JP2007092974A - Thrust gas bearing mechanism - Google Patents

Thrust gas bearing mechanism Download PDF

Info

Publication number
JP2007092974A
JP2007092974A JP2005286986A JP2005286986A JP2007092974A JP 2007092974 A JP2007092974 A JP 2007092974A JP 2005286986 A JP2005286986 A JP 2005286986A JP 2005286986 A JP2005286986 A JP 2005286986A JP 2007092974 A JP2007092974 A JP 2007092974A
Authority
JP
Japan
Prior art keywords
gas
supply port
thrust
bearing
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005286986A
Other languages
Japanese (ja)
Other versions
JP4875878B2 (en
Inventor
Katsumi Sasaki
勝美 佐々木
Tomoko Hirayama
朋子 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PSC KK
Original Assignee
PSC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PSC KK filed Critical PSC KK
Priority to JP2005286986A priority Critical patent/JP4875878B2/en
Publication of JP2007092974A publication Critical patent/JP2007092974A/en
Application granted granted Critical
Publication of JP4875878B2 publication Critical patent/JP4875878B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thrust gas bearing mechanism capable of suppressing vibration of an interval of a clearance of a bearing. <P>SOLUTION: This thrust gas bearing mechanism 10 is composed of an intermediate bearing body 20, a base 50, and the clearance 40 of the bearing in which they face each other. A gas supply port 24, a recessed part 26 for speed reduction having larger diameter than that of the gas supply port 24, and a plurality of gas flow passage shallow channels 28 are provided in a bottom face part of the intermediate bearing body 20. Speed of flow of the gas jetted from the gas supply port 24 is reduced in the recessed part 26 for speed reduction, then is led into each of the plurality of gas flow passage shallow channels 28, is guided into the thin and shallow channels, and flows along the radial direction. The gas stopped in a terminal part 30 leaks out while being restricted in the clearance 40 of the bearing to levitate the intermediate bearing body 20 for the base 50. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、スラスト軸受機構に係り、特に、ベースの気体受壁と、軸の底面部の気体受面との間の軸受隙間に気体を供給して軸をベースに対して浮上させ保持するスラスト気体軸受機構に関する。   The present invention relates to a thrust bearing mechanism, and more particularly, a thrust for supplying gas to a bearing gap between a gas receiving wall of a base and a gas receiving surface of a bottom surface portion of a shaft to float and hold the shaft with respect to the base. The present invention relates to a gas bearing mechanism.

スラスト軸受機構としては、回転軸のスラスト方向の負荷を転がり軸受機構で支持するもの等の他、また、軸と軸を支持するベースとの間の隙間に油等の支持流体を供給し、支持流体の静圧又は動圧によって軸をベースに対し浮上支持するものが知られている。後者は、流体スラスト軸受機構と呼ばれ、流体としては油、磁性流体、気体等が用いられる。   As the thrust bearing mechanism, in addition to the one that supports the load in the thrust direction of the rotating shaft with the rolling bearing mechanism, etc., a support fluid such as oil is supplied to the gap between the shaft and the base that supports the shaft to support it. There are known ones that support a shaft in a floating manner with respect to a base by a static pressure or a dynamic pressure of a fluid. The latter is called a fluid thrust bearing mechanism, and oil, magnetic fluid, gas or the like is used as the fluid.

流体スラスト軸受機構の構造の一例を上げると、円柱状の軸と、軸の外形に対応する内径を有する底部の有る筒状支持部材とを組み合わせ、支持部材の底部と向かい合う軸の底面部の中央部に設けられる流体供給口から流体を噴出させて軸の底面部を支持部材の底部に対し浮上させる。この場合、支持部材の底部は流体受壁となり、軸の底面部は流体受面となる。流体受壁と流体受面はいずれも平坦面であるものを用いることができる。   An example of the structure of the fluid thrust bearing mechanism is a combination of a cylindrical shaft and a cylindrical support member having a bottom having an inner diameter corresponding to the outer shape of the shaft, and the center of the bottom surface of the shaft facing the bottom of the support member. The fluid is ejected from the fluid supply port provided in the section, and the bottom surface of the shaft is floated with respect to the bottom of the support member. In this case, the bottom portion of the support member serves as a fluid receiving wall, and the bottom portion of the shaft serves as a fluid receiving surface. Both the fluid receiving wall and the fluid receiving surface may be flat surfaces.

また、流体受壁と流体受面との間の隙間であるいわゆる軸受隙間の隙間間隔の制御についてノイズを抑制し、制御安定性を向上させる等のために、軸受隙間においてラジアルスリット絞りを設けることも知られている。ラジアルスリット絞りとは、軸の中央部の流体供給口からラジアル方向に延び、すなわち径方向に沿って外周方向に向かって延び、終端部を有する浅い溝深さのスリットを複数本設け、この浅溝に流れる流体が流体受壁と流体受面との間の軸受隙間へ流れ出すときの流体絞り効果を利用し、軸受隙間の隙間間隔の制御性の向上等を図るものである。   In addition, a radial slit diaphragm should be provided in the bearing gap in order to suppress noise and improve control stability, etc., for the control of the gap spacing of the so-called bearing gap, which is the gap between the fluid receiving wall and the fluid receiving surface. Is also known. The radial slit diaphragm is a plurality of slits having a shallow groove depth extending in the radial direction from the fluid supply port at the center of the shaft, that is, extending in the radial direction toward the outer periphery and having a terminal portion. The fluid throttling effect when the fluid flowing in the groove flows out to the bearing gap between the fluid receiving wall and the fluid receiving surface is utilized to improve the controllability of the clearance gap of the bearing gap.

