JP2724349B2 - Hydrostatic air bearing - Google Patents

Hydrostatic air bearing

Info

Publication number
JP2724349B2
JP2724349B2 JP2007780A JP778090A JP2724349B2 JP 2724349 B2 JP2724349 B2 JP 2724349B2 JP 2007780 A JP2007780 A JP 2007780A JP 778090 A JP778090 A JP 778090A JP 2724349 B2 JP2724349 B2 JP 2724349B2
Authority
JP
Japan
Prior art keywords
pocket
throttle
spring constant
shaft
orifice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2007780A
Other languages
Japanese (ja)
Other versions
JPH03213718A (en
Inventor
孝 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KURODA SEIKO KK
Original Assignee
KURODA SEIKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=11675190&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2724349(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by KURODA SEIKO KK filed Critical KURODA SEIKO KK
Priority to JP2007780A priority Critical patent/JP2724349B2/en
Publication of JPH03213718A publication Critical patent/JPH03213718A/en
Application granted granted Critical
Publication of JP2724349B2 publication Critical patent/JP2724349B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えば超精密加工機や精密測定器などに利
用される静圧空気軸受に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a hydrostatic air bearing used for, for example, an ultra-precision processing machine or a precision measuring instrument.

[従来の技術] 従来、この種の静圧空気軸受には、絞り形式におい
て、主なものに自成絞り方式とポケット付オリフィス絞
り方式とが知られている。
2. Description of the Related Art Conventionally, as a static pressure air bearing of this type, a self-contained restricting method and an orifice restricting method with a pocket are mainly known as restricting methods.

第8図、第9図はそれぞれ自成絞りとポケット付オリ
フィス絞り方式のモデルを示し、第10図、第11図はそれ
ぞれ空気流が絞られる位置を表している。
FIGS. 8 and 9 show models of the self-contained restrictor and the orifice restrictor with pocket, respectively. FIGS. 10 and 11 show the positions where the air flow is restricted, respectively.

図面において、1は軸、2は軸受本体、Gはその間の
軸隙間である。自成絞り方式は第8図に示すように、供
給圧力Psの空気をノズル3から直接軸隙間Gに噴射する
ようにし、この空気流が絞られる位置Aは第10図に示す
ように軸隙間Gのノズル3の出口近傍である。一方、ポ
ケット付オリフィス絞り方式は第9図に示すように、オ
リフィス4に続いてかなりの深さを有するポケット5が
形成されており、第11図に示すように空気流が絞られる
位置Bはノズル4内の範囲にとどまっている。
In the drawings, 1 is a shaft, 2 is a bearing main body, and G is a shaft gap therebetween. In the self-contained throttle system, as shown in FIG. 8, air at a supply pressure Ps is directly injected from the nozzle 3 into the shaft gap G, and the position A where this air flow is throttled is as shown in FIG. This is near the exit of the nozzle 3 of G. On the other hand, in the orifice throttle system with a pocket, as shown in FIG. 9, a pocket 5 having a considerable depth is formed following the orifice 4, and as shown in FIG. It remains within the range of the nozzle 4.

[発明が解決しようとする課題] 一般に、この種の静圧空気軸受においては、絞りがあ
ることにより供給圧力Psに対し絞り下流部で二次圧が発
生し、この圧力が軸隙間Gの変動につれて変化するた
め、一般的には剛性と称するばね定数が軸受に生ずる。
[Problems to be Solved by the Invention] Generally, in this type of hydrostatic air bearing, due to the presence of the throttle, a secondary pressure is generated in the downstream portion of the throttle with respect to the supply pressure Ps. As a result, a spring constant, generally called rigidity, occurs in the bearing.

自成絞りの場合は、ばね定数を高くするために、ノズ
ル径を小さくして、軸隙間Gを小さくし、絞り面積を小
さくする場合が一般的であるが、絞り面積を極度に小さ
くすると、軸受本来の機能を失うため、軸隙間Gを小さ
くすることには自ら限度があり、ばね定数をあまり高く
できないという欠点がある。
In the case of a self-contained throttle, it is common to reduce the nozzle diameter, reduce the shaft gap G, and reduce the throttle area in order to increase the spring constant. However, when the throttle area is extremely reduced, Since the original function of the bearing is lost, there is a limit in reducing the shaft clearance G, and there is a disadvantage that the spring constant cannot be increased too much.

これに対し、ポケット付オリフィス絞りはポケット5
が存在するため、自成絞りよりもばね定数を高く設定で
きるという長所を有しているが、軸隙間Gとばね定数と
の関係において、ばね定数が最大となる軸隙間Gの大き
さCrの付近では、減衰係数が極度に減少し、場合によっ
ては負の値になるので軸受本体が自励振動を起す等の不
安定な状態になり易い。
On the other hand, the orifice diaphragm with pocket is pocket 5
Has the advantage that the spring constant can be set higher than the self-contained throttle, but in the relationship between the shaft gap G and the spring constant, the size Cr of the shaft gap G at which the spring constant is maximized In the vicinity, the damping coefficient extremely decreases and sometimes becomes a negative value, so that the bearing body is likely to be in an unstable state such as causing self-excited vibration.

第12図、第13図はそれぞれ自成絞りとポケット付オリ
フィス絞りにおいて、軸隙間変動に対する軸隙間G内の
圧力分布の変化する様子を示し、Paは大気圧、Psは供給
圧、Poはポケット5内の圧力を示し、ハッチングを施し
た圧力変化分がばね定数となる。ポケット付オリフィス
絞りはポケット5が存在するため、軸隙間Gの変動に対
し圧力の変化量が大きく、自成絞りの場合よりも高いば
ね定数を設定できる。しかし、軸隙間Gとばね定数との
関係において、ばね定数が最大となる軸隙間Gの大きさ
Cr付近では、減衰係数が極度に減少又は負になるので、
軸受は自励振動が生じ易い不安定な状態になる。従っ
て、正の減衰係数を確保して軸の安定化を図るために
は、ばね定数を犠牲にした軸隙間を設定しなければなら
ないために、必ずしもポケット付オリフィス絞りの長所
を十分に生かしきれていないという問題がある。
12 and 13 show how the pressure distribution in the shaft gap G changes with respect to the shaft gap variation in the self-generated throttle and the orifice throttle with pocket, respectively, where Pa is the atmospheric pressure, Ps is the supply pressure, and Po is the pocket pressure. 5 shows the pressure, and the change in pressure indicated by hatching is the spring constant. Since the orifice throttle with a pocket has the pocket 5, the amount of pressure change is large with respect to the fluctuation of the shaft gap G, and a higher spring constant can be set than in the case of the self-generated throttle. However, in the relationship between the shaft clearance G and the spring constant, the size of the shaft clearance G at which the spring constant is maximized
In the vicinity of Cr, the attenuation coefficient is extremely reduced or negative, so
The bearing is in an unstable state in which self-excited vibration easily occurs. Therefore, in order to secure a positive damping coefficient and stabilize the shaft, it is necessary to set a shaft clearance at the expense of the spring constant. There is no problem.

本発明の目的は、このような問題点を改善するため、
ノズル先端のポケットの深さを、ポケット内で自成絞り
状態が形成される程度に浅くすることにより、ばね定数
が高くかつ安定性が良い静圧空気軸受を提供することに
ある。
An object of the present invention is to improve such problems.
An object of the present invention is to provide a hydrostatic air bearing having a high spring constant and good stability by making the depth of the pocket at the nozzle tip shallow enough to form a self-constricted state in the pocket.

[課題を解決するための手段] 本発明の目的を達成するために、本発明に係る静圧空
気軸受においては、ノズル先に端部ポケットを有する絞
り形式を持つ静圧空気軸受において、前記ノズルの直径
d、前記ポケットの深さH及び軸隙間の大きさCrとの間
にπd2/4>πd(H+Cr)及びH/Cr=0.5〜1.5を成立さ
せたことを特徴とする。
Means for Solving the Problems In order to achieve the object of the present invention, in a hydrostatic air bearing according to the present invention, there is provided a hydrostatic air bearing having a throttle type having an end pocket at a nozzle tip. diameter d, characterized by πd 2/4> πd (H + Cr) and that passed a H / Cr = 0.5 to 1.5 between the depth H and the axial gap size Cr of the pocket.

[作用] 上述の構成を有する静圧空気軸受は、ポケット深さを
軸隙間とほぼ同じ程度に浅くすることにより、ポケット
内にも自成絞りが形成され、その絞りの有効断面積がノ
ズルの有効断面積より小さくなるので、ノズル径が同じ
でもポケット付オリフィス絞りよりも狭い軸隙間で最大
ばね定数値を得ることができる。また、ポケット深さが
浅いため減衰係数の低下が防止される。
[Operation] In the hydrostatic air bearing having the above-described configuration, a self-contained throttle is formed in the pocket by making the pocket depth almost as small as the shaft gap, and the effective cross-sectional area of the throttle is reduced by the nozzle. Since the diameter is smaller than the effective cross-sectional area, the maximum spring constant value can be obtained with a smaller shaft clearance than the orifice throttle with a pocket even if the nozzle diameter is the same. Further, since the pocket depth is shallow, a decrease in the attenuation coefficient is prevented.

[実施例] 本発明を第1図〜第7図に図示の実施例に基づいて詳
細に説明する。
Embodiment The present invention will be described in detail based on an embodiment shown in FIGS.

第1図は本発明に係る複合絞り方式の静圧空気軸受を
示し、11は軸、12は軸受本体、13はノズルであり、この
ノズル13に続くポケット14の深さは、自成絞りの作用が
機能する程度に浅くなっている。ここで、軸隙間Gの大
きさCrに対するポケット深さHの比を、 H/Cr=0.5〜1.5 の範囲とした場合には、最大ばね定数値と高い減衰係数
が得られることが実験により確認されている。
FIG. 1 shows a composite throttle type hydrostatic air bearing according to the present invention, in which 11 is a shaft, 12 is a bearing body, 13 is a nozzle, and the depth of a pocket 14 following the nozzle 13 is equal to that of a self-formed throttle. It is shallow enough to work. Here, when the ratio of the pocket depth H to the size Cr of the shaft gap G is in the range of H / Cr = 0.5 to 1.5, it was experimentally confirmed that a maximum spring constant value and a high damping coefficient were obtained. Have been.

第2図(a)、(b)は、例として第3図〜第6図に
示すデータのためのラジアル軸受の具体的な軸受の寸法
とノズル位置(矢印N)の寸法図であり、第7図はノズ
ルの自成絞り、ポケット付きオリフィス絞り、複合絞り
におけるそれぞれの寸法図である。また、ここで示すデ
ータは供給圧力が5kgf/cm2Gの場合である。
FIGS. 2 (a) and 2 (b) are specific bearing dimensions and nozzle position (arrow N) dimensions of the radial bearing for the data shown in FIGS. 3 to 6, for example. FIG. 7 is a dimensional diagram of a self-generated throttle, an orifice throttle with a pocket, and a composite throttle. The data shown here is for the case where the supply pressure is 5 kgf / cm 2 G.

第3図は横軸をH/Cr、縦軸を軸受の最適隙間に対する
ばね定数つまり最大ばね定数値であり、縦軸を軸受の最
適隙間に対するばね定数値との関係を示したデータであ
る。また、第4図は同様に横軸をH/Crとし、縦軸を軸受
の最適隙間に対する無次元減衰係数としたデータであ
る。
In FIG. 3, the horizontal axis is H / Cr, the vertical axis is the spring constant for the optimum clearance of the bearing, that is, the maximum spring constant value, and the vertical axis is the data showing the relationship with the spring constant value for the optimum clearance of the bearing. Similarly, FIG. 4 shows data in which the horizontal axis is H / Cr and the vertical axis is the dimensionless damping coefficient for the optimum clearance of the bearing.

この2つのデータから、H/Crが0.5〜1.5の範囲内にあ
るとき最大ばね定数が得られ、かつ最大ばね定数値時の
減衰係数の値が高いことが明らかである。
From these two data, it is clear that the maximum spring constant is obtained when H / Cr is in the range of 0.5 to 1.5, and that the value of the damping coefficient at the maximum spring constant value is high.

第1図に示すように、ポケット14の深さを軸隙間Gの
大きさCrとほぼ同じ程度に浅くすると、つまりノズル径
dとH及びCrとの関係、 πd2/4>πd(H+Cr) が成り立つとき、即ちオリフィス絞りとして機能する直
径dを有するノズル13の断面積πd2/4よりも、自成絞り
として機能する直径dと高さ(H+Cr)から成る仮想筒
状体の周面積πd(H+Cr)が小さいとき、空気流が絞
られる位置Cはポケット14及び軸隙間Gの両方に形成さ
れる。そして、この機能を持つ絞り形式を複合絞りと称
することにする。
As shown in FIG. 1, when a shallow depth of the pocket 14 to about the same extent as the magnitude Cr axis gap G, i.e. the relationship between the nozzle diameter d and H and Cr, πd 2/4> πd (H + Cr) when the holds, i.e. than the cross-sectional area [pi] d 2/4 of the nozzle 13 having a diameter d that serves as an orifice aperture, circumferential area [pi] d of virtual cylindrical body consisting of the diameter d and height which functions as a self-formed aperture (H + Cr) When (H + Cr) is small, the position C where the air flow is restricted is formed in both the pocket 14 and the shaft gap G. An aperture format having this function is called a composite aperture.

第5図は本発明に係る複合絞り方式の静圧空気軸受に
おける軸隙間Gの大きさCrとばね定数との関係を、供給
圧力を5kgf/cm2Gとした場合において、従来の自成絞り
及びポケット付オリフィス絞りのそれと比較して示した
ものであり、Fは本発明に係る複合絞り、Jは従来の自
成絞り、Pはポケット付オリフィス絞りを表している。
FIG. 5 shows the relationship between the size Cr of the shaft gap G and the spring constant in the composite throttle type hydrostatic air bearing according to the present invention, when the supply pressure is 5 kgf / cm 2 G and the conventional self-contained throttle. And F, a composite orifice according to the present invention, J represents a conventional self-contained restrictor, and P represents an orifice restrictor with a pocket.

複合絞りFでは絞りの有効断面積が小さくなるので、
ノズル径が同じでも従来のポケット付オリフィス絞りP
よりも狭い軸隙間でばね定数の最大値を得ることがで
き、しかもポケット付オリフィス絞りPよりも最大ばね
定数値は大きくなる。また、狭い隙間で最大ばね定数値
が得られるため、空気使用量を従来のポケット付オリフ
ィス絞りPよりも大幅に少なくすることができる。
In the case of the composite aperture F, the effective area of the aperture is small,
Orifice throttle P with conventional pocket even if nozzle diameter is the same
The maximum value of the spring constant can be obtained with a smaller shaft clearance, and the maximum spring constant value is larger than that of the orifice throttle P with a pocket. Further, since the maximum spring constant value can be obtained with a narrow gap, the amount of air used can be significantly reduced as compared with the conventional orifice throttle P with a pocket.

第6図は軸隙間Gの大きさCrと無次元減衰係数との関
係を同様に従来の方式と比較して示したものであり、θ
はポケット付オリフィス絞りPの不安定領域を表してい
る。この第6図から判かるように、本発明の複合絞りF
ではポケット14の深さが浅いため、減衰係数の低下を防
止することができ、最大ばね定数値を示す軸隙間Gの大
きさCrにおいても、減衰係数がポケット付オリフィス絞
りPほど低下せず、軸受本体は安定化を保持することが
できる。
FIG. 6 similarly shows the relationship between the size Cr of the shaft gap G and the dimensionless damping coefficient in comparison with the conventional method.
Represents an unstable region of the orifice diaphragm P with a pocket. As can be seen from FIG. 6, the composite diaphragm F of the present invention is used.
Since the depth of the pocket 14 is shallow, a decrease in the damping coefficient can be prevented, and the damping coefficient does not decrease as much as the orifice restrictor P with the pocket even at the size Cr of the shaft gap G showing the maximum spring constant value. The bearing body can maintain stability.

複合絞りFは静圧空気軸受と同様な機能を有する静圧
空気テーブルにも適応することができるし、またノズル
のポケット深さを制御する能動型静圧空気軸受の最適制
御等にも応用することができる。
The composite throttle F can be applied to a hydrostatic air table having the same function as a hydrostatic air bearing, and is also applied to an optimum control of an active hydrostatic air bearing for controlling a pocket depth of a nozzle. be able to.

[発明の効果] 以上説明したように本発明に係る静圧空気軸受は、ポ
ケット内にも自成絞りの機能を持たせることにより、ポ
ケット付オリフィス絞りよりも狭い軸隙間でより大きな
ばね定数を得ることができ、軸隙間の微少化が可能とな
り消費空気量も少なくすることができる。更に、最大ば
ね定数を持つ軸隙間の大きさが不安定領域から大幅にず
れているので、軸隙間が大きく変動しても十分に安定性
を保持することが可能である。
[Effects of the Invention] As described above, the hydrostatic air bearing according to the present invention has a larger spring constant with a smaller shaft clearance than an orifice throttle with a pocket by having the function of a self-generated throttle in the pocket. As a result, the shaft clearance can be reduced, and the amount of consumed air can be reduced. Further, since the size of the shaft gap having the maximum spring constant is greatly deviated from the unstable region, it is possible to sufficiently maintain the stability even if the shaft gap greatly changes.

【図面の簡単な説明】[Brief description of the drawings]

図面第1図〜第7図は本発明に係る静圧空気軸受の実施
例を示し、第1図は複合絞りの原理図、第2図(a)、
(b)は実験に用いたラジアル軸受の寸法図、第3図は
その最大ばね定数の変化の特性図、第4図は最大ばね定
数値時の無次元減衰係数の変化の特性図、第5図はばね
定数と軸隙間との関係の特性図、第6図は無次元減衰関
数と軸隙間との関係の特性図、第7図はノズルの寸法図
であり、第8図〜第13図は従来の静圧空気軸受の絞り方
式を示し、第8図は自成絞りの構成図、第9図はポケッ
ト付オリフィス絞りの構成図、第10図は自成絞りの説明
図、第11図はポケット付オリフィス絞りの説明図、第12
図は自成絞りの圧力分布状態のグラフ図、第13図はポケ
ット付オリフィス絞りの圧力分布状態のグラフ図であ
る。 符号11は軸、12は軸受本体、13はオリフィス、14はポケ
ット、Gは軸隙間である。
1 to 7 show an embodiment of a hydrostatic air bearing according to the present invention. FIG. 1 is a diagram showing the principle of a composite throttle, FIG.
(B) is a dimensional diagram of the radial bearing used in the experiment, FIG. 3 is a characteristic diagram of a change in the maximum spring constant, FIG. 4 is a characteristic diagram of a change in the dimensionless damping coefficient at the maximum spring constant value, and FIG. FIG. 6 is a characteristic diagram showing the relationship between the spring constant and the shaft clearance, FIG. 6 is a characteristic diagram showing the relationship between the dimensionless damping function and the shaft clearance, and FIG. 7 is a dimensional diagram of the nozzle. Fig. 8 shows a conventional static pressure air bearing throttle system, Fig. 8 is a configuration diagram of a self-generated throttle, Fig. 9 is a configuration diagram of an orifice throttle with a pocket, Fig. 10 is an explanatory diagram of a self-generated throttle, Fig. 11 Is the illustration of the orifice diaphragm with pocket, twelfth
FIG. 13 is a graph showing a pressure distribution state of a self-contained throttle, and FIG. Reference numeral 11 denotes a shaft, 12 denotes a bearing body, 13 denotes an orifice, 14 denotes a pocket, and G denotes a shaft clearance.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ノズル先に端部ポケットを有する絞り形式
を持つ静圧空気軸受において、前記ノズルの直径d、前
記ポケットの深さH及び軸隙間の大きさCrとの間にπd2
/4>πd(H+Cr)及びH/Cr=0.5〜1.5を成立させたこ
とを特徴とする静圧空気軸受。
1. A static pressure air bearing having a throttle type having an end pocket at a nozzle tip, wherein πd 2 is defined between a diameter d of the nozzle, a depth H of the pocket, and a size Cr of a shaft clearance.
/ 4> πd (H + Cr) and H / Cr = 0.5 to 1.5.
JP2007780A 1990-01-17 1990-01-17 Hydrostatic air bearing Expired - Lifetime JP2724349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007780A JP2724349B2 (en) 1990-01-17 1990-01-17 Hydrostatic air bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007780A JP2724349B2 (en) 1990-01-17 1990-01-17 Hydrostatic air bearing

Publications (2)

Publication Number Publication Date
JPH03213718A JPH03213718A (en) 1991-09-19
JP2724349B2 true JP2724349B2 (en) 1998-03-09

Family

ID=11675190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007780A Expired - Lifetime JP2724349B2 (en) 1990-01-17 1990-01-17 Hydrostatic air bearing

Country Status (1)

Country Link
JP (1) JP2724349B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113614401A (en) * 2019-03-22 2021-11-05 三菱重工发动机和增压器株式会社 Bearing device and rotating device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH693071A5 (en) * 1998-01-23 2003-02-14 C R I D S A Cie De Rech S Ind Bearings.
JP2004144188A (en) * 2002-10-24 2004-05-20 Nippon Steel Corp Static pressure gas bearing
JP2009144788A (en) * 2007-12-13 2009-07-02 Disco Abrasive Syst Ltd Spindle assembly
JP5082929B2 (en) * 2008-02-29 2012-11-28 株式会社ニコン Fluid bearing, stage apparatus, exposure apparatus, and device manufacturing method
JP4992986B2 (en) * 2010-01-22 2012-08-08 新東工業株式会社 Hydrostatic bearing device and stage with hydrostatic bearing device
CN104265764A (en) * 2014-09-23 2015-01-07 哈尔滨工程大学 Ring-belt multi-throttler type static pressure gas cylinder bearing

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5459545A (en) * 1977-10-21 1979-05-14 Canon Kk Fluid bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113614401A (en) * 2019-03-22 2021-11-05 三菱重工发动机和增压器株式会社 Bearing device and rotating device
US11655851B2 (en) 2019-03-22 2023-05-23 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Bearing device and rotating device

Also Published As

Publication number Publication date
JPH03213718A (en) 1991-09-19

Similar Documents

Publication Publication Date Title
JP2724349B2 (en) Hydrostatic air bearing
JPS59113242A (en) Valve assembly and production thereof
US3508799A (en) Gas bearings
JPS632721B2 (en)
ATE170992T1 (en) GRINDING WITH MAXIMUM AXIS ACCELERATION
JP2006510856A (en) Gas bearing device
JPH02146312A (en) Dead load type bearing
US4305893A (en) Variable venturi type carburetor
JP2827980B2 (en) Floating head slider
JP2869725B2 (en) Magnetic bearing control device
JP3039738B2 (en) Hydrostatic bearing
JP3064067B2 (en) Robot / hand control method
JP4031867B2 (en) Hydrostatic air bearing device
JP2568459B2 (en) Non-contact type shaft sealing device
JPH10331852A (en) Fluid bearing device
JP3194588B2 (en) Hydrostatic gas bearing
JPS5913120A (en) Static pressure fluid bearing
JPH0411346A (en) Rotary magnetic head device
JPH04107321A (en) Hydrostatic air bearing
JP2968415B2 (en) Static pressure constant pressure proportional control valve type static pressure device
JPH0276923A (en) Static pressure gas bearing
JPS63246503A (en) Rotary body supported by magnetic bearing
JPS61171967A (en) Device for sealing shaft extending to vessel for fluid
JPH03177661A (en) Non-contact mechanical seal
JPH10217053A (en) Positioning device using static pressure bearing