な説明】
【図1】分散して配置された複数の発振回路を有する本発明の一実施形態の半導体集積回路を示す図である。
【図2】発振回路(ROSC回路)の配置位置の例をより詳細に示す図である。
【図3】スタンダードセルアレイにより構成されたLSIの電源電圧および基準電圧の供給線の例を示す図である。
【図4】スタンダードセルアレイにより構成されたLSIの電源電圧および基準電圧の供給線の他の例を示す図である。
【図5】ROSC回路の基本構成の一実施の形態を示す回路図である。
【図6】信号S1とS2と、デコーダで選択されるROSC回路との対応を示す図表である。
【図7】信号S1に応じてデコーダで出力が許可されるROSC回路とその出力との対応を示す図表である。
【図8】静特性の一例として、発振信号の周期の電源電圧の依存性を示すグラフである。
【図9】静特性の一例として、出力信号の発振周波数の電源電圧の依存性を示すグラフである。
【符号の説明】
1…半導体集積回路、2…内部ロジック回路部、3…周辺回路部、4A〜4E…発振回路、5…デコーダ、6…セレクタ、10b…電源電圧供給線の幹線、10c…電源電圧供給線の補強線、11b…基準電圧供給線の幹線、11c…基準電圧供給線の補強線、41−1等…反転論理回路、42…正論理回路、43…イネーブル回路。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor integrated circuit having means for measuring a power supply voltage drop at a predetermined position in an integrated circuit, and a method for measuring a power supply voltage drop.
[0002]
[Prior art]
In recent large-scale semiconductor integrated circuits in which the power supply voltage is reduced, it is important to predict in advance the amount of power supply voltage drop during operation in order to guarantee reliable circuit operation.
Conventionally, the drop amount of the power supply voltage inside a semiconductor integrated circuit has been obtained by simulation using various CADs (Computer Aided Designs). When the predicted power supply voltage drop is determined, it is reflected in the design of the semiconductor integrated circuit, and the wiring is designed so that the power supply voltage drop is suppressed at important points, or even the low power supply voltage operates reliably. To determine the characteristics of the integrated circuit.
[0003]
[Problems to be solved by the invention]
The above-mentioned power supply voltage drop amount is a simulation value to the last, and is only a guide when an integrated circuit is ideally formed under an assumed process. Therefore, in a recent high-speed, large-scale semiconductor integrated circuit (hereinafter, LSI) having a low power supply voltage, it is necessary to actually measure a power supply voltage drop amount and feed it back to a design.
[0004]
The following two methods are conceivable as a method for measuring the amount of drop of the power supply voltage at a necessary portion of the actually formed semiconductor integrated circuit.
[0005]
First, a pad for setting up a probe for measurement is prepared beforehand at a position in the LSI chip where the amount of power supply voltage drop is to be checked, and the operation test is performed by setting up a probe on the above-mentioned pad for the LSI in a wafer state. A method of examining how much the power supply voltage supplied at a location in the wafer has decreased can be considered.
Second, a comparator for voltage measurement to which a reference voltage is externally provided is prepared at a necessary place in advance at the time of design, and the comparator for voltage measurement is prepared after the LSI is assembled in a wafer state or in a package. A method of examining how much the supplied power supply voltage has been reduced by using this method is also conceivable.
[0006]
However, the method of forming the first measurement pad in advance requires a measurement pad. In forming the measurement pad, it is necessary to secure an extra empty area near a predetermined functional circuit block for obtaining the amount of power supply voltage drop in order to eliminate the influence of the voltage drop of the wiring when measuring a minute voltage difference. . In particular, a pad for setting up a probe occupies a considerably large area, so that a useless area which is not actually used as a semiconductor circuit in an LSI logic circuit or the like is formed. Further, the contact resistance of the probe is large, and it is difficult to accurately measure a minute voltage drop. Further, in a test in a wafer state, it is mainly necessary to individually examine each functional test, and in many cases, the test is not performed in a state similar to that when an LSI is used. In this case, the amount of drop of the power supply voltage in actual use cannot be measured.
[0007]
Further, in the second method using a comparator cell for measuring voltage, since this cell is constituted by an analog circuit, in a digital LSI, adding an analog circuit process only for this purpose requires a process cost. Is not realistic. In an analog circuit, a transistor size for improving accuracy is increased, a cell area is increased, and a large area penalty is incurred. Further, since the determination is made as to whether or not the reference voltage is higher than the given reference voltage, it is necessary to change the reference voltage and perform the measurement many times, which increases the measurement time.
[0008]
These methods are not practical for the above-described reasons, and a technique for accurately measuring a small amount of power supply voltage drop by a simple method without significantly increasing the area of the LSI has been required.
