JP2004143259A - Polishing composition - Google Patents

Polishing composition Download PDF

Info

Publication number
JP2004143259A
JP2004143259A JP2002308612A JP2002308612A JP2004143259A JP 2004143259 A JP2004143259 A JP 2004143259A JP 2002308612 A JP2002308612 A JP 2002308612A JP 2002308612 A JP2002308612 A JP 2002308612A JP 2004143259 A JP2004143259 A JP 2004143259A
Authority
JP
Japan
Prior art keywords
polishing
polishing composition
copper
sio
tantalum compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002308612A
Other languages
Japanese (ja)
Inventor
Toshiro Takeda
竹田 敏郎
Fumihiro Shiraishi
白石 史広
Michio Kimura
木村 道生
Toshihiko Ogawa
小川 俊彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2002308612A priority Critical patent/JP2004143259A/en
Publication of JP2004143259A publication Critical patent/JP2004143259A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polishing composition with which the rate of polishing of a tantalum compound is sufficiently greater than that of copper and which causes substantially no polishing of SiO<SB>2</SB>in the process of CMP of a semiconductor device having a copper film, a barrier layer comprising a tantalum compound, and an insulating layer comprising SiO<SB>2</SB>. <P>SOLUTION: Abrasives comprising a colloidal silica having a mean diameter of primary particles of 30 nm and a polymethyl methacrylate having a mean particle diameter of 30 nm and a coefficient of linear expansion at 23-50°C, measured at a temperature rise rate of 5°C/min, of 65 ppm/°C, oxalic acid, hydrogen peroxide, and benzotriazole are mixed with an ion-exchange water filtrated through a 0.5 μm cartridge filter. The mixture is agitated with a high-speed homogenizer to form a uniform dispersion, thus giving the polishing composition. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体、各種メモリーハードディスク用基板等の研磨に使用される研磨用組成物に関し、特に半導体のデバイスウエハーの表面平坦化加工に好適に用いられる研磨用組成物に関するものである。
【0002】
【従来の技術】
エレクトロニクス業界の最近の著しい発展により、トランジスター、IC、LSI、超LSIと進化してきており、これら半導体素子に於ける回路の集積度が急激に増大するに伴って半導体デバイスのデザインルールは年々微細化が進み、デバイス製造プロセスでの焦点深度は浅くなり、パターン形成面の平坦性はますます厳しくなってきている。
【0003】
一方で配線の微細化による配線抵抗の増大をカバーするために、配線材料としてアルミニウムやタングステンからより電気抵抗の小さな銅配線が検討されてきている。しかしながら銅を配線層や配線間の相互接続に用いる場合には、絶縁膜上に配線溝や孔を形成した後、スパッタリングやメッキによって銅膜を形成して不要な部分を化学的機械的研磨法(CMP)によって絶縁膜上の不要な銅が取り除かれる。
【0004】
かかるプロセスでは銅が絶縁膜中に拡散してデバイス特性を低下させるので、通常は銅の拡散防止のために絶縁膜上にバリア層としてタンタルやタンタルナイトライドの層を設けることが一般的になっている。
【0005】
このようにして最上層に銅膜を形成させたデバイスの平坦化CMPプロセスにおいては、初めに不要な部分の銅膜を絶縁層上に形成されたタンタル化合物の表面層まで研磨し、次のステップでは絶縁膜上のタンタル化合物の層を研磨しSiO面が出たところで研磨が終了していなければならない。このようなプロセスを図1に示したが、かかるプロセスにおけるCMP研磨では銅、タンタル化合物、SiOなどの異種材料に対して研磨レートに選択的性があることが必要である。
【0006】
即ちステップ1では銅に対する研磨レートが高く、タンタル化合物に対してはほとんど研磨能力がない程度の選択性が必要である。さらにステップ2ではタンタル化合物に対する研磨レートは大きいが銅、SiOに対する研磨レートが小さいほどSiOの削りすぎを防止できるので好ましい。
【0007】
このプロセスを理想的には一つの研磨材で研磨できることが望まれるが、異種材料に対する研磨レートの選択比をプロセスの途中で変化させることはできないのでプロセスを2ステップに分けて異なる選択性を有する2つのスラリーでそれぞれのCMP工程を実施する。通常溝や孔の銅膜の削りすぎ(ディッシング、リセス、エロージョン)を防ぐためにステップ1ではタンタル化合物上の銅膜は少し残した状態で研磨を終了させる。ついでステップ2ではSiO層をストッパーとして残ったわずかな銅とタンタル化合物を研磨除去する。
【0008】
ステップ2に用いられる研磨用組成物に対しては、ステップ1で研磨された状態から主としてタンタル化合物を選択的に研磨するために必要な研磨レートは500〜1000(Å/min.)程度であり、銅、SiOの研磨レートについてはそれぞれ0〜100(Å/min.)、0〜10(Å/min.)が望ましいとされている。
【0009】
このような2ndステップ研磨用の研磨用組成物としては、コロイダルシリカ、過酸化水素、ベンゾトリアゾール、シュウ酸と水とを含有しKOHなどでpH2〜5に調整した研磨用組成物が特許文献1に記載されているが、タンタル化合物に対して銅の研磨レートより大きくなっているがその比が3程度であり、選択性が充分とは言えなかった。
【0010】
また、砥粒に有機粒子と無機粒子を併用した2ndステップ研磨用組成物として、過酸化水素、酢酸、KOH、マレイン酸塩などが配合された組成物が特許文献2に示されているが、タンタル化合物と銅との研磨選択比が1.1程度であり、1stステップでの銅の研磨をアンダーポリッシングで止め、2ndステップで銅とタンタル化合物を一緒に研磨する場合には好ましい選択比ではあるがタンタル化合物のみを選択的に研磨し、銅やSiOはできるだけ研磨しないようにする用途には不向きであった。
【0011】
【特許文献1】
特開2001−247853号公報
【特許文献2】
特開2001−196336号公報
【0012】
【発明が解決しようとする課題】
本発明の目的は、銅膜、タンタル化合物のバリア層、SiOの絶縁層を有する半導体デバイスのCMP加工プロセスにおいて、タンタル化合物の研磨レートが銅に比べて充分に大きく、SiOの研磨は実質的に殆んど起こらない研磨用組成物を提供することにある。
【0013】
【課題を解決するための手段】
本発明は、
(A)研磨材、(B)有機酸、(C)酸化剤、(D)酸化防止剤、および(E)水を含有する研磨用組成物であって、(A)研磨材が、平均粒径1nm−100nmの範囲にある有機粒子と平均粒径が5nm−100nmの範囲にあるフュームドシリカ、コロイダルシリカ、フュームドアルミナ、およびコロイダルアルミナのうち少なくとも1種類からなる無機粒子の混合物であり、有機粒子の23℃−50℃の線膨張率が10〜100ppm/℃であり、有機粒子と無機粒子の重量配合比は60/40〜5/95の範囲にあり、研磨用組成物中の濃度が2〜10重量%であり、(B)有機酸の主成分がシュウ酸であり、研磨用組成物中の濃度が0.01〜1.0重量%であり、(C)酸化剤が過酸化水素であり、研磨用組成物中の濃度が0.03〜1.0重量%であり、(D)酸化防止剤がベンゾトリアゾールまたはその誘導体であり、研磨組成物中の濃度が0.01〜1.0重量%であることを特徴とする研磨用組成物である。
【0014】
【発明の実施の形態】
本発明はかかる上記の問題点を解決するために種々検討した結果、特定の弾性率の樹脂粒子からなる有機砥粒と無機砥粒、有機酸、過酸化水素、ベンゾトリアゾール化合物、及び水からなる研磨用組成物を用いることで、タンタル化合物の研磨レートが銅に比べて充分に大きく、しかもSiOの研磨レートを充分に小さくできることを見いだし、発明を完成するに至ったものである。
【0015】
本発明に用いられる研磨材は特定の平均粒径並びに特定の配合比の特定の樹脂からなる有機粒子と無機粒子混合物である。
本発明に用いられる有機粒子は、有機高分子化合物であり、例えば、ビニルモノマーの乳化重合などによって得られる有機高分子化合物の微粒子やポリエステル,ポリアミド、ポリイミド、ポリベンゾオキサゾールなど重縮合によって得られる有機高分子の微粒子やフェノール樹脂、メラミン樹脂などの付加縮合によって得られる有機高分子の微粒子をあげることができ、単独或いは任意に組み合わせ用いることができる。好ましくは比較的安価で粒径の揃った極性の低いビニル系高分子である。その有機高分子化合物は、微粒子形状で用いられ、その平均粒径は1〜100nmの範囲にある有機高分子化合物からなるものである。平均粒径が1nm未満であると研磨速度が小さくなるので好ましくなく、100nmを越えるとTaと銅、SiOとの研磨選択比が相対的に小さくなるので好ましくない。
【0016】
さらにはこの微粒子の23℃−50℃の線膨張率が、10〜100ppm/℃の範囲にあることが好ましい。線膨張率が10ppm/℃未満であると銅の研磨表面に傷が入りやすくなるので好ましくなく100ppm/℃を超えるとタンタルの研磨レートが極端に低下するので好ましくない。線膨張率の測定は公知の方法で測定可能である。例を挙げると、成型加工してフィルム化できる場合は短冊状またはフィルムに加工して、熱機械試験機(TMA)の引っ張りモードで昇温させた時の膨張率を単位あたりの数値で求めることができる。
【0017】
本発明に用いる無機粒子はフュームドシリカ、コロイダルシリカ、フュームドアルミナ、およびコロイダルアルミナのうち少なくとも1種類からなる無機粒子の混合物であり、これらのものを単独或いは任意に組み合わせ用いることができる。組み合わせや比率などは特に限定されるものではない。平均粒径は5〜100nmであることが望ましい。平均粒径が5nm未満であると研磨速度が小さくなるので好ましくなく、100nmを越えるとTaと銅、SiOとの研磨選択比が相対的に小さくなるので好ましくない。
【0018】
有機粒子と無機粒子の重量配合比は60/40〜5/95の範囲にあることが好ましい。この範囲よりも有機粒子の割合が少ないとSiO膜の研磨レートを抑える効果が小さいので好ましくなく、この範囲よりも有機粒子が多いとタンタル膜を研磨する際の研磨速度が低下するので好ましくない。
【0019】
研磨材の研磨用組成物中の濃度は2〜10重量%であることが望ましい。研磨材の濃度が小さくなりすぎると機械的な研磨能力が減少し研磨レートが低下するので好ましくなく、濃度が高すぎると機械的研磨能力が増大してタンタル化合物、銅、SiOの研磨の選択性が低下するので好ましくない。
【0020】
本発明の研磨用組成物は有機酸を含有する。有機酸はシュウ酸であることが好ましい。研磨用組成物中の濃度は0.01〜1.0重量%であることが望ましい。0.01重量%未満であるとタンタル化合物膜の研磨レートが小さくなるために好ましくなく1.0重量%を超えると銅膜研磨レートが大きくなり制御できなくなるので好ましくない。
【0021】
本発明の研磨用組成物は酸化剤を含有するが酸化剤としては過酸化水素が好ましい。過酸化水素はタンタル化合物膜に対して酸化作用を発揮し、イオン化を促進することによってタンタル化合物膜の研磨レートを高める働きがあるが、研磨用組成物中の濃度は0.03〜1.0重量%であることが望ましい。この範囲の濃度から高くなっても低くなり過ぎてもタンタル化合物膜の研磨レートが低下するので好ましくない。
【0022】
本発明の研磨用組成物は酸化防止剤としてベンゾトリアゾールまたはその誘導体を含有し、研磨組成物中の濃度は0.01〜1.0重量%である。0.01重量%未満であると銅膜の研磨レートを抑える効果に乏しくなるので好ましくなく、1.0重量%を超えるとタンタル化合物膜の研磨レートが極端に減少するので好ましくない。
【0023】
本発明の研磨用組成物の媒体は水であり、イオン性不純物や金属イオンを極力減らしたものであることが望ましい。
【0024】
本発明の研磨用組成物は上記の各成分、研磨材、有機酸、酸化剤、酸化防止剤、を水に混合、溶解、分散させて製造する。過酸化水素は、研磨直前に前記の混合液に添加、混合するが予め混合しておくことも可能である。それらの混合方法は、任意の装置で行うことができる。例えば、翼式回転攪拌機、超音波分散機、ビーズミル分散機、ニーダー、ボールミルなどが適用可能である。
【0025】
また上記成分以外に種々の研磨助剤を配合してもよい。このような研磨助剤の例としては、分散助剤、防錆剤、消泡剤、pH調整剤、防かび剤等が挙げられるが、これらはスラリーの分散貯蔵安定性、研磨速度の向上の目的で加えられる。分散助剤としてはヘキサメタリン酸ソーダ等が挙げられる。もちろん各種界面活性剤などを添加して分散性を向上させることができることは言うまでもない。pH調整剤としてはアンモニアなどの塩基性化合物や酢酸、塩酸、硝酸等の酸性化合物が挙げられる。消泡剤としては流動パラフィン、ジメチルシリコーンオイル、ステアリン酸モノ、ジグリセリド混合物、ソルビタンモノパルミチエート、等が挙げられる。
【0026】
【実施例】
本発明を実施例で具体的に説明する。
<実施例1>
研磨材として一次粒子の平均粒径が30nmであるコロイダルシリカと平均粒径30nm、昇温速度5℃/min.の条件で測定された23℃−50℃の線膨張率が65ppm/℃のポリメチルメタクリレート、シュウ酸、過酸化水素、ベンゾトリアゾールが表1に示された濃度になるように0.5μmのカートリッジフィルターで濾過されたイオン交換水に混合し、高速ホモジナイザーで攪拌して均一に分散させて研磨用組成物を得、研磨特性を評価した結果を表1に示した。
【0027】
<研磨評価>
被研磨物は8インチのシリコンウエハー上SiO膜、タンタル化合物膜、銅膜のベタ膜を形成したものを用意し各膜の研磨レートを測定し、選択比を求めた。
【0028】
研磨は定盤径600mmの片面研磨機を用いた。研磨機の定盤にはロデール社製(米国)のポリウレタン製研磨パッドIC−1000/Suba400を専用の両面テープで張り付け、研磨用組成物(スラリー)を流しながら研磨した。荷重は3psi、定盤の回転数を70rpm、ウエハー回転数72rpm、研磨材組成物の流量を150ml/minとした。
【0029】
<実施例2〜6、比較例1〜10>
表1に示された配合によって研磨組成物を調整し研磨特性を評価した。
結果を表1に示した。
【0030】
【表1】

Figure 2004143259
【0031】
【発明の効果】
以上のように本発明によれば銅膜、タンタル膜を含む半導体デバイスのCMP加工プロセスにおいてタンタル化合物膜を優先的に研磨可能な研磨液組成物が得られ、半導体デバイスを効率的に製造することができる。
【図面の簡単な説明】
【図1】銅膜を形成させたデバイスの研磨プロセスの模式図
【符号の説明】
1 Cu
2 Ta
3 SiO [0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polishing composition used for polishing semiconductors, substrates for various memory hard disks, and the like, and more particularly to a polishing composition suitably used for flattening a surface of a semiconductor device wafer.
[0002]
[Prior art]
The recent remarkable development of the electronics industry has evolved into transistors, ICs, LSIs, and VLSIs. With the rapid increase in the degree of circuit integration in these semiconductor devices, the design rules for semiconductor devices have become smaller year by year. The depth of focus in the device manufacturing process has become shallower, and the flatness of the pattern formation surface has become increasingly severe.
[0003]
On the other hand, in order to cover an increase in wiring resistance due to miniaturization of wiring, copper wiring having lower electric resistance has been studied from aluminum and tungsten as wiring materials. However, when copper is used for wiring layers and interconnections between wiring, after forming wiring grooves and holes on the insulating film, a copper film is formed by sputtering or plating, and unnecessary parts are chemically and mechanically polished. Unnecessary copper on the insulating film is removed by the (CMP).
[0004]
In such a process, copper diffuses into the insulating film and deteriorates device characteristics. Therefore, it is common practice to provide a tantalum or tantalum nitride layer as a barrier layer on the insulating film to prevent copper diffusion. ing.
[0005]
In the planarization CMP process for a device in which a copper film is formed on the uppermost layer in this manner, an unnecessary portion of the copper film is first polished to a tantalum compound surface layer formed on an insulating layer, and the next step is performed. Then, the tantalum compound layer on the insulating film must be polished and the polishing must be completed when the SiO 2 surface comes out. FIG. 1 shows such a process. In the CMP polishing in such a process, it is necessary that the polishing rate be selective to different materials such as copper, a tantalum compound, and SiO 2 .
[0006]
That is, in step 1, the polishing rate for copper is high and the selectivity is such that there is almost no polishing ability for the tantalum compound. Further, in step 2, the polishing rate for the tantalum compound is large, but the polishing rate for copper and SiO 2 is preferably small, because excessive removal of SiO 2 can be prevented.
[0007]
Ideally, this process should be able to be polished with a single abrasive, but since the selectivity of the polishing rate for different materials cannot be changed during the process, the process is divided into two steps and has different selectivities. Perform each CMP step with the two slurries. In order to prevent the copper film in the grooves and holes from being excessively ground (dishing, recess, erosion), the polishing is terminated in step 1 with the copper film on the tantalum compound being left slightly. Next, in Step 2, a small amount of copper and a tantalum compound remaining using the SiO 2 layer as a stopper are polished and removed.
[0008]
With respect to the polishing composition used in Step 2, the polishing rate necessary for selectively polishing mainly the tantalum compound from the state polished in Step 1 is about 500 to 1000 (Å / min.). , Copper and SiO 2 are desirably 0 to 100 (Å / min.) And 0 to 10 (Å / min.), Respectively.
[0009]
As such a polishing composition for 2nd step polishing, a polishing composition containing colloidal silica, hydrogen peroxide, benzotriazole, oxalic acid and water and adjusted to pH 2 to 5 with KOH or the like is disclosed in Patent Document 1. However, the polishing rate was higher than the polishing rate of copper with respect to the tantalum compound, but the ratio was about 3, and the selectivity was not sufficient.
[0010]
Patent Document 2 discloses a composition in which hydrogen peroxide, acetic acid, KOH, maleate, and the like are blended as a 2nd step polishing composition in which organic particles and inorganic particles are used in combination for abrasive grains. When the polishing selectivity of the tantalum compound and copper is about 1.1, and the polishing of copper in the first step is stopped by under polishing, and the copper and the tantalum compound are polished together in the second step, this is a preferable selection ratio. However, it is not suitable for use in which only a tantalum compound is selectively polished and copper and SiO 2 are not polished as much as possible.
[0011]
[Patent Document 1]
JP 2001-247853 A [Patent Document 2]
JP 2001-196336 A
[Problems to be solved by the invention]
An object of the present invention is to provide a semiconductor device having a copper film, a tantalum compound barrier layer, and an SiO 2 insulating layer in a CMP processing process, in which the polishing rate of the tantalum compound is sufficiently larger than that of copper, and the polishing of SiO 2 is substantially performed. An object of the present invention is to provide a polishing composition which hardly occurs.
[0013]
[Means for Solving the Problems]
The present invention
A polishing composition comprising (A) an abrasive, (B) an organic acid, (C) an oxidizing agent, (D) an antioxidant, and (E) water, wherein (A) the abrasive has an average particle size. A mixture of organic particles having a diameter of 1 nm to 100 nm and fumed silica having an average particle diameter of 5 nm to 100 nm, colloidal silica, fumed alumina, and inorganic particles composed of at least one of colloidal alumina, The linear expansion coefficient of the organic particles at 23 ° C. to 50 ° C. is 10 to 100 ppm / ° C., the weight ratio of the organic particles to the inorganic particles is in the range of 60/40 to 5/95, and the concentration in the polishing composition. Is 2 to 10% by weight, (B) the main component of the organic acid is oxalic acid, the concentration in the polishing composition is 0.01 to 1.0% by weight, and (C) the oxidizing agent is excessive. It is hydrogen oxide and has a concentration of 0 in the polishing composition. (D) the antioxidant is benzotriazole or a derivative thereof, and the concentration in the polishing composition is 0.01 to 1.0% by weight. A composition.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
As a result of various studies to solve the above problems, the present invention comprises an organic abrasive and an inorganic abrasive comprising resin particles having a specific elastic modulus, an organic acid, hydrogen peroxide, a benzotriazole compound, and water. By using the polishing composition, it has been found that the polishing rate of the tantalum compound is sufficiently higher than that of copper and the polishing rate of SiO 2 can be sufficiently reduced, and the present invention has been completed.
[0015]
The abrasive used in the present invention is a mixture of organic particles and inorganic particles made of a specific resin having a specific average particle diameter and a specific compounding ratio.
The organic particles used in the present invention are organic polymer compounds, for example, organic polymer compound fine particles obtained by emulsion polymerization of a vinyl monomer or organic polymer obtained by polycondensation such as polyester, polyamide, polyimide and polybenzoxazole. Examples thereof include polymer fine particles and organic polymer fine particles obtained by addition condensation of a phenol resin, a melamine resin, or the like, and these can be used alone or in any combination. Preferably, it is a relatively inexpensive vinyl polymer having a uniform particle size and a low polarity. The organic polymer compound is used in the form of fine particles, and has an average particle size in the range of 1 to 100 nm. If the average particle size is less than 1 nm, the polishing rate will be low, which is not preferable. If it exceeds 100 nm, the polishing selectivity between Ta, copper and SiO 2 will be relatively small, which is not preferable.
[0016]
Further, the linear expansion coefficient of the fine particles at 23 ° C to 50 ° C is preferably in the range of 10 to 100 ppm / ° C. If the coefficient of linear expansion is less than 10 ppm / ° C., the polishing surface of copper is easily damaged, and if it is more than 100 ppm / ° C., the polishing rate of tantalum is extremely lowered, which is not preferable. The linear expansion coefficient can be measured by a known method. To give an example, if it can be formed into a film by molding, it should be processed into a strip or film, and the expansion rate when the temperature is raised in the tensile mode of a thermomechanical testing machine (TMA) should be calculated as a numerical value per unit. Can be.
[0017]
The inorganic particles used in the present invention are a mixture of inorganic particles composed of at least one of fumed silica, colloidal silica, fumed alumina, and colloidal alumina, and these can be used alone or in any combination. The combination and ratio are not particularly limited. The average particle size is desirably 5 to 100 nm. If the average particle size is less than 5 nm, the polishing rate is reduced, which is not preferable. If it exceeds 100 nm, the polishing selectivity between Ta, copper, and SiO 2 is relatively small, which is not preferable.
[0018]
The weight ratio of the organic particles to the inorganic particles is preferably in the range of 60/40 to 5/95. If the proportion of the organic particles is smaller than this range, the effect of suppressing the polishing rate of the SiO 2 film is small, which is not preferable. If the proportion of the organic particles is larger than this range, the polishing rate when polishing the tantalum film decreases, which is not preferable. .
[0019]
The concentration of the abrasive in the polishing composition is desirably 2 to 10% by weight. If the concentration of the abrasive is too low, the mechanical polishing ability decreases and the polishing rate decreases, which is not preferable. If the concentration is too high, the mechanical polishing ability increases and the polishing of the tantalum compound, copper, and SiO 2 is selected. It is not preferable because the property is lowered.
[0020]
The polishing composition of the present invention contains an organic acid. Preferably, the organic acid is oxalic acid. The concentration in the polishing composition is desirably 0.01 to 1.0% by weight. If the amount is less than 0.01% by weight, the polishing rate of the tantalum compound film becomes small.
[0021]
The polishing composition of the present invention contains an oxidizing agent, and the oxidizing agent is preferably hydrogen peroxide. Hydrogen peroxide exerts an oxidizing effect on the tantalum compound film and has a function of increasing the polishing rate of the tantalum compound film by promoting ionization, but the concentration in the polishing composition is 0.03 to 1.0. % By weight. If the concentration is too high or too low, the polishing rate of the tantalum compound film is undesirably reduced.
[0022]
The polishing composition of the present invention contains benzotriazole or a derivative thereof as an antioxidant, and the concentration in the polishing composition is 0.01 to 1.0% by weight. If the amount is less than 0.01% by weight, the effect of suppressing the polishing rate of the copper film is poor, so that it is not preferable. If the amount exceeds 1.0% by weight, the polishing rate of the tantalum compound film is extremely reduced, which is not preferable.
[0023]
The medium of the polishing composition of the present invention is water, and it is preferable that ionic impurities and metal ions are reduced as much as possible.
[0024]
The polishing composition of the present invention is produced by mixing, dissolving, and dispersing the above components, an abrasive, an organic acid, an oxidizing agent, and an antioxidant in water. Hydrogen peroxide is added to and mixed with the above mixed solution immediately before polishing, but it is also possible to mix them in advance. These mixing methods can be performed with any device. For example, a blade-type rotary stirrer, an ultrasonic disperser, a bead mill disperser, a kneader, a ball mill and the like can be applied.
[0025]
In addition to the above components, various polishing aids may be blended. Examples of such polishing aids include dispersing aids, rust preventives, defoamers, pH adjusters, fungicides, and the like, which are used to improve the dispersion storage stability of the slurry and the polishing rate. Added for purpose. Examples of the dispersing aid include sodium hexametaphosphate. Of course, it is needless to say that the dispersibility can be improved by adding various surfactants and the like. Examples of the pH adjuster include basic compounds such as ammonia and acidic compounds such as acetic acid, hydrochloric acid, and nitric acid. Examples of the antifoaming agent include liquid paraffin, dimethyl silicone oil, monostearic acid, a mixture of diglycerides, and sorbitan monopalmitate.
[0026]
【Example】
The present invention will be specifically described with reference to examples.
<Example 1>
As an abrasive, colloidal silica having an average primary particle size of 30 nm, an average particle size of 30 nm, and a heating rate of 5 ° C./min. 0.5 μm cartridge so that polymethyl methacrylate, oxalic acid, hydrogen peroxide, and benzotriazole having a linear expansion coefficient of 23 ppm to 50 ° C. measured under the conditions of (1) to (6) ppm / ° C. become the concentration shown in Table 1. It was mixed with ion-exchanged water filtered by a filter, stirred with a high-speed homogenizer and uniformly dispersed to obtain a polishing composition. The results of evaluating the polishing characteristics are shown in Table 1.
[0027]
<Polishing evaluation>
The object to be polished was prepared by forming a solid film of an SiO 2 film, a tantalum compound film, and a copper film on an 8-inch silicon wafer, and the polishing rate of each film was measured to obtain a selectivity.
[0028]
Polishing was performed using a single-side polishing machine having a platen diameter of 600 mm. A polishing pad IC-1000 / Suba400 made by Rodale (USA) was adhered to a surface plate of the polishing machine with a special double-sided tape, and polished while flowing a polishing composition (slurry). The load was 3 psi, the number of revolutions of the platen was 70 rpm, the number of revolutions of the wafer was 72 rpm, and the flow rate of the abrasive composition was 150 ml / min.
[0029]
<Examples 2 to 6, Comparative Examples 1 to 10>
Polishing compositions were adjusted according to the formulations shown in Table 1 to evaluate polishing characteristics.
The results are shown in Table 1.
[0030]
[Table 1]
Figure 2004143259
[0031]
【The invention's effect】
As described above, according to the present invention, a polishing composition capable of preferentially polishing a tantalum compound film in a CMP process of a semiconductor device including a copper film and a tantalum film can be obtained, and a semiconductor device can be efficiently manufactured. Can be.
[Brief description of the drawings]
FIG. 1 is a schematic view of a polishing process of a device having a copper film formed thereon.
1 Cu
2 Ta
3 SiO 2

Claims (1)

(A)研磨材、(B)有機酸、(C)酸化剤、(D)酸化防止剤、および(E)水を含有する研磨用組成物であって、(A)研磨材が、平均粒径1nm−100nmの範囲にある有機粒子と平均粒径が5nm−100nmの範囲にあるフュームドシリカ、コロイダルシリカ、フュームドアルミナ、およびコロイダルアルミナのうち少なくとも1種類からなる無機粒子の混合物であり、有機粒子の23℃−50℃の線膨張率が10〜100ppm/℃であり、有機粒子と無機粒子の重量配合比は60/40〜5/95の範囲にあり、研磨用組成物中の濃度が2〜10重量%であり、(B)有機酸の主成分がシュウ酸であり、研磨用組成物中の濃度が0.01〜1.0重量%であり、(C)酸化剤が過酸化水素であり、研磨用組成物中の濃度が0.03〜1.0重量%であり、(D)酸化防止剤がベンゾトリアゾールまたはその誘導体であり、研磨組成物中の濃度が0.01〜1.0重量%であることを特徴とする研磨用組成物。A polishing composition comprising (A) an abrasive, (B) an organic acid, (C) an oxidizing agent, (D) an antioxidant, and (E) water, wherein (A) the abrasive has an average particle size. A mixture of organic particles having a diameter of 1 nm to 100 nm and fumed silica having an average particle diameter of 5 nm to 100 nm, colloidal silica, fumed alumina, and inorganic particles composed of at least one of colloidal alumina, The linear expansion coefficient of the organic particles at 23 ° C. to 50 ° C. is 10 to 100 ppm / ° C., the weight ratio of the organic particles to the inorganic particles is in the range of 60/40 to 5/95, and the concentration in the polishing composition. Is 2 to 10% by weight, (B) the main component of the organic acid is oxalic acid, the concentration in the polishing composition is 0.01 to 1.0% by weight, and (C) the oxidizing agent is excessive. It is hydrogen oxide and has a concentration of 0 in the polishing composition. (D) the antioxidant is benzotriazole or a derivative thereof, and the concentration in the polishing composition is 0.01 to 1.0% by weight. Composition.
JP2002308612A 2002-10-23 2002-10-23 Polishing composition Pending JP2004143259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002308612A JP2004143259A (en) 2002-10-23 2002-10-23 Polishing composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002308612A JP2004143259A (en) 2002-10-23 2002-10-23 Polishing composition

Publications (1)

Publication Number Publication Date
JP2004143259A true JP2004143259A (en) 2004-05-20

Family

ID=32454708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002308612A Pending JP2004143259A (en) 2002-10-23 2002-10-23 Polishing composition

Country Status (1)

Country Link
JP (1) JP2004143259A (en)

Similar Documents

Publication Publication Date Title
JP2003297779A (en) Composition for polishing and polishing method
JP2005136134A (en) Abrasive composition
JP2004356326A (en) Polishing composition
JP2003218071A (en) Composition for polishing
JP2003133266A (en) Polishing composition
JP2005136256A (en) Abrasive composition
JP2003238942A (en) Polishing composition
JP2003336039A (en) Abrasive composition
JP2004311484A (en) Abrasive composition
JP2004149630A (en) Polishing composition
JP2004143260A (en) Polishing composition
JP2004143259A (en) Polishing composition
JP2004131617A (en) Composition for polishing
JP2004131619A (en) Composition for polishing
JP2004107369A (en) Polishing composition
JP2004149655A (en) Polishing composition
JP2004107423A (en) Polishing composition
JP2004182834A (en) Polishing composition
JP2004281848A (en) Abrasive composition
JP2003321671A (en) Composition for abrasive
JP2004149629A (en) Polishing composition
JP2005136255A (en) Abrasive composition
JP2004356327A (en) Polishing composition
JP2004149654A (en) Polishing composition
JP2004175904A (en) Polishing composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071113