【0001】
【発明の属する技術分野】
精密加工機及び検査装置等においては、被加工物又は原盤を高速で高精度に位置決めする移動ステージが必要とされる。本発明は、それら移動ステージに用いられる静圧気体軸受に関するものである。
【0002】
【従来の技術】
静圧気体軸受は、移動ステージのガイドとスライダーの間で構成される。通常スライダーに設けたオリフィスからガイドに向かって空気等の気体を噴出し、ガイドとスライダーの間に剛性を持った気体膜を作る。この気体膜が形成されることにより、静圧気体軸受は剛性を持った非接触軸受として機能する。
【0003】
気体軸受は非接触で油等の潤滑材を必要としないなどクリーンな軸受であるが、気体のもつ圧縮性の効果と粘性係数が小さいことにより振動減衰性能が良くない。例えば、粘性減衰系の自由振動の振幅はexp(−ζωn t)に比例して小さくなる(ここで、ωnは系の固有角振動数である)が、空気軸受のζは0.05程度であることが多い。ステージの停止性能もしくは同期性能を上げるためには、減衰比ζの大きな軸受を使うことが有利である。従来技術では、ζを抜本的に上げる技術を提供していない。
【0004】
オリフィスタイプの軸受は、オリフィスにつながる通気溝を軸受面全面に設けることにより、その剛性を高めてきた。従来、このタイプの軸受の隙間は5μm以上とされ、通気溝の深さは20μm以下とされてきた(例えば、特許文献1)。軸受隙間を5μm以上としてきた理由は、主に対象部材が金属であったために、軸受面の加工が困難であったことと、精密に仕上げても使用時にキズをつけてしまうなど精度が維持できない場合が多かったためである。また、軸受に使う鉄系又はアルミニウム系の材料は熱膨張係数が大きく、周囲の温度変動で軸受の隙間が変わり、軸受特性が大きく変わることも懸念されていた。通気溝深さを20μm以下としてきたのは、それ以上の溝深さにすると系が不安定になり、自励振動をする場合があったからである。
【0005】
【特許文献1】
特開平3−213718号公報
【0006】
【発明が解決しようとする課題】
本発明は、減衰特性の優れた静圧気体軸受を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者は、アルミナ等セラミックス材料が軸受部材に工業ベースで使用可能になった状況下で、従来の軸受の常識にとらわれずに、大きく軸受隙間ならびに溝深さを変えて理論計算を行なった。その結果、軸受隙間の小さいところで減衰比の極めて高い軸受を発明するに至った。即ち、本発明の要旨は以下の通りである。
(1)気体噴出口3につながる通気溝5を有するオリフィスタイプの静圧気体軸受であって、軸受隙間をh、通気溝深さをgとした時に、hが5μm以下であり、かつg/hが5以上であることを特徴とする静圧気体軸受。
(2)軸受を構成する部品の材質が、アルミナ、炭化ケイ素、窒化ケイ素、サイアロン、コーディエライト、もしくはそれらのいずれかを主成分とする複合セラミックスであることを特徴とする請求項1記載の静圧気体軸受。
ここで、オリフィス2の気体噴出側尖端を気体噴出口3と定義した。
【0008】
【発明の実施の形態】
本発明を説明するに、好適な実施例を持ってしめす。実施例は、流体力学に基づくシミュレーションの結果であるが、その結果はほぼ実験においても再現されることは本分野においては周知とされるところである。
【0009】
本発明が関与する軸受は、オリフィス2を気体噴出手段として用いる静圧気体軸受である。図1にオリフィス2を気体噴出手段として用いる静圧気体軸受の断面図を示す。同図において、絞り効果と気体の質量流量の関係を説明する。図には、オリフィス2直下の通気溝5内で自成絞り状態が実現されている場合を示した。
【0010】
給気圧Psで与えられた気体は、オリフィス2先端の気体噴出口3から噴出され、通気溝5内に広がる時に断熱膨張による絞り効果(図1の場合は自成絞り効果)を受け圧力Pzになる。オリフィス直下の仮想円筒8から出た気体は、通気溝内に拡がり、通気溝5から軸受ランド7部を経て軸受外に放出される。気体圧力は、通気溝5からランド7部を経て軸受端に至る過程で粘性抵抗を受け大気圧力Paまで低下する。
