JP2004146592A - Electrolyte for electric double layer capacitor, and method of using electric double layer capacitor using the same - Google Patents

Electrolyte for electric double layer capacitor, and method of using electric double layer capacitor using the same Download PDF

Info

Publication number
JP2004146592A
JP2004146592A JP2002309765A JP2002309765A JP2004146592A JP 2004146592 A JP2004146592 A JP 2004146592A JP 2002309765 A JP2002309765 A JP 2002309765A JP 2002309765 A JP2002309765 A JP 2002309765A JP 2004146592 A JP2004146592 A JP 2004146592A
Authority
JP
Japan
Prior art keywords
electrolyte
double layer
electric double
layer capacitor
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002309765A
Other languages
Japanese (ja)
Inventor
Tomoo Tsujimoto
辻本 智雄
Minoru Takagawa
高川 實
Yutaka Kanbara
神原 豊
Genki Nogami
野上 玄器
Jitsuo Oishi
大石 實雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2002309765A priority Critical patent/JP2004146592A/en
Publication of JP2004146592A publication Critical patent/JP2004146592A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress a decline in electrostatic capacity in a low-temperature region of an electric double layer capacitor. <P>SOLUTION: An electrolyte containing an electrolyte is used, chief of which is diethyl dimethyl ammonium salt. The electrolyte contains one kind of diethyl dimethyl ammonium salt expressed by Formula (1): (C<SB>2</SB>H<SB>5</SB>)<SB>2</SB>(CH<SB>3</SB>)<SB>2</SB>N<SP>+</SP>X<SP>-</SP>as a main component, and one or more kinds of tetraalkyl ammonium salts expressed by Formula (2) which are different from the diethyl dimethyl ammonium salt selected by the Formula (1). In the Formula (1), X<SP>-</SP>is an anion selected among BF<SB>4</SB>, PF<SB>6</SB>, ClO<SB>4</SB>, AsF<SB>6</SB>, SbF<SB>6</SB>, N(CF<SB>3</SB>SO<SB>2</SB>)<SB>2</SB>, C(CF<SB>3</SB>SO<SB>2</SB>)<SB>3</SB>, and RfSO<SB>3</SB>(Rf is a fluoroalkyl radical with the number of carbons from 1 to 8). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は非水系電解液を用いた電気二重層キャパシタにおいて、四級のテトラアルキルアンモニウム塩組成物を電解質として用いることに関するものである。テトラアルキルアンモニウム塩は無停電電源装置やハイブリット自動車の蓄電システムとして注目されている電気二重層キャパシタ用の電解質として有用である。
【0002】
【従来の技術】
テトラアルキルアンモニウム塩を電解質として用いた電気二重層キャパシタは従来よりよく知られており、プロピレンカーボネート等の有機溶媒にテトラアルキルアンモニウム塩を溶解した非水電解液が実用化されている(例えば、特許文献1、非特許文献1参照。)。またテトラアルキルアンモニウム塩の中でも特に非対称アンモニウム塩(例えば、トリエチルメチルアンモニウム)は電気二重層キャパシタにおいて、内部抵抗、静電容量値、長期信頼性などの点でテトラエチルアンモニウムのような対称型アンモニウム塩に比べて優れていることが報告されている(例えば、特許文献2参照。)。また、内部抵抗、静電容量値は電解液中の電解質濃度に大きく依存しており、溶解度が低く電解液中の電解質濃度が低い場合、内部抵抗が大きくなることが報告されている(例えば、非特許文献2参照。)。
【0003】
近年、高エネルギー密度化、高出力密度化等、電気二重層キャパシタに要求される性能は高まっており、現在市販されている電解質であるテトラエチルアンモニウム塩、あるいはトリエチルメチルアンモニウム塩を使用した電気二重層キャパシタでは、溶媒への溶解度が満足できるものではなく、溶解度の高い電解質が望まれている。特に低温域において溶解度が高い電解質は静電容量の低下が小さく切望されている。
【0004】
【特許文献1】
特開昭49−68254号公報
【特許文献2】
特公平03−58526号公報
【非特許文献1】
宇恵、電気化学、66巻、1988年、904頁
【非特許文献2】
大容量電気二重層キャパシタの最前線、エヌティーエス社発行、2002年、261頁
【0005】
【発明が解決しようとする課題】
以上のごとく、テトラエチルアンモニウム塩あるいはトリエチルメチルアンモニウム塩を電気二重層キャパシタ電解質として使用した場合、低温での静電容量において満足できる性能が得られていないという問題があった。
本発明の目的は、溶媒への溶解度が高く、低温での静電容量を向上させた電気二重層キャパシタ用電解質を提供することにある。
【0006】
【問題を解決するための手段】
本発明者らは、上記のような課題を有する電気二重層キャパシタ用電解質について鋭意検討した結果、ジエチルジメチルアンモニウム塩を主成分とした電解質を用いた場合、電解質の溶媒への溶解度が高く低温での静電容量が大きいことを見出し本発明に到達した。
【0007】
すなわち、分極性電極と電解液との界面で形成される電気二重層を利用する電気二重層キャパシタ用電解質であって、該電解質が主成分として式1で表されるジエチルジメチルアンモニウム塩のいずれかの一種を含み、副成分として、式1で選ばれたジエチルジメチルアンモニウム塩とは異なる、式2で表される一種以上のテトラアルキルアンモニウム塩を含むことがある、電気二重層キャパシタ用電解質、及び該電解質を用いた電気二重層キャパシタを0℃以下で使用する方法に関する。
(C(CH・X  (1)
(式1中、XはBF、PF、ClO、AsF、SbF、N(CFSO、C(CFSO、RfSO(Rfは炭素数1〜8のフルオロアルキル基)のうちの一種から選ばれるアニオンである。)
【化2】

Figure 2004146592
(式2中、R1、R2、R3、R4は同一あるいは異なった構造の炭素数1〜6のアルキル基を示す。XはBF、PF、ClO、AsF、SbF、N(CFSO、C(CFSO、RfSO(Rfは炭素数1〜8のフルオロアルキル基)のうちの少なくとも一種から選ばれるアニオンである。
【0008】
【発明の実施の形態】
以下、発明の実施の形態を詳細に説明する。本発明で用いられる電解質は、上記式1で表されるジエチルジメチルアンモニウム塩を主成分とすることを特徴とする。
【0009】
電解質中ジエチルジメチルアンモニウム塩濃度は60mol%以上である。この濃度より低いと、低温での静電容量低下抑制効果が小さく性能劣化が大きい。またアニオンは電気伝導度、溶媒への溶解度、安全性からBF、PF、N(CFSOが好ましく、特に取り扱いやすさからBFが好ましい。すなわち、電解質の主成分としてはジエチルジメチルアンモニウムテトラフルオロボレート塩が最も好ましい。一方、副成分として上記主成分とともに含まれることがある電解質は、主成分として選択されたものとは異なるテトラアルキルアンモニウム塩のうち、溶媒への溶解度及び電気伝導度が比較的高い、非対称アンモニウム塩であるトリエチルメチルアンモニウム塩、トリメチルエチルアンモニウム塩が好ましい。またアニオンは主成分の場合と同様な理由でBF、PF、N(CFSOが好ましい。
【0010】
電解液中の電解質濃度は0.1〜4.0mol/lが適当であり、より好ましくは1.0〜3.0mol/lが適当である。この濃度より低いと電気伝導度が低く内部抵抗が高くなる。この濃度より高いと低温時に溶質が析出して安定性が低下するなどの性能劣化を引き起こす。
【0011】
本発明で用いる電解液の溶媒としては特に限定されるものではないが、例えばプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート等の環状カーボネート、ジメチルカーボネート、メチルエチルカーボネート等の鎖状カーボネート、γ−ブチロラクトン、1,2−ジメトキシエタン等のエーテル類、アセトニトリル、3−メトキシプロピオニトリル等のニトリル類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等のアミド類、スルホラン、ジメチルスルホオキシド等の含硫黄化合物、ニトロメタン、ニトロエタン等のニトロ化合物が単独または混合物として使用される。好ましくはプロピレンカーボネート、γ−ブチロラクトン、ジメチルスルホキシドが単独または混合物として使用される。また、耐電圧を向上させるため添加剤を混合してもよい。
【0012】
【実施例】
以下、実施例及び比較例によって本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。
【0013】
実施例1 プロピレンカーボネートへの溶解度
電解質ジエチルジメチルアンモニウムテトラフルオロボレートを94.6mol%、エチルトリメチルアンモニウムテトラフルオロボレートを5.4mol%含有するテトラアルキルアンモニウムテトラフルオロボレートのプロピレンカーボネートへの溶解度を25℃、−30℃において測定した結果、それぞれ2.9mol/l、2.3mol/lであった(表1)。
【0014】
比較例1 プロピレンカーボネートへの溶解度
電解質トリエチルメチルアンモニウムテトラフルオロボレートのプロピレンカーボネートへの溶解度を25℃、−30℃において測定した結果、それぞれ2.2mol/l、1.7mol/lであった(表1)。
【0015】
比較例2 プロピレンカーボネートへの溶解度
電解質ジエチルジメチルアンモニウムテトラフルオロボレートを31.3mol%、トリエチルメチルアンモニウムテトラフルオロボレート64.2mol%とエチルトリメチルアンモニウムテトラフルオロボレート4.5mol%を含有するテトラアルキルアンモニウムテトラフルオロボレートのプロピレンカーボネートへの溶解度を25℃、−30℃において測定した結果、それぞれ2.5mol/l、2.0mol/lであった(表1)。
【0016】
表1 各電解質のプロピレンカーボネートへの溶解度(mol/l)
Figure 2004146592
【0017】
実施例2
(a)電解液の調製
電解質ジエチルジメチルアンモニウムテトラフルオロボレートを94.6mol%、エチルトリメチルアンモニウムテトラフルオロボレートを5.4mol%含有するテトラアルキルアンモニウムテトラフルオロボレートをプロピレンカーボネートに溶解し、電解質として1.8mol/lとした電解液を調製した。電解液中の水分量は20ppmであった。
(b)電気二重層キャパシタの作製と評価
活性炭粉末(窒素吸収法によるBET法で測定した比表面積1,200m/g)80wt%、カーボンブラック10wt%,ポリテトラフルオロエチレン10wt%からなる混合物を混練した後、加圧シート化した。得られたシートを円盤状に打ち抜いて分極性電極(直径16mm、厚さ0.6mm)とし、200℃、12hr真空乾燥して活性炭電極とした。この電極をポリエチレン製セパレーターを介して互いに対向させ、ステンレス製ケース内に収納した。その後、減圧下で上記電解液を含浸させ封じ込めた。
得られた電気二重層キャパシタセルに25℃で2.7Vの電圧を5mAの定電流で印加して充電した後、5mAの定電流で0Vまで放電し、放電エネルギーから初期静電容量を求めた。初期静電容量密度は13.0F/ccであった。その後、2.7V、5mAで定電流充放電を0、−20、−30、−40℃で行い、25℃の場合と同様に静電容量を求めた。各温度での静電容量を25℃の初期静電容量と比較し、静電容量低下率を算出した(表2)。
【0018】
比較例3
(a)電解液の調製
電解質トリエチルメチルアンモニウムテトラフルオロボレートのみをプロピレンカーボネートに溶解し、電解質として1.8mol/lとした電解液を調製した。水分量は20ppmであった。
(b)電気二重層キャパシタの作製と評価
実施例2(b)と同様の方法で作製した電気二重層キャパシタの初期静電容量を25℃で2.7Vの電圧を5mAの定電流で印加して放電した後、5mAの定電流で0Vまで放電し、放電エネルギーから初期静電容量を求めた。初期静電容量密度は12.9F/ccであった。その後、実施例2(b)と同様に2.7V、5mAで定電流充放電を0、−20、−30、−40で行い、25℃の場合と同様に静電容量を求めた。各温度での静電容量を25℃の初期静電容量と比較し、静電容量低下率を算出した(表2)。
【0019】
比較例4
(a)電解液の調製
電解質ジエチルジメチルアンモニウムテトラフルオロボレートを31.3mol%、トリエチルメチルアンモニウムテトラフルオロボレート64.2mol%とエチルトリメチルアンモニウムテトラフルオロボレート4.5mol%を含有するテトラアルキルアンモニウムテトラフルオロボレートをプロピレンカーボネートに溶解し、電解質として1.8mol/lとした電解液を調製した。水分量は19ppmであった。
(b)電気二重層キャパシタの作製と評価
実施例2(b)と同様の方法で作製した電気二重層キャパシタの初期静電容量を25℃で2.7Vの電圧を5mAの定電流で印加して充電した後、5mAの定電流で0Vまで放電し、放電エネルギーから初期静電容量を求めた。初期静電容量密度は12.9F/ccであった。その後、実施例2(b)と同様に2.7V、5mAで定電流充放電を0、−20、−30、−40℃で行い、25℃の場合と同様に静電容量を求めた。各温度での静電容量を25℃の初期静電容量と比較し、静電容量低下率を算出した(表2)。
表2 各電解質の低温静電容量低下率(%)
Figure 2004146592
【0020】
【発明の効果】
本発明によるジエチルジメチルアンモニウム塩を主成分とする電解質を含んだ電解液を用いることによって、従来の電気二重層キャパシタに見られた低温域での静電容量の低下を抑制できるようになるため、その工業的意義は極めて大きい。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to the use of a quaternary tetraalkylammonium salt composition as an electrolyte in an electric double layer capacitor using a non-aqueous electrolyte. BACKGROUND ART Tetraalkylammonium salts are useful as electrolytes for electric double layer capacitors, which are attracting attention as uninterruptible power supplies and power storage systems for hybrid vehicles.
[0002]
[Prior art]
An electric double layer capacitor using a tetraalkylammonium salt as an electrolyte has been well known, and a non-aqueous electrolyte in which a tetraalkylammonium salt is dissolved in an organic solvent such as propylene carbonate has been put to practical use (for example, see Patent Reference 1, Non-patent Reference 1.) Among the tetraalkylammonium salts, an asymmetric ammonium salt (for example, triethylmethylammonium) is particularly a symmetric ammonium salt such as tetraethylammonium in an electric double layer capacitor in terms of internal resistance, capacitance value and long-term reliability. It has been reported that this is superior to the above (for example, see Patent Document 2). In addition, it has been reported that the internal resistance and the capacitance value greatly depend on the electrolyte concentration in the electrolyte, and that the internal resistance increases when the solubility is low and the electrolyte concentration in the electrolyte is low (for example, See Non-Patent Document 2.).
[0003]
In recent years, the performance required for electric double layer capacitors, such as higher energy density and higher output density, has been increasing. Electric double layer capacitors using tetraethylammonium salts or triethylmethylammonium salts, which are currently commercially available electrolytes, have been developed. In a capacitor, solubility in a solvent is not satisfactory, and an electrolyte having high solubility is desired. Particularly, an electrolyte having a high solubility in a low temperature region is desired to have a small decrease in capacitance.
[0004]
[Patent Document 1]
JP-A-49-68254 [Patent Document 2]
Japanese Patent Publication No. 03-58526 [Non-Patent Document 1]
Ue, Electrochemistry, 66, 1988, p. 904 [Non-Patent Document 2]
Forefront of large-capacity electric double layer capacitors, published by NTTS Corporation, 2002, p. 261
[Problems to be solved by the invention]
As described above, when a tetraethylammonium salt or a triethylmethylammonium salt is used as an electrolyte of an electric double layer capacitor, there is a problem that satisfactory performance is not obtained in low-temperature capacitance.
An object of the present invention is to provide an electrolyte for an electric double layer capacitor having high solubility in a solvent and improved low-temperature capacitance.
[0006]
[Means to solve the problem]
The present inventors have conducted intensive studies on an electrolyte for an electric double layer capacitor having the above-mentioned problems, and found that when an electrolyte containing diethyldimethylammonium salt as a main component is used, the solubility of the electrolyte in a solvent is high and the temperature is low. Of the present invention was found to be large, and the present invention was reached.
[0007]
That is, an electrolyte for an electric double layer capacitor using an electric double layer formed at the interface between the polarizable electrode and the electrolytic solution, wherein the electrolyte is any one of diethyldimethylammonium salts represented by Formula 1 as a main component. An electrolyte for an electric double layer capacitor, which may contain one or more tetraalkylammonium salts represented by the formula 2, which is different from the diethyldimethylammonium salt selected by the formula 1, as a subcomponent. The present invention relates to a method of using an electric double layer capacitor using the electrolyte at 0 ° C. or lower.
(C 2 H 5) 2 ( CH 3) 2 N + · X - (1)
(In the formula 1, X is BF 4 , PF 6 , ClO 4 , AsF 6 , SbF 6 , N (CF 3 SO 2 ) 2 , C (CF 3 SO 2 ) 3 , RfSO 3 (Rf is carbon number 1 to 8 fluoroalkyl groups).)
Embedded image
Figure 2004146592
(In the formula 2, R1, R2, R3, R4 .X is showing the same or different alkyl group having 1 to 6 carbon atoms structures - is BF 4, PF 6, ClO 4 , AsF 6, SbF 6, N ( An anion selected from at least one of CF 3 SO 2 ) 2 , C (CF 3 SO 2 ) 3 , and RfSO 3 (Rf is a fluoroalkyl group having 1 to 8 carbon atoms).
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the invention will be described in detail. The electrolyte used in the present invention is characterized by containing a diethyldimethylammonium salt represented by the above formula 1 as a main component.
[0009]
The concentration of diethyldimethylammonium salt in the electrolyte is 60 mol% or more. If the concentration is lower than this, the effect of suppressing the decrease in capacitance at a low temperature is small and the performance is greatly deteriorated. The anion is preferably BF 4 , PF 6 , N (CF 3 SO 2 ) 2 from the viewpoint of electrical conductivity, solubility in a solvent, and safety, and particularly preferably BF 4 from the viewpoint of easy handling. That is, as a main component of the electrolyte, a diethyldimethylammonium tetrafluoroborate salt is most preferable. On the other hand, the electrolyte which may be contained together with the main component as a sub-component is an asymmetric ammonium salt having relatively high solubility in a solvent and electric conductivity among tetraalkylammonium salts different from those selected as the main component. And trimethylmethylammonium salts are preferred. The anion is preferably BF 4 , PF 6 , or N (CF 3 SO 2 ) 2 for the same reason as in the case of the main component.
[0010]
The electrolyte concentration in the electrolyte is suitably from 0.1 to 4.0 mol / l, and more preferably from 1.0 to 3.0 mol / l. If the concentration is lower than this, the electric conductivity is low and the internal resistance is high. If the concentration is higher than this, solutes are precipitated at a low temperature to cause performance deterioration such as a decrease in stability.
[0011]
The solvent of the electrolytic solution used in the present invention is not particularly limited. For example, propylene carbonate, ethylene carbonate, cyclic carbonate such as butylene carbonate, dimethyl carbonate, chain carbonate such as methyl ethyl carbonate, γ-butyrolactone, Ethers such as 1,2-dimethoxyethane, nitriles such as acetonitrile and 3-methoxypropionitrile, amides such as N, N-dimethylformamide and N, N-dimethylacetamide, and sulfur-containing compounds such as sulfolane and dimethylsulfoxide. Compounds, nitro compounds such as nitromethane and nitroethane are used alone or as a mixture. Preferably, propylene carbonate, γ-butyrolactone, and dimethyl sulfoxide are used alone or as a mixture. Further, an additive may be mixed to improve the withstand voltage.
[0012]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
[0013]
Example 1 Solubility in Propylene Carbonate The solubility of tetraalkylammonium tetrafluoroborate containing 94.6 mol% of electrolyte diethyldimethylammonium tetrafluoroborate and 5.4 mol% of ethyltrimethylammonium tetrafluoroborate in propylene carbonate was 25 ° C. As a result of measurement at -30 ° C, they were 2.9 mol / l and 2.3 mol / l, respectively (Table 1).
[0014]
Comparative Example 1 Solubility in Propylene Carbonate The solubility of the electrolyte triethylmethylammonium tetrafluoroborate in propylene carbonate was measured at 25 ° C. and -30 ° C., and was 2.2 mol / l and 1.7 mol / l, respectively (Table 1). 1).
[0015]
Comparative Example 2 Solubility in Propylene Carbonate Tetraalkylammonium tetrafluorocarbon containing 31.3 mol% of diethyldimethylammonium tetrafluoroborate, 64.2 mol% of triethylmethylammonium tetrafluoroborate and 4.5 mol% of ethyltrimethylammonium tetrafluoroborate As a result of measuring the solubility of borate in propylene carbonate at 25 ° C and -30 ° C, it was 2.5 mol / l and 2.0 mol / l, respectively (Table 1).
[0016]
Table 1 Solubility of each electrolyte in propylene carbonate (mol / l)
Figure 2004146592
[0017]
Example 2
(A) Preparation of Electrolyte Solution Tetraalkylammonium tetrafluoroborate containing 94.6 mol% of electrolyte diethyldimethylammonium tetrafluoroborate and 5.4 mol% of ethyltrimethylammonium tetrafluoroborate was dissolved in propylene carbonate to prepare an electrolyte. An electrolytic solution having a concentration of 8 mol / l was prepared. The water content in the electrolyte was 20 ppm.
(B) Preparation and Evaluation of Electric Double Layer Capacitor A mixture consisting of 80 wt% of activated carbon powder (specific surface area measured by BET method using nitrogen absorption method, 1,200 m 2 / g), 10 wt% of carbon black, and 10 wt% of polytetrafluoroethylene. After kneading, it was formed into a pressure sheet. The obtained sheet was punched into a disk to form a polarizable electrode (diameter 16 mm, thickness 0.6 mm), and vacuum-dried at 200 ° C. for 12 hours to obtain an activated carbon electrode. The electrodes were opposed to each other via a polyethylene separator and housed in a stainless steel case. Thereafter, the above electrolyte was impregnated and sealed under reduced pressure.
The obtained electric double layer capacitor cell was charged at 25 ° C. by applying a voltage of 2.7 V at a constant current of 5 mA, and then discharged to 0 V at a constant current of 5 mA, and the initial capacitance was determined from the discharge energy. . The initial capacitance density was 13.0 F / cc. Thereafter, constant current charging / discharging was performed at 2.7 V, 5 mA at 0, -20, -30, and -40C, and the capacitance was obtained in the same manner as at 25C. The capacitance at each temperature was compared with the initial capacitance at 25 ° C., and the capacitance reduction rate was calculated (Table 2).
[0018]
Comparative Example 3
(A) Preparation of electrolyte solution Only the electrolyte triethylmethylammonium tetrafluoroborate was dissolved in propylene carbonate to prepare an electrolyte solution having a concentration of 1.8 mol / l as an electrolyte. The water content was 20 ppm.
(B) Production and Evaluation of Electric Double Layer Capacitor The initial capacitance of the electric double layer capacitor produced by the same method as in Example 2 (b) was applied at 25 ° C. and a voltage of 2.7 V at a constant current of 5 mA. After that, the battery was discharged to 0 V at a constant current of 5 mA, and the initial capacitance was determined from the discharge energy. The initial capacitance density was 12.9 F / cc. Thereafter, constant current charging / discharging was performed at 2.7 V, 5 mA at 0, -20, -30, and -40 in the same manner as in Example 2 (b), and the capacitance was determined as in the case of 25 ° C. The capacitance at each temperature was compared with the initial capacitance at 25 ° C., and the capacitance reduction rate was calculated (Table 2).
[0019]
Comparative Example 4
(A) Preparation of Electrolyte Solution Tetraalkylammonium tetrafluoroborate containing 31.3 mol% of electrolyte diethyldimethylammonium tetrafluoroborate, 64.2 mol% of triethylmethylammonium tetrafluoroborate and 4.5 mol% of ethyltrimethylammonium tetrafluoroborate Was dissolved in propylene carbonate to prepare an electrolytic solution having 1.8 mol / l as an electrolyte. The water content was 19 ppm.
(B) Production and Evaluation of Electric Double Layer Capacitor The initial capacitance of the electric double layer capacitor produced by the same method as in Example 2 (b) was applied at 25 ° C. and a voltage of 2.7 V at a constant current of 5 mA. After charging, the battery was discharged to 0 V at a constant current of 5 mA, and the initial capacitance was determined from the discharge energy. The initial capacitance density was 12.9 F / cc. After that, constant current charging / discharging was performed at 2.7 V, 5 mA at 0, -20, -30, and -40C in the same manner as in Example 2 (b), and the capacitance was determined as in the case of 25C. The capacitance at each temperature was compared with the initial capacitance at 25 ° C., and the capacitance reduction rate was calculated (Table 2).
Table 2 Low-temperature capacitance reduction rate of each electrolyte (%)
Figure 2004146592
[0020]
【The invention's effect】
By using an electrolytic solution containing an electrolyte containing diethyldimethylammonium salt as a main component according to the present invention, it is possible to suppress a decrease in capacitance in a low-temperature region seen in a conventional electric double layer capacitor, Its industrial significance is extremely large.

Claims (4)

分極性電極と電解液との界面で形成される電気二重層を利用する電気二重層キャパシタ用電解質であって、該電解質が主成分として式1で表されるジエチルジメチルアンモニウム塩のいずれかの一種を含むことを特徴とする、電気二重層キャパシタ用電解質。An electrolyte for an electric double layer capacitor using an electric double layer formed at an interface between a polarizable electrode and an electrolytic solution, wherein the electrolyte is one of diethyldimethylammonium salts represented by Formula 1 as a main component. An electrolyte for an electric double layer capacitor, comprising: 該電解質が、副成分として、式1で選ばれたジエチルジメチルアンモニウム塩とは異なる、式2で表される一種以上のテトラアルキルアンモニウム塩を含むことがある、請求項1記載の電気二重層キャパシタ用電解質。
(C(CH・X  (1)
(式1中、XはBF、PF、ClO、AsF、SbF、N(CFSO、C(CFSO、RfSO(Rfは炭素数1〜8のフルオロアルキル基)のうちの一種から選ばれるアニオンである。)
Figure 2004146592
(式2中、R1、R2、R3、R4は同一あるいは異なった構造の炭素数1〜6のアルキル基を示す。XはBF、PF、ClO、AsF、SbF、N(CFSO、C(CFSO、RfSO(Rfは炭素数1〜8のフルオロアルキル基)のうちの少なくとも一種から選ばれるアニオンである。
2. The electric double layer capacitor according to claim 1, wherein the electrolyte may include, as a sub-component, one or more tetraalkylammonium salts represented by Formula 2 different from the diethyldimethylammonium salt selected by Formula 1. 3. For electrolyte.
(C 2 H 5) 2 ( CH 3) 2 N + · X - (1)
(In the formula 1, X is BF 4 , PF 6 , ClO 4 , AsF 6 , SbF 6 , N (CF 3 SO 2 ) 2 , C (CF 3 SO 2 ) 3 , RfSO 3 (Rf is carbon number 1 to 8 fluoroalkyl groups).)
Figure 2004146592
(In the formula 2, R1, R2, R3, R4 .X is showing the same or different alkyl group having 1 to 6 carbon atoms structures - is BF 4, PF 6, ClO 4 , AsF 6, SbF 6, N ( An anion selected from at least one of CF 3 SO 2 ) 2 , C (CF 3 SO 2 ) 3 , and RfSO 3 (Rf is a fluoroalkyl group having 1 to 8 carbon atoms).
式1で表されるジエチルジメチルアンモニウム塩がテトラフルオロボレート塩である、請求項1〜2のいずれかに記載の電気二重層キャパシタ用電解質。3. The electrolyte for an electric double layer capacitor according to claim 1, wherein the diethyldimethylammonium salt represented by the formula 1 is a tetrafluoroborate salt. 請求項1〜3のいずれかに記載の電解質を含んだ電気二重層キャパシタを、0℃以下の温度で使用する、電気二重層キャパシタの使用方法。A method for using an electric double layer capacitor, comprising using the electric double layer capacitor containing the electrolyte according to claim 1 at a temperature of 0 ° C or lower.
JP2002309765A 2002-10-24 2002-10-24 Electrolyte for electric double layer capacitor, and method of using electric double layer capacitor using the same Pending JP2004146592A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002309765A JP2004146592A (en) 2002-10-24 2002-10-24 Electrolyte for electric double layer capacitor, and method of using electric double layer capacitor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002309765A JP2004146592A (en) 2002-10-24 2002-10-24 Electrolyte for electric double layer capacitor, and method of using electric double layer capacitor using the same

Publications (1)

Publication Number Publication Date
JP2004146592A true JP2004146592A (en) 2004-05-20

Family

ID=32455480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002309765A Pending JP2004146592A (en) 2002-10-24 2002-10-24 Electrolyte for electric double layer capacitor, and method of using electric double layer capacitor using the same

Country Status (1)

Country Link
JP (1) JP2004146592A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013175619A (en) * 2012-02-27 2013-09-05 Panasonic Corp Electrolyte used for electric double layer capacitor and electric double layer capacitor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013175619A (en) * 2012-02-27 2013-09-05 Panasonic Corp Electrolyte used for electric double layer capacitor and electric double layer capacitor
WO2013128824A1 (en) * 2012-02-27 2013-09-06 パナソニック株式会社 Electrolyte solution for electric double layer capacitors, and electric double layer capacitor
CN104137205A (en) * 2012-02-27 2014-11-05 松下电器产业株式会社 Electrolyte solution for electric double layer capacitors, and electric double layer capacitor
CN104137205B (en) * 2012-02-27 2017-10-31 松下知识产权经营株式会社 Electrolyte solution for electric double layer capacitor and double layer capacitor
US10199179B2 (en) 2012-02-27 2019-02-05 Panasonic Intellectual Property Management Co., Ltd. Electrolyte solution for electric double layer capacitors, and electric double layer capacitor

Similar Documents

Publication Publication Date Title
US9034517B1 (en) Capacitors having conditioned carbon for electrodes
JP4904616B2 (en) Electrolytic solution and electrochemical element using the same
JP2010503198A (en) Electrolyte solution and super high capacity capacitor including the same
JP2005327785A (en) Electric double layer capacitor and electrolyte therefor
JP2004146592A (en) Electrolyte for electric double layer capacitor, and method of using electric double layer capacitor using the same
JP2006210816A (en) Nonaqueous electrolyte
JP5275011B2 (en) Electrolyte and electrochemical device using quaternary ammonium salt electrolyte
JP4022717B2 (en) Electrolyte for electric double layer capacitor
WO2015069853A1 (en) Improvements for capacitors having conditioned carbon for electrodes
JP2008091823A (en) Electrolyte for electric double layer capacitor and electric double layer capacitor
JP4428810B2 (en) Non-aqueous electrolyte electric double layer capacitor
CN104779075A (en) High-voltage nonaqueous electrolyte for supercapacitor
JP3991566B2 (en) Electrochemical capacitor
JP4158412B2 (en) Electrolytic solution for electrochemical capacitor and electrochemical capacitor using the same
JP2009065074A (en) Electrolyte for pseudocapacitor, and pseudocapacitor
JP2004296602A (en) Electrolyte for electric double layer capacitor, and electric double layer capacitor using the same
JP2003324039A (en) Electric double-layer capacitor and electrolyte therefor
JP2006210817A (en) Nonaqueous electrolyte for electrochemical capacitor
JP2003324038A (en) Electrolyte for electrochemical capacitor and electrochemical capacitor using it
JPH0325912A (en) Electrolyte for electrolytic capacitor
JP2007012983A (en) Nonaqueous electrolyte type electric double layer capacitor and nonaqueous electrolyte therefor
JP4537154B2 (en) Non-aqueous electrolyte electric double layer capacitor
JP2012069931A (en) Electrolytic solution for electric double layer capacitor, and electric double layer capacitor using it
JP2003173935A (en) Electrolyte solution for electrochemical capacitor and electrochemical capacitor using the same
JP5305343B2 (en) Electrolytic solution for electric double layer capacitor and electric double layer capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081008