このように、流体受壁と流体受面との間の軸受隙間の部分にラジアルスリット絞りを有するスラスト流体軸受の利用が図られている。ラジアルスリット絞りは上記のように軸受隙間の隙間間隔の制御性を向上させるため等に用いられるのであるが、流体の種類によって異なる特性を有することがある。例えば、軸受隙間の隙間間隔を高精度に制御する場合、流体に油を使用するときと空気等の気体を使用するときを比較すると、流体が流体供給口から狭い隙間に流れ込む際に流体抵抗が急変して縮流が生じ、流体に油を使用するときに比べ、気体を使用するときには流体粘性の相違から隙間間隔が僅かに振動する傾向にあるといわれる。   Thus, utilization of the thrust fluid bearing which has a radial slit aperture | diaphragm in the part of the bearing clearance gap between a fluid receiving wall and a fluid receiving surface is achieved. The radial slit diaphragm is used for improving the controllability of the clearance gap of the bearing gap as described above, but may have different characteristics depending on the type of fluid. For example, when controlling the clearance gap of the bearing gap with high accuracy, comparing the use of oil as the fluid with the use of gas such as air, the fluid resistance increases when the fluid flows into the narrow gap from the fluid supply port. It is said that when the gas is used, the gap interval tends to vibrate slightly due to the difference in fluid viscosity as compared with the case where oil is used for the fluid due to sudden change and contraction flow.

このように、従来のラジアルスリット絞りを有するスラスト気体軸受機構においては、軸受隙間の隙間間隔が振動する恐れがあり、軸方向位置決めの高精度化等に限界がある。   As described above, in the thrust gas bearing mechanism having the conventional radial slit diaphragm, there is a possibility that the clearance gap of the bearing gap vibrates, and there is a limit to the high accuracy of the axial positioning.

本発明の目的は、軸受隙間の隙間間隔の振動を抑制することが可能なスラスト気体軸受機構を提供することである。   The objective of this invention is providing the thrust gas bearing mechanism which can suppress the vibration of the clearance gap of a bearing clearance.

本発明に係るスラスト気体軸受機構は、ベースの気体受壁と、軸の底面部の気体受面との間の軸受隙間に気体を供給して軸をベースに対して浮上させ保持するスラスト気体軸受であって、気体受壁又は気体受面に設けられる気体供給口と、気体受壁又は気体受面に設けられ、気体供給口を囲む減速用くぼみと、減速用くぼみを越えて軸受隙間の外周方向に向かって延び終端部を備える気体流路浅溝と、を含むことを特徴とする。   A thrust gas bearing mechanism according to the present invention is a thrust gas bearing that supplies gas to a bearing gap between a gas receiving wall of a base and a gas receiving surface of a bottom surface portion of the shaft to float and hold the shaft with respect to the base. A gas supply port provided in the gas receiving wall or the gas receiving surface, a deceleration recess provided in the gas receiving wall or the gas receiving surface and surrounding the gas supply port, and an outer periphery of the bearing gap beyond the deceleration recess. And a gas flow path shallow groove having a terminal portion extending in the direction.

また、本発明に係るスラスト気体軸受機構において、気体供給口は円形開口であり、減速用くぼみは気体供給口の円形開口と同心で、円形開口の直径より大きな直径を有し、気体流路浅溝は、気体供給口を中心として放射状に外周方向に向かって延びる複数の浅溝であり、各気体流路浅溝の終端部は、浅溝の幅よりも円周方向に広がる形状を有することが好ましい。   Further, in the thrust gas bearing mechanism according to the present invention, the gas supply port is a circular opening, the deceleration depression is concentric with the circular opening of the gas supply port, has a diameter larger than the diameter of the circular opening, and has a shallow gas flow path. The grooves are a plurality of shallow grooves that radially extend from the gas supply port toward the outer peripheral direction, and the end portion of each gas flow path shallow groove has a shape that extends in the circumferential direction rather than the width of the shallow groove. Is preferred.

また、本発明に係るスラスト気体軸受機構において、減速用くぼみの深さと気体流路浅溝の深さとが同じであることが好ましい。   Moreover, in the thrust gas bearing mechanism according to the present invention, it is preferable that the depth of the depression for deceleration and the depth of the gas channel shallow groove are the same.

上記構成により、気体受壁又は気体受面に気体供給口を設け、気体供給口を囲む態様で減速用くぼみを気体受壁又は気体受面に設け、減速用くぼみを越えて軸受隙間の外周方向に向かって延び終端部を備える気体流路浅溝を設ける。気体流路浅溝から軸受隙間に流れ出す気体によっていわゆるラジアルスリット絞りが形成されるが、気体供給口から流れ出す気体は、気体流路浅溝に入る前に気体供給口の周囲に広がる減速用くぼみに流れ込む。つまり、気体供給口からいきなり狭い気体流路浅溝に気体が流れ込むのでなく、一旦減速用くぼみに広がって減速した後に気体流路浅溝に流れ込む。したがって、この減速によって縮流の程度を緩和でき、気体流路浅溝に流れ込む際の振動を抑制することができる。   With the above configuration, a gas supply port is provided in the gas receiving wall or the gas receiving surface, and a deceleration depression is provided in the gas receiving wall or the gas receiving surface so as to surround the gas supply port, and the outer circumferential direction of the bearing gap extends beyond the deceleration depression. A gas flow path shallow groove is provided that extends toward the end and includes a terminal portion. A so-called radial slit diaphragm is formed by the gas flowing out from the shallow groove of the gas flow path into the bearing gap, but the gas flowing out from the gas supply port becomes a depression for spreading around the gas supply port before entering the shallow groove of the gas flow path. Flows in. In other words, the gas does not flow suddenly from the gas supply port into the narrow gas flow path shallow groove, but once spreads to the deceleration recess and decelerates, it flows into the gas flow path shallow groove. Therefore, the degree of contraction can be reduced by this deceleration, and vibrations when flowing into the gas flow path shallow groove can be suppressed.

なお、気体供給口と減速用くぼみとは、ともに気体受壁に設けてもよく、あるいはともに気体受面に設けてもよく、あるいは一方を気体受壁に他方を気体受面に設けてもよい。気体流路浅溝は減速用くぼみが設けられる方に設けられる。   Both the gas supply port and the deceleration recess may be provided on the gas receiving wall, or both may be provided on the gas receiving surface, or one may be provided on the gas receiving wall and the other on the gas receiving surface. . The gas flow path shallow groove is provided on the side where the depression for deceleration is provided.

また、円形開口の気体供給口より大きな直径でこれと同心に減速用くぼみを設け、気体供給口を中心として放射状に外周方向に延びる複数の気体流路浅溝を設け、各気体流路浅溝の終端部は、浅溝の幅よりも円周方向に広がる形状を有することとした。したがって、減速用くぼみは、気体供給口と同心で気体供給口より大きな直径でくぼませる加工を行うことで容易に得ることができる。   Further, a decelerating recess is provided concentrically with the diameter larger than the gas supply port of the circular opening, and a plurality of gas flow channel shallow grooves extending radially outward from the gas supply port as a center are provided. The end portion of each has a shape extending in the circumferential direction rather than the width of the shallow groove. Therefore, the depression for decelerating can be easily obtained by performing a process of concentrating with a gas supply port and having a larger diameter than the gas supply port.

また、減速用くぼみの深さと気体流路浅溝の深さとが同じであるとするので、減速用くぼみと気体流路浅溝とを同様な加工方法で得ることができる。   In addition, since the depth of the deceleration recess and the depth of the gas flow path shallow groove are the same, the speed reduction recess and the gas flow path shallow groove can be obtained by the same processing method.

上記のように、本発明に係るスラスト気体軸受機構によれば、軸受隙間間隔の隙間間隔の振動を抑制することが可能となる。   As described above, according to the thrust gas bearing mechanism according to the present invention, it is possible to suppress the vibration of the gap interval of the bearing gap interval.

以下に図面を用いて本発明に係る実施の形態について詳細に説明する。以下においてスラスト軸受機構は、アクチュエータのスラスト出力を移動テーブル等のベースに伝達するための中間軸受機構の形態で説明するが、これは隙間間隔の高精度化を利用する一実施形態であって、それ以外に、一般的な回転軸のスラスト軸受機構等にもちろん実施できる。また、以下において気体供給口は中間軸受体の底面部に設けられるものとしたが、ベースの気体受壁に設けてもよい。同様に、減速用くぼみ及び気体流路浅溝は中間軸受体の底面部に設けられるものとしたが、ベースの気体受壁に設けてもよい。また、以下に説明する形状、寸法、浅溝の配置、その数等は、一例であって、用途に応じ適当に変更して用いることができる。   Embodiments according to the present invention will be described below in detail with reference to the drawings. In the following, the thrust bearing mechanism will be described in the form of an intermediate bearing mechanism for transmitting the thrust output of the actuator to a base such as a moving table, but this is an embodiment that utilizes high accuracy of the gap interval, In addition to this, it can of course be applied to a thrust bearing mechanism of a general rotating shaft. In the following description, the gas supply port is provided on the bottom surface of the intermediate bearing body, but may be provided on the gas receiving wall of the base. Similarly, the decelerating recess and the gas flow path shallow groove are provided on the bottom surface of the intermediate bearing body, but may be provided on the gas receiving wall of the base. In addition, the shape, dimensions, arrangement of shallow grooves, the number thereof, and the like described below are merely examples, and can be appropriately changed according to the application.

図1は、スラスト気体軸受機構10の構成を説明する図である。このスラスト気体軸受機構10は、アクチュエータ8のX軸方向出力を、中間軸受体20を介して移動テーブルのベース50に伝達するスラスト力伝達機構の中で利用されるものである。例えば、移動テーブルをX軸方向に精度よく移動させるには、アクチュエータ8の移動の高精度化とともに、スラスト気体軸受機構の軸受隙間の隙間間隔の高精度化が求められる。ここで、中間軸受体20とベース50と、それらが向かい合う軸受隙間40とでスラスト気体軸受機構10を構成する。   FIG. 1 is a diagram illustrating the configuration of the thrust gas bearing mechanism 10. The thrust gas bearing mechanism 10 is used in a thrust force transmission mechanism that transmits the output in the X-axis direction of the actuator 8 to the base 50 of the moving table via the intermediate bearing body 20. For example, in order to move the moving table in the X-axis direction with high accuracy, it is necessary to increase the accuracy of movement of the actuator 8 and to increase the accuracy of the clearance gap of the thrust gas bearing mechanism. Here, the thrust gas bearing mechanism 10 is configured by the intermediate bearing body 20, the base 50, and the bearing gap 40 where they face each other.

図1(a)は、ベース50をとり除いたときの中間軸受体20の底面部を示し、図1(b)は、スラスト気体軸受機構10を含むスラスト力伝達機構について、図1(a)のA−A線に沿って切断した断面図である。   FIG. 1A shows a bottom surface portion of the intermediate bearing body 20 when the base 50 is removed, and FIG. 1B shows a thrust force transmission mechanism including the thrust gas bearing mechanism 10 as shown in FIG. It is sectional drawing cut | disconnected along the AA line | wire.

スラスト気体軸受機構10は、ベース50のスラストを受ける面である気体受壁52と、中間軸受体20の底面部である気体受面22とを向かい合わせ、気体受壁52と気体受面22との間を軸受隙間40とする構成をとる。中間軸受体20は、中心軸に沿って貫通穴23が設けられる円柱状の部材である。貫通穴23は、気体受面22において気体供給口24として開口する。中間軸受体20の気体受面22には、図1(a)に示すように、気体供給口24が開口する他に、減速用くぼみ26、複数の気体流路浅溝28が設けられる。   The thrust gas bearing mechanism 10 has a gas receiving wall 52 that is a surface that receives the thrust of the base 50 and a gas receiving surface 22 that is a bottom surface portion of the intermediate bearing body 20 facing each other. The bearing gap 40 is used between the two. The intermediate bearing body 20 is a columnar member provided with a through hole 23 along the central axis. The through hole 23 opens as a gas supply port 24 in the gas receiving surface 22. As shown in FIG. 1A, the gas receiving surface 22 of the intermediate bearing body 20 is provided with a speed reduction recess 26 and a plurality of gas flow path shallow grooves 28 in addition to the opening of the gas supply port 24.

各気体流路浅溝28は、気体供給口24を中心として径方向に沿いながら外周方向に向かって放射状に延び、それぞれ終端部30を有する。図1の場合では気体流路浅溝28が16本、すなわち気体供給口24を中心として放射状に円周方向の角度で22.5度間隔に設けられているが、もちろんその数は用途、要求性能に応じ増減することができる。なお、図1(a),(b)において、気体供給口24から軸受隙間40に流れる気体6の流れの一部を、矢印付きの流れ線で示してある。   Each gas flow path shallow groove 28 extends radially toward the outer peripheral direction along the radial direction around the gas supply port 24, and has a terminal portion 30. In the case of FIG. 1, there are 16 gas flow path shallow grooves 28, that is, the gas supply ports 24 are provided radially at intervals of 22.5 degrees in the circumferential direction. It can be increased or decreased according to performance. 1A and 1B, a part of the flow of the gas 6 flowing from the gas supply port 24 to the bearing gap 40 is indicated by a flow line with an arrow.

図2は、1つの気体流路浅溝28についてその周辺部の拡大図である。ここで示された気体流路浅溝28は、図1(a)のB−B線に沿って配置されたものである。図2(a)は中間軸受体20の底面部を示し、図2(b)は、B−B線に沿った断面図であり、そこではベース50、気体受壁52、軸受隙間40が示される。   FIG. 2 is an enlarged view of the periphery of one gas flow path shallow groove 28. The gas flow path shallow groove 28 shown here is disposed along the line BB in FIG. 2A shows a bottom surface portion of the intermediate bearing body 20, and FIG. 2B is a cross-sectional view taken along the line BB, in which the base 50, the gas receiving wall 52, and the bearing gap 40 are shown. It is.

気体供給口24は、上記のように中間軸受体20の底面部の中心に設けられる円形開口で、貫通穴23から軸受支持気体を軸受隙間40に供給する機能を有する。その寸法の一例を上げると、中間軸受体の直径を約30mmとして、気体供給口24の直径は約5mm程度とすることができる。   The gas supply port 24 is a circular opening provided at the center of the bottom surface portion of the intermediate bearing body 20 as described above, and has a function of supplying bearing support gas from the through hole 23 to the bearing gap 40. As an example of the dimensions, the diameter of the intermediate bearing body can be about 30 mm, and the diameter of the gas supply port 24 can be about 5 mm.

減速用くぼみ26は、気体供給口24の直径より大きな直径を有し、気体供給口24と同心の円形形状の浅いくぼみである。図2(a)においては、気体受面22の面の高さを(0)とし、減速用くぼみ26の高さを(−)として、減速用くぼみ26が気体受面22より沈んでいることを示してある。減速用くぼみ26は、気体供給口24から流れ出す気体6、実際には噴き出す気体6を、複数の気体流路浅溝28に案内して径方向に流す前に、気体供給口24の流路断面より広い流路断面に一旦広げて、その流速を減速させる機能を有する。減速の度合いは、気体供給口24の直径に対する減速用くぼみ26の直径の大きさ、減速用くぼみ26のくぼみ深さ等で定められる。その寸法の一例は、上記の気体供給口24の直径を約5mmとして、減速用くぼみ26の直径を約10mmとすることができる。また、減速用くぼみ26のくぼみ深さは、10μmから20μm程度、好ましくは12μmから15μm程度とすることがよい。   The deceleration recess 26 is a shallow recess having a diameter larger than the diameter of the gas supply port 24 and concentric with the gas supply port 24. In FIG. 2A, the height of the gas receiving surface 22 is (0) and the height of the deceleration recess 26 is (−), and the deceleration recess 26 is submerged from the gas receiving surface 22. Is shown. The decelerating recess 26 is a flow passage cross section of the gas supply port 24 before the gas 6 flowing out from the gas supply port 24, in fact, the gas 6 to be ejected is guided to the plurality of gas flow channel shallow grooves 28 to flow in the radial direction. It has a function of once spreading it over a wider channel cross section and decelerating the flow velocity. The degree of deceleration is determined by the size of the diameter of the decelerating recess 26 relative to the diameter of the gas supply port 24, the depth of the indentation of the decelerating recess 26, and the like. For example, the diameter of the gas supply port 24 may be about 5 mm, and the diameter of the deceleration recess 26 may be about 10 mm. Further, the recess depth of the deceleration recess 26 is about 10 μm to 20 μm, preferably about 12 μm to 15 μm.

気体流路浅溝28は、減速用くぼみ26から中間軸受体20の外周方向に向かって延び、終端部30を有する細い浅溝である。図2(a)においては、気体流路浅溝28の高さを(−)として、気体受面22より沈んでいることを示した。終端部30は、気体流路浅溝28が径方向に沿いながら外周方向に向かって延びた後に、図2(a)に示すように円周方向に沿って延びて終わる形状を有する。つまり、気体流路浅溝28は径方向に沿って所定の長さだけ延びた後、そこで延びる方向を円周方向に沿うように変えて、少し延びて終わる。別の見方をすれば、終端部30は、気体流路浅溝28の径方向に沿って延びるときの幅を広げながら円周方向に延びる形状を有する。   The gas flow path shallow groove 28 is a thin shallow groove extending from the deceleration depression 26 toward the outer peripheral direction of the intermediate bearing body 20 and having a terminal portion 30. In FIG. 2A, the height of the gas flow path shallow groove 28 is set to (−), and it is shown that the gas passage surface 22 is sinking. The end portion 30 has a shape in which the gas flow path shallow groove 28 extends in the outer peripheral direction along the radial direction, and then extends in the circumferential direction as shown in FIG. That is, after the gas flow path shallow groove 28 extends by a predetermined length along the radial direction, the extending direction of the gas flow path shallow groove 28 is changed to be along the circumferential direction, and ends a little. From another point of view, the end portion 30 has a shape extending in the circumferential direction while widening the width when extending along the radial direction of the gas flow path shallow groove 28.

気体流路浅溝28及びその終端部30の機能は、いわゆるラジアルスリット絞りの機能である。すなわち、気体供給口24から噴出する気体は減速用くぼみ26で減速された後、複数の気体流路浅溝28のそれぞれに導かれ、その細い浅溝に案内されて径方向に沿って流れるが、気体流路浅溝28は終端部30を有するので、流れる気体はそこで行き止まりとなる。行き止まりとなった気体は、気体受面22と向かい合う気体受壁52との間に絞られながら漏れ出て、気体受面22と気体受壁52との間の隙間を広げて軸受隙間40を形成し、ベース50に対し中間軸受体20を浮上させる。   The functions of the gas flow path shallow groove 28 and its end portion 30 are functions of a so-called radial slit diaphragm. That is, the gas ejected from the gas supply port 24 is decelerated by the decelerating recess 26, then guided to each of the plurality of gas flow path shallow grooves 28, and guided along the narrow shallow grooves to flow along the radial direction. Since the gas flow path shallow groove 28 has the terminal portion 30, the flowing gas stops there. The gas that has reached the dead end leaks while being constricted between the gas receiving surface 22 and the gas receiving wall 52 facing each other, and widens the gap between the gas receiving surface 22 and the gas receiving wall 52 to form the bearing gap 40. Then, the intermediate bearing body 20 is levitated with respect to the base 50.

軸受隙間40の形成は、ベース50に対する中間軸受体の押し付け力、すなわちアクチュエータ8によって中間軸受体20を介してベース50に与えるスラスト力と、軸受隙間40に供給される気体の供給圧等の関係で定めることができる。つまり、気体の供給圧を制御することで軸受隙間を制御することができ、スラスト力に応じて気体の供給圧を制御することで軸受隙間の隙間間隔を一定になるように制御できる。あるいは、隙間間隔を所定のものになるように自在に制御することもできる。   The bearing gap 40 is formed by the relationship between the pressing force of the intermediate bearing body against the base 50, that is, the thrust force applied to the base 50 via the intermediate bearing body 20 by the actuator 8 and the supply pressure of the gas supplied to the bearing gap 40. Can be determined by That is, the bearing gap can be controlled by controlling the gas supply pressure, and the gap gap of the bearing gap can be controlled to be constant by controlling the gas supply pressure according to the thrust force. Alternatively, the gap interval can be freely controlled so as to be a predetermined one.

気体流路浅溝28の寸法の一例を上げると、上記の中間軸受体20の直径を約30mm、減速用くぼみ26の直径を約10mmとして、気体流路浅溝28の径方向に沿って外周方向に向かって延びる部分の幅を0.6mm程度、気体供給口24の中心から終端部30の最外周側までの径方向に沿った距離を12mmとできる。この場合、減速用くぼみ26の最外周側から始まる気体流路浅溝28の終端部30の最外周側までの径方向に沿った長さは、(12mm−10mm/2)=7mmとなる。終端部30の円周方向への広がりは、16本の気体流路浅溝28が気体供給口24を中心として円周方向角度について22.5度間隔で設けられる上記の場合、気体供給口24を中心とする円周方向角度で約16度程度の広がりとすることができる。気体流路浅溝28の溝深さは、減速用くぼみ26のくぼみ深さと同じとすることができる。もちろん、用途、性能の面から、減速用くぼみ26のくぼみ深さよりさらに浅くし、あるいはさらに深くして、絞り効果を変更してもよい。   As an example of the dimensions of the gas flow path shallow groove 28, the diameter of the intermediate bearing body 20 is about 30 mm and the diameter of the deceleration recess 26 is about 10 mm, and the outer periphery along the radial direction of the gas flow path shallow groove 28. The width of the portion extending in the direction can be about 0.6 mm, and the distance along the radial direction from the center of the gas supply port 24 to the outermost peripheral side of the terminal portion 30 can be 12 mm. In this case, the length along the radial direction from the outermost peripheral side of the deceleration recess 26 to the outermost peripheral side of the terminal portion 30 of the gas flow path shallow groove 28 is (12 mm−10 mm / 2) = 7 mm. In the case where the end portion 30 extends in the circumferential direction, the 16 gas flow path shallow grooves 28 are provided at intervals of 22.5 degrees with respect to the circumferential angle around the gas supply port 24. It is possible to make the spread about 16 degrees at an angle in the circumferential direction centering on. The groove depth of the gas flow path shallow groove 28 can be the same as the depression depth of the deceleration depression 26. Of course, from the standpoint of use and performance, the aperture effect may be changed by making it shallower or deeper than the recess depth of the deceleration recess 26.

上記構成のスラスト気体軸受機構10の作用を説明する。スラスト力伝達機構の中のスラスト気体軸受機構10においては、アクチュエータ8は移動テーブルのベース50に向かって中間軸受体20をX軸方向に移動させる。中間軸受体20の軸方向中心に設けられる貫通穴23には図示されていない気体供給部から供給気体圧が制御された気体6が供給される。貫通穴23は、中間軸受体20の底面部である気体受面22に気体供給口24として開口するので、気体6は、ベース50の気体受壁52と中間軸受体20の気体受面22との間の軸受隙間40に噴き出して流れる。供給気体圧の大きさは、軸受隙間40の隙間間隔を一定に維持するように、アクチュエータ8のスラスト力に応じた制御が行われるのが好ましい。なお、スラスト力の変化が少ない場合は、供給気体圧を一定に維持することでもよい。   The operation of the thrust gas bearing mechanism 10 having the above configuration will be described. In the thrust gas bearing mechanism 10 in the thrust force transmission mechanism, the actuator 8 moves the intermediate bearing body 20 in the X-axis direction toward the base 50 of the moving table. A gas 6 having a controlled supply gas pressure is supplied from a gas supply unit (not shown) to a through hole 23 provided at the center in the axial direction of the intermediate bearing body 20. Since the through-hole 23 opens as a gas supply port 24 in the gas receiving surface 22 which is the bottom surface portion of the intermediate bearing body 20, the gas 6 flows between the gas receiving wall 52 of the base 50 and the gas receiving surface 22 of the intermediate bearing body 20. It flows out into the bearing gap 40 between the two. The magnitude of the supply gas pressure is preferably controlled in accordance with the thrust force of the actuator 8 so as to keep the clearance gap of the bearing gap 40 constant. When the change in thrust force is small, the supply gas pressure may be kept constant.

気体供給口24から噴き出す気体6は、気体供給口24の直径より大きな直径を有する円形形状の減速用くぼみ26に広がり、ここで減速される。その後、減速された気体は、減速用くぼみ26から径方向に沿って外周方向に延びる気体流路浅溝28に導かれる。気体流路浅溝28は終端部30で行き止まりとなるので、気体流路浅溝28を流れてきた気体はそこで軸受隙間40の方に漏れ出る。漏れ出る際に、気体は気体受壁52と気体受面22との隙間によって絞られる。この絞りにより、流れが整流化され、流れの乱れが抑制され、軸受隙間40の隙間間隔の維持の安定性が改善される。   The gas 6 ejected from the gas supply port 24 spreads in a circular reduction depression 26 having a diameter larger than the diameter of the gas supply port 24 and is decelerated here. Thereafter, the decelerated gas is guided from the decelerating recess 26 to the gas flow path shallow groove 28 extending in the outer peripheral direction along the radial direction. Since the gas flow path shallow groove 28 becomes a dead end at the end portion 30, the gas flowing through the gas flow path shallow groove 28 leaks toward the bearing gap 40 there. When leaking out, the gas is throttled by the gap between the gas receiving wall 52 and the gas receiving surface 22. By this restriction, the flow is rectified, the turbulence of the flow is suppressed, and the stability of maintaining the gap interval of the bearing gap 40 is improved.

気体流路浅溝28の流路面断面積は、上記の例で、0.6mm×(10μmから20μm)であり、16本分を合わせても気体供給口24の流路断面積に比べ格段に小さい。そのために高圧高速の気体がここに供給されるとその入力側で縮流が生じ、その結果、隙間間隔が変動する振動を生じることがある。気体供給口24と気体流路浅溝28との間に設けられる減速用くぼみ26は、気体供給口24の直径より大きな直径を有し、流路断面積の急変を緩和して気体供給口24からの気体6の流速を減速するので、軸受隙間40の隙間間隔の振動を抑制する。したがって、軸受隙間40の隙間間隔を高精度に維持することができ、アクチュエータ8による中間軸受体20を介した移動テーブルのベース50のX軸方向の移動駆動を高精度なものとすることが出来る。   The cross-sectional area of the flow path surface of the gas flow path shallow groove 28 is 0.6 mm × (10 μm to 20 μm) in the above example, and is markedly greater than the flow path cross-sectional area of the gas supply port 24 even when 16 lines are combined. small. For this reason, when a high-pressure and high-speed gas is supplied here, a contracted flow is generated on the input side thereof, and as a result, a vibration in which the gap interval varies may occur. The decelerating recess 26 provided between the gas supply port 24 and the gas flow path shallow groove 28 has a diameter larger than the diameter of the gas supply port 24 and alleviates a sudden change in the cross-sectional area of the flow path, thereby reducing the gas supply port 24. Since the flow velocity of the gas 6 from the engine is decelerated, the vibration of the gap interval of the bearing gap 40 is suppressed. Therefore, the clearance gap of the bearing gap 40 can be maintained with high accuracy, and the movement drive in the X-axis direction of the base 50 of the moving table via the intermediate bearing body 20 by the actuator 8 can be made with high accuracy. .

上記においては、減速用くぼみ26と、終端部30を有する気体流路浅溝28とを、中間軸受体20の底面部に作りこむこととして説明した。このような構造は、中間軸受体20の底面部において精密なエッチング加工、またはコイニング加工、ショットピーニング加工等を用いることで実現できる。また、減速用くぼみ26と、終端部30を有する気体流路浅溝28を含む部分を上記の加工方法を用いて別部材に作りこみ、これを平坦な底面部を有する中間軸受体20に固着して取り付けることも出来る。   In the above description, it has been described that the deceleration depression 26 and the gas flow path shallow groove 28 having the terminal portion 30 are formed in the bottom surface portion of the intermediate bearing body 20. Such a structure can be realized by using a precise etching process, coining process, shot peening process, or the like at the bottom surface of the intermediate bearing body 20. Further, the portion including the deceleration recess 26 and the gas flow path shallow groove 28 having the terminal portion 30 is formed in a separate member using the above-described processing method, and is fixed to the intermediate bearing body 20 having a flat bottom surface portion. It can also be attached.

軸受隙間40の振動を抑制する別のスラスト気体軸受機構60の構造を図3、図4に示す。ここで、図1、図2と共通の要素には同一の符号を付し、以下に置いて詳細な説明を省略する。図3(a),(b)は、図1(a),(b)に対応してスラスト気体軸受機構60の構成を説明する図である。ここで、中間軸受体70とベース50と、それらが向かい合う軸受隙間40とでスラスト気体軸受機構60を構成する。このように、ここでのスラスト気体軸受機構60は、図1、図2で説明したスラスト気体軸受機構10に比較して中間軸受体70の構造が相違する。   The structure of another thrust gas bearing mechanism 60 that suppresses the vibration of the bearing gap 40 is shown in FIGS. Here, the same reference numerals are given to the same elements as those in FIGS. 1 and 2, and the detailed description will be omitted below. FIGS. 3A and 3B are diagrams illustrating the configuration of the thrust gas bearing mechanism 60 corresponding to FIGS. 1A and 1B. Here, a thrust gas bearing mechanism 60 is constituted by the intermediate bearing body 70, the base 50, and the bearing gap 40 where they face each other. As described above, the thrust gas bearing mechanism 60 here is different in the structure of the intermediate bearing body 70 from the thrust gas bearing mechanism 10 described in FIGS. 1 and 2.

図3(a)に示されるように、中間軸受体70の気体受面22には、気体供給口24が開口する他に、複数の扇状くぼみ72、気体供給口24の周囲のR部74が設けられる。図3(a)においては、気体受面22の面の高さを(0)とし、扇状くぼみ74の高さを(−)として、扇状くぼみ72が気体受面22より沈んでいることを示してある。   As shown in FIG. 3A, the gas receiving surface 22 of the intermediate bearing body 70 has a plurality of fan-shaped recesses 72 and an R portion 74 around the gas supply port 24 in addition to the gas supply port 24 opening. Provided. In FIG. 3A, the height of the surface of the gas receiving surface 22 is (0), and the height of the fan-shaped recess 74 is (−), which indicates that the fan-shaped recess 72 is sinking from the gas receiving surface 22. It is.

扇状くぼみ72は、気体供給口24を中心として外周方向に向かって放射状に延びながら扇状に広がるくぼみである。図3の場合、扇状くぼみ72は4つ設けられているが、もちろんその数は用途、要求性能に応じ増減することができる。扇状くぼみ72のくぼみ深さは、図1、図2に関連して説明した減速用くぼみ26と同様に、10μmから20μm程度、好ましくは12μmから15μm程度とすることがよい。   The fan-shaped recess 72 is a recess that expands in a fan shape while extending radially in the outer peripheral direction around the gas supply port 24. In the case of FIG. 3, four fan-shaped indentations 72 are provided, but the number can be increased or decreased according to the application and required performance. The recess depth of the fan-shaped recess 72 is about 10 μm to 20 μm, preferably about 12 μm to 15 μm, similarly to the deceleration recess 26 described with reference to FIGS. 1 and 2.

隣接する扇状くぼみ72の間には、細い帯状に気体受面22の部分が残される。この細い帯状部分の幅Wは、図1で説明した中間軸受体の直径が約30mm、気体供給口の直径が約5mmの例において、W=1mmから2mm程度とすることが出来る。   A portion of the gas receiving surface 22 is left in the form of a thin band between adjacent fan-shaped depressions 72. The width W of the thin strip-shaped portion can be about W = 1 mm to 2 mm in the example in which the diameter of the intermediate bearing body described in FIG. 1 is about 30 mm and the diameter of the gas supply port is about 5 mm.

R部74は、気体供給口24の円形開口の円周縁をなだらかにするR部である。Rの大きさは、気体の流れを乱さない程度の適当な大きさでよい。また、R部の代わりに、扇状くぼみの(−)より一段と低くしたくぼみ(−−)の溝部を気体供給口24の円形開口の周囲に形成し、流れをそこで減速させることでもよい。   The R portion 74 is an R portion that smoothens the circumferential edge of the circular opening of the gas supply port 24. The size of R may be an appropriate size that does not disturb the gas flow. Further, instead of the R portion, a recess (-) groove portion lower than the fan-shaped recess (-) may be formed around the circular opening of the gas supply port 24, and the flow may be reduced there.

図4は、2つの扇状くぼみ72の間の帯状部分の気体受面22についてその周辺部の拡大図である。ここで示された帯状部分の気体受面22は、図3(a)のB−B線に沿って配置されたものである。   FIG. 4 is an enlarged view of the peripheral portion of the gas receiving surface 22 in the band-shaped portion between the two fan-shaped depressions 72. The gas receiving surface 22 of the belt-like portion shown here is arranged along the line BB in FIG.

ここで、図3(b)、図4において、気体供給口24から軸受隙間40に流れる気体6の流れの一部を、矢印付きの流れ線で示してある。このように、気体供給口24から流れ出す気体6は、扇状くぼみ72に案内されて、外周方向に向かって広がりながら流れる。そして、扇状くぼみ72の平面形状の縁で行き止まりとなるので、行き止まりとなった気体は、気体受面22と向かい合う気体受壁52との間に絞られながら漏れ出て、気体受面22と気体受壁52との間の隙間を広げて軸受隙間40を形成し、ベース50に対し中間軸受体70を浮上させる。   Here, in FIG.3 (b) and FIG. 4, a part of flow of the gas 6 which flows into the bearing clearance 40 from the gas supply port 24 is shown by the flow line with an arrow. In this way, the gas 6 flowing out from the gas supply port 24 is guided by the fan-shaped recess 72 and flows while spreading toward the outer peripheral direction. And since it becomes a dead end at the edge of the planar shape of the fan-shaped depression 72, the gas that has reached the dead end leaks while being constricted between the gas receiving surface 52 and the gas receiving wall 52 facing the gas receiving surface 22, and the gas receiving surface 22 and the gas. The gap between the receiving wall 52 and the bearing wall 52 is widened to form the bearing gap 40, and the intermediate bearing body 70 is floated with respect to the base 50.

ここで、扇状くぼみ72は、浅いくぼみではあるが広い面積を有する扇状くぼみ72に案内される。したがって、図1で説明した狭い気体流路浅溝28に比べ、大きな流路断面積を有し、気体供給口24のからの流路断面積の急変をある程度緩和する。したがって、流路断面積の急変による軸受隙間40の隙間間隔の振動を抑制し、軸受隙間40の隙間間隔を高精度に維持することができる。   Here, the fan-shaped depression 72 is guided to the fan-shaped depression 72 having a large area although it is a shallow depression. Therefore, compared with the narrow gas flow path shallow groove 28 described with reference to FIG. Therefore, the vibration of the gap interval of the bearing gap 40 due to the sudden change of the flow path cross-sectional area can be suppressed, and the gap interval of the bearing gap 40 can be maintained with high accuracy.

これらの軸受機構において、供給圧力を制御して気体受壁と気体受面との間の隙間間隔を制御しアクチュエータとして働かせるときにも、上記の構成をとることで軸受間隔を高精度化できるので、特に有用である。また、上記の構成をとる軸受機構を直列に配置することで、アクチュエータとしてのストロークを大きくとることもできる。   In these bearing mechanisms, when the supply pressure is controlled to control the gap interval between the gas receiving wall and the gas receiving surface to act as an actuator, the bearing interval can be made highly accurate by adopting the above configuration. Is particularly useful. Moreover, the stroke as an actuator can also be taken large by arrange | positioning the bearing mechanism which takes said structure in series.

本発明に係る実施の形態のスラスト気体軸受機構の構成を説明する図である。It is a figure explaining the structure of the thrust gas bearing mechanism of embodiment which concerns on this invention. 本発明に係る実施の形態において、気体流路浅溝の周辺部の拡大図である。In embodiment which concerns on this invention, it is an enlarged view of the peripheral part of a gas flow path shallow groove | channel. 他の実施形態のスラスト気体軸受機構の構成を説明する図である。It is a figure explaining the structure of the thrust gas bearing mechanism of other embodiment. 図3の一部拡大図である。FIG. 4 is a partially enlarged view of FIG. 3.

符号の説明Explanation of symbols

6 気体、8 アクチュエータ、10,60 スラスト気体軸受機構、20,70 中間軸受体、22 気体受面、23 貫通穴、24 気体供給口、26 減速用くぼみ、28 気体流路浅溝、30 終端部、40 軸受隙間、50 ベース、52 気体受壁、72 扇状くぼみ、74 R部。   6 Gas, 8 Actuator, 10, 60 Thrust gas bearing mechanism, 20, 70 Intermediate bearing body, 22 Gas receiving surface, 23 Through hole, 24 Gas supply port, 26 Deceleration recess, 28 Gas flow path shallow groove, 30 End , 40 Bearing gap, 50 base, 52 gas receiving wall, 72 fan-shaped depression, 74 R part.

Claims (3)

ベースの気体受壁と、軸の底面部の気体受面との間の軸受隙間に気体を供給して軸をベースに対して浮上させ保持するスラスト気体軸受機構であって、
気体受壁又は気体受面に設けられる気体供給口と、
気体受壁又は気体受面に設けられ、気体供給口を囲む減速用くぼみと、
減速用くぼみを越えて軸受隙間の外周方向に向かって延び終端部を備える気体流路浅溝と、
を含むことを特徴とするスラスト気体軸受機構。
A thrust gas bearing mechanism that supplies gas to a bearing gap between the gas receiving wall of the base and the gas receiving surface of the bottom surface portion of the shaft to float and hold the shaft with respect to the base,
A gas supply port provided in the gas receiving wall or the gas receiving surface;
A recess for deceleration provided on the gas receiving wall or the gas receiving surface and surrounding the gas supply port;
A gas flow path shallow groove having a terminal end extending toward the outer peripheral direction of the bearing gap over the depression for deceleration;
A thrust gas bearing mechanism comprising:
請求項1に記載のスラスト気体軸受機構において、
気体供給口は円形開口であり、
減速用くぼみは気体供給口の円形開口と同心で、円形開口の直径より大きな直径を有し、
気体流路浅溝は、気体供給口を中心として放射状に外周方向に向かって延びる複数の浅溝であり、
各気体流路浅溝の終端部は、浅溝の幅よりも円周方向に広がる形状を有することを特徴とするスラスト気体軸受機構。
The thrust gas bearing mechanism according to claim 1,
The gas supply port is a circular opening,
The deceleration recess is concentric with the circular opening of the gas supply port and has a diameter larger than the diameter of the circular opening,
The gas flow path shallow grooves are a plurality of shallow grooves extending radially outward from the gas supply port.
A thrust gas bearing mechanism, wherein the end portion of each gas flow path shallow groove has a shape that extends in the circumferential direction rather than the width of the shallow groove.
請求項1に記載のスラスト気体軸受機構において、
減速用くぼみの深さと気体流路浅溝の深さとが同じであることを特徴とするスラスト気体軸受機構。
The thrust gas bearing mechanism according to claim 1,
A thrust gas bearing mechanism characterized in that the depth of the recess for deceleration is the same as the depth of the gas channel shallow groove.
JP2005286986A 2005-09-30 2005-09-30 Thrust gas bearing mechanism Active JP4875878B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005286986A JP4875878B2 (en) 2005-09-30 2005-09-30 Thrust gas bearing mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005286986A JP4875878B2 (en) 2005-09-30 2005-09-30 Thrust gas bearing mechanism

Publications (2)

Publication Number Publication Date
JP2007092974A true JP2007092974A (en) 2007-04-12
JP4875878B2 JP4875878B2 (en) 2012-02-15

Family

ID=37978929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005286986A Active JP4875878B2 (en) 2005-09-30 2005-09-30 Thrust gas bearing mechanism

Country Status (1)

Country Link
JP (1) JP4875878B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107269701A (en) * 2017-07-12 2017-10-20 哈尔滨工业大学 A kind of plane air-bearing with air drain

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03223519A (en) * 1990-01-29 1991-10-02 Ind Technol Res Inst Static pressure bearing
JP2004144188A (en) * 2002-10-24 2004-05-20 Nippon Steel Corp Static pressure gas bearing
JP2004169784A (en) * 2002-11-19 2004-06-17 Nikon Corp Bearing unit, stage unit, and exposure system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03223519A (en) * 1990-01-29 1991-10-02 Ind Technol Res Inst Static pressure bearing
JP2004144188A (en) * 2002-10-24 2004-05-20 Nippon Steel Corp Static pressure gas bearing
JP2004169784A (en) * 2002-11-19 2004-06-17 Nikon Corp Bearing unit, stage unit, and exposure system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107269701A (en) * 2017-07-12 2017-10-20 哈尔滨工业大学 A kind of plane air-bearing with air drain

Also Published As

Publication number Publication date
JP4875878B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
US7401979B2 (en) Dynamic pressure bearing device
JP4296292B2 (en) Fluid bearing
JP2016109268A (en) Tilting pad type journal bearing
JP2005315357A (en) Dynamic pressure bearing, spindle motor and recording disk device
JP4106392B2 (en) Gas pressure control actuator, gas bearing mechanism for gas pressure control actuator, and minute displacement output device using gas pressure control actuator
KR102389419B1 (en) air turbine driven spindle
JP2017194117A (en) Journal gas bearing
JP4875878B2 (en) Thrust gas bearing mechanism
JP2006090524A (en) Dynamic pressure fluid bearing
US7144162B2 (en) High speed rolling element bearing anti-cavitation cage
JP6088029B2 (en) Sealing device
US20070253651A1 (en) Hydraulic dynamic bearing and spindle motor
JP6138979B2 (en) Rolling bearing
JP7467303B2 (en) Fluid dynamic bearing device
JPH11336753A (en) Self-aligning roller bearing
JP2544876Y2 (en) Hydrostatic gas bearing device
JP7158815B2 (en) rotary table device
KR100376998B1 (en) Hydrostatic bearing motor
JP6159249B2 (en) Bearing device
JP2002349549A (en) Hydrodynamic bearing motor
KR100430426B1 (en) A motor
JPH0257723A (en) Static pressure gas bearing
JP6153861B2 (en) Bearing device
TW202248549A (en) Dynamic pressure bearing structure with double cutting edges
JPH0337411A (en) Dynamic pressure bearing rotating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111115

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4875878

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250