【0011】
流体力学の教えるところに従い、気体の質量流量は次のように表される。
(1)オリフィス2から噴出される質量流量
M1=[CDAPs/(RT)1/2]・ψ0
ここで、Pz/Ps≧[2/(κ+1)]κ /( κ −1)のときに
A=πD(g + h)
ψ0=[2κ/(κ−1)]1/2・[(Pz/Ps)2/ κ−(Pz/Ps)( κ +1)/ κ]1/2
(2)軸受隙間6において粘性抵抗を受けて出て行く質量流量
差分法による計算を前提に、マトリックス表示を行ったときに、
M2=[(h+g)3/24μRT]・[Ci,jP2 i,j − Ci,j−1P2 i,j−1・・・]
と表される。ここで、Pi,jは(i,j)点における圧力、Ci,jはその係数。
他のパラメータは以下の通りである。
D:オリフィスの直径、g:通気溝の深さ、h:軸受の隙間、CD:流量係数(≒0.9)、μ:気体の粘性係数、R:ガス定数、T:温度、κ:比熱比
【0012】
平衡状態においては、オリフィスを含む分割要素内での質量の出入りはバランスする。すなわち、M1=M2となる。オリフィス以外の通気溝部及びランド部においても質量流量が保存されるので、各分割要素につき格子点間の圧力の関係式が導かれる。これらの関係式を解くことにより平衡圧力分布を求めることができる。
【0013】
時間的に変動する場合の式は以下の通りである(オリフィスを含まない分割要素についてはM1=0)。
M1 − M2 =(1/RT)・∂(Pi,j・Vi,j)/∂t
ここで、Vi,jは(i,j)点の分割要素における軸受隙間の体積である。動特性を計算するに当たり、平衡点周りで摂動法を用いて計算を行なった。すなわち、h=h0+Δh・exp(iωt)、Pi,j =P0+ ΔPi,j・exp(iωt)として定式化し、複素動剛性Ei,j = ΔPi,j/Δhを求める関係式を各格子点について導いた。それらの関係式を連立させて解き、各格子点のEi,j を求めた。Ei,jの実数成分の全格子点に渡っての和をA、虚数成分の和をBとしたとき、減衰比ζはζ=B/(2A)で与えられる。減衰比は周波数f(ここでω=2πf)によって変化する。流体力学の計算では、周波数に比例するスクイーズナンバーσによって計算結果が整理される。縦寸法a 、横寸法 bの長方形のパッドのスクイーズナンバーは次式で表される。
σ=(12μω/ Pa)・(a・b/c2)
ここで、cは代表軸受隙間で任意に取ることが可能であるが、本計算にてはc=5μmで計算した。ここで、パッドとは、軸受面を限定する大気圧よりも気体圧力の大きい部分のことである。
【0014】
以下、典型的なクロスTタイプの通気溝パターンを例に取って、本発明の実施形態を示す。図2は、計算に用いたモデル軸受である。パッドサイズはa=b=40mm、オリフィス2の直径はD=0.2mm、通気溝5の幅は1mmである。最外周の通気溝中心線からパッド外周までの距離(すなわちランド幅)は6mmとした。給気圧を大気圧との差圧で0.4MPaとし、溝深さgを変化させて、代表的な軸受隙間hに対して減衰比ζを計算した。図3、4、5にh=3、5、7μmの場合の計算結果をスクイーズナンバーσに対して示した。
【0015】
通常よく使われるh=5〜7μmの軸受隙間では、減衰比は通気溝深さによって大きく変化し、溝深さが20μmを超える場合には減衰比が負になるσの領域が現れた。減衰比が負になる領域では軸受は自励振動をするので、この領域で軸受が使われることは無い。これらの傾向は、h=3μmでは大きく異なり、逆に通気溝深さが深いほど減衰比は正の方向に大きくなるという結果が得られた。本発明はこれらの新しい知見に基づくものである。すなわち、従来の通念と異なって通気溝深さを深くするほど減衰比が大きくなるという現象は、軸受隙間が5μm以下のときであることから、本発明の第一条件として軸受隙間hを5μm以下とした。また、本現象は通気溝深さgと軸受隙間hとの相対値が大きいほど顕著である。計算から、本現象が顕著に表れ始めるのがg/h=5近傍であることがわかったので、本発明の第二条件としてg/hを5以上とした。
【0016】
本発明は、本実施例のパッド構造に限定されるものではない。オリフィス2の直径としては0.1〜0.3mm程度まで適用可能であるし、1パッド中に含まれるオリフィス2の数は2個以上の複数であっても良い。また、オリフィスにつながる通気溝5の構造も本実施例のクロスT型に限るものではない。例えば、2個以上のオリフィスに別々につながる任意の溝構造であっても類似の結果を得ることができる。本実施例にては、溝深さを単一としたが、本発明の思想を失わない範囲で溝の部位によってその深さを変えても良い。
【0017】
軸受隙間6が小さくなると、軸受を構成する部材の材質の選定が重要になる。従来よく使われた鉄系又はアルミニウム系の金属では、高精度の加工が困難な上に、組立てもしくは使用中にキズをつけ、使用不能になる場合がある。また、上記の金属は熱膨張係数が大きいために、使用中の温度変化で軸受隙間が変化する。狭い隙間の場合は温度上昇によって隙間がつぶれる場合も出てくる。本発明におけるように軸受隙間を5μm以下と限定する場合には、上記金属の適用は好ましくなく、高精度加工が容易で接触等による傷つきが少なく、さらに温度変化による寸法変化の少ないセラミックスの適用が好適である。
【0018】
本発明の軸受用のセラミックスとしては、安価で剛性が高く5.3ppm/Kと熱膨張係数の比較的低いアルミナが好適である。さらに高い剛性を要求される場合は、2.3ppm/Kの熱膨張係数を持つ炭化ケイ素の適用が好適である。特に3μm以下の狭い隙間で使用される軸受としては、室温における熱膨張係数が1.2ppm/Kの窒化ケイ素またはサイアロンもしくは熱膨張係数が0.1ppm/K以下のコーディエライト系の零膨張セラミックスの適用が望ましい。
【0019】
本発明の実施形態としては、軸受を構成するスライダー1、ガイド4、及びオリフィスの材質をすべて同種のセラミックスにする方が望ましいが、オリフィス2を有する部材(ノズル)については別体として異種のセラミックスもしくは金属の別材質のノズルを装着することも可能である。通気溝5の形成は、通常のダイヤモンド砥石による微細加工、もしくはレーザー加工又はサンドブラスト加工によって行なうことができる。
【0020】
【発明の効果】
本発明は、オリフィスタイプの静圧気体軸受において、軸受隙間hを5μm以下とし、かつ通気溝深さg/軸受隙間hが5以上とすることにより、減衰比の極めて高い軸受を実現することができる。
【0021】
本発明はまた、軸受を構成する部品の材質をアルミナ、炭化ケイ素、窒化ケイ素、サイアロン、コーディエライト、もしくはそれらのいずれかを主成分とする複合セラミックスとすることにより、高精度加工が容易で接触等による傷つきが少なく、さらに温度変化による寸法変化の少ない軸受を実現することができる。
【図面の簡単な説明】
【図1】オリフィス型の軸受を説明する模式図である。
【図2】クロスT型の通気溝構造を説明する模式図である。
【図3】軸受隙間h=3μmの場合の減衰比ζの計算結果を示す図である。
【図4】軸受隙間h=5μmの場合の減衰比ζの計算結果を示す図である。
【図5】軸受隙間h=7μmの場合の減衰比ζの計算結果を示す図である。
【符号の説明】
1・・・スライダー
2・・・オリフィス
3・・・気体噴出口
4・・・ガイド
5・・・通気溝
6・・・軸受隙間
7・・・ランド
8・・・仮想円筒[0001]
TECHNICAL FIELD OF THE INVENTION
In a precision processing machine, an inspection device, and the like, a moving stage that positions a workpiece or a master at high speed and with high accuracy is required. The present invention relates to a hydrostatic gas bearing used for these moving stages.
[0002]
[Prior art]
The hydrostatic gas bearing is configured between a guide and a slider of the moving stage. A gas such as air is jetted from an orifice provided in a slider toward a guide, and a rigid gas film is formed between the guide and the slider. By forming the gas film, the hydrostatic gas bearing functions as a rigid non-contact bearing.
[0003]
A gas bearing is a clean bearing that does not require a lubricant such as oil in a non-contact manner, but has a poor vibration damping performance due to the compressive effect of gas and a small viscosity coefficient. For example, the amplitude of the free vibration of the viscous damping is reduced in proportion to exp (-ζω n t) (where, omega n is the natural angular frequency of the system), but ζ of the air bearing 0.05 Often around. In order to improve the stop performance or the synchronization performance of the stage, it is advantageous to use a bearing having a large damping ratio ζ. The conventional technology does not provide a technology for drastically increasing the value of ζ.
[0004]
The rigidity of an orifice type bearing has been increased by providing a ventilation groove connected to the orifice on the entire bearing surface. Conventionally, the clearance of this type of bearing has been set to 5 μm or more, and the depth of the ventilation groove has been set to 20 μm or less (for example, Patent Document 1). The reason why the bearing gap is set to 5 μm or more is that it is difficult to machine the bearing surface mainly because the target member is a metal, and even if it is precisely finished, the accuracy cannot be maintained, such as scratching during use. This was because there were many cases. Further, there has been a concern that an iron-based or aluminum-based material used for the bearing has a large coefficient of thermal expansion, a gap in the bearing changes due to a change in ambient temperature, and a large change in bearing characteristics. The reason why the depth of the ventilation groove is set to 20 μm or less is that if the groove depth is more than 20 μm, the system becomes unstable and self-excited vibration may occur.
[0005]
[Patent Document 1]
JP-A-3-213718
[Problems to be solved by the invention]
An object of the present invention is to provide a hydrostatic gas bearing having excellent damping characteristics.
[0007]
[Means for Solving the Problems]
The present inventor performed theoretical calculations in a situation where ceramic materials such as alumina could be used for a bearing member on an industrial basis, without being bound by the common sense of conventional bearings, by largely changing the bearing gap and groove depth. . As a result, the inventors have invented a bearing having an extremely high damping ratio in a small bearing gap. That is, the gist of the present invention is as follows.
(1) An orifice-type hydrostatic gas bearing having a ventilation groove 5 connected to a gas ejection port 3, wherein h is 5 μm or less, and g / g / g, where h is the bearing gap and g is the depth of the ventilation groove. The hydrostatic gas bearing, wherein h is 5 or more.
(2) The material according to claim 1, wherein the material of the parts constituting the bearing is alumina, silicon carbide, silicon nitride, sialon, cordierite, or a composite ceramic containing any of them as a main component. Hydrostatic gas bearing.
Here, the gas ejection side tip of the orifice 2 was defined as the gas ejection port 3.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention will be described by way of a preferred embodiment. The examples are the results of a simulation based on fluid dynamics, and it is well known in the art that the results are almost reproduced even in experiments.
[0009]
The bearing to which the present invention relates is a hydrostatic gas bearing using the orifice 2 as a gas blowing means. FIG. 1 is a cross-sectional view of a hydrostatic gas bearing using the orifice 2 as gas blowing means. The relationship between the throttle effect and the mass flow rate of gas will be described with reference to FIG. The figure shows a case where a self-contained throttle state is realized in the ventilation groove 5 immediately below the orifice 2.
[0010]
Gas given in the boost pressure P s is ejected from the orifice 2 tip gas outlet 3, the pressure P received a throttling effect (self formed throttling effect in the case of FIG. 1) due to adiabatic expansion when the spread air groove 5 z . The gas that has flowed out of the virtual cylinder 8 immediately below the orifice spreads into the ventilation groove, and is discharged from the ventilation groove 5 to the outside of the bearing via the bearing land 7. Gas pressure drops from the ventilation grooves 5 to ambient pressure P a receives the viscous resistance in the process leading to the bearing end through the land 7 parts.
[0011]
According to the teachings of hydrodynamics, the mass flow rate of a gas can be expressed as:
(1) mass flow M 1 = [C D AP s / (RT) 1/2] · ψ 0 ejected from the orifice 2
Here, P z / P s ≧ [ 2 / (κ + 1)] A = πD when κ / (κ -1) (g + h)
ψ 0 = [2κ / (κ -1)] 1/2 · [(P z / P s) 2 / κ - (P z / P s) (κ +1) / κ] 1/2
(2) Based on the calculation by the mass flow difference method that goes out due to the viscous resistance in the bearing gap 6, when the matrix display is performed,
M 2 = [(h + g ) 3 / 24μRT] · [C i, j P 2 i, j - C i, j-1 P 2 i, j-1 ···]
It is expressed as Here, P i, j is the pressure at the (i, j) point, and C i, j is its coefficient.
Other parameters are as follows.
D: diameter of orifice, g: depth of ventilation groove, h: clearance of bearing, C D : flow coefficient (≒ 0.9), μ: viscosity coefficient of gas, R: gas constant, T: temperature, κ: Specific heat ratio
In an equilibrium state, the mass flow in and out of the dividing element, including the orifice, is balanced. That is, M 1 = M 2 . Since the mass flow rate is also preserved in the ventilation groove portion and the land portion other than the orifice, a relational expression of the pressure between lattice points is derived for each divided element. The equilibrium pressure distribution can be obtained by solving these relational expressions.
[0013]
The equation for a temporal variation is as follows (M 1 = 0 for a split element that does not include an orifice).
M 1 −M 2 = (1 / RT) ∂ (P i, j · Vi , j ) / ∂t
Here, Vi , j is the volume of the bearing gap in the division element at the point (i, j). In calculating the dynamic characteristics, the calculation was performed using the perturbation method around the equilibrium point. That is, h = h 0 + Δh · exp (iωt) and P i, j = P 0 + ΔP i, j · exp (iωt) are formulated, and the complex dynamic rigidity E i, j = ΔP i, j / Δh is obtained. A relation was derived for each grid point. The relational equations were solved simultaneously, and Ei , j at each grid point was obtained. When the sum of the real components of E i, j over all grid points is A, and the sum of the imaginary components is B, the damping ratio 与 え is given by ζ = B / (2A). The attenuation ratio changes according to the frequency f (here, ω = 2πf). In the calculation of the fluid dynamics, the calculation result is arranged by the squeeze number σ proportional to the frequency. The squeeze number of a rectangular pad having a vertical dimension a and a horizontal dimension b is expressed by the following equation.
σ = (12 μω / P a ) · (a · b / c 2 )
Here, c can be arbitrarily taken as the representative bearing gap, but in this calculation, c was calculated at 5 μm. Here, the pad is a portion where the gas pressure is higher than the atmospheric pressure that defines the bearing surface.
[0014]
Hereinafter, an embodiment of the present invention will be described using a typical cross-T type ventilation groove pattern as an example. FIG. 2 shows a model bearing used for the calculation. The pad size is a = b = 40 mm, the diameter of the orifice 2 is D = 0.2 mm, and the width of the ventilation groove 5 is 1 mm. The distance (ie, land width) from the center line of the outermost vent groove to the outer periphery of the pad was 6 mm. The supply pressure was set to 0.4 MPa as a pressure difference from the atmospheric pressure, and the groove depth g was changed to calculate the damping ratio に 対 し て for a typical bearing gap h. 3, 4 and 5 show the calculation results for h = 3, 5, and 7 μm with respect to the squeeze number σ.
[0015]
In the bearing gap of h = 5 to 7 μm, which is usually used, the damping ratio greatly changes depending on the depth of the ventilation groove. When the groove depth exceeds 20 μm, a region of σ where the damping ratio becomes negative appears. In a region where the damping ratio is negative, the bearing oscillates self-excited, so that the bearing is not used in this region. These tendencies differ greatly when h = 3 μm, and conversely, the result is obtained that the attenuation ratio increases in the positive direction as the ventilation groove depth increases. The present invention is based on these new findings. That is, unlike the conventional wisdom, the phenomenon that the damping ratio becomes larger as the depth of the ventilation groove becomes larger is when the bearing gap is 5 μm or less. And This phenomenon is more remarkable as the relative value between the ventilation groove depth g and the bearing gap h is larger. From the calculation, it was found that this phenomenon began to appear remarkably near g / h = 5, so g / h was set to 5 or more as the second condition of the present invention.
[0016]
The present invention is not limited to the pad structure of the present embodiment. The diameter of the orifice 2 can be applied to about 0.1 to 0.3 mm, and the number of orifices 2 included in one pad may be two or more. Further, the structure of the ventilation groove 5 connected to the orifice is not limited to the cross-T type of this embodiment. For example, similar results can be obtained with any groove structure that separately connects to two or more orifices. In this embodiment, the groove depth is set to a single value. However, the depth may be changed depending on the groove portion without departing from the spirit of the present invention.
[0017]
When the bearing gap 6 becomes small, it becomes important to select the material of the members constituting the bearing. Conventionally used iron-based or aluminum-based metals are difficult to perform with high precision, and may be damaged during assembly or use, making them unusable. Further, since the above metal has a large coefficient of thermal expansion, the bearing gap changes due to a temperature change during use. In the case of a narrow gap, the gap may be crushed due to a rise in temperature. When the bearing gap is limited to 5 μm or less as in the present invention, the use of the above metal is not preferable, and the use of ceramics which is easy to perform high-precision processing, has little damage due to contact and the like, and further has a small dimensional change due to temperature change. It is suitable.
[0018]
As the ceramics for bearings of the present invention, alumina which is inexpensive, has high rigidity, and a relatively low coefficient of thermal expansion of 5.3 ppm / K is preferable. When higher rigidity is required, application of silicon carbide having a coefficient of thermal expansion of 2.3 ppm / K is preferable. In particular, as a bearing used in a narrow gap of 3 μm or less, silicon nitride or sialon having a thermal expansion coefficient of 1.2 ppm / K at room temperature or a cordierite-based zero-expansion ceramic having a thermal expansion coefficient of 0.1 ppm / K or less is used. Is preferred.
[0019]
In the embodiment of the present invention, it is preferable that the slider 1, the guide 4, and the orifice constituting the bearing are all made of the same ceramic material. However, the member (nozzle) having the orifice 2 is made of a different ceramic material. Alternatively, it is also possible to mount a nozzle made of a different material of metal. The formation of the ventilation groove 5 can be performed by fine processing using a normal diamond grindstone, laser processing, or sandblasting.
[0020]
【The invention's effect】
The present invention can realize a bearing having an extremely high damping ratio by setting the bearing gap h to 5 μm or less and the ventilation groove depth g / bearing gap h to 5 or more in an orifice type hydrostatic gas bearing. it can.
[0021]
The present invention also provides high-accuracy machining by using alumina, silicon carbide, silicon nitride, sialon, cordierite, or a composite ceramic containing any of them as a main component, for the material of the components constituting the bearing. It is possible to realize a bearing with less damage due to contact or the like, and with less dimensional change due to temperature change.
[Brief description of the drawings]
FIG. 1 is a schematic view illustrating an orifice type bearing.
FIG. 2 is a schematic view illustrating a cross T-shaped ventilation groove structure.
FIG. 3 is a diagram showing a calculation result of a damping ratio ζ when a bearing gap h = 3 μm.
FIG. 4 is a diagram showing a calculation result of a damping ratio ζ when a bearing gap h = 5 μm.
FIG. 5 is a diagram showing a calculation result of an attenuation ratio ζ when a bearing gap h = 7 μm.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Slider 2 ... Orifice 3 ... Gas ejection port 4 ... Guide 5 ... Vent groove 6 ... Bearing gap 7 ... Land 8 ... Virtual cylinder