[0009]
The present invention has been made in response to such a demand, and an object of the present invention is to accurately measure a small amount of power supply voltage drop by a simple method without significantly increasing the area of a semiconductor integrated circuit. Is to do.
[0010]
[Means for Solving the Problems]
A semiconductor integrated circuit according to the present invention achieves the above object and is arranged at a predetermined position in an integrated circuit, and outputs an output signal due to a drop in a power supply voltage at the predetermined position during operation of the integrated circuit. An oscillation circuit for measuring the power supply voltage drop amount at which the oscillation frequency changes, and an output unit for measuring the power supply voltage drop amount for outputting the output of the oscillation circuit or a signal corresponding to the output to the outside.
[0011]
In the present invention, preferably, the oscillation circuit includes a so-called ring oscillator.
In the present invention, preferably, the plurality of oscillation circuits are dispersedly arranged at predetermined positions in the integrated circuit, and each of the plurality of oscillation circuits has a control input for controlling start and stop of oscillation, There is further provided a decoder connected to the control inputs of the plurality of oscillation circuits, for selecting and oscillating a specific oscillation circuit among the plurality of oscillation circuits in accordance with the input selection signal.
[0012]
A method for measuring a power supply voltage drop amount according to the present invention is intended to achieve the above-described object, and is a measurement method for measuring a power supply voltage drop amount at a predetermined position in a semiconductor circuit. The oscillation circuit for measuring the power supply voltage drop amount arranged at the position is oscillated by changing the applied power supply voltage value in a non-operating state in which the other parts of the semiconductor circuit are not operated, and the oscillation frequency and the power supply voltage value are Determining the relationship, measuring the oscillation frequency of the oscillation circuit in an operating state of the semiconductor circuit to which a predetermined power supply voltage value is applied, and determining the relationship between the oscillation frequency and the power supply voltage value determined in the non-operational state. Calculating the amount of drop in the power supply voltage at the oscillation frequency in the operating state from the above.
[0013]
According to the semiconductor integrated circuit of the present invention, the oscillation circuit is provided in advance at a position where the amount of drop in the power supply voltage is to be obtained. A ring oscillator suitable as an oscillation circuit has a configuration in which a plurality of logic gate circuits including an odd number of inverted logic gate circuits (inverters) are connected in a ring shape, and is formed by a so-called digital integrated circuit process. Further, the semiconductor integrated circuit has an output section for measuring a power supply voltage drop amount for outputting an output of the oscillation circuit or a signal corresponding to the output to the outside.
[0014]
According to the method of measuring the power supply voltage drop amount of the present invention, the oscillation circuit is oscillated while changing the power supply voltage in a non-operation state in which other circuit parts around the oscillation circuit are not operated, and the oscillation frequency and the power supply voltage are Measure the relationship. Thereafter, the semiconductor circuit is operated while a predetermined power supply voltage is applied, and the oscillation frequency of the oscillation circuit is measured in this operation state. In the operating state, a power supply voltage drop occurs because circuits around the oscillation circuit are operating dynamically, and a deviation occurs from the relationship between the oscillation frequency and the power supply voltage obtained in the non-operating state. That is, normally, when the state shifts from the non-operation state to the operation state, the oscillation frequency decreases, and the power supply voltage value actually applied to the circuit differs. The power supply voltage difference between the operating state and the non-operating state at the predetermined oscillation frequency is the required power supply voltage drop amount during the operation.
In this measurement, the frequency or cycle of the output signal of the oscillation circuit output from the output unit for measuring the power supply voltage drop is measured. Even if the output unit is separated from the oscillation circuit and a signal delay occurs, the measurement of the frequency and the period can be accurately performed.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention, in which a ring oscillator (hereinafter, referred to as a ROSC circuit) is used as an oscillation circuit, will be described with reference to the drawings.
[0016]
FIG. 1 is a conceptual diagram of a semiconductor integrated circuit according to an embodiment of the present invention in which five ROSC circuits are distributed and arranged.
A semiconductor integrated circuit (hereinafter, LSI) 1 illustrated in FIG. 1 is a digital IC, and is roughly composed of an internal logic circuit unit 2 and an input / output circuit unit 3 therearound.
Although not shown, the input / output circuit unit 3 includes I / O pads to which various I / O pins are connected, input / output circuits (such as buffers), and power supply circuits.
Although not shown, the internal logic circuit unit 2 is provided with necessary functional blocks including a CPU and the like according to the type of the LSI, and a memory unit such as a ROM and a RAM is provided as necessary. I have.
[0017]
In the LSI according to the present embodiment, a plurality of oscillation circuits, for example, a plurality of ROSC circuits are provided in the internal logic circuit unit 2.
The number, location, and oscillation frequency of the oscillation circuits are arbitrary. An oscillation circuit that oscillates at a specific frequency can be arranged near a block where the amount of drop of the power supply voltage is to be measured. Further, when it is desired to simply examine the distribution of the power supply voltage drop amount in the LSI, a plurality of oscillation circuits which oscillate at a predetermined frequency can be evenly arranged in the internal logic circuit unit 2.
[0018]
The example illustrated in FIG. 1 has five ROSC circuits 4A, 4B, 4C, 4D, and 4E. For example, the ROSC circuit 4C is disposed near the center of the internal logic circuit unit 2 and the other four ROSC circuits 4A, 4B, 4D, and 4E are disposed near four corners of the internal logic circuit unit 2. .
A decoder 5 for operating any one of the five ROSC circuits at an arbitrary position in the internal logic circuit unit 2 and a selector for selecting an output signal of the operating ROSC circuit and outputting the selected signal to the outside. 6 are provided. When the decoder 5 operates any one of the five ROSC circuits as in this example, the selector 6 can be omitted. The decoder 5 may operate a plurality of ROSC circuits simultaneously, and in this case, the selector 6 is indispensable. Hereinafter, a case where one of the ROSC circuits is operated by the decoder 5 and the output is selected by the selector 6 will be described as an example.
[0019]
The output of the decoder 5 is connected to each input of the five ROSC circuits 4A to 4E, and each output of the ROSC circuits 4A to 4E is connected to the input of the selector 6. A selection signal S1 for selecting one of the ROSC circuits and outputting the oscillated output signal (hereinafter also referred to as an oscillation output) S0 to the outside is input to the input of the decoder 5 and the control input of the selector 6. .
The decoder 5 selects one of the ROSC circuits 4A to 4E based on the control signal S1 and oscillates at a predetermined frequency. The selector 6 permits the output of the output signal S0 of the selected ROSC circuit (oscillation circuit) or the signal S0 corresponding to the output signal to the outside based on the control signal S1. Here, the “signal corresponding to the output signal of the oscillation circuit” is, as described later, a signal obtained by lowering the frequency of the output signal of the oscillation circuit by a predetermined frequency division ratio, or a predetermined period of time of the output signal of the oscillation circuit. It refers to the output signal of the counter when counting the number of pulses.
[0020]
FIG. 2 is a diagram showing the arrangement position of the ROSC circuit in more detail. FIGS. 3 and 4 are explanatory diagrams of an LSI composed of a general standard cell array.
Normally, a standard cell has a pair of wirings 10d and 11d called "bench" for supplying a power supply voltage Vdd and a reference voltage Vss. In a state where the standard cells are arranged in the LSI, the benches 10d and 11d are formed as parallel wirings long in the horizontal direction in the entire array, for example, as shown in FIG.
A main power supply voltage supply line 10b for supplying the power supply voltage Vdd and a basic reference voltage supply line 11b for supplying the reference voltage Vss are formed around the internal logic circuit section 2 of the LSI. The main power supply voltage supply line 10b is connected to each bench 10d for supplying the power supply voltage Vdd and the power supply voltage supply pad 10a, and the main reference voltage supply line 11b is connected to each bench 11d for supplying the reference voltage Vss and the reference voltage supply pad 11a. Have been. These voltage supply lines (hereinafter, referred to as main lines) 10b and 11b are thick wires having sufficiently low wiring resistance to prevent a voltage drop.
In particular, a large-scale LSI has a reinforcing line for preventing a voltage drop at a position far from the main lines 10b and 11b around the internal logic circuit unit 2 as shown in FIG. 4, for example. In the example shown in FIG. 4, as the reinforcement lines, a power supply voltage reinforcement line 10c that connects the main power supply voltage supply line 10b in the horizontal or vertical direction, and a reference voltage that connects the main reference voltage supply line 11b in the horizontal or vertical direction. And a reinforcing wire 11c. The reinforcing wires 10c and 11c may be arranged only in a direction intersecting with the wiring direction of the bench, that is, in a vertical direction. The reinforcing wires 10c and 11c are usually thinner than the trunk lines 10b and 11b, but are sufficiently thicker than the benches 10d and 11d to reduce wiring resistance. In FIG. 4, illustration of the bench is omitted.
[0021]
The five ROSC circuits 4A to 4E are preferably arranged near the main power supply voltage supply line 10b and the main reference voltage supply line 11b, as illustrated in FIG. Alternatively, the ROSC circuit is arranged near the reinforcement lines 10c and 11c as in the center ROSC circuit 4C shown in the figure. This is a desirable requirement for the purpose of making the voltage drop due to the wiring included in the power supply voltage drop amount to be negligibly small. This is not the case when the circuit scale is small or the resistance of the wiring in a cell called a bench is sufficiently small and the voltage drop due to the wiring hardly affects the measurement accuracy. The arrangement of the oscillation circuit is not limited to the position shown in FIG. 2 as long as it is near the trunk lines 10b and 11b or the reinforcing lines 10c and 11c.
[0022]
ROSC circuits 4A to 4E that oscillate at a desired frequency have at least an odd number of inversion logic circuits. As the ROSC circuits 4A to 4E, for example, circuits in which odd-numbered inversion logic circuits and an arbitrary number of positive logic circuits are logically connected in a ring are used. The circuits connected in a logically circular fashion oscillate by applying a voltage to each logic circuit, and are measured in a semiconductor circuit by increasing or decreasing the number of stages (or the number of elements, signal delay value) of each circuit. An oscillation signal in which a pulse is repeated at a predetermined frequency at a desired position is generated.
[0023]
FIG. 5 is a circuit diagram showing an embodiment of the basic configuration of the ROSC circuits 4A to 4E.
The illustrated ROSC circuits 4A to 4E include cascaded odd-numbered n-stage inverters 41-1, 41-2,..., 41- (n-1), 41-n and one NAND gate circuit 42, And an enable circuit 43. The inverter and the NAND gate circuit are supplied with the power supply voltage Vdd from the main supply voltage supply line or the reinforcement lines 10b and 10c, and supplied with the reference voltage Vss from the reference voltage supply line main line or the reinforcement lines 11b and 11c.
The output of the enable circuit 43 is connected to one input of the NAND gate circuit 42. The enable circuit 43 receives the signal S2 from the decoder 5 that decodes the selection signal S1, and according to the signal S2, an enable signal of “H (high)” level when selected and “L (low)” level when not selected. S3 is output to one input of the NAND gate circuit 42.
[0024]
FIG. 6 is a chart showing an example of correspondence between the ROSC circuit selected by the decoder according to the signals S1 and S2 and the signals.
When the selection signal S1 is 3 bits, there are eight combinations of bits as shown in FIG. When the selection signal S1 is "001", the decoder 5 selects the ROSC circuit 4A. When the selection signal S1 is "010", the ROSC circuit 4B is selected. When the selection signal S1 is "011", the ROSC circuit 4C is selected. The ROSC circuit 4D is selected, and when "101", the ROSC circuit 4E is selected. The signal S2 output from the decoder 5 is a 5-bit signal, and the ROSC circuit 4A is selected when its least significant bit (LSB) becomes "1". Similarly, when "1" is set in the next bit of the LSB, the ROSC circuit 4B is selected, and thereafter, the ROSC circuits 4C, 4D, and 4E are similarly selected. The enable circuit 43 in FIG. 5 sets the output signal S3 to “H” only when the corresponding bit of the signal S2 is set to “1”, and sets the output signal S3 to “L” otherwise, and controls the start and stop of the oscillation. I do.
[0025]
FIG. 7 is a chart showing an example of the correspondence between the ROSC circuit whose output is permitted by the decoder in response to the signal S1 and its output.
As shown in FIG. 7, when the selection signal S1 is "001", the output of the oscillation output SOA of the ROSC circuit 4A is permitted by the selector 6, and the output unit of the present invention (for example, the I / O for measuring the power supply voltage drop amount) is used. Pad) to the outside. Similarly, when the selection signal S1 is “010”, the output of the oscillation output SOB of the ROSC circuit 4B is permitted. When the selection signal S1 is “011”, the output of the oscillation output SOC of the ROSC circuit 4C is permitted. Is "100", the output of the oscillation output SOD of the ROSC circuit 4D is permitted. When the selection signal S1 is "101", the output of the oscillation output SOE of the ROSC circuit 4E is permitted. Become.
[0026]
6 and 7, when the selection signal S1 is other than "000", "110" or "111", the decoder 5 does not select any ROSC circuit and the selector 6 does not permit the output. . In the normal use mode of the LSI, the selection signal S1 is set to “000”, “110” or “111”. On the other hand, in the test mode for measuring the drop amount of the power supply voltage, one of the other five combinations of bits is set.
[0027]
Next, a test method for measuring the drop amount of the power supply voltage will be described.
First, a non-operation state of the test mode is selected. Here, the non-operating state refers to a mode in which peripheral circuits other than the five ROSC circuits 4A to 4E, the decoder 5, and the selector 6 illustrated in FIG. In a non-operating state, the static characteristics (the power supply voltage dependence of the oscillation frequency) of each of the ROSC circuits 4A to 4E are measured.
[0028]
8 and 9 show examples of static characteristics. In the present invention, the term “oscillation frequency” equivalently includes the cycle of the oscillation signal.
FIG. 8 is a graph showing the dependence of the oscillation signal period T [ns] on the power supply voltage Vdd [V]. FIG. 9 is a graph in which the vertical axis of FIG. 8 is converted into the oscillation frequency f [MHz].
As the power supply voltage Vdd supplied to the ROSC circuits 4A to 4E is increased, the oscillation frequency f of the output signals of the ROSC circuits 4A to 4E increases, and accordingly, the cycle T of the pulses of the output signals decreases. In each of the ROSC circuits 4A to 4E, preferably, when a predetermined power supply voltage is applied, the number of stages of the inverter and the total delay amount are set so as to oscillate at the oscillation frequency of the closest functional block. Therefore, in this case, the static characteristics shown in FIG. 8 or FIG. 9 are measured for each of the ROSC circuits 4A to 4E while changing the applied power supply voltage Vdd. At this time, it is desirable to apply the power supply voltage Vdd such that the oscillation frequency changes at the required points of positive and negative with respect to each predetermined oscillation frequency. The measurement result is stored as a table or a characteristic expression in a storage unit in the LSI, for example, in a RAM. The measurement result may be output to the outside each time or collectively.
[0029]
Next, in the test mode, the LSI is operated from a non-operating state to an operating state in which all necessary circuits are normally operated, that is, under conditions such as a normally used power supply voltage and a temperature (for example, room temperature). Here, "all necessary circuits" are all circuits whose normal operation affects the power supply voltage drop during the operation of the ROSC circuit of interest, and is almost irrelevant to the power supply voltage drop. It is OK to stop the circuit function that seems to be.
In such an operation state, the oscillation frequency f (or the oscillation pulse period T) of each of the five ROSC circuits 4A to 4E is measured.
[0030]
In particular, the power supply voltage decreases due to the dynamic operation of the circuit portion connected to the main line having the same power supply voltage, and the ROSC circuit also oscillates at the reduced power supply voltage. Therefore, there is a shift in the operating point on the graph showing the correspondence between the oscillation frequency f and the power supply voltage Vdd, which is determined by the static characteristics. In each ROSC circuit, the unique oscillation frequency is f0, and the voltage applied to the power supply pad 10a (FIG. 2) is Vdd0. At this time, the oscillation frequency f (or cycle T) of the output signal SO of the selector 5 is measured by a tester connected to the pad of the output unit.
If the tester has a frequency counter function, the oscillation frequency f is obtained by counting the number of pulses. If this function is not provided, a counter for counting the number of pulses may be provided at the subsequent stage of the selector 5 or at the output stage of each of the ROSC circuits 4A to 4E. Further, when the oscillation frequency is high, in order to eliminate the necessity of using an expensive tester or to increase the measurement accuracy, a predetermined frequency division ratio is provided at the subsequent stage of the selector 5 or at the output stage of each of the ROSC circuits 4A to 4E. A frequency divider for lowering the frequency may be provided.
[0031]
As a result of this measurement, as shown in FIG. 9, it is assumed that the frequency ft of the output signal SO of the test has decreased from the inherent oscillation frequency f0 by Δf. At this time, the change amount ΔV of the power supply voltage Vdd corresponding to the frequency change amount Δf in the relational expression of FIG. 9 is the drop amount of the power supply voltage Vdd0 to be obtained.
When such measurement is repeated while switching the decoder 5 and the selector 6 according to the selection signal S1, the drop amount ΔV of the power supply voltage can be obtained in all of the five ROSC circuits 4A to 4E.
With the above-described circuit configuration and method, it is possible to measure the amount of drop of the power supply voltage in consideration of the actual operation in the semiconductor integrated circuit.
[0032]
If a process variation or the like is taken into consideration, a method of using a transistor that is resistant to the variation may be used.
For example, even if a circuit having the same configuration is used for each of the ROSC circuits 4A to 4E, depending on the surrounding wiring including the upper and lower layers and the arrangement of the surrounding transistors used for other than the ROSC circuit, or due to process variations. , The characteristics of the respective ROSC circuits 4A to 4E may be significantly different. Therefore, even if the ROSC circuits have the same configuration, the voltage dependency of the oscillation frequency may be different. When it is desired to suppress such characteristic fluctuation as much as possible, a transistor having a large gate length can be used.
[0033]
According to the embodiment of the present invention, the following advantages can be obtained.
First, it is possible to accurately measure the amount of power supply voltage drop in actual operation. That is, even if the output unit is separated from the oscillation circuit and a signal delay occurs, the frequency and the period can be measured accurately, and thus the obtained power supply voltage drop is highly accurate. Therefore, the output section can be provided in the input / output section provided around the integrated circuit in the same manner as a normal input / output (I / O) terminal, and a larger area is not required as much as a pad for setting up a probe.
Second, it is possible to previously form an oscillation circuit having an oscillation frequency equivalent to the operating frequency of a peripheral circuit therein, for example, a required number of ROSC circuits at required locations. For this reason, for example, it is possible to perform a test limited to a functional block whose oscillation frequency is particularly high, or a functional block whose charge / discharge frequency using the power supply voltage supply line is high. Usually, if the amount of drop of the power supply voltage in these limited functional blocks can be monitored, it is often sufficient from the viewpoint of ensuring the safe operation of the whole. Therefore, you don't have to do unnecessary tests.
Third, since the decoder 5 and the selector 6 are provided as means for switching a plurality of oscillation circuits, the number of pads for measurement can be minimized.
Fourth, an odd-stage connected inverter and a ring oscillator using one NAND gate circuit are used as the oscillation circuit. Such a ring oscillator (ROSC circuit) can be constructed as a set of normal standard cells by specially designing only the layers of the input / output lines, so that the design is easy and the occupied area is smaller than that of the comparator of the analog circuit. small. In addition, it can be formed together with other circuits by a digital circuit process. Therefore, an increase in chip cost including design cost and process cost is sufficiently suppressed.
As described above, by using the circuit configuration for measuring the amount of power supply voltage drop and the measuring method according to the present embodiment, it is possible to reduce the quality of the process particularly at the start of the semiconductor process or the result of the power supply wiring design. It is extremely easy to estimate a CAD error when obtaining from a simulation. Further, since the drop amount of the power supply voltage during operation can be accurately measured, this function can be incorporated into an actual semiconductor integrated circuit (product), and the added value can be increased as a product with a test mode.
[0034]
【The invention's effect】
According to the semiconductor integrated circuit and the method for measuring the power supply voltage drop amount according to the present invention, the power supply voltage drop amount can be accurately measured by a simple method without increasing the area of the integrated circuit so much.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a semiconductor integrated circuit according to an embodiment of the present invention having a plurality of oscillation circuits arranged in a dispersed manner.
FIG. 2 is a diagram illustrating an example of an arrangement position of an oscillation circuit (ROSC circuit) in more detail;
FIG. 3 is a diagram showing an example of supply lines of a power supply voltage and a reference voltage of an LSI constituted by a standard cell array.
FIG. 4 is a diagram showing another example of a power supply voltage and a reference voltage supply line of an LSI constituted by a standard cell array.
FIG. 5 is a circuit diagram showing an embodiment of a basic configuration of a ROSC circuit.
FIG. 6 is a table showing correspondence between signals S1 and S2 and a ROSC circuit selected by a decoder;
FIG. 7 is a table showing a correspondence between a ROSC circuit whose output is permitted by a decoder in response to a signal S1 and its output.
FIG. 8 is a graph showing, as an example of static characteristics, the dependency of the cycle of an oscillation signal on the power supply voltage.
FIG. 9 is a graph showing, as an example of static characteristics, the dependence of the oscillation frequency of an output signal on the power supply voltage.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Semiconductor integrated circuit, 2 ... Internal logic circuit part, 3 ... Peripheral circuit part, 4A-4E ... Oscillation circuit, 5 ... Decoder, 6 ... Selector, 10b ... Main line of power supply voltage supply line, 10c ... Power supply voltage supply line Reinforcement line, 11b: Main line of reference voltage supply line, 11c: Reinforcement line of reference voltage supply line, 41-1 etc. Inverted logic circuit, 42 ... Positive logic circuit, 43 ... Enable circuit.

Claims (5)

集積回路内の所定の位置に配置され、当該集積回路の動作時の上記所定の位置における電源電圧の降下により出力信号の発振周波数が変化する電源電圧降下量の測定用の発振回路と、
上記発振回路の出力または出力に応じた信号を外部に出力させる電源電圧降下量の測定用の出力部と、
を有する半導体集積回路。
An oscillation circuit arranged at a predetermined position in the integrated circuit, for measuring a power supply voltage drop amount in which an oscillation frequency of an output signal changes due to a power supply voltage drop at the predetermined position during operation of the integrated circuit;
An output section for measuring a power supply voltage drop amount for outputting an output of the oscillation circuit or a signal corresponding to the output to the outside,
A semiconductor integrated circuit having:
上記発振回路は、奇数個の反転論理ゲート回路を含む複数の論理ゲート回路が環状に接続されている構成を有する
請求項1に記載の半導体集積回路。
2. The semiconductor integrated circuit according to claim 1, wherein the oscillation circuit has a configuration in which a plurality of logic gate circuits including an odd number of inverted logic gate circuits are connected in a ring.
固有の発振周波数を有する複数の上記発振回路が上記集積回路内の所定の位置に分散して配置され、
当該複数の発振回路のそれぞれが発振の開始と停止を制御する制御入力を有し、
複数の発振回路の上記制御入力に接続され、入力される選択信号に応じて複数の上記発振回路のうち特定の発振回路を選択し発振させるデコーダをさらに有する
請求項1に記載の半導体集積回路。
A plurality of the oscillation circuits having a unique oscillation frequency are dispersedly arranged at predetermined positions in the integrated circuit,
Each of the plurality of oscillation circuits has a control input for controlling start and stop of oscillation,
2. The semiconductor integrated circuit according to claim 1, further comprising a decoder connected to the control inputs of the plurality of oscillation circuits, for selecting and oscillating a specific oscillation circuit among the plurality of oscillation circuits in accordance with an input selection signal.
発振する上記特定の発振回路が複数の場合、そのうちの一の発振回路を上記選択信号に応じて選択し、選択した発振回路の出力または出力に応じた信号を出力するセレクタを、さらに有する
請求項3に記載の半導体集積回路。
If there are a plurality of the specific oscillation circuits to oscillate, further comprising a selector for selecting one of the oscillation circuits according to the selection signal and outputting an output of the selected oscillation circuit or a signal corresponding to the output. 4. The semiconductor integrated circuit according to 3.
半導体回路内の所定の位置における電源電圧の降下量を測定する測定方法であって、
上記所定の位置に配置した電源電圧降下量の測定用の発振回路を、上記半導体回路の他の部分は動作させない非動作状態で、印加する電源電圧値を変えて発振させ、発振周波数と電源電圧値との関係を求める工程と、
所定の電源電圧値を印加した上記半導体回路の動作状態で、前記発振回路の発振周波数を測定する工程と、
上記非動作状態で求めた発振周波数と電源電圧値の上記関係から上記動作状態の発振周波数における電源電圧の降下量を求める工程と、
を含む
電源電圧降下量の測定方法。
A measurement method for measuring a drop amount of a power supply voltage at a predetermined position in a semiconductor circuit,
The oscillation circuit for measuring the power supply voltage drop amount arranged at the predetermined position is oscillated by changing the applied power supply voltage value in a non-operating state in which the other parts of the semiconductor circuit are not operated, and the oscillation frequency and the power supply voltage are changed. Determining the relationship with the value;
Measuring an oscillation frequency of the oscillation circuit in an operation state of the semiconductor circuit to which a predetermined power supply voltage value is applied;
A step of obtaining a drop amount of the power supply voltage at the oscillation frequency in the operation state from the above relationship between the oscillation frequency and the power supply voltage value obtained in the non-operation state;
A method for measuring a power supply voltage drop amount including:
JP2002310172A 2002-10-24 2002-10-24 Semiconductor integrated circuit and power supply voltage drop measuring method Expired - Fee Related JP4407110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002310172A JP4407110B2 (en) 2002-10-24 2002-10-24 Semiconductor integrated circuit and power supply voltage drop measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002310172A JP4407110B2 (en) 2002-10-24 2002-10-24 Semiconductor integrated circuit and power supply voltage drop measuring method

Publications (2)

Publication Number Publication Date
JP2004146612A true JP2004146612A (en) 2004-05-20
JP4407110B2 JP4407110B2 (en) 2010-02-03

Family

ID=32455765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002310172A Expired - Fee Related JP4407110B2 (en) 2002-10-24 2002-10-24 Semiconductor integrated circuit and power supply voltage drop measuring method

Country Status (1)

Country Link
JP (1) JP4407110B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7397228B2 (en) 2006-01-12 2008-07-08 International Business Machines Corporation Programmable on-chip sense line
JP2008258629A (en) * 2007-04-04 2008-10-23 Toshiba Corp System and method for calculating variation in voltage impressed on ic chip
US7902844B2 (en) 2006-06-07 2011-03-08 Renesas Electronics Corporation Voltage drop measurement circuit
US8008967B2 (en) 2005-09-20 2011-08-30 Fujitsu Limited Power supply voltage adjusting device
JP2012004582A (en) * 2011-08-05 2012-01-05 Renesas Electronics Corp Semiconductor integrated circuit device
US8159209B2 (en) 2008-05-16 2012-04-17 Dai Nippon Printing Co., Ltd. Digital signal delay measuring circuit and digital signal delay measuring method
US8683414B2 (en) 2005-06-07 2014-03-25 Renesas Electronics Corporation Semiconductor integrated circuit device with independent power domains
CN116953490A (en) * 2023-09-19 2023-10-27 西安智多晶微电子有限公司 Method, device and system for measuring internal voltage drop of FPGA chip

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9455699B2 (en) 2005-06-07 2016-09-27 Renesas Electronics Corporation Semiconductor integrated circuit device
US10896919B2 (en) 2005-06-07 2021-01-19 Renesas Electronics Corporation Semiconductor integrated circuit device
US10446581B2 (en) 2005-06-07 2019-10-15 Renesas Electronics Corporation Semiconductor integrated circuit device
US10014320B2 (en) 2005-06-07 2018-07-03 Renesas Electronics Corporation Semiconductor integrated circuit device
US8683414B2 (en) 2005-06-07 2014-03-25 Renesas Electronics Corporation Semiconductor integrated circuit device with independent power domains
US9087818B2 (en) 2005-06-07 2015-07-21 Renesas Electronics Corporation Semiconductor integrated circuit device with independent power domains
US8008967B2 (en) 2005-09-20 2011-08-30 Fujitsu Limited Power supply voltage adjusting device
US7619398B2 (en) 2006-01-12 2009-11-17 International Business Machines Corporation Programmable on-chip sense line
US7397228B2 (en) 2006-01-12 2008-07-08 International Business Machines Corporation Programmable on-chip sense line
US7902844B2 (en) 2006-06-07 2011-03-08 Renesas Electronics Corporation Voltage drop measurement circuit
JP2008258629A (en) * 2007-04-04 2008-10-23 Toshiba Corp System and method for calculating variation in voltage impressed on ic chip
US8159209B2 (en) 2008-05-16 2012-04-17 Dai Nippon Printing Co., Ltd. Digital signal delay measuring circuit and digital signal delay measuring method
JP2012004582A (en) * 2011-08-05 2012-01-05 Renesas Electronics Corp Semiconductor integrated circuit device
CN116953490A (en) * 2023-09-19 2023-10-27 西安智多晶微电子有限公司 Method, device and system for measuring internal voltage drop of FPGA chip
CN116953490B (en) * 2023-09-19 2023-12-26 西安智多晶微电子有限公司 Method, device and system for measuring internal voltage drop of FPGA chip

Also Published As

Publication number Publication date
JP4407110B2 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
US6535013B2 (en) Parameter variation probing technique
US20020129293A1 (en) Scan based multiple ring oscillator structure for on-chip speed measurement
US6853177B2 (en) Semiconductor device with process monitor circuit and test method thereof
US6785628B2 (en) Apparatus and method for determining effect of on-chip noise on signal propagation
US8762087B2 (en) Accurate integrated circuit performance prediction using on-board sensors
JP2001059856A (en) Integrated circuit device, its testing method, database for its design, and its designing method
US7804371B2 (en) Systems, modules, chips, circuits and methods with delay trim value updates on power-up
JP4407110B2 (en) Semiconductor integrated circuit and power supply voltage drop measuring method
US9666251B2 (en) Trim control with default trim code circuit and second multiplexers
JP2010109115A (en) On-chip type monitor circuit and semiconductor device
US6544807B1 (en) Process monitor with statistically selected ring oscillator
US9638752B2 (en) Measurement circuitry and method for measuring a clock node to output node delay of a flip-flop
JP2003224468A (en) Semiconductor integrated circuit, its manufacturing method, and testing method
JP4786287B2 (en) Wiring structure of semiconductor integrated circuit and wiring method of semiconductor integrated circuit
JPH09282346A (en) Cell current consumption characteristic calculation system
JP3442226B2 (en) Integrated circuit with delay evaluation circuit
JP3291706B2 (en) Method for verifying high-speed operation of logic circuit and logic circuit
US20010003051A1 (en) Semiconductor integrated circuit, semiconductor integrated circuit manufacturing method and semiconductor integrated circuit test method
Peng et al. Application-independent testing of 3-D field programmable gate array interconnect faults
CN110299179B (en) Dynamic power analysis using per memory instance activity customization
JP2003156542A (en) Testing method and semiconductor device
US6076178A (en) Test circuit and method for DC testing LSI capable of preventing simultaneous change of signals
JPH10160804A (en) Scan cell
JP2001266595A (en) Semiconductor integrated circuit device
JP2008082798A (en) Semiconductor integrated circuit device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees