JP5305343B2 - Electrolytic solution for electric double layer capacitor and electric double layer capacitor - Google Patents

Electrolytic solution for electric double layer capacitor and electric double layer capacitor Download PDF

Info

Publication number
JP5305343B2
JP5305343B2 JP2009015028A JP2009015028A JP5305343B2 JP 5305343 B2 JP5305343 B2 JP 5305343B2 JP 2009015028 A JP2009015028 A JP 2009015028A JP 2009015028 A JP2009015028 A JP 2009015028A JP 5305343 B2 JP5305343 B2 JP 5305343B2
Authority
JP
Japan
Prior art keywords
double layer
electric double
layer capacitor
electrolytic solution
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009015028A
Other languages
Japanese (ja)
Other versions
JP2010177231A (en
Inventor
司 上田
一美 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Carlit Co Ltd
Original Assignee
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Carlit Co Ltd filed Critical Japan Carlit Co Ltd
Priority to JP2009015028A priority Critical patent/JP5305343B2/en
Publication of JP2010177231A publication Critical patent/JP2010177231A/en
Application granted granted Critical
Publication of JP5305343B2 publication Critical patent/JP5305343B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本発明は、添加剤を加えることで漏れ電流を低減し、電圧保持特性を向上せしめた電気二重層キャパシタ用電解液及び該電解液を使用してなる電気二重層キャパシタに関する。   The present invention relates to an electrolytic solution for an electric double layer capacitor in which leakage current is reduced by adding an additive and voltage holding characteristics are improved, and an electric double layer capacitor using the electrolytic solution.

電気二重層キャパシタは、重金属等の環境負荷物質を含まず安全であり、優れた充放電サイクル寿命を有し、大電流充放電が可能という特徴を持つため、近年、無停電電源装置や電気自動車の補助電源等への利用が進められている。   Electric double layer capacitors are safe, free from environmentally hazardous substances such as heavy metals, have excellent charge / discharge cycle life, and can charge and discharge large currents. Is being used for auxiliary power supplies.

したがって、電気二重層キャパシタに用いられる電解液は、電気化学的安定性、高電気伝導性、経時安定性等の特性が要求される。加えて、電気二重層キャパシタは過酷な条件下において使用されることが想定されるため、その電解液としては、低温から高温に至るまでの広い温度範囲において、電気二重層キャパシタを安定に作動させることのできる特性も重要である。   Therefore, the electrolytic solution used for the electric double layer capacitor is required to have characteristics such as electrochemical stability, high electrical conductivity, and stability over time. In addition, since it is assumed that the electric double layer capacitor is used under severe conditions, the electrolytic solution stably operates the electric double layer capacitor in a wide temperature range from low temperature to high temperature. The characteristics that can be done are also important.

また、この電気二重層キャパシタは、非常に大きな比表面積を有する活性炭電極を使用する点や、セルの漏れ電流が大きくなる傾向がある。その結果、実機設備に搭載した際に誤作動などを招くなど、不具合を生じる恐れがある。さらに、リチウムイオン2次電池などの2次電池に代表される他の蓄電デバイスと比較して、蓄電メカニズムに化学反応を伴わないために、電圧保持特性が悪くなる傾向にある。   In addition, this electric double layer capacitor uses an activated carbon electrode having a very large specific surface area and tends to increase cell leakage current. As a result, there is a risk of malfunctions such as malfunctions when mounted on actual equipment. Furthermore, compared with other power storage devices typified by secondary batteries such as lithium ion secondary batteries, there is no chemical reaction in the power storage mechanism, and thus the voltage holding characteristics tend to deteriorate.

従来の電気二重層キャパシタ用電解液は、プロピレンカーボネートやγ−ブチロラクトン等の非プロトン性有機溶媒中に、脂肪族第4級アンモニウム塩からなる常温で固体の電解質を溶解させたものが多用されている。   Conventional electrolytic solutions for electric double layer capacitors are often used in which a solid electrolyte made of an aliphatic quaternary ammonium salt is dissolved in an aprotic organic solvent such as propylene carbonate or γ-butyrolactone. Yes.

上記電解液は、電極となるシート状の活性炭およびセパレータに注液した後に減圧又は加圧、あるいは減圧と加圧を繰り返すことで含浸している。電解液が電極内部の細孔へ充分に行き渡らない場合や、セパレータが充分に濡れていないなどの未含浸部分が生じると、電圧保持特性の悪化、容量減少、内部抵抗増大、漏れ電流の増大、急速充放電特性の悪化等の、電気二重層キャパシタの電気的特性の劣化を招く。   The electrolyte solution is impregnated by injecting the sheet-like activated carbon to be an electrode and a separator and then reducing the pressure or pressurizing, or repeating the pressure reduction and pressurization. If the electrolyte does not spread sufficiently to the pores inside the electrode or if an unimpregnated part such as the separator is not sufficiently wet occurs, the voltage holding characteristics deteriorate, the capacity decreases, the internal resistance increases, the leakage current increases, It causes deterioration of the electric characteristics of the electric double layer capacitor such as deterioration of rapid charge / discharge characteristics.

一方、未含浸部分を低減しようとする目的で、含浸工程で過度に減圧にしすぎると、電解液に使用しているプロピレンカーボネートやγ−ブチロラクトン等の非プロトン性有機溶媒が蒸発し、溶質となる脂肪族第4級アンモニウム塩の濃度が変化して、本来発現し得る電気的特性が損なわれてしまう恐れがある。   On the other hand, if the pressure is excessively reduced in the impregnation step for the purpose of reducing the unimpregnated portion, the aprotic organic solvent such as propylene carbonate and γ-butyrolactone used in the electrolyte solution is evaporated and becomes a solute. The concentration of the aliphatic quaternary ammonium salt may change, and the electrical characteristics that can be originally expressed may be impaired.

従って、従来知られている電解液より、電極やセパレータへの含浸性に優れ、かつ、優れた電気的特性を発現できる電解液が望まれている。   Therefore, there is a demand for an electrolytic solution that is more excellent in impregnation into electrodes and separators and can exhibit excellent electrical characteristics than conventionally known electrolytic solutions.

例えば、特許文献1及び特許文献2に記載されているように、電気二重層キャパシタ用電解液の添加剤として提案されてきた物質としては、ホスファゼン及びその誘導体が挙げられる。   For example, as described in Patent Document 1 and Patent Document 2, examples of substances that have been proposed as additives for electrolytic solutions for electric double layer capacitors include phosphazenes and derivatives thereof.

しかし、上記ホスファゼン及びその誘導体は、電気二重層キャパシタへの難燃性の付与や、低温での特性改善が主な目的であり、電気二重層キャパシタの含浸性の向上及び電圧保持特性の向上効果については考慮されていなかった。   However, the phosphazene and its derivatives are mainly intended to impart flame retardancy to the electric double layer capacitor and to improve the characteristics at low temperature, and to improve the impregnation property and voltage holding characteristics of the electric double layer capacitor. Was not considered.

特許文献3、特許文献4、特許文献5、特許文献6、非特許文献1に、リチウムイオン電池などの負極用電解液添加剤としてポリエーテル変性シロキサン誘導体を加えることで、負極に導電性の薄膜を生じさせ、その薄膜によって、溶媒や電解質の分解を抑制し、耐電圧向上及びそれに伴う充放電サイクル特性が向上する旨が開示されている。   By adding a polyether-modified siloxane derivative as an electrolyte solution additive for a negative electrode such as a lithium ion battery to Patent Document 3, Patent Document 4, Patent Document 5, Patent Document 6, and Non-Patent Document 1, a conductive thin film on the negative electrode It is disclosed that the thin film suppresses the decomposition of the solvent and the electrolyte and improves the withstand voltage and the accompanying charge / discharge cycle characteristics.

しかし、電気二重層キャパシタの充放電メカニズムや電極反応はリチウムイオン電池とは異なるものである上に、上記負極用電解液添加剤を電気二重層キャパシタ用電解液に添加することの効果は不明である。   However, the charging / discharging mechanism and electrode reaction of the electric double layer capacitor are different from those of the lithium ion battery, and the effect of adding the negative electrode electrolyte additive to the electric double layer capacitor electrolyte is unknown. is there.

本出願人はこれまで、特許文献7に電気二重層キャパシタ用電解液にポリエーテル変性シロキサン誘導体を加えることで、主に低温での電気二重層キャパシタ特性が向上する旨を開示している。また、特許文献8に、電気二重層キャパシタ用電解液に環状シロキサン誘導体を加えることで、漏れ電流の低減や電圧保持特性を向上できる旨を開示している。   So far, the present applicant has disclosed in Patent Document 7 that the addition of a polyether-modified siloxane derivative to the electrolytic solution for an electric double layer capacitor improves the electric double layer capacitor characteristics mainly at low temperatures. Patent Document 8 discloses that the addition of a cyclic siloxane derivative to the electrolytic solution for an electric double layer capacitor can reduce leakage current and improve voltage holding characteristics.

しかし、これらに開示されているシロキサン誘導体を用いた電気二重層キャパシタ用電解液では、求められる諸特性が十分とは言えず、更なる特性向上が望まれていた。   However, the electrolytes for electric double layer capacitors using the siloxane derivatives disclosed therein are not sufficient in the required properties, and further improvement of the properties has been desired.

国際公開第WO2002/021631号パンフレットInternational Publication No. WO2002 / 021631 Pamphlet 特開2001−217152号公報JP 2001-217152 A 特開平11−214032号公報Japanese Patent Laid-Open No. 11-214032 特開2004−235141号公報JP 2004-235141 A 特開2006−49266号公報JP 2006-49266 A 特開2006−66095号公報JP 2006-66095 A 特開2008−091820号公報JP 2008-091820 A 特開2008−277503号公報JP 2008-277503 A

猪瀬 耐、多田 覚、山田 直之、森本 英行、鳶島 真一、「第46回電池討論会予稿集」、2005年11月16〜18日、p.442Takeshi Hirose, Satoru Tada, Naoyuki Yamada, Hideyuki Morimoto, Shinichi Kajishima, “The 46th Battery Discussion Meeting Proceedings”, November 16-18, 2005, p. 442

上記課題に鑑み、電極やセパレータへの含浸性に優れた電気二重層キャパシタ用電解液を提供することである。また該電解液を使用することで、極めて低い漏れ電流特性及び優れた電圧保持特性を示す電気二重層キャパシタを提供することである。   In view of the above problems, an object is to provide an electrolytic solution for an electric double layer capacitor excellent in impregnation into electrodes and separators. Another object of the present invention is to provide an electric double layer capacitor exhibiting extremely low leakage current characteristics and excellent voltage holding characteristics by using the electrolytic solution.

本発明者らは鋭意検討を行った結果、溶媒中に電解質として第4級アンモニウム塩を含有させた電解液に、1個以上フェニル基を有するシロキサン誘導体を添加することで、電気二重層キャパシタの電極及びセパレータとの含浸性が向上するため、著しく漏れ電流が低減し、優れた電圧保持特性を発揮できることを見出し、本発明を完成するに至った。   As a result of intensive studies, the present inventors have found that an electric double layer capacitor can be obtained by adding one or more siloxane derivatives having a phenyl group to an electrolytic solution containing a quaternary ammonium salt as an electrolyte in a solvent. Since the impregnation property with the electrode and the separator is improved, it has been found that the leakage current is remarkably reduced and excellent voltage holding characteristics can be exhibited, and the present invention has been completed.

本発明のシロキサン誘導体が添加された電気二重層キャパシタ用電解液は、添加剤を加えていない電解液と比べ、電極に対して非常に良好な濡れ電流特性と電圧保持特性を得ることができる   The electrolytic solution for an electric double layer capacitor to which the siloxane derivative of the present invention is added can obtain very good wetting current characteristics and voltage holding characteristics with respect to the electrode as compared with the electrolytic solution to which no additive is added.

以下に、本発明を更に詳しく説明する。   Hereinafter, the present invention will be described in more detail.

第一の発明は、溶媒中に第4級アンモニウム塩と添加剤とが含有されてなる電気二重層キャパシタ用電解液において、
添加剤が、下記一般式(1)で表されるシロキサン誘導体であることを特徴とする電気二重層キャパシタ用電解液である。
The first invention is an electrolytic solution for an electric double layer capacitor comprising a quaternary ammonium salt and an additive in a solvent,
The additive is an electrolytic solution for an electric double layer capacitor, wherein the additive is a siloxane derivative represented by the following general formula (1).

Figure 0005305343
(式(1)中、R〜R10は、それぞれ同一であっても異なっていてもよい水素原子、ハロゲン原子又は有機基を示し、少なくとも1個以上はフェニル基である。l及びmの数は0〜4の整数を示す。)
Figure 0005305343
(In the formula (1), R 1 to R 10 each represent a hydrogen atom, a halogen atom or an organic group which may be the same or different, and at least one is a phenyl group. The number represents an integer of 0 to 4.)

第二の発明は、溶媒中に第4級アンモニウム塩と添加剤とが含有されてなる電気二重層キャパシタ用電解液において、
添加剤が、下記一般式(2)で表されるシロキサン誘導体であることを特徴とする電気二重層キャパシタ用電解液である。
The second invention is an electrolytic solution for an electric double layer capacitor in which a quaternary ammonium salt and an additive are contained in a solvent.
It is an electrolytic solution for an electric double layer capacitor, wherein the additive is a siloxane derivative represented by the following general formula (2).

Figure 0005305343
(式(2)中、R11〜R16は、それぞれ同一であっても異なっていてもよい水素原子、ハロゲン原子又は有機基を示し、少なくとも1個以上はフェニル基である。nの数は1〜4の整数を示す。)
Figure 0005305343
(In the formula (2), R 11 to R 16 each represent a hydrogen atom, a halogen atom or an organic group, which may be the same or different, and at least one is a phenyl group. Represents an integer of 1 to 4.)

第三の発明は、添加剤の含有量が、0.001〜1.0重量%であることを特徴とする第一又は第二の発明に記載の電気二重層キャパシタ用電解液である。   A third invention is the electrolytic solution for an electric double layer capacitor according to the first or second invention, wherein the content of the additive is 0.001 to 1.0% by weight.

第四の発明は、セパレータを挟み込んだ分極性電極に、第一から第三の発明のいずれかに記載の電気二重層キャパシタ用電解液を含浸させ、これを容器に密閉してなる電気二重層キャパシタである。   A fourth invention is an electric double layer obtained by impregnating a polarizable electrode sandwiching a separator with the electrolytic solution for an electric double layer capacitor according to any one of the first to third inventions and sealing the same in a container It is a capacitor.

本発明の電気二重層キャパシタ用電解液について詳細に説明する。   The electrolyte for electric double layer capacitors of the present invention will be described in detail.

本発明の電気二重層キャパシタ用電解液に添加される添加剤は、下記一般式(1)に示されるシロキサン誘導体である。溶媒中に第4級アンモニウム塩を電解質として含有する電気二重層キャパシタ用電解液に該添加剤を添加することによって、電気二重層キャパシタの電極への含浸性の向上が見られ、非常に優れた濡れ電流特性及び電圧保持特性を有する電気二重層キャパシタが得られる。   The additive added to the electrolytic solution for the electric double layer capacitor of the present invention is a siloxane derivative represented by the following general formula (1). By adding the additive to the electrolytic solution for an electric double layer capacitor containing a quaternary ammonium salt in the solvent as an electrolyte, the impregnation of the electrode of the electric double layer capacitor was improved, which was very excellent. An electric double layer capacitor having a wetting current characteristic and a voltage holding characteristic is obtained.

本発明の電気二重層キャパシタ用電解液に添加される添加剤は、下記一般式(1)で表されるシロキサン誘導体であることを特徴とする電気二重層キャパシタ用電解液である。   The additive added to the electrolytic solution for electric double layer capacitor of the present invention is an electrolytic solution for electric double layer capacitor characterized by being a siloxane derivative represented by the following general formula (1).

Figure 0005305343
Figure 0005305343

式(1)中、R〜R10は、それぞれ同一であっても異なっていてもよい水素原子、ハロゲン原子又は有機基を示し、少なくとも1個以上はフェニル基である。l及びmの数は0〜4の整数を、より好ましくは1又は2の整数である。l+mが8を超える場合、著しく粘度が高くなってしまうことから、電解液に溶解したときに、キャパシタの特性が劣化してしまう欠点がある。 In formula (1), R 1 to R 10 each represent a hydrogen atom, a halogen atom or an organic group which may be the same or different, and at least one is a phenyl group. The number of l and m is an integer of 0 to 4, more preferably an integer of 1 or 2. When l + m exceeds 8, the viscosity becomes remarkably high, so that there is a disadvantage that the characteristics of the capacitor deteriorate when dissolved in the electrolytic solution.

上記有機基として好ましいものは、鎖状アルキル基、鎖状エーテル基、環状アルキル基、アルコキシ基、ベンジルアルコキシ基、フェニルアルコキシ基、ベンジル基、フェニル基、エポキシ基、カルボキシル基、エポキシ基、スチリル基、含フッ素アルキル基、エステル基が挙げられる。より好ましいものは炭素数1〜4の鎖状のアルキル基が挙げられる。   Preferred as the organic group are chain alkyl groups, chain ether groups, cyclic alkyl groups, alkoxy groups, benzylalkoxy groups, phenylalkoxy groups, benzyl groups, phenyl groups, epoxy groups, carboxyl groups, epoxy groups, styryl groups. , Fluorine-containing alkyl groups, and ester groups. More preferred is a chain alkyl group having 1 to 4 carbon atoms.

上記一般式(1)で示されるシロキサン誘導体において、R〜R10の水素原子、ハロゲン原子又は有機基のうち、少なくとも1個以上はフェニル基であるものが好ましく、ケイ素原子に対し少なくとも1個以上はフェニル基が置換しているものがより好ましく、全てフェニル基であるものが特に好ましく挙げられる。 In the siloxane derivative represented by the general formula (1), at least one of R 1 to R 10 hydrogen atoms, halogen atoms, or organic groups is preferably a phenyl group, and at least one of them is a silicon atom. As for the above, what substituted the phenyl group is more preferable, and what is all phenyl groups is mentioned especially preferable.

上記一般式(1)で表されるシロキサン誘導体を少なくとも一種類含有している添加剤である。   An additive containing at least one siloxane derivative represented by the general formula (1).

本発明の電気二重層キャパシタ用電解液に添加される添加剤は、下記一般式(2)で表されるシロキサン誘導体であることを特徴とする電気二重層キャパシタ用電解液である。   The additive added to the electrolytic solution for electric double layer capacitors of the present invention is an electrolytic solution for electric double layer capacitors characterized by being a siloxane derivative represented by the following general formula (2).

Figure 0005305343
Figure 0005305343

式(2)中、R11〜R16は、それぞれ同一であっても異なっていてもよい水素原子、ハロゲン原子又は有機基を示し、少なくとも1個以上はフェニル基である。nの数は1〜4の整数を示す。 In formula (2), R 11 to R 16 each represent a hydrogen atom, a halogen atom or an organic group which may be the same or different, and at least one is a phenyl group. The number of n shows the integer of 1-4.

上記有機基として好ましいものは、鎖状アルキル基、鎖状エーテル基、環状アルキル基、アルコキシ基、ベンジルアルコキシ基、フェニルアルコキシ基、ベンジル基、フェニル基、エポキシ基、カルボキシル基、エポキシ基、スチリル基、含フッ素アルキル基、エステル基が挙げられる。より好ましいものは炭素数1〜4の鎖状のアルキル基が挙げられる。   Preferred as the organic group are chain alkyl groups, chain ether groups, cyclic alkyl groups, alkoxy groups, benzylalkoxy groups, phenylalkoxy groups, benzyl groups, phenyl groups, epoxy groups, carboxyl groups, epoxy groups, styryl groups. , Fluorine-containing alkyl groups, and ester groups. More preferred is a chain alkyl group having 1 to 4 carbon atoms.

上記一般式(2)のR11〜R16の水素原子、ハロゲン原子又は有機基のうち、1個以上はフェニル基であるものが好ましく、ケイ素原子に対し少なくとも1個以上はフェニル基が置換しているものがより好ましく、全てフェニル基であるものが特に好ましく挙げられる。 Of the hydrogen atoms, halogen atoms or organic groups of R 11 to R 16 in the general formula (2), one or more is preferably a phenyl group, and at least one or more of the silicon atoms are substituted by a phenyl group. Are more preferred, and those that are all phenyl groups are particularly preferred.

上記一般式(2)で表されるシロキサン誘導体を少なくとも一種類含有している添加剤である。   An additive containing at least one siloxane derivative represented by the general formula (2).

一般式(1)、(2)の具体例として、例えば、下記一般式(3)〜(10)で示される添加剤が挙げられる。   Specific examples of the general formulas (1) and (2) include, for example, additives represented by the following general formulas (3) to (10).

Figure 0005305343
Figure 0005305343

また、上記シロキサン誘導体の含有量は、好ましくは0.001〜1.0重量%であり、より好ましくは0.01〜0.5重量%であり、さらに好ましくは0.05〜0.2重量%である。0.001重量%未満の場合、添加したことによる含浸性の向上及びそれに伴う漏れ電流低減の効果が発揮されない欠点があり、1.0重量%より大きい場合、電解液の粘性率、電気伝導性、電圧保持特性が著しく劣るとともに、完全に溶解せず経済性にも劣る欠点がある。   The content of the siloxane derivative is preferably 0.001 to 1.0% by weight, more preferably 0.01 to 0.5% by weight, and still more preferably 0.05 to 0.2% by weight. %. When the amount is less than 0.001% by weight, there is a defect that the effect of improving the impregnation property and the accompanying leakage current reduction due to the addition is not exhibited. When the amount is more than 1.0% by weight, the viscosity of the electrolyte, the electric conductivity In addition, the voltage holding characteristic is remarkably inferior, and there is a disadvantage that it is not completely dissolved and inferior in economic efficiency.

上記添加剤を加えた電解液を、電気二重層キャパシタに適用することによって、電解液の電極への含浸性が向上する。その結果、これまで入り込めなかったような電極の細孔まで電解液で満たすことができるようになり、特に電気二重層キャパシタの漏れ電流低減や、それに伴う電圧保持特性の向上といった効果を得ることができる。   By applying the electrolytic solution to which the additive is added to the electric double layer capacitor, the impregnation property of the electrolytic solution to the electrode is improved. As a result, it becomes possible to fill the pores of the electrode that could not be penetrated with the electrolyte, and in particular, to obtain the effect of reducing the leakage current of the electric double layer capacitor and improving the voltage holding characteristic associated therewith. Can do.

上記添加剤を加えた電解液を、電気二重層キャパシタに適用することによって、その界面活性剤としての作用から、活性炭シート電極及びセパレータへの電解液の含浸性の向上と、それに伴う漏れ電流低減効果を得ることができる。   By applying the electrolytic solution to which the above additives are added to the electric double layer capacitor, it is possible to improve the impregnation property of the electrolytic solution into the activated carbon sheet electrode and the separator and reduce the leakage current associated therewith. An effect can be obtained.

また、上記添加剤はその界面活性剤としての作用から、電解液の表面張力を下げる働きがあり、上記添加剤を添加した電解液を用いるとことで、電気二重層キャパシタ製造時の含浸性の向上等の効果が得られる。   In addition, the additive acts as a surfactant to lower the surface tension of the electrolytic solution. By using the electrolytic solution to which the additive is added, the impregnation property at the time of manufacturing the electric double layer capacitor can be improved. Effects such as improvement can be obtained.

第4級アンモニウム塩としては、従来公知の第4級アンモニウム塩から任意に選択でき、特に限定されない。陽イオンとして、例えば、テトラエチルアンモニウムイオン、トリエチルメチルアンモニウムイオンなどの第4級アンモニウムカチオン、1−エチル−3−メチルイミダゾリウムイオン、ジエチルイミダゾリウムイオンなどの第4級イミダゾリウムカチオン、プロピルピリジニウムイオン、イソプロピルピリジニウムイオンなどの第4級ピリジニウムカチオン、スピロ−(1,1’)−ビピロリジニウムイオンなどのピロリジニウムカチオンからなる群から選択されることが好ましい。特にスピロ−(1,1’)−ビピロリジニウムイオンが好ましい。なお、これらの陽イオンは、2種以上が混合されていてもよい。
また、陰イオンは、非金属元素のみからなるアニオンが好ましいが、これらに限定されるものではない。例えば、BF 、PF 、CFSO 、N(CFSO 、N(CSO 、N(CFSO)(CSO、C(CFSO 、C(CSO からなる群から選択されることが好ましい。なお、これらのアニオンは、2種以上が混合されていてもよい。
The quaternary ammonium salt can be arbitrarily selected from conventionally known quaternary ammonium salts, and is not particularly limited. Examples of the cation include quaternary ammonium cations such as tetraethylammonium ion and triethylmethylammonium ion, quaternary imidazolium cations such as 1-ethyl-3-methylimidazolium ion and diethylimidazolium ion, propylpyridinium ion, It is preferably selected from the group consisting of a quaternary pyridinium cation such as isopropylpyridinium ion and a pyrrolidinium cation such as spiro- (1,1 ′)-bipyrrolidinium ion. Spiro- (1,1 ′)-bipyrrolidinium ion is particularly preferable. In addition, 2 or more types of these cations may be mixed.
Further, the anion is preferably an anion composed of only a nonmetallic element, but is not limited thereto. For example, BF 4 , PF 6 , CF 3 SO 3 , N (CF 3 SO 2 ) 2 , N (C 2 F 5 SO 2 ) 2 , N (CF 3 SO 2 ) (C 4 F 9 SO 2) -, C (CF 3 SO 2) 3 -, C (C 2 F 5 SO 2) 3 - is preferably selected from the group consisting of. In addition, 2 or more types of these anions may be mixed.

上記第4級アンモニウム塩の濃度は、電解液全体に対して、0.1〜3.0mol/Lが好ましく、0.5〜1.5mol/Lがより好ましい。第4級アンモニウム塩の濃度が0.1mol/L未満では、電気伝導度が不足する場合があり、また、3.0mol/Lより多い場合は電解液の粘性率が増大するため含浸性が低下し、電気特性が劣る欠点がある。   The concentration of the quaternary ammonium salt is preferably 0.1 to 3.0 mol / L, and more preferably 0.5 to 1.5 mol / L, with respect to the entire electrolyte solution. When the concentration of the quaternary ammonium salt is less than 0.1 mol / L, the electrical conductivity may be insufficient, and when it is more than 3.0 mol / L, the viscosity of the electrolyte increases, so that the impregnation property decreases. However, there is a disadvantage that the electrical characteristics are inferior.

溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート等の環状炭酸エステル類;γ−ブチロラクトン、γ−バレロラクトン等の環状エステル類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エステル類;テトラヒドロフランまたはその誘導体;1,3−ジオキサン、1,4−ジオキサン、1,2−ジメトキシエタン、1,4−ジブトキシエタン、メチルジグライム等のエーテル類;アセトニトリル、ベンゾニトリル等のニトリル類;ジオキソランまたはその誘導体;エチレンスルフィド、スルホラン、スルトンまたはその誘導体;4−エチルフルオロベンゼン、(トリフルオロメチル)エチルカーボネート等のフッ素系溶媒等の単独又はそれら2種以上の混合物等を挙げることができる。   Examples of the solvent include cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, and vinylene carbonate; cyclic esters such as γ-butyrolactone and γ-valerolactone; dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and the like. Chain carbonates; chain esters such as methyl formate, methyl acetate, methyl butyrate; tetrahydrofuran or derivatives thereof; 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxyethane, 1,4-di Ethers such as butoxyethane and methyldiglyme; nitriles such as acetonitrile and benzonitrile; dioxolane or derivatives thereof; ethylene sulfide, sulfolane, sultone or derivatives thereof; Examples thereof include fluorine solvents such as lobenzene and (trifluoromethyl) ethyl carbonate, or a mixture of two or more thereof.

本発明の電気二重層キャパシタ用電解液は、以下の製造方法により調製することができる。   The electrolytic solution for electric double layer capacitors of the present invention can be prepared by the following production method.

すなわち、上記溶媒に任意の濃度で第4級アンモニウム塩からなる電解質塩を加え、攪拌して塩が完全に溶解したことを確認してから、添加剤としてシロキサン誘導体を、好ましくは0.001〜1.0重量%、より好ましくは0.01〜0.5重量%、さらに好ましくは0.05〜0.2重量%加える。得られた電解液を脱水し、電解液中の水分を100ppm以下、好ましくは20ppm以下にまで減少させることで、目的とする電気二重層キャパシタ用電解液が得られる。   That is, an electrolyte salt composed of a quaternary ammonium salt is added to the solvent at an arbitrary concentration, and after stirring to confirm that the salt is completely dissolved, a siloxane derivative as an additive, preferably 0.001 to 1.0% by weight, more preferably 0.01 to 0.5% by weight, still more preferably 0.05 to 0.2% by weight. The obtained electrolytic solution is dehydrated, and the water content in the electrolytic solution is reduced to 100 ppm or less, preferably 20 ppm or less, whereby the intended electrolytic solution for electric double layer capacitors is obtained.

このようにして調整された電解液を使用して電気二重層キャパシタを作製することができる。本発明のキャパシタの作製は、一般的なキャパシタの製造方法によることができ、すなわち、セパレータを挟み込んだ分極性電極に、駆動用電解液となる本発明の添加剤を含有させた電気二重層キャパシタ用電解液を含浸させ、これを容器に密封することにより行われる。   An electric double layer capacitor can be produced using the electrolytic solution thus adjusted. The capacitor of the present invention can be produced by a general method for manufacturing a capacitor, that is, an electric double layer capacitor in which a polarizable electrode sandwiching a separator contains the additive of the present invention to be a driving electrolyte. It is carried out by impregnating with an electrolytic solution and sealing it in a container.

キャパシタ電極に用いられる分極性電極としては、活性炭粉末、活性炭繊維などの多孔性炭素材料や、貴金属酸化物材料、あるいは導電性高分子材料などが用いられるが、多孔性炭素材料が安価で好ましい。また、セパレータとしては、セルロース、ポリエチレン、ポリプロピレン系不織布などの素材からなるセパレータを用いることができる。   As the polarizable electrode used for the capacitor electrode, porous carbon materials such as activated carbon powder and activated carbon fibers, noble metal oxide materials, conductive polymer materials, and the like are used, and porous carbon materials are preferable because they are inexpensive. Moreover, as a separator, the separator which consists of raw materials, such as a cellulose, polyethylene, a polypropylene-type nonwoven fabric, can be used.

本発明の電気二重層キャパシタの形状としては、特に限定されず、フィルム型、コイン型、円筒型、箱型などの形状に作製することができる。   The shape of the electric double layer capacitor of the present invention is not particularly limited, and can be produced in a film shape, a coin shape, a cylindrical shape, a box shape or the like.

図1は上記形状のうち、コイン型電気二重層キャパシタの例であり、本発明の電気二重層キャパシタの構成の一例を示す概略断面図である。   FIG. 1 is a schematic cross-sectional view showing an example of a coin-type electric double layer capacitor of the above shapes, and showing an example of the configuration of the electric double layer capacitor of the present invention.

図1中、負極キャップ1、負極電極2、集電体3からなる負極部と、集電体3、正極電極6、正極ケース7からなる正極部とを有し、正負両電極はセパレータ5を介し対向するよう配置される。電解液4は電極、セパレータ、及び容器中に含浸、充填される。負極キャップ1と正極ケース7とはガスケット8によって絶縁され、嵌合される。   In FIG. 1, a negative electrode portion including a negative electrode cap 1, a negative electrode electrode 2, and a current collector 3, and a positive electrode portion including a current collector 3, a positive electrode 6, and a positive electrode case 7. It arrange | positions so that it may oppose. The electrolytic solution 4 is impregnated and filled in electrodes, separators, and containers. The negative electrode cap 1 and the positive electrode case 7 are insulated and fitted by a gasket 8.

以下、実施例を挙げ、本発明を更に詳しく説明する。なお、本発明は実施例によりなんら限定されない。   Hereinafter, the present invention will be described in more detail with reference to examples. In addition, this invention is not limited at all by the Example.

今回添加剤として使用したフェニル基を有するシロキサン誘導体「テトラメチルジフェニルジシロキサン」「ヘキサフェニルジシロキサン」「ヘキサフェニルシクロトリシロキサン」「オクタフェニルシクロテトラシロキサン」と比較として使用したシロキサン誘導体「ヘキサメチルジシロキサン」「ヘキサメチルシクロトリシロキサン」「オクタメチルシクロテトラシロキサン」の構造式と物性データを表1に示す。   The siloxane derivatives “hexamethyldisiloxane” used as a comparison with the siloxane derivatives “tetramethyldiphenyldisiloxane”, “hexaphenyldisiloxane”, “hexaphenylcyclotrisiloxane” and “octaphenylcyclotetrasiloxane” with phenyl group used as additives Table 1 shows structural formulas and physical property data of “siloxane”, “hexamethylcyclotrisiloxane”, and “octamethylcyclotetrasiloxane”.

Figure 0005305343
Figure 0005305343

(実施例1)
[電気二重層キャパシタ用電解液の調整]
プロピレンカーボネートに濃度1.0mol/Lとなるようにスピロ−(1,1’)−ビピロリジニウムテトラフルオロボレートを加え、テトラメチルジフェニルジシロキサン(Fluka社製試薬)を0.1重量%添加し、脱水して水分値を20ppm以下にした電気二重層キャパシタ用電解液を得た(この電解液及び電解液を用いた電気二重層キャパシタを「発明品1」とする)。
Example 1
[Adjustment of electrolyte for electric double layer capacitor]
Spiro- (1,1 ′)-bipyrrolidinium tetrafluoroborate is added to propylene carbonate to a concentration of 1.0 mol / L, and 0.1% by weight of tetramethyldiphenyldisiloxane (Fluka reagent) is added. Then, an electrolytic solution for an electric double layer capacitor having a moisture value of 20 ppm or less was obtained by dehydration (this electrolytic solution and an electric double layer capacitor using the electrolytic solution are referred to as “invention product 1”).

プロピレンカーボネートに濃度1.0mol/Lとなるようにスピロ−(1,1’)−ビピロリジニウムテトラフルオロボレートを加え、ヘキサフェニルジシロキサン(東京化成工業株式会社製試薬)を0.1重量%添加し、脱水して水分値を20ppm以下にした電気二重層キャパシタ用電解液を得た(この電解液及び電解液を用いた電気二重層キャパシタを「発明品2」とする)。   Spiro- (1,1 ′)-bipyrrolidinium tetrafluoroborate is added to propylene carbonate to a concentration of 1.0 mol / L, and 0.1 weight of hexaphenyldisiloxane (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) is added. % And dehydrated to obtain an electrolytic solution for an electric double layer capacitor having a moisture value of 20 ppm or less (this electrolytic solution and an electric double layer capacitor using the electrolytic solution are referred to as “Invention 2”).

同様に、プロピレンカーボネートに濃度1.0mol/Lとなるようにスピロ−(1,1’)−ビピロリジニウムテトラフルオロボレートを加え、ヘキサフェニルシクロトリシロキサン(東京化成工業株式会社製試薬)を0.1重量%添加し、脱水して水分値を20ppm以下にした電気二重層キャパシタ用電解液を得た(この電解液及び電解液を用いた電気二重層キャパシタを「発明品3」とする)。   Similarly, spiro- (1,1 ′)-bipyrrolidinium tetrafluoroborate is added to propylene carbonate to a concentration of 1.0 mol / L, and hexaphenylcyclotrisiloxane (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) is added. An electrolytic solution for an electric double layer capacitor having 0.1 wt% added and dehydrated to a moisture value of 20 ppm or less was obtained (this electrolytic solution and an electric double layer capacitor using the electrolytic solution are referred to as “invention product 3”. ).

同様に、プロピレンカーボネートに濃度1.0mol/Lとなるようにスピロ−(1,1’)−ビピロリジニウムテトラフルオロボレートを加え、オクタフェニルシクロテトラシロキサン(東京化成工業株式会社製試薬)を0.1重量%添加し、脱水して水分値を20ppm以下にした電気二重層キャパシタ用電解液を得た(この電解液及び電解液を用いた電気二重層キャパシタを「発明品4」とする)。   Similarly, spiro- (1,1 ′)-bipyrrolidinium tetrafluoroborate is added to propylene carbonate to a concentration of 1.0 mol / L, and octaphenylcyclotetrasiloxane (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) is added. An electrolytic solution for an electric double layer capacitor having 0.1% by weight added and dehydrated to a moisture value of 20 ppm or less was obtained (this electrolytic solution and an electric double layer capacitor using the electrolytic solution are referred to as “invention product 4”. ).

同様に、プロピレンカーボネートに濃度1.0mol/Lとなるようにトリエチルメチルアンモニウムテトラフルオロボレートを加え、テトラメチルジフェニルジシロキサン(Fluka社製試薬)を0.1重量%添加し、脱水して水分値を20ppm以下にした電気二重層キャパシタ用電解液を得た(この電解液及び電解液を用いた電気二重層キャパシタを「発明品5」とする)。   Similarly, triethylmethylammonium tetrafluoroborate is added to propylene carbonate so as to have a concentration of 1.0 mol / L, 0.1% by weight of tetramethyldiphenyldisiloxane (Fluka reagent) is added, and dehydrated to obtain a moisture value. Thus, an electrolytic solution for an electric double layer capacitor having a concentration of 20 ppm or less was obtained (this electrolytic solution and an electric double layer capacitor using the electrolytic solution are referred to as “invention product 5”).

同様に、プロピレンカーボネートに濃度1.0mol/Lとなるようにトトリエチルメチルアンモニウムテトラフルオロボレートを加え、ヘキサフェニルジシロキサン(東京化成工業株式会社製試薬)を0.1重量%添加し、脱水して水分値を20ppm以下にした電気二重層キャパシタ用電解液を得た(この電解液及び電解液を用いた電気二重層キャパシタを「発明品6」とする)。   Similarly, totriethylmethylammonium tetrafluoroborate is added to propylene carbonate to a concentration of 1.0 mol / L, and 0.1% by weight of hexaphenyldisiloxane (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) is added for dehydration. Thus, an electrolytic solution for an electric double layer capacitor having a moisture value of 20 ppm or less was obtained (this electrolytic solution and an electric double layer capacitor using the electrolytic solution are referred to as “invention product 6”).

同様に、プロピレンカーボネートに濃度1.0mol/Lとなるようにトリエチルメチルアンモニウムテトラフルオロボレートを加え、ヘキサフェニルシクロトリシロキサン(東京化成工業株式会社製試薬)を0.1重量%添加し、脱水して水分値を20ppm以下にした電気二重層キャパシタ用電解液を得た(この電解液及び電解液を用いた電気二重層キャパシタを「発明品7」とする)。   Similarly, triethylmethylammonium tetrafluoroborate is added to propylene carbonate so as to have a concentration of 1.0 mol / L, and 0.1% by weight of hexaphenylcyclotrisiloxane (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) is added for dehydration. Thus, an electrolytic solution for an electric double layer capacitor having a moisture value of 20 ppm or less was obtained (this electrolytic solution and an electric double layer capacitor using the electrolytic solution are referred to as “invention product 7”).

同様に、プロピレンカーボネートに濃度1.0mol/Lとなるようにトリエチルメチルアンモニウムテトラフルオロボレートを加え、オクタフェニルシクロテトラシロキサン(東京化成工業株式会社製試薬)を0.1重量%添加し、脱水して水分値を20ppm以下にした電気二重層キャパシタ用電解液を得た(この電解液及び電解液を用いた電気二重層キャパシタを「発明品8」とする)。   Similarly, triethylmethylammonium tetrafluoroborate is added to propylene carbonate to a concentration of 1.0 mol / L, and 0.1% by weight of octaphenylcyclotetrasiloxane (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) is added for dehydration. Thus, an electrolytic solution for an electric double layer capacitor having a moisture value of 20 ppm or less was obtained (this electrolytic solution and an electric double layer capacitor using the electrolytic solution are referred to as “invention product 8”).

同様に、プロピレンカーボネートに濃度1.0mol/Lとなるようにテトラエチルアンモニウムテトラフルオロボレートを加え、テトラメチルジフェニルジシロキサン(Fluka社製試薬)を0.1重量%添加し、脱水して水分値を20ppm以下にした電気二重層キャパシタ用電解液を得た(この電解液及び電解液を用いた電気二重層キャパシタを「発明品9」とする)。   Similarly, tetraethylammonium tetrafluoroborate is added to propylene carbonate to a concentration of 1.0 mol / L, 0.1% by weight of tetramethyldiphenyldisiloxane (Fluka reagent) is added, dehydrated, and the water content is reduced. An electrolytic solution for an electric double layer capacitor having a concentration of 20 ppm or less was obtained (this electrolytic solution and an electric double layer capacitor using the electrolytic solution are referred to as “Invention 9”).

同様に、プロピレンカーボネートに濃度1.0mol/Lとなるようにテトラエチルアンモニウムテトラフルオロボレートを加え、ヘキサフェニルジシロキサン(東京化成工業株式会社製試薬)を0.1重量%添加し、脱水して水分値を20ppm以下にした電気二重層キャパシタ用電解液を得た(この電解液及び電解液を用いた電気二重層キャパシタを「発明品10」とする)。   Similarly, tetraethylammonium tetrafluoroborate is added to propylene carbonate so as to have a concentration of 1.0 mol / L, 0.1% by weight of hexaphenyldisiloxane (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) is added, and dehydrated to obtain moisture. An electrolytic solution for an electric double layer capacitor having a value of 20 ppm or less was obtained (this electrolytic solution and an electric double layer capacitor using the electrolytic solution are referred to as “invention product 10”).

同様に、プロピレンカーボネートに濃度1.0mol/Lとなるようにテトラエチルアンモニウムテトラフルオロボレートを加え、ヘキサフェニルシクロトリシロキサン(東京化成工業株式会社製試薬)を0.1重量%添加し、脱水して水分値を20ppm以下にした電気二重層キャパシタ用電解液を得た(この電解液及び電解液を用いた電気二重層キャパシタを「発明品11」とする)。   Similarly, tetraethylammonium tetrafluoroborate is added to propylene carbonate to a concentration of 1.0 mol / L, hexaphenylcyclotrisiloxane (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) is added by 0.1% by weight, and dehydrated. An electrolytic solution for an electric double layer capacitor having a moisture value of 20 ppm or less was obtained (this electrolytic solution and an electric double layer capacitor using the electrolytic solution are referred to as “invention 11”).

同様に、プロピレンカーボネートに濃度1.0mol/Lとなるようにテトラエチルアンモニウムテトラフルオロボレートを加え、オクタフェニルシクロテトラシロキサン(東京化成工業株式会社製試薬)を0.1重量%添加し、脱水して水分値を20ppm以下にした電気二重層キャパシタ用電解液を得た(この電解液及び電解液を用いた電気二重層キャパシタを「発明品12」とする)。   Similarly, tetraethylammonium tetrafluoroborate is added to propylene carbonate so as to have a concentration of 1.0 mol / L, and 0.1 wt% of octaphenylcyclotetrasiloxane (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) is added and dehydrated. An electrolytic solution for an electric double layer capacitor having a moisture value of 20 ppm or less was obtained (this electrolytic solution and an electric double layer capacitor using the electrolytic solution are referred to as “invention product 12”).

プロピレンカーボネートに濃度1.0mol/Lとなるようにスピロ−(1,1’)−ビピロリジニウムテトラフルオロボレートを加え、脱水して水分値を20ppm以下にした電気二重層キャパシタ用電解液を得た(この電解液及び電解液を用いた電気二重層キャパシタを「比較品1」とする)。   An electrolytic solution for an electric double layer capacitor in which spiro- (1,1 ′)-bipyrrolidinium tetrafluoroborate is added to propylene carbonate so as to have a concentration of 1.0 mol / L and dehydrated to a moisture value of 20 ppm or less. Obtained (this electrolytic solution and an electric double layer capacitor using the electrolytic solution are referred to as “Comparative product 1”).

発明品1のテトラメチルジフェニルジシロキサンをヘキサメチルジシロキサンに代えた以外は、発明品1と同様にして作製し、電気二重層キャパシタ用電解液を得た(この電解液及び電解液を用いた電気二重層キャパシタを「比較品2」とする)。   Except that tetramethyldiphenyldisiloxane of Invention 1 was replaced with hexamethyldisiloxane, it was produced in the same manner as Invention 1 to obtain an electrolytic solution for an electric double layer capacitor (this electrolytic solution and the electrolytic solution were used). The electric double layer capacitor is referred to as “Comparative product 2”).

発明品1のテトラメチルジフェニルジシロキサンをヘキサメチルシクロトリシロキサンに代えた以外は、発明品1と同様にして作製し、電気二重層キャパシタ用電解液を得た(この電解液及び電解液を用いた電気二重層キャパシタを「比較品3」とする)。   Except that tetramethyldiphenyldisiloxane of Invention 1 was replaced with hexamethylcyclotrisiloxane, it was prepared in the same manner as Invention 1 to obtain an electrolytic solution for an electric double layer capacitor (this electrolyte and electrolyte were used). The electric double layer capacitor was called “Comparative product 3”).

発明品1のテトラメチルジフェニルジシロキサンをオクタメチルシクロテトラシロキサンに代えた以外は、発明品1と同様にして作製し、電気二重層キャパシタ用電解液を得た(この電解液及び電解液を用いた電気二重層キャパシタを「比較品4」とする)。   An electrolyte solution for an electric double layer capacitor was obtained in the same manner as Invention product 1 except that tetramethyldiphenyldisiloxane of Invention product 1 was replaced with octamethylcyclotetrasiloxane (this electrolyte solution and electrolyte solution were used). The electric double layer capacitor was referred to as “Comparative product 4”).

プロピレンカーボネートに濃度1.0mol/Lとなるようにトリエチルメチルアンモニウムテトラフルオロボレートを加え、脱水して水分値を20ppm以下にした電気二重層キャパシタ用電解液を得た(この電解液及び電解液を用いた電気二重層キャパシタを「比較品5」とする)。   Triethylmethylammonium tetrafluoroborate was added to propylene carbonate to a concentration of 1.0 mol / L and dehydrated to obtain an electrolytic solution for an electric double layer capacitor having a moisture value of 20 ppm or less (this electrolytic solution and electrolytic solution were The electric double layer capacitor used is referred to as “Comparative product 5”).

発明品5のテトラメチルジフェニルジシロキサンをヘキサメチルジシロキサンに代えた以外は、発明品5と同様にして作製し、電気二重層キャパシタ用電解液を得た(この電解液及び電解液を用いた電気二重層キャパシタを「比較品6」とする)。   Except that tetramethyldiphenyldisiloxane of Invention 5 was replaced with hexamethyldisiloxane, it was produced in the same manner as Invention 5 to obtain an electrolytic solution for an electric double layer capacitor (this electrolyte and the electrolyte were used). The electric double layer capacitor is referred to as “Comparative product 6”).

発明品5のテトラメチルジフェニルジシロキサンをヘキサメチルシクロトリシロキサンに代えた以外は、発明品5と同様にして作製し、電気二重層キャパシタ用電解液を得た(この電解液及び電解液を用いた電気二重層キャパシタを「比較品7」とする)。   An electrolyte solution for an electric double layer capacitor was obtained in the same manner as Invention product 5 except that hexamethylcyclotrisiloxane was used instead of tetramethyldiphenyldisiloxane in Invention product 5 (this electrolyte solution and electrolyte solution were used). The electric double layer capacitor was referred to as “Comparative product 7”).

発明品5のテトラメチルジフェニルジシロキサンをオクタメチルシクロテトラシロキサンに代えた以外は、発明品5と同様にして作製し、電気二重層キャパシタ用電解液を得た(この電解液及び電解液を用いた電気二重層キャパシタを「比較品8」とする)。   An electrolyte solution for an electric double layer capacitor was obtained in the same manner as Invention product 5 except that tetramethyldiphenyldisiloxane of Invention product 5 was replaced with octamethylcyclotetrasiloxane (this electrolyte solution and electrolyte solution were used). The electric double layer capacitor was referred to as “Comparative product 8”).

プロピレンカーボネートに濃度1.0mol/Lとなるようにテトラエチルアンモニウムテトラフルオロボレートを加え、脱水して水分値を20ppm以下にした電気二重層キャパシタ用電解液を得た(この電解液及び電解液を用いた電気二重層キャパシタを「比較品9」とする)。   Tetraethylammonium tetrafluoroborate was added to propylene carbonate to a concentration of 1.0 mol / L and dehydrated to obtain an electrolytic solution for an electric double layer capacitor having a moisture value of 20 ppm or less (this electrolytic solution and electrolytic solution were used). The electric double layer capacitor was referred to as “Comparative product 9”).

発明品9のテトラメチルジフェニルジシロキサンをヘキサメチルジシロキサンに代えた以外は、発明品9と同様にして作製し、電気二重層キャパシタ用電解液を得た(この電解液及び電解液を用いた電気二重層キャパシタを「比較品10」とする)。   Except that tetramethyldiphenyldisiloxane of Invention 9 was replaced with hexamethyldisiloxane, it was produced in the same manner as Invention 9 to obtain an electrolytic solution for an electric double layer capacitor (this electrolyte and electrolyte were used). The electric double layer capacitor is referred to as “Comparative product 10”).

発明品9のテトラメチルジフェニルジシロキサンをヘキサメチルシクロトリシロキサンに代えた以外は、発明品9と同様にして作製し、電気二重層キャパシタ用電解液を得た(この電解液及び電解液を用いた電気二重層キャパシタを「比較品11」とする)。   Except that tetramethyldiphenyldisiloxane of Invention 9 was replaced with hexamethylcyclotrisiloxane, it was prepared in the same manner as Invention 9 to obtain an electrolytic solution for an electric double layer capacitor (this electrolyte and electrolyte were used). The electric double layer capacitor was referred to as “Comparative product 11”).

発明品9のテトラメチルジフェニルジシロキサンをオクタメチルシクロテトラシロキサンに代えた以外は、発明品9と同様にして作製し、電気二重層キャパシタ用電解液を得た。(この電解液及び電解液を用いた電気二重層キャパシタを「比較品12」とする)。   It was produced in the same manner as Invention 9 except that tetramethyldiphenyldisiloxane of Invention 9 was replaced with octamethylcyclotetrasiloxane to obtain an electrolytic solution for an electric double layer capacitor. (This electrolytic solution and the electric double layer capacitor using the electrolytic solution are referred to as “Comparative product 12”).

これらの電解液(発明品1〜12及び比較品1〜12)の25℃のときの粘性率(サン科学社製 レオメーター CR−500DX−SIIを用いて測定した。)、電気伝導度、電位窓を測定した結果を表2に示す。なお、電位窓の測定はサイクリックボルタモグラムにより酸化還元分解電圧の測定を行った。すなわち、作用極に白金線(直径3mm)、対極に白金板、参照電極にAg/Ag、掃引速度10mV/sで0.1mA/cmの電流が流れるまでの電圧を測定し、還元分解及び酸化分解電圧値から電位窓を決定した。 Viscosity at 25 ° C. (measured using a rheometer CR-500DX-SII manufactured by Sun Kagaku Co., Ltd.), electrical conductivity, potential of these electrolytic solutions (Invention products 1-12 and Comparative products 1-12). The results of measuring the windows are shown in Table 2. The potential window was measured by a redox decomposition voltage using a cyclic voltammogram. That is, a platinum wire (diameter 3 mm) as a working electrode, a platinum plate as a counter electrode, Ag / Ag + as a reference electrode, a voltage until a current of 0.1 mA / cm 2 flows at a sweep rate of 10 mV / s, and reductive decomposition is measured. The potential window was determined from the oxidative decomposition voltage value.

Figure 0005305343
Figure 0005305343

表2に示すように、第4級アンモニウム塩にスピロ−(1,1’)−ビピロリジニウムテトラフルオロボレートを使用した発明品1〜4及び比較品1〜4、第4級アンモニウム塩にトリエチルメチルアンモニウムテトラフルオロボレートを使用した発明品5〜8及び比較品5〜8、第4級アンモニウム塩にテトラエチルアンモニウムテトラフルオロボレートを使用した発明品9〜12及び比較品9〜12は、それぞれ粘性率、電気伝導度、電位窓の値は遜色ない結果となった。   As shown in Table 2, the inventive products 1 to 4 and the comparative products 1 to 4, which use spiro- (1,1 ′)-bipyrrolidinium tetrafluoroborate as the quaternary ammonium salt, and the quaternary ammonium salt Inventive products 5 to 8 and comparative products 5 to 8 using triethylmethylammonium tetrafluoroborate, inventive products 9 to 12 and comparative products 9 to 12 using tetraethylammonium tetrafluoroborate as a quaternary ammonium salt are respectively viscous. The rate, electrical conductivity, and potential window values were inferior.

次に、これら添加剤を加えた電解液の電極に対する濡れ性向上について、電極と電解液のとの接触角を測定することで評価した。また、含浸性の評価については、接触角の経時変化を計測することで評価した。   Next, the wettability improvement with respect to the electrode of the electrolyte solution containing these additives was evaluated by measuring the contact angle between the electrode and the electrolyte solution. Further, the impregnation property was evaluated by measuring a change in contact angle with time.

試験に使用した電極は、活物質(活性炭:日本エンバイロケミカルズ株式会社、白鷺KA)、導電材(ケッチェンブラック:ライオン株式会社、ECP−600JD)、バインダー(PTFE:三井・デュポン フロロケミカル株式会社、30−J)を混合して作製した。その重量組成比は活物質:導電材:バインダー=80部:10部:10部とした。これらの混合物にエタノールを加えながら十分に混錬し、圧延することで平均して厚み0.85mmの活性炭シート電極を得た。   The electrode used for the test was an active material (activated carbon: Nippon Enviro Chemicals Co., Ltd., Shirasagi KA), conductive material (Ketjen Black: Lion Co., Ltd., ECP-600JD), binder (PTFE: Mitsui DuPont Fluoro Chemical Co., Ltd.) 30-J). The weight composition ratio was active material: conductive material: binder = 80 parts: 10 parts: 10 parts. These mixtures were sufficiently kneaded while adding ethanol and rolled to obtain an activated carbon sheet electrode having an average thickness of 0.85 mm.

接触角の測定には協和界面科学株式会社製のCA−X150を用いた。得られた活性炭シート電極上に、シリンジを用いて発明品9〜12及び比較品9〜12に示す電解液をそれぞれ約3.1μL滴下し、その液滴が作る接触角を測定した。また、含浸性の評価については、接触角の経時変化を1分毎に測定し、電解液の液滴が電極表面上に目視で確認できなくなった時間を比較することで評価した。これらの測定結果を表3に示す。   For the measurement of the contact angle, CA-X150 manufactured by Kyowa Interface Science Co., Ltd. was used. About 3.1 μL of each of the electrolyte solutions shown in Inventions 9 to 12 and Comparative products 9 to 12 was dropped on the obtained activated carbon sheet electrode using a syringe, and the contact angle formed by the droplets was measured. Further, the evaluation of the impregnation property was evaluated by measuring the change with time of the contact angle every minute and comparing the time when the electrolyte droplet could not be visually confirmed on the electrode surface. These measurement results are shown in Table 3.

Figure 0005305343
Figure 0005305343

表3に示すように、第4級アンモニウム塩にスピロ−(1,1’)−ビピロリジニウムテトラフルオロボレートを使用し、添加剤としてフェニル基を有するシロキサン誘導体を添加した発明品1〜4は、添加剤を使用しない比較品1やシロキサン誘導体を用いた比較品2〜4と比べて、接触角が減少し、含浸時間が短くなったため、含浸性が向上する結果となった。また、より好ましい添加剤としては、「発明品3」に使用した「ヘキサフェニルシクロトリシロキサン」であることが確認できた。   As shown in Table 3, Inventions 1 to 4 in which spiro- (1,1 ′)-bipyrrolidinium tetrafluoroborate is used as a quaternary ammonium salt and a siloxane derivative having a phenyl group is added as an additive. Compared with the comparative product 1 which does not use an additive and the comparative products 2 to 4 using a siloxane derivative, the contact angle was reduced and the impregnation time was shortened, so that the impregnation property was improved. Further, it was confirmed that the more preferable additive was “hexaphenylcyclotrisiloxane” used in “Invention 3”.

また、第4級アンモニウム塩にトリエチルメチルアンモニウムテトラフルオロボレートを用い、添加剤としてフェニル基を有するシロキサン誘導体を添加した発明品5〜8についても同様に、添加剤を使用しない比較品5やシロキサン誘導体を用いた比較品6〜8と比べて、接触角が減少し、含浸時間が短くなったため、含浸性が向上する結果となった。またより好ましい添加剤としては、「発明品7」に使用した「ヘキサフェニルシクロトリシロキサン」であることが確認できた。   In addition, similarly to invention products 5 to 8 in which triethylmethylammonium tetrafluoroborate is used as a quaternary ammonium salt and a siloxane derivative having a phenyl group is added as an additive, comparative products 5 and siloxane derivatives which do not use an additive. Compared with comparative products 6 to 8 using No. 6, the contact angle was reduced and the impregnation time was shortened, so that the impregnation property was improved. Further, it was confirmed that the more preferable additive was “hexaphenylcyclotrisiloxane” used in “Invention Product 7”.

また、第4級アンモニウム塩にテトラエチルアンモニウムテトラフルオロボレートを用い、添加剤としてポリエーテル変性ポリシロキサンを添加した発明品9〜12についても同様に、添加剤を使用しない比較品9やメチルシロキサンを用いた比較品10〜12と比べて、接触角が減少し、含浸時間が短くなったため、含浸性が向上する結果となった。またより好ましい添加剤としては、「発明品11」に使用した「ヘキサフェニルシクロトリシロキサン」であることが確認できた。   In addition, for the inventive products 9 to 12 in which tetraethylammonium tetrafluoroborate is used for the quaternary ammonium salt and polyether-modified polysiloxane is added as an additive, the comparative product 9 without using the additive and methylsiloxane are also used. Compared with the comparative products 10 to 12, the contact angle was reduced and the impregnation time was shortened, so that the impregnation property was improved. Further, as a more preferable additive, it was confirmed that it was “hexaphenylcyclotrisiloxane” used in “Invention 11”.

(実施例2)
[電気二重層キャパシタの作製]
実施例1の電解液(発明品1〜12及び比較品1〜12)を用いて、図1に示すような電気二重層キャパシタを作製した。
(Example 2)
[Production of electric double layer capacitor]
An electric double layer capacitor as shown in FIG. 1 was produced using the electrolyte solution of Example 1 (Invention products 1 to 12 and Comparative products 1 to 12).

正極及び負極電極は活物質(活性炭:日本エンバイロケミカルズ株式会社、白鷺KA)、導電材(ケッチェンブラック:ライオン株式会社、ECP−600JD)、バインダー(PTFE:三井・デュポン フロロケミカル株式会社、30−J)を混合し作製した。その重量組成比は活物質:導電材:バインダー=80部:10部:10部とした。これらの混合物にエタノールを加えながら十分に混錬し、圧延することで平均して厚み0.85mmの活性炭シート電極を得た。この活性炭シート電極をφ15のポンチで打ち抜いたものを、集電体(φ17のSUS316製プレート)が溶接されたケース、キャップ(何れもSUS316製)に導電性接着剤にて接着し、それぞれ正極部、負極部を得た。それらの電極に実施例1の電解液をそれぞれ注液し、0.060MPaで10分減圧含浸した後、ポリプロピレン製不織布をセパレータとして介し、ポリプロピレン製ガスケットをキャップに装着して組み立て、カシメ機にて嵌合して2032サイズのコイン型電気二重層キャパシタを完成した。   The positive electrode and the negative electrode are active materials (activated carbon: Nippon Envirochemicals Corporation, Shirahige KA), conductive material (Ketjen Black: Lion Corporation, ECP-600JD), binder (PTFE: Mitsui DuPont Fluorochemical Corporation, 30- J) was prepared by mixing. The weight composition ratio was active material: conductive material: binder = 80 parts: 10 parts: 10 parts. These mixtures were sufficiently kneaded while adding ethanol and rolled to obtain an activated carbon sheet electrode having an average thickness of 0.85 mm. This activated carbon sheet electrode punched out with a φ15 punch is adhered to a case and cap (both made of SUS316) welded with a current collector (φ17 made of SUS316) with a conductive adhesive, respectively. A negative electrode part was obtained. Each of these electrodes was injected with the electrolyte solution of Example 1 and impregnated under reduced pressure at 0.060 MPa for 10 minutes, and then assembled by attaching a polypropylene gasket to the cap with a polypropylene non-woven fabric as a separator. The 2032 size coin type electric double layer capacitor was completed by fitting.

[電気二重層キャパシタの評価]
それぞれの電気二重層キャパシタについて、20℃において充放電試験を行った。各キャパシタを所定の測定温度下に30分以上放置し、キャパシタが所定温度に達した後、定格電圧として2.5Vを30分印加後、放電電流2mAにて定電流放電し、キャパシタ端子間電圧が2Vから1Vになるまでの時間より静電容量を算出した。また、放電の下限値を0.0Vとした。内部抵抗は静電容量測定時と同様に定格電圧として2.5Vを30分印加後、放電電流100mAにて定電流放電したときのIRドロップより算出した。漏れ電流は静電容量測定時と同様に、定格電圧として2.5Vを30分印加後、回路中に直列接続した定格1kΩの精密抵抗の抵抗間電圧を測定することで算出した。これらの測定結果を表4に示す。
[Evaluation of electric double layer capacitor]
Each electric double layer capacitor was subjected to a charge / discharge test at 20 ° C. Each capacitor is allowed to stand at a predetermined measurement temperature for 30 minutes or more. After the capacitor reaches a predetermined temperature, 2.5 V is applied as a rated voltage for 30 minutes, and then a constant current discharge is performed at a discharge current of 2 mA. The capacitance was calculated from the time from 1V to 2V. Further, the lower limit value of discharge was set to 0.0V. The internal resistance was calculated from the IR drop when a constant current was discharged at a discharge current of 100 mA after applying 2.5 V as a rated voltage for 30 minutes as in the capacitance measurement. The leakage current was calculated by measuring the resistance voltage of a precision resistor with a rating of 1 kΩ connected in series in the circuit after applying 2.5 V as the rated voltage for 30 minutes, as in the capacitance measurement. These measurement results are shown in Table 4.

Figure 0005305343
Figure 0005305343

表4に示すように、第4級アンモニウム塩にスピロ−(1,1’)−ビピロリジニウムテトラフルオロボレートを使用し、添加剤としてフェニル基を有するシロキサン誘導体を添加した発明品1〜4は、比較品1〜4と比べて静電容量、内部抵抗でほぼ同等の値を得、漏れ電流については大幅に低減させる結果となった。またより好ましい添加剤としては、「発明品3」に使用した「ヘキサフェニルシクロトリシロキサン」であることが確認できた。   As shown in Table 4, Inventions 1 to 4 in which spiro- (1,1 ′)-bipyrrolidinium tetrafluoroborate is used as a quaternary ammonium salt and a siloxane derivative having a phenyl group is added as an additive. Compared with comparative products 1 to 4, the capacitance and internal resistance were almost equivalent, and the leakage current was greatly reduced. Further, it was confirmed that the more preferable additive was “hexaphenylcyclotrisiloxane” used in “Invention 3”.

また、第4級アンモニウム塩にトリエチルメチルアンモニウムテトラフルオロボレートを用い、添加剤としてフェニル基を有するシロキサン誘導体を添加した発明品5〜8についても同様に比較品5〜8と比べると、静電容量、内部抵抗でほぼ同等の値を得、漏れ電流については大幅に低減させる結果となった。またより好ましい添加剤としては、「発明品7」に使用した「ヘキサフェニルシクロトリシロキサン」であることが確認できた。   In addition, the inventive products 5 to 8 using triethylmethylammonium tetrafluoroborate as a quaternary ammonium salt and a siloxane derivative having a phenyl group as an additive are similarly compared with the comparative products 5 to 8 in terms of capacitance. As a result, almost the same value was obtained for the internal resistance, and the leakage current was greatly reduced. Further, it was confirmed that the more preferable additive was “hexaphenylcyclotrisiloxane” used in “Invention Product 7”.

また、第4級アンモニウム塩にテトラエチルアンモニウムテトラフルオロボレートを用い、添加剤としてフェニル基を有するシロキサン誘導体を添加した発明品9〜12についても同様に添加剤を使用しない比較品9〜12と比べると、静電容量、内部抵抗でほぼ同等の値を得、漏れ電流については大幅に低減させる結果となった。またより好ましい添加剤としては、「発明品11」に使用した「ヘキサフェニルシクロトリシロキサン」であることが確認できた。   In addition, the invention products 9 to 12 in which tetraethylammonium tetrafluoroborate is used as a quaternary ammonium salt and a siloxane derivative having a phenyl group is added as an additive are similarly compared with comparative products 9 to 12 in which no additive is used. As a result, the capacitance and internal resistance were almost equivalent, and the leakage current was greatly reduced. Further, as a more preferable additive, it was confirmed that it was “hexaphenylcyclotrisiloxane” used in “Invention 11”.

次に、実施例1の電解液(発明品1〜12及び比較品1〜12)を用いて作製した電気二重層キャパシタの電圧保持特性を測定した。各キャパシタを20℃にて30分以上放置し、キャパシタが所定温度に達した後、定格電圧として2.5Vを24時間印加した。次に回路をオープン状態にし、電気二重層キャパシタを自然放電させて電気二重層キャパシタの端子間電圧を72時間測定することで評価した。   Next, the voltage holding characteristic of the electric double layer capacitor produced using the electrolyte solution of Example 1 (Invention products 1 to 12 and Comparative products 1 to 12) was measured. Each capacitor was allowed to stand at 20 ° C. for 30 minutes or more. After the capacitor reached a predetermined temperature, 2.5 V was applied as a rated voltage for 24 hours. Next, the circuit was opened, the electric double layer capacitor was naturally discharged, and the voltage between the terminals of the electric double layer capacitor was measured for 72 hours for evaluation.

72時間後の電気二重層キャパシタの端子間電圧及び電圧残存率を表5に示す。電圧残存率は、発明品1〜12及び比較品1〜12それぞれの自然放電開始直前の電圧を100%としたときの、72時間後の電気二重層キャパシタ電圧を百分率で示す。   Table 5 shows the voltage between the terminals and the voltage remaining rate of the electric double layer capacitor after 72 hours. The voltage remaining rate indicates the percentage of the electric double layer capacitor voltage after 72 hours when the voltage immediately before the start of natural discharge of each of the inventive products 1 to 12 and the comparative products 1 to 12 is defined as 100%.

Figure 0005305343
Figure 0005305343

表4に示すように、第4級アンモニウム塩にスピロ−(1,1’)−ビピロリジニウムテトラフルオロボレートを使用し、添加剤としてフェニル基を有するシロキサン誘導体を添加した発明品1〜4は、比較品1〜4と比べて電圧保持特性に優れる結果となっている。またより好ましい添加剤としては、「発明品3」に使用した「ヘキサフェニルシクロトリシロキサン」であることが確認できた。   As shown in Table 4, Inventions 1 to 4 in which spiro- (1,1 ′)-bipyrrolidinium tetrafluoroborate is used as a quaternary ammonium salt and a siloxane derivative having a phenyl group is added as an additive. Is superior to the comparative products 1 to 4 in voltage holding characteristics. Further, it was confirmed that the more preferable additive was “hexaphenylcyclotrisiloxane” used in “Invention 3”.

次に、第4級アンモニウム塩にトリエチルメチルアンモニウムテトラフルオロボレートを用い、添加剤としてフェニル基を有するシロキサン誘導体を添加した発明品5〜8についても同様に比較品5〜8と比べて電圧保持特性に優れる結果となっている。またより好ましい添加剤としては、「発明品7」に使用した「ヘキサフェニルシクロトリシロキサン」であることが確認できた。   Next, the voltage holding characteristics of invention products 5 to 8 in which triethylmethylammonium tetrafluoroborate is used as a quaternary ammonium salt and a siloxane derivative having a phenyl group is added as an additive is similarly compared to comparative products 5 to 8. The result is excellent. Further, it was confirmed that the more preferable additive was “hexaphenylcyclotrisiloxane” used in “Invention Product 7”.

次に、第4級アンモニウム塩にテトラエチルアンモニウムテトラフルオロボレートを用い、添加剤としてフェニル基を有するシロキサン誘導体を添加した発明品9〜12についても同様に比較品9〜12と比べて電圧保持電特性に優れる結果となっている。またより好ましい添加剤としては、「発明品11」に使用した「ヘキサフェニルシクロトリシロキサン」であることが確認できた。   Next, with respect to invention products 9 to 12 in which tetraethylammonium tetrafluoroborate is used as a quaternary ammonium salt and a siloxane derivative having a phenyl group is added as an additive, the voltage holding electric characteristics are similarly compared with those of comparative products 9 to 12. The result is excellent. Further, as a more preferable additive, it was confirmed that it was “hexaphenylcyclotrisiloxane” used in “Invention 11”.

本発明の電気二重層キャパシタ用電解液の添加剤であるフェニル基を有するシロキサン誘導体を用いると、上述したように、電気二重層キャパシタの漏れ電流を低減する事ができ、その結果、優れた自己放電特性を有する電気二重層キャパシタを得る事ができる。   When the siloxane derivative having a phenyl group, which is an additive for the electrolytic solution for the electric double layer capacitor of the present invention, is used, the leakage current of the electric double layer capacitor can be reduced as described above. An electric double layer capacitor having discharge characteristics can be obtained.

特に、電解質にスピロ−(1,1’)−ビピロリジニウムテトラフルオロボレートを使用した電解液及びセルは、従来のものよりも格段に優れた諸特性を有している。   In particular, an electrolyte solution and a cell using spiro- (1,1 ')-bipyrrolidinium tetrafluoroborate as an electrolyte have various characteristics far superior to those of conventional ones.

本発明の電気二重層キャパシタの構成の一例を示す概略断面図。The schematic sectional drawing which shows an example of a structure of the electrical double layer capacitor of this invention.

1 負極キャップ
2 負極電極
3 集電体
4 電解質
5 セパレータ
6 正極電極
7 正極ケース
8 ガスケット
DESCRIPTION OF SYMBOLS 1 Negative electrode cap 2 Negative electrode 3 Current collector 4 Electrolyte 5 Separator 6 Positive electrode 7 Positive electrode case 8 Gasket

Claims (4)

溶媒中に第4級アンモニウム塩と添加剤とが含有されてなる電気二重層キャパシタ用電解液において、
添加剤が、下記一般式(1)で表されるシロキサン誘導体であることを特徴とする電気二重層キャパシタ用電解液。
Figure 0005305343
(式(1)中、R〜R10は、フェニル基である。l及びmの数は0〜4の整数を示す。)
In an electrolytic solution for an electric double layer capacitor in which a quaternary ammonium salt and an additive are contained in a solvent,
An electrolytic solution for an electric double layer capacitor, wherein the additive is a siloxane derivative represented by the following general formula (1).
Figure 0005305343
(In Formula (1), R < 1 > -R < 10 > is a phenyl group . The number of l and m shows the integer of 0-4.)
溶媒中に第4級アンモニウム塩と添加剤とが含有されてなる電気二重層キャパシタ用電解液において、
添加剤が、下記一般式(2)で表されるシロキサン誘導体であることを特徴とする電気二重層キャパシタ用電解液。
Figure 0005305343
(式(2)中、R11〜R16は、フェニル基である。nの数は1〜4の整数を示す。)
In an electrolytic solution for an electric double layer capacitor in which a quaternary ammonium salt and an additive are contained in a solvent,
An electrolytic solution for an electric double layer capacitor, wherein the additive is a siloxane derivative represented by the following general formula (2).
Figure 0005305343
(In formula (2), R 11 to R 16 are phenyl groups . The number of n represents an integer of 1 to 4.)
添加剤の含有量が、0.001〜1.0重量%であることを特徴とする請求項1又は2に記載の電気二重層キャパシタ用電解液。   The electrolytic solution for an electric double layer capacitor according to claim 1 or 2, wherein the content of the additive is 0.001 to 1.0% by weight. セパレータを挟み込んだ分極性電極に、請求項1から3のいずれかに記載の電気二重層キャパシタ用電解液を含浸させ、これを容器に密閉してなる電気二重層キャパシタ。   An electric double layer capacitor obtained by impregnating a polarizable electrode sandwiching a separator with the electrolytic solution for an electric double layer capacitor according to any one of claims 1 to 3, and sealing the same in a container.
JP2009015028A 2009-01-27 2009-01-27 Electrolytic solution for electric double layer capacitor and electric double layer capacitor Expired - Fee Related JP5305343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009015028A JP5305343B2 (en) 2009-01-27 2009-01-27 Electrolytic solution for electric double layer capacitor and electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009015028A JP5305343B2 (en) 2009-01-27 2009-01-27 Electrolytic solution for electric double layer capacitor and electric double layer capacitor

Publications (2)

Publication Number Publication Date
JP2010177231A JP2010177231A (en) 2010-08-12
JP5305343B2 true JP5305343B2 (en) 2013-10-02

Family

ID=42707914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009015028A Expired - Fee Related JP5305343B2 (en) 2009-01-27 2009-01-27 Electrolytic solution for electric double layer capacitor and electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP5305343B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4154951B2 (en) * 2002-08-08 2008-09-24 三菱化学株式会社 Non-aqueous electrolyte secondary battery
JP4501344B2 (en) * 2003-01-23 2010-07-14 ソニー株式会社 Secondary battery
JP5165862B2 (en) * 2005-07-19 2013-03-21 パナソニック株式会社 Non-aqueous electrolyte and electrochemical energy storage device using the same
JP2008277503A (en) * 2007-04-27 2008-11-13 Japan Carlit Co Ltd:The Electrolyte for electric double-layer capacitor and electric double layer capacitor

Also Published As

Publication number Publication date
JP2010177231A (en) 2010-08-12

Similar Documents

Publication Publication Date Title
JP4802243B2 (en) Electrolytic solution additive and electrolytic solution
JP5637858B2 (en) Electric double layer capacitor
JP5392355B2 (en) Electric double layer capacitor
KR100869291B1 (en) Electrolyte solution and super capacitor including the same
EP2973631A2 (en) Methods of enhancing electrochemical double layer capacitor (edlc) performance and edlc devices formed therefrom
KR101076513B1 (en) Electrolyte solution for electric double layer capacitor
TW201621947A (en) Electrolytes for high temperature EDLC
JP2008277503A (en) Electrolyte for electric double-layer capacitor and electric double layer capacitor
JP2008091823A (en) Electrolyte for electric double layer capacitor and electric double layer capacitor
JP5305343B2 (en) Electrolytic solution for electric double layer capacitor and electric double layer capacitor
JP6187688B2 (en) Electrolytic solution and electrochemical device
JPWO2013146136A1 (en) Electrolyte for capacitor, electric double layer capacitor and lithium ion capacitor
JP4798609B2 (en) Electrolytic solution for electric double layer capacitor and electric double layer capacitor
JP4993266B2 (en) Electrolytic solution for electric double layer capacitor and electric double layer capacitor
JP2013197535A (en) Electrolytic solution and electric double-layer capacitor
JP2008091821A (en) Electrolyte for electric double layer capacitor and electric double layer capacitor
JP2009065074A (en) Electrolyte for pseudocapacitor, and pseudocapacitor
JP2011159895A (en) Electrolyte for electric double layer capacitor, and electric double layer capacitor
JP2009065073A (en) Electrolyte for electric double layer capacitor, and electric double layer capacitor
JP6314409B2 (en) Electrolytic solution and electrochemical device
JP5296637B2 (en) Electrolytic solution for electric double layer capacitor and electric double layer capacitor
JP4707425B2 (en) Electrolyte for electric double layer capacitor and electric double layer capacitor
JP2008091822A (en) Electrolyte for electric double layer capacitor and electric double layer capacitor
JP5063172B2 (en) Electrolyte for electric double layer capacitor
KR101583525B1 (en) electrolytic solution for supercapacitor and supercapacitor use the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130619

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5305343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees