JP2004141797A - Flotation method of pulverized coal, pulverized coal surface modification apparatus, and flotation system of pulverized coal - Google Patents

Flotation method of pulverized coal, pulverized coal surface modification apparatus, and flotation system of pulverized coal Download PDF

Info

Publication number
JP2004141797A
JP2004141797A JP2002311080A JP2002311080A JP2004141797A JP 2004141797 A JP2004141797 A JP 2004141797A JP 2002311080 A JP2002311080 A JP 2002311080A JP 2002311080 A JP2002311080 A JP 2002311080A JP 2004141797 A JP2004141797 A JP 2004141797A
Authority
JP
Japan
Prior art keywords
pulverized coal
flotation
coal
oil
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002311080A
Other languages
Japanese (ja)
Other versions
JP4346299B2 (en
Inventor
Toshiaki Murata
村田 逞詮
Kazuo Abe
阿部 一雄
Kosuke Kimoto
木本 浩介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2002311080A priority Critical patent/JP4346299B2/en
Publication of JP2004141797A publication Critical patent/JP2004141797A/en
Application granted granted Critical
Publication of JP4346299B2 publication Critical patent/JP4346299B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mixers Of The Rotary Stirring Type (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a floatation method or the like of pulverized coal capable of imparting floating a property even to pulverized coal whose bonding force to oil drops is weak, that is [H/C×100] value is ≤80, to be impossible to apply the floatation method heretofore thereby applying the floatation method, and reducing the quality of oil to be used in a pulverized coal precipitation. <P>SOLUTION: The floatation method of coal for recovering the pulverized coal (c) from coal slurry S2 containing fine powdery coal having [H/C×100] value of 0-80 and ≤0.5 mm particle diameter is constituted so as to include a oil addition process for adding floatation oil A to the coal slurry S2, a shearing process for rapidly stirring the coal slurry S2 to impart a shearing force to the pulverized coal and the oil drops (a) of the floatation oil A and a floatation process for floating the pulverized coal (c) after the shearing process to clean and recover. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、微粉炭の表面改質方法、微粉炭の浮選方法、微粉炭表面改質装置及び微粉炭の浮選システムに関する。
【0002】
【従来の技術】
石炭の微粉炭燃焼に使用する微粉炭は、0.5mm以上のものは、比重選別による選別されるが、0.5mm以下のものは、石炭スラリーを形成して、この石炭スラリーから、浮選法(浮遊選炭法)により、良質な不燃分の少ない精炭を得ている。
【0003】
この浮選法は、石炭−水スラリー(石炭スラリー)に、捕集剤及び起泡剤を添加し、機械的あるいは空気の圧入により気泡を形成し、この気泡に可燃成分の多い石炭(微粉炭)を付着させ回収する方法であり、脱灰高濃度石炭−水スラリーの製造方法において、低灰分の石炭微粒子(微粉炭)が浮揚分として回収され、高灰分のいわゆる沈炭スラッジ(灰)が沈降分離される脱灰工程に使用されている(例えば、特許文献1参照。)。
【0004】
そして、従来の浮選法では、浮選工程の前に微粉原炭(微粉状石炭)の沈降を防ぐためにコンディショニングを行っている。このコンディショニングでは緩攪拌を行って、スラリーの均一化や微粉炭と浮選油の油滴とが会合する確率の増大を図り、この微粉炭と油滴との会合により微粉炭表面の水膜を油膜に置換している。
【0005】
【特許文献1】
特開平7−11268号公報 (第3頁左欄第33行〜第45行)
【0006】
【発明が解決しようとする課題】
しかし、この緩攪拌を行うコンディショニングでは、石炭化度が低くて含酸素官能基が多く、水膜に被われた微粉炭表面に親水基が過多にある場合や、石炭化度が高くて水素含有量が少なく、微粉炭表面の表面エネルギーが元々低い場合には、微粉炭表面における水膜から油膜への置換が旨く行われないという問題がある。
【0007】
つまり、炭質には種々あり、微粉炭表面の水膜を油膜に置換し難い浮選性(浮選浮遊性)が悪い炭質もある。例えば、図11に炭質図を示すが、この図11において、縦軸の炭素原子に対する水素原子の原子比の100倍の値〔H/C×100〕が80以上で、横軸の炭素原子に対する酸素原子の原子比の100倍の〔O/C×100〕が約7以下の石炭は、極めて浮選性が良好で微粉炭表面の水膜を油膜に置換し易いが、この浮選性の良好な石炭ばかりでなく、〔H/C×100〕が60以下の所謂半無煙炭、無煙炭と呼ばれる浮選性の悪い炭種や、〔O/C×100〕が10以上の所謂亜歴青炭と呼ばれる浮選性の悪い炭種も多く分布している。
【0008】
なお、より詳細には、図11では、含酸素官能基の増減は横軸〔O/C×100〕方向で示され、この〔O/C×100〕は、水酸基やカルボキシル基等親水性の官能基比率と関連するため、この〔O/C×100〕の数値の増加は、親水性の増加即ち親油性の減少を意味し、浮選性が低下することになる。
【0009】
また、炭化水素の鎖状性/芳香環状性の増減は縦軸〔H/C×100〕方向で示されており、この〔H/C×100〕の減少は、炭化水素の飽和(鎖状)炭化水素から不飽和(芳香族)炭化水素への移行を示し、親油性が減少するため浮選性が低下することになる。
【0010】
そして、〔H/C×100〕値が80程度以下の高石炭化度炭では、油脂に特徴的な鎖状性が減じ、芳香環の発達が進むため、親油性が減ずるばかりでなく、表面エネルギーも低くなる。とりわけ、〔H/C×100〕値が60程度以下の所謂半無煙炭、無煙炭と呼ばれる炭種では、この表面エネルギーが低くなる傾向が著しい。そのため、スラリー中で水膜に被われていても、水分子との接合力も弱い。しかし同時に油滴との接合力も弱いため、緩攪拌では油滴と会合しても水膜を油膜に置換することができず、浮選性が悪いので、これらの炭種に対しては浮選法を採用できないという問題がある。
【0011】
一般的に、浮選性のあまり良好でない石炭に対して浮選法を行った場合には、浮選機における微粉炭の回収が悪く、また、浮選浮遊速度が遅く、浮選機で浮遊しきらずに、多量の微粉炭及び過剰に添加された浮選油が多量に排水シックナーに流失し、シックナーで微粉炭が浮遊して表層に微粉炭炭層を形成してしまう。そのため、シックナーの処理能力を超えて過負荷状態となり、周辺環境の汚染の恐れが生じる。
【0012】
本発明は、上記の問題を解決するためになされたものであり、その目的は、微粉炭の選炭において、従来は油滴との接合力が弱く浮選法が適用できなかった、〔H/C×100〕値が60程度以下の所謂半無煙炭や無煙炭と呼ばれる炭種においても、微粉炭に浮選性を付与でき、浮選法の適用を可能にすると共に、使用する油量も少なくて済む微粉炭の浮選方法を提供することにある。
【0013】
また、本発明の更なる目的は、この微粉炭の浮選方法の実施に使用する浮選用前処理装置及び微粉炭の浮選システムを提供することにある。
【0014】
【課題を解決するための手段】
上記の目的を達成するための本発明の微粉炭の浮選方法は、0.5mm以下の微粉状石炭を含む石炭スラリーから微粉炭の回収を行う微粉炭の浮選方法であって、石炭スラリーに浮選油を添加する油分添加工程と、該油分添加工程の後の、石炭スラリーを急速攪拌して微粉炭の粒子及び浮選油の油滴に剪断力を付与するシェアーリング工程と、該シェアーリング工程の後の、微粉炭を浮揚させて精炭回収をする浮選工程とを含み、前記微粉状石炭が、該石炭に含まれる炭素原子に対する水素原子の割合である水素原子比の100倍の値〔H/C×100〕が、0〜80であることを特徴として構成される。
【0015】
この0.5mm以下の微粉状石炭とは、0.5mm角のメッシュを通過する石炭のことをいう。
【0016】
また、この急速攪拌とは、従来のコンデショナーによる緩攪拌に対するものであり、攪拌エネルギーが10kW/m3 以上のことをいい、好ましくは、25kW/m3 〜100kW/m3 である。
【0017】
即ち、コンデショナーでは、微粉状石炭の沈降防止を目的としたスラリーの均一化のための攪拌であり、緩やか(例えば、攪拌エネルギーが数kW/m3 程度)に行われるのに対して、本発明の急速攪拌は、微粉炭の粒子及び浮選油の油滴を容器(ドラム)内の固定部分(ドラムの円筒壁面、仕切板、固定翼)や移動部分(攪拌板、攪拌翼)等に強制的に接触させて、剪断力を付与し、微粉炭の粒子の表面に油滴を付着乃至展着させて、微粉炭の表面の浮選性を改善するために、高い攪拌エネルギーで行われる。
【0018】
この本発明の微粉炭の浮選方法によれば、急速攪拌のシェアーリング(剪断力付与)により、微粉炭の粒子及び浮選油の油滴に剪断活性面が形成され、この剪断活性面の発生により、過渡的であるが、表面エネルギーが相対的に上がる。この表面エネルギーの増分により、微粉炭と油滴と会合により微粉炭の表面に油膜が形成できるようになる。
【0019】
そのため、従来技術においては浮選法を適用できなかった〔H/C×100〕値が60程度以下の所謂半無煙炭、無煙炭に対しても、浮選法を適用することが可能となる。しかも、油膜形成用の浮選油の量も微量で済む。
【0020】
そして、特に、微粉状石炭が、石炭に含まれる炭素原子に対する水素原子の割合である水素原子比の100倍の値〔H/C×100〕が、0〜80である場合に大きな効果を奏する。この範囲の炭種の浮選性が良くないので、本発明のシェアーリング工程による改質効果が大きいからである。
【0021】
前記油分添加工程において、浮選油の添加量を、乾原炭に対して重量%で、0.005%〜0.05%、好ましくは0.007%〜0.02%とする。特に、半無煙炭や無煙炭等の親油性の悪い炭質では、改質された後であっても付着する油分の量は、元々親油性の良い炭質のものに比べて少ないので、非常に少ない添加量で済む。これにより、効率よく微粉炭の浮選を行うことができ、また、排水処理の負荷を減少できる。
【0022】
そして、上記の微粉炭の表面改質方法と微粉炭の浮選方法を実施するために使用される微粉炭表面改質装置と微粉炭の浮選システムは次のように構成される。
【0023】
先ず、微粉炭表面改質装置は、微粉炭の浮選工程の前のシェアーリング工程を行う急速攪拌装置であって、円筒形状のドラムの内側に流通路を中心に有する仕切板を複数設けて、中心部で連通する複数の攪拌室を形成すると共に、該攪拌室内で回転してドラム内の石炭スラリーを攪拌する攪拌翼付きの攪拌板を複数枚備えた回転軸を前記流通路内に配設して構成される。
【0024】
この微粉炭表面改質装置において、前記攪拌板の攪拌翼を、前記攪拌板から前記回転軸の軸方向に突出させて設けると共に、前記回転軸の軸方向から見た時に、前記攪拌板の回転方向に対して前方側が凸となる形状に形成する。
【0025】
更に、前記攪拌板の前記回転軸の近傍に、流通穴を設けて形成する。
【0026】
また、上記の微粉炭表面改質装置において、前記仕切板の少なくとも一つに、前記回転軸の軸方向に突出する固定翼を設けて構成する。
【0027】
そして、微粉炭の浮選システムは、表面改質部と浮選処理部とを有してなり、前記表面改質部が、上記のいずれか一つの微粉炭の表面改質装置と浮選油供給システムを備え、前記浮選処理部が、少なくとも一つの浮選機を備えて構成される。
【0028】
また、上記の微粉炭の浮選方法、浮選用前処理装置及び微粉炭の浮選システムで使用する微粉炭の表面改質方法は、0.5mm以下の微粉状石炭を含む石炭スラリーにおいて、可燃分を多く含む微粉炭の浮選性を増加する微粉炭の表面改質方法であって、浮選油を添加した石炭スラリーを容器内で急速攪拌して、微粉炭の粒子及び浮選油の油滴を剪断力を付与することにより、微粉炭の粒子の表面に油滴を付着させる方法である。そして、この剪断力の付与は、急速攪拌により、微粉炭の粒子及び浮選油の油滴を容器内の固定部分又は移動部分の少なくとも一方に接触させて行う。
【0029】
【発明の実施の形態】
以下図面を参照して本発明に係る微粉炭の浮選方法及び浮選用前処理装置と微粉炭の浮選システムの実施の形態について説明する。
【0030】
本発明に係る浮選用前処理装置の概要説明を兼ねて、最初に、微粉炭の浮選方法とこの方法を実施するための微粉炭の浮選システムについて説明する。
【0031】
図1に本発明の微粉炭の浮選方法を実施するための微粉炭の浮選システム1のプロセスフローを示す。また、図2にこの微粉炭の浮選方法で行われる浮選の原理を示す。
【0032】
図1及び図2に示すように、この微粉炭の浮選システム1は、0.5mm以下の石炭スラリーS1から灰分の少ない微粉炭Cの回収(精炭回収)を目的としたシステムであり、表面改質部10と浮選処理部20とから構成される。
【0033】
この表面改質部10は、スラリー調整タンク(石炭スラリー受け槽)11、スラリーポンプ12、浮選油タンク13、浮選油定量供給ポンプ14、微粉炭表面改質装置15、サンプタンク16、スラリーポンプ17等で構成される。
【0034】
また、浮選処理部20は、コンディショニングタンク(条件槽)21、起泡剤タンク22、起泡剤定量供給ポンプ23、粗選用浮選機24、精選用浮選機25、真空濾過機26等で構成される。
【0035】
そして、この表面改質部10では、予め粉砕され粒径が0.5mm以下(実用的には0.5mm角のメッシュを通過したもの)となった微粉状石炭を水と混合した石炭スラリーS1が、スラリー調整タンク11に入り、スラリーポンプ12で、微粉炭表面改質装置15に供給される。また、浮選油Aが浮選油タンク13と浮選油定量供給ポンプ14とからなる浮選油供給システムによって供給され、この微粉炭表面改質装置15に供給される前の石炭スラリーS1に混入され、石炭スラリーS1は浮選油Aとの混合物S2として微粉炭表面改質装置15に供給される。この状態は、図2に示す(混合)の状態であり、微粉炭cと灰dと油滴(浮選油)aが混合している状態である。
【0036】
なお、この浮選油Aとしては、灯油、軽油等の鉱油を主に使用することができ、炭質にもよるが、親油性の少ない半無煙炭や無煙炭では、スラリーS1に対する重量%で0.005%〜0.05%好ましくは0.007%〜0.02%という極少量の浮選油Aの添加で浮選機24、25にて微粉炭フロスを形成することができる。
【0037】
そして、この石炭スラリーS1と浮選油Aの混合物S2が、微粉炭表面改質装置15で、急速攪拌される。即ち、攪拌エネルギーが10kW/m3 以上、好ましくは、25kW/m3 〜100kW/m3 となるような攪拌を行う。
【0038】
この急速攪拌により、石炭スラリーS1と油滴aの混合を行って石炭スラリーS1中に油滴aを高度に分散させると共に、微粉炭の粒子c及び油滴aを、図3〜図7に示す微粉炭表面改質装置15の円筒壁面41a、仕切板42、攪拌板52等の表面に接触させることにより、微粉炭の粒子cと油滴aに強い剪断力を付与し、即ち、シェアーリングを行い、図2の(表面改質)に示すように、微粉炭の粒子cの表面に非常に薄い油膜aを付着乃至展着させる。この油膜展着により、微粉炭cの表面の濡れ性を改質して浮選性を改善する。
【0039】
そして、この微粉炭表面改質装置15で、微粉炭cの表面が改質され、微粉炭cに油膜aが付着した状態の改質された石炭スラリーS3が、図1に示すように、サンプタンク16に入り、スラリーポンプ17により、浮選部20のコンディショニングタンク21に送られる。
【0040】
そして、このコンディショニングタンク21において、改質された石炭スラリーS3に、起泡剤タンク22と起泡剤定量供給ポンプ23とからなる起泡剤システムにより供給される起泡剤Bが添加される。なお、従来技術の通常の浮選工程ではコンディショニングタンク21で起泡剤B及び浮選油Aを添加するが、この浮選システム1においては、微粉炭表面改質装置15の手前で既に浮選油Aを添加しているので、このコンディショニングタンク21では起泡剤Bのみで浮選油Aの添加は行わない。
【0041】
この起泡剤Bは、改質された石炭スラリーS3を発泡させるためのものであり、パイン油、テルピネオール、ポリオキシプロピレンアルキルエーテル、高級アルコール等を使用することができる。
【0042】
そして、このコンディショニングタンク21では、穏攪拌により、改質された石炭スラリーS3の均一化と微粉炭cと起泡剤Bや油滴aとの接触及び結合を図る。この穏攪拌により、調整された石炭スラリーS4は、粗選用浮選機24と精選用浮選機25に順次に送られる。
【0043】
この両浮選機24,25では、油膜aが付着した低灰分の微粉炭cは起泡剤Bによって生じた気泡eに付着した、図2に示す(精炭回収)の状態となり、水面に浮上するので、浮揚分として回収され、更に、この浮上した微粉炭cを図示しないシックナー等で分離し、微粉精炭Cとして回収する。
【0044】
一方の灰dは、微粉炭cよりも親水性が大きいので浮上せずに沈降し、沈炭スラッジDとして分離される。この沈炭スラッジDは真空濾過機26に送られて、水Wと分離され、廃棄又は「低品位石炭−水スラリー」の原料として再利用される。一方、この沈炭スラッジDを分離した水Wは石炭スラリー用の水として再利用される。
【0045】
従って、この微粉炭の浮選システム1によれば、微粉炭表面改質装置15で石炭スラリーS2と浮選油Aの混合物S3を改質することにより、浮選精炭回収率と浮選浮遊速度を大幅に改善することができる。また、回収率の向上により排水中の固形分を減少することができるので、選炭工場の排水負荷を低減できる。
【0046】
その上、本発明に係る微粉炭の浮選方法及び微粉炭の浮選システム1は、濃縮浮選から直接浮選まで、幅広いスラリー濃度に対応可能であり、更に、これまで浮遊法による精炭回収が困難であった浮選性不良の石炭に対しても、この表面改質により浮選性を改善することにより、浮選法を適用できるようになり、浮選法による微粉炭の回収を効率良く行うことができる。
【0047】
次に、本発明の微粉炭の浮選方法及び微粉炭の浮選システム1で重要な役割を果たす微粉炭の表面改質方法とこの方法を実施するための微粉炭表面改質装置15について説明する。
【0048】
この微粉炭表面改質装置15は、その概形を図3に示すように、横型多段高速ミキサーとして構成される。この横型多段高速ミキサー15は、支持脚47で基盤に支持されたドラム41と、モーター61と減速機62とを備えて形成されており、モータ61により駆動される回転軸51に設けられた攪拌板52を高速回転することにより、微粉炭スラリーS2中の微粉炭の粒子c及び油滴aを円筒壁面41a、仕切板42、攪拌板52等に接触させて剪断力付与を行って微粉炭を改質する。
【0049】
より詳細に説明すると、この微粉炭表面改質装置15は、図4にその断面を示すように、ドラム41内に、図5に示すような仕切板(バッフル)42がドラム41の軸方向に略等間隔に設けられている。この仕切板42は、上下2枚の半円板を向かい合わせ配置した円板状に形成され、外周側をドラム41の円筒壁面41aに固定支持されると共に、中央部に石炭スラリーS2と浮選油の混合物S3及び空気Eが流通するための流通路43が設けられている。なお、仕切板42を上下2枚の半円板とするのは、組立及び分解を容易とするためである。
【0050】
また、石炭スラリーS1の入口44の近傍に設けられる仕切板42a,42bでは、帯状又は矩形状の固定翼48が円板から略垂直方向に突設される。図4では、混合物S3の攪拌を促進するため、仕切板42aでは両面に固定翼48が設けられ、仕切板42bでは入口44側の片面にのみに固定翼48がそれぞれ複数個(図5では3個)設けられている。
【0051】
そして、ドラム41の両側の軸受部46,46で枢支される回転軸51が、ドラム41の内部に配設され、この回転軸51には、図6及び図7に示すような攪拌翼53と流通穴54を有する攪拌板52が、ボス部52aを介して嵌合されている。この攪拌板52は回転軸51の軸方向に対して垂直に設けられると共に、回転軸51の軸方向に略等間隔に配置される。これにより、攪拌板52がドラム41内に配設された時に、それぞれの攪拌板52が、仕切板42で仕切られているそれぞれの攪拌室50内に配置される。
【0052】
また、攪拌翼53は、攪拌効率を高めるため、回転方向Rに対して凸で放射状になるように形成された帯状体が、攪拌板52の両面に攪拌板52に対して略垂直になるように、即ち、回転軸51の軸方向になるように設けられる。この攪拌翼53は、回転軸51の回転方向に関しては略等間隔に複数個(図6では4個)設けられる。
【0053】
そして、ドラム41内の混合物S2に接触する部分、即ち、円筒壁面41a、仕切板42、固定翼48、攪拌板52、攪拌翼53の表面には、微粉炭cや油滴aとの接触時に剪断力を効率良く付与するためと、微粉炭cの接触による摩耗を防止するために、アルミナ等のセラミックライニング60を施す。図中の格子状ハッチングは、このセラミックライニング60が施されていることを示し、図では部分的に格子状ハッチングしているが、各表面全体に施されている。
【0054】
そして、回転軸51がチェーンカップリング64により減速機62に連結し、減速機62はチェーンカップリング63によりモータ61に連結しているので、モータ61の駆動により、回転軸51が回転する。
【0055】
なお、微粉炭表面改質装置10の寸法や形状はその処理する炭質や処理量によって大きく変化するが、一例を示すと、図4に示すドラム41の径が1.3mφ程度である。
【0056】
次に、この微粉炭表面改質装置10を使用したシェアーリング工程について説明する。
【0057】
この微粉炭表面改質装置10においては、石炭スラリーS1と浮選油Aの混合物S2が入口44からドラム41内に供給され、回転軸51を高速回転することにより、入口44から供給される石炭スラリーS1と浮遊油Aの混合物S2を高速回転で攪拌する。この高速回転の攪拌により、混合物S2は、回転軸51の回転と共に回転する攪拌板52によって急速攪拌されながら、流通路43、攪拌板52と円筒壁面41aとの隙間等を通過し、順次下流側の攪拌室50に送りだされ、改質された石炭スラリーS3となり出口45から排出される。
【0058】
このドラム41内における急速攪拌により、微粉炭cと油滴aを高度に分散させると共に、微粉炭cと油滴aを、円筒壁面41a、仕切板42、固定翼43、攪拌板52、攪拌翼53等の表面に接触させる。この接触により、微粉炭c及び油滴aに強い剪断力を付与し、微粉炭cの表面に非常に薄い油膜aを展着させる。この油膜aにより、微粉炭cの表面の濡れ性を改質及び改善し、微粉炭cの表面の親油性を上げ、浮選性を画期的に向上させる。
【0059】
この剪断力の付与(シェアーリング)はコンディショニングとは異なり急速攪拌であるため、微粉炭の粒子c、並びに、油滴aに剪断力を与え、剪断面を惹起する。この剪断面が生じた瞬間は、瞬時過渡的に高表面エネルギー性を示すので、油滴aが微粉炭の粒子cに付着し易くなる。つまり、剪断面が生じた瞬間においては、剪断面から水も油も除外されて真空に近い状態になっていると考えられる。
【0060】
そして、この微粉炭表面改質装置15の構造によれば、仕切板42と攪拌板52を交互に配置しているので、この構成により、微粉炭cと油滴aの入口44から出口45へのショートパスを防止でき、効率的な混合と接触による剪断力付与を行うことができる。この混合と接触による剪断力付与により微粉炭cの表面への油滴aの付着を効率的に行うことができる。そのため、少量の浮選油Aで、しかも、短時間で微粉炭cの表面の改質を行うことができる。
【0061】
従って、この構成の微粉炭表面改質装置15は、非常にコンパクトな装置となるので、設置場所が少なくて済む。そのため、既存の微粉炭の浮選システムにおいても、浮選プロセスの前段に容易に組み込むことができる。
【0062】
次に、本発明の実施例について説明する。
【0063】
図8に浮選性の劣る微粉炭に本発明の微粉炭の浮選方法を適用した表面改質効果の例を示す。この図8によれば、本浮選方法の実施例と従来技術の通常の浮選法による比較例との比較により、本浮選方法における精炭の歩留まりと浮選速度に関係する浮選時間が大幅に向上していることが分かる。
【0064】
図9は、実施例と比較例の物質収支を示す。実施例では、比較例に比べて精炭の歩留りが増加している一方で、テーリングの灰分が上昇しており、非常に高い効率で可燃分の石炭と不燃分の灰を分離していることが分かる。これにより、本来回収されるべき石炭のテーリングへの流出が減り、ひいては下流側のシックナーにおける濃縮、濃縮テーリングの脱水、溢流水の循環水使用等を円滑に行えるようになることが分かる。
【0065】
【発明の効果】
以上の説明から明らかなように、本発明に係る微粉炭の浮選方法、微粉炭表面改質装置、微粉炭の浮選システムによれば、次のような効果を奏することができる。
【0066】
従来技術の通常の微粉炭の浮選法では、歩留りゼロで回収不能であったような、炭素に対する水素の割合である水素原子比〔H/C×100〕の値が、80以下であるような炭質においても、浮選工程の前のシェアーリング工程で、微粉炭の浮選性を大きく改善できるので、高い精炭回収率を実現することができる。
【0067】
また、シェア−リング工程により、薄い油膜を効率よく石炭に付着できるため、従来の通常の浮選法と比べて、油使用量が少量となる。
【0068】
しかも、浮選浮遊速度が大幅に改善され、浮選機における滞留時間を減らすことができるので、浮選機の台数を減少でき、場合によっては、精選機を使用することなく、粗選機のみでの操業が可能となる。
【0069】
その上、本発明の微粉炭の浮選システムより下流側のシックナーの表層に微粉炭や浮選油が浮遊することがなくなり、排水負荷も低くなるので、シックナーや浮選テールフィルタープレス等を含む下流側の排水処理系で順調な操業を全般に渡り行うことができる。つまり、良好な浮選性達成により排水系の負荷が低減され、順調な工場運転、環境負荷の低減を図ることができる。
【0070】
そして、本発明に係る微粉炭表面改質装置によれば、石炭スラリーと浮選油の混合物を攪拌して、微粉炭等に剪断力を付与して微粉炭の浮選性を改善でき、しかも、複数の仕切板と複数の攪拌板の構成により、非常に効率よく微粉炭を改質できる。そのため、非常にコンパクトな装置となるので、設置場所が少なくて済む。従って、既存の微粉炭の浮選システムにおいても、浮選プロセスの前段に容易に組み込むことができる。
【0071】
また、この微粉炭表面改質装置によれば、微粉炭に高い浮選性を付与できるので、浮選機における滞留時間を短くできる。従って、浮選機の容量や台数を小さく又は少なくでき、また、浮選機運転に要する電力消費量を低減することができる。
【図面の簡単な説明】
【図1】本発明に係る微粉炭の浮選方法を実施するための微粉炭の浮選システムのプロセスフローを示す図である。
【図2】本発明に係る微粉炭の浮選方法で行われる浮選の原理を示す。
【図3】本発明に係る微粉炭表面改質装置の概形を示す図である。
【図4】図3の微粉炭表面改質装置の断面を示す側面図である。
【図5】図4のX−X矢視図である。
【図6】微粉炭表面改質装置の攪拌板と攪拌翼を示す図である。
【図7】図6の上半分は攪拌翼の形状を示すための側断面図であり、下半分は攪拌板の形状を示すための攪拌板の端面図である。
【図8】実施例と比較例の浮遊時間と歩留まりの関係を示す図である。
【図9】実施例(A炭)と比較例(A炭)における歩留まりを示す図である。
【図10】実施例(A炭)における浮選前の原炭と、本発明の微粉炭の浮選方法を適用した後の改質炭の成分の重量割合を示す図である。
【図11】F炭の種類とその元素成分の原子比との関係を示す炭質図である。
【符号の説明】
10   表面改質部
15  微粉炭表面改質装置
20  浮選処理部
41  ドラム
42  仕切板
43  流通路
48  固定翼
50  攪拌室
51  回転軸
52  攪拌板
53  攪拌翼
A  浮選油
C  精炭
D  沈降スラッジ
E  空気
a  油滴
c  微粉炭
d  灰
e  気泡
S1  石炭スラリー
S2  石炭スラリーと浮選油との混合物
S3  改質された石炭スラリー
S4  調整された石炭スラリー
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a pulverized coal surface modification method, a pulverized coal flotation method, a pulverized coal surface modification apparatus, and a pulverized coal flotation system.
[0002]
[Prior art]
Pulverized coal used for pulverized coal combustion of coal is separated by specific gravity if it is 0.5 mm or more, while coal that is 0.5 mm or less forms coal slurry and is flotated from this coal slurry. The method (floating coal separation method) produces high quality clean coal with low non-combustible content.
[0003]
In this flotation method, a trapping agent and a foaming agent are added to a coal-water slurry (coal slurry), bubbles are formed mechanically or by air injection, and coal containing fine combustible components (pulverized coal) is added to the bubbles. In the method for producing a deashed high-concentration coal-water slurry, low-ash fine coal particles (pulverized coal) are collected as floating components, and so-called coal ash sludge (ash) with high ash is removed. It is used in a decalcification process in which sedimentation is performed (for example, see Patent Document 1).
[0004]
In the conventional flotation method, conditioning is performed before the flotation step in order to prevent sedimentation of the pulverized raw coal (pulverized coal). In this conditioning, gentle stirring is performed to homogenize the slurry and increase the probability that the pulverized coal and the oil droplets of the flotation oil associate with each other. The association between the pulverized coal and the oil droplets forms a water film on the surface of the pulverized coal. Replaced with oil slick.
[0005]
[Patent Document 1]
JP-A-7-11268 (page 3, left column, lines 33 to 45)
[0006]
[Problems to be solved by the invention]
However, in this conditioning with gentle stirring, the degree of coalification is low and there are many oxygen-containing functional groups, and there are too many hydrophilic groups on the surface of pulverized coal covered with a water film, or the degree of coalification is high and hydrogen content is high. When the amount is small and the surface energy of the pulverized coal surface is originally low, there is a problem that the water film on the pulverized coal surface is not sufficiently replaced with an oil film.
[0007]
In other words, there are various types of carbonaceous materials, and there is also a carbonaceous material having a poor flotation property (flotation flotation property) in which the water film on the surface of the pulverized coal is difficult to replace with an oil film. For example, FIG. 11 shows a carbonaceous diagram. In FIG. 11, a value [H / C × 100] of 100 times the atomic ratio of hydrogen atoms to carbon atoms on the vertical axis is 80 or more, and carbon atoms on the horizontal axis correspond to carbon atoms. Coal having an [O / C × 100] of about 7 or less, which is 100 times the atomic ratio of oxygen atoms, has a very good flotation property and easily replaces a water film on the surface of pulverized coal with an oil film. Not only good coal, but also so-called semi-anthracite with an [H / C × 100] of 60 or less, a coal type with poor flotation properties called anthracite, or a so-called sub-bituminous coal with an [O / C × 100] of 10 or more There are also many types of charcoal called “floatable” that have poor flotation properties.
[0008]
In more detail, in FIG. 11, the increase / decrease of the oxygen-containing functional group is shown in the horizontal axis [O / C × 100] direction, and this [O / C × 100] corresponds to the hydrophilicity such as hydroxyl group and carboxyl group. Since it is related to the functional group ratio, an increase in the value of [O / C × 100] means an increase in hydrophilicity, that is, a decrease in lipophilicity, and a decrease in flotation property.
[0009]
Further, the increase / decrease in the chaininess / aromaticity of the hydrocarbon is shown in the direction of the vertical axis [H / C × 100], and the decrease in [H / C × 100] indicates the saturation (chain-like) of the hydrocarbon. ) Shows the transition from hydrocarbons to unsaturated (aromatic) hydrocarbons, which reduces lipophilicity and reduces flotation.
[0010]
In the case of a high-rank coal having an [H / C × 100] value of about 80 or less, the chaininess characteristic of fats and oils is reduced, and the development of aromatic rings is advanced. Energy is also lower. In particular, in the case of so-called semi-anthracite and anthracite whose [H / C × 100] value is about 60 or less, the surface energy tends to be low. Therefore, even if the slurry is covered with a water film, the bonding force with water molecules is weak. However, at the same time, since the bonding strength with the oil droplets is also weak, the water film cannot be replaced with the oil film even with the oil droplets by gentle stirring, and the flotation property is poor. There is a problem that the law cannot be adopted.
[0011]
In general, when the flotation method is applied to coal whose flotation properties are not very good, the recovery of pulverized coal in the flotation machine is poor, and the flotation flotation speed is slow, so that the flotation Instead, a large amount of pulverized coal and a large amount of flotation oil added excessively flow to the drainage thickener, and the pulverized coal floats in the thickener to form a pulverized coal layer on the surface. As a result, the load exceeds the processing capacity of the thickener, resulting in an overload condition, which may cause contamination of the surrounding environment.
[0012]
The present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to select a pulverized coal, which has a weak bonding force with an oil droplet and cannot apply a flotation method. [C × 100] values of about 60 or less, so-called semi-anthracite or anthracite, can also impart flotation properties to pulverized coal, making it possible to apply the flotation method and using a small amount of oil. It is an object of the present invention to provide a pulverized coal flotation method that can be used.
[0013]
A further object of the present invention is to provide a flotation pretreatment device and a pulverized coal flotation system used for carrying out the pulverized coal flotation method.
[0014]
[Means for Solving the Problems]
The pulverized coal flotation method of the present invention for achieving the above object is a pulverized coal flotation method for collecting pulverized coal from a coal slurry containing pulverized coal of 0.5 mm or less, An oil addition step of adding a flotation oil to the oil, and a shearing step of rapidly stirring the coal slurry to impart a shearing force to the particles of the pulverized coal and the oil droplets of the flotation oil after the oil addition step. A flotation step of flotting pulverized coal to recover clean coal after the sharing step, wherein the pulverized coal has a hydrogen atom ratio of 100 to 100% of hydrogen atoms to carbon atoms contained in the coal. The double value [H / C × 100] is 0 to 80.
[0015]
The fine coal of 0.5 mm or less refers to coal passing through a 0.5 mm square mesh.
[0016]
Further, the rapid stirring is for slow stirring by a conventional conditioner, and the stirring energy is 10 kW / m. 3 This means the above, preferably 25 kW / m 3 ~ 100 kW / m 3 It is.
[0017]
In other words, in the conditioner, the stirring is performed to homogenize the slurry for the purpose of preventing the sedimentation of the pulverized coal, and the stirring is performed slowly (for example, the stirring energy is several kW / m). 3 On the other hand, the rapid agitation according to the present invention uses particles of pulverized coal and oil droplets of flotation oil to fix a fixed portion (a cylindrical wall surface of a drum, a partition plate, a fixed blade) in a container (drum). Forcible contact with moving parts (stirring plates, stirring blades), etc., to apply shearing force, to adhere or spread oil droplets on the surface of pulverized coal particles, to improve the flotation of the surface of pulverized coal. In order to improve, a high stirring energy is used.
[0018]
According to the pulverized coal flotation method of the present invention, a shear active surface is formed on the particles of the pulverized coal and the oil droplets of the flotation oil by shearing (imparting a shear force) by rapid stirring. Due to the occurrence, the surface energy is relatively increased although it is transient. This increase in surface energy allows an oil film to form on the surface of the pulverized coal by association of the pulverized coal with the oil droplets.
[0019]
Therefore, the flotation method can be applied to so-called semi-anthracite and anthracite whose [H / C × 100] value is about 60 or less, which was not applicable in the prior art. In addition, the amount of flotation oil for forming the oil film is also small.
[0020]
In particular, a great effect is exhibited when the finely divided coal has a value of 100 times the hydrogen atom ratio [H / C × 100] of 0 to 80, which is the ratio of hydrogen atoms to carbon atoms contained in the coal. . This is because the flotation property of the coal type in this range is not good, and the reforming effect of the shearing step of the present invention is large.
[0021]
In the oil addition step, the amount of the flotation oil is 0.005% to 0.05%, preferably 0.007% to 0.02% by weight based on dry raw coal. In particular, in the case of poorly lipophilic carbonaceous materials such as semi-anthracite and anthracite, the amount of oil that adheres even after reforming is smaller than that of the originally good oleophilicity, so the amount added is very small. Only needs to be done. Thereby, flotation of pulverized coal can be performed efficiently and the load of wastewater treatment can be reduced.
[0022]
The pulverized coal surface reforming apparatus and the pulverized coal flotation system used for performing the pulverized coal surface modification method and the pulverized coal flotation method described above are configured as follows.
[0023]
First, the pulverized coal surface reforming device is a rapid stirring device that performs a shearing process before the pulverized coal flotation process, and is provided with a plurality of partition plates having a flow path at the center inside a cylindrical drum. A rotating shaft having a plurality of agitating plates with agitating blades for rotating the agitating chamber and agitating the coal slurry in the drum while forming a plurality of agitating chambers communicating with each other at the center; It is configured by setting.
[0024]
In this pulverized coal surface reforming apparatus, the stirring blade of the stirring plate is provided so as to protrude from the stirring plate in the axial direction of the rotating shaft, and when viewed from the axial direction of the rotating shaft, the stirring blade rotates. It is formed in a shape in which the front side is convex with respect to the direction.
[0025]
Further, a circulation hole is provided near the rotation shaft of the stirring plate.
[0026]
In the above pulverized coal surface reforming apparatus, at least one of the partition plates is provided with fixed blades protruding in the axial direction of the rotating shaft.
[0027]
The pulverized coal flotation system includes a surface modification unit and a flotation processing unit, and the surface modification unit includes any one of the pulverized coal surface modification device and the flotation oil. A supply system, wherein the flotation processing unit includes at least one flotation machine.
[0028]
In addition, the above-mentioned pulverized coal flotation method, the pretreatment device for flotation and the pulverized coal surface reforming method used in the pulverized coal flotation system are used for combustible coal slurry containing pulverized coal of 0.5 mm or less. A surface modification method for pulverized coal that increases the flotation property of pulverized coal containing a large amount of coal, by rapidly stirring a coal slurry to which flotation oil has been added in a container to remove particles of pulverized coal and flotation oil. This is a method in which an oil droplet is attached to the surface of pulverized coal particles by applying a shearing force to the oil droplet. The application of the shearing force is performed by bringing the particles of the pulverized coal and the oil droplets of the flotation oil into contact with at least one of the fixed part and the moving part in the container by rapid stirring.
[0029]
BEST MODE FOR CARRYING OUT THE INVENTION
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of a pulverized coal flotation method, a flotation pretreatment device, and a pulverized coal flotation system according to the present invention will be described with reference to the drawings.
[0030]
First, a pulverized coal flotation method and a pulverized coal flotation system for performing the method will be described, together with a brief description of the flotation pretreatment device according to the present invention.
[0031]
FIG. 1 shows a process flow of a pulverized coal flotation system 1 for carrying out the pulverized coal flotation method of the present invention. FIG. 2 shows the principle of flotation performed by this pulverized coal flotation method.
[0032]
As shown in FIG. 1 and FIG. 2, the pulverized coal flotation system 1 is a system for the purpose of recovering pulverized coal C having a low ash content (clean coal recovery) from a coal slurry S1 of 0.5 mm or less, It comprises a surface modification unit 10 and a flotation processing unit 20.
[0033]
The surface reforming unit 10 includes a slurry adjusting tank (coal slurry receiving tank) 11, a slurry pump 12, a flotation oil tank 13, a flotation oil constant supply pump 14, a pulverized coal surface reforming device 15, a sump tank 16, a slurry It is composed of a pump 17 and the like.
[0034]
Further, the flotation processing unit 20 includes a conditioning tank (condition tank) 21, a foaming agent tank 22, a foaming agent constant supply pump 23, a roughing flotation machine 24, a fine screening flotation machine 25, a vacuum filtration machine 26, and the like. It consists of.
[0035]
In the surface reforming section 10, a coal slurry S1 obtained by mixing pulverized coal, which has been pulverized in advance and has a particle size of 0.5 mm or less (in practice, a mesh having a size of 0.5 mm square) with water, is mixed. Enters the slurry adjustment tank 11 and is supplied to the pulverized coal surface reforming device 15 by the slurry pump 12. Further, the flotation oil A is supplied by the flotation oil supply system including the flotation oil tank 13 and the flotation oil constant supply pump 14, and is added to the coal slurry S1 before being supplied to the pulverized coal surface reforming device 15. The coal slurry S1 is mixed and supplied to the pulverized coal surface reforming device 15 as a mixture S2 with the flotation oil A. This state is the state of (mixing) shown in FIG. 2, in which pulverized coal c, ash d, and oil droplets (flotation oil) a are mixed.
[0036]
As the flotation oil A, mineral oils such as kerosene and light oil can be mainly used. Depending on the carbonaceous quality, semi-anthracite or anthracite with low lipophilicity is 0.005% by weight based on the slurry S1. Pulverized coal floss can be formed in the flotation machines 24 and 25 by adding a very small amount of the flotation oil A of from 0.005% to 0.05%, preferably from 0.007% to 0.02%.
[0037]
Then, the mixture S2 of the coal slurry S1 and the flotation oil A is rapidly stirred in the pulverized coal surface reforming device 15. That is, the stirring energy is 10 kW / m 3 Above, preferably 25 kW / m 3 ~ 100 kW / m 3 Stirring is performed so that
[0038]
By this rapid stirring, the coal slurry S1 and the oil droplet a are mixed to highly disperse the oil droplet a in the coal slurry S1, and the particles c and the oil droplet a of the pulverized coal are shown in FIGS. By bringing the surface of the pulverized coal surface reforming device 15 into contact with the surfaces of the cylindrical wall surface 41a, the partition plate 42, the stirring plate 52, and the like, a strong shearing force is applied to the pulverized coal particles c and the oil droplets a. Then, as shown in FIG. 2 (surface modification), a very thin oil film a is adhered or spread on the surface of the particles c of the pulverized coal. By this oil film spreading, the wettability of the surface of the pulverized coal c is modified to improve flotation.
[0039]
Then, in the pulverized coal surface reforming device 15, the surface of the pulverized coal c is reformed, and the modified coal slurry S3 in a state where the oil film a adheres to the pulverized coal c is, as shown in FIG. It enters the tank 16 and is sent to the conditioning tank 21 of the flotation unit 20 by the slurry pump 17.
[0040]
Then, in the conditioning tank 21, the foaming agent B supplied by the foaming agent system including the foaming agent tank 22 and the foaming agent constant supply pump 23 is added to the modified coal slurry S3. In the conventional flotation process of the prior art, the foaming agent B and the flotation oil A are added in the conditioning tank 21. However, in this flotation system 1, the flotation is already performed before the pulverized coal surface reforming device 15. Since the oil A is added, the conditioning tank 21 does not add the flotation oil A with only the foaming agent B.
[0041]
The foaming agent B is for foaming the modified coal slurry S3, and pine oil, terpineol, polyoxypropylene alkyl ether, higher alcohol, and the like can be used.
[0042]
In the conditioning tank 21, the modified coal slurry S3 is homogenized by gentle stirring, and the pulverized coal c is brought into contact with the foaming agent B and the oil droplets a and combined. By the gentle stirring, the adjusted coal slurry S4 is sequentially sent to the rough-selection flotation machine 24 and the fine-selection flotation machine 25.
[0043]
In the flotation machines 24 and 25, the low-ash pulverized coal c to which the oil film a has adhered has adhered to the bubbles e generated by the foaming agent B, as shown in FIG. Since it floats, it is collected as a floating fraction, and the floated pulverized coal c is separated by a thickener (not shown) or the like, and collected as pulverized clean coal C.
[0044]
The ash d, on the other hand, has higher hydrophilicity than the pulverized coal c, and sinks without floating, and is separated as the coal sludge D. This coking sludge D is sent to the vacuum filter 26 and separated from the water W, and is discarded or reused as a raw material of “low-grade coal-water slurry”. On the other hand, the water W from which the coking sludge D has been separated is reused as water for the coal slurry.
[0045]
Therefore, according to the pulverized coal flotation system 1, the pulverized coal surface reforming apparatus 15 reforms the mixture S3 of the coal slurry S2 and the flotation oil A to thereby improve the flotation clean coal recovery rate and the flotation flotation. Speed can be greatly improved. In addition, since the solid content in the wastewater can be reduced by improving the recovery rate, the wastewater load in the coal preparation plant can be reduced.
[0046]
In addition, the pulverized coal flotation method and the pulverized coal flotation system 1 according to the present invention can support a wide range of slurry concentrations from concentrated flotation to direct flotation, By improving the flotation properties by this surface modification, the flotation method can be applied to coal with poor flotation properties, which was difficult to recover. It can be performed efficiently.
[0047]
Next, the pulverized coal flotation method and the pulverized coal surface modification method which plays an important role in the pulverized coal flotation system 1 of the present invention and the pulverized coal surface modification apparatus 15 for carrying out this method will be described. I do.
[0048]
The pulverized coal surface reforming device 15 is configured as a horizontal multi-stage high-speed mixer, as shown in FIG. The horizontal multi-stage high-speed mixer 15 includes a drum 41 supported on a base by supporting legs 47, a motor 61 and a speed reducer 62, and is provided with a stirring shaft provided on a rotating shaft 51 driven by the motor 61. By rotating the plate 52 at high speed, the pulverized coal particles c and the oil droplets a in the pulverized coal slurry S2 are brought into contact with the cylindrical wall surface 41a, the partition plate 42, the agitating plate 52, etc., and a shear force is applied to remove the pulverized coal. Reform.
[0049]
More specifically, in the pulverized coal surface reforming apparatus 15, a partition plate (baffle) 42 as shown in FIG. They are provided at substantially equal intervals. The partition plate 42 is formed in a disk shape in which two upper and lower semi-circles are arranged facing each other, the outer peripheral side is fixedly supported on the cylindrical wall surface 41a of the drum 41, and the coal slurry S2 and the flotation are provided at the center. A flow passage 43 through which the oil mixture S3 and the air E flow is provided. The reason why the partition plate 42 is composed of two upper and lower semicircles is to facilitate assembly and disassembly.
[0050]
Further, in the partition plates 42a and 42b provided near the inlet 44 of the coal slurry S1, band-shaped or rectangular fixed blades 48 are protruded from the disk in a substantially vertical direction. In FIG. 4, in order to promote agitation of the mixture S3, fixed blades 48 are provided on both surfaces of the partition plate 42a, and a plurality of fixed blades 48 are provided only on one surface of the partition plate 42b on the inlet 44 side (3 in FIG. 5). ) Are provided.
[0051]
A rotating shaft 51 pivotally supported by bearings 46 on both sides of the drum 41 is disposed inside the drum 41. The rotating shaft 51 has a stirring blade 53 as shown in FIGS. And a stirring plate 52 having a flow hole 54 are fitted through a boss 52a. The stirring plates 52 are provided perpendicular to the axial direction of the rotating shaft 51 and are arranged at substantially equal intervals in the axial direction of the rotating shaft 51. Thus, when the stirring plates 52 are disposed in the drum 41, the respective stirring plates 52 are disposed in the respective stirring chambers 50 partitioned by the partition plates 42.
[0052]
In order to increase the stirring efficiency, the stirrer blades 53 are arranged such that the belt-shaped body formed to be convex and radial with respect to the rotation direction R is substantially perpendicular to the stirrer plate 52 on both sides of the stirrer plate 52. , That is, in the axial direction of the rotating shaft 51. The plurality of (four in FIG. 6) stirring blades 53 are provided at substantially equal intervals in the rotation direction of the rotating shaft 51.
[0053]
The surfaces of the drum 41 that come into contact with the mixture S2, that is, the surfaces of the cylindrical wall surface 41a, the partition plate 42, the fixed blade 48, the stirring plate 52, and the stirring blade 53 are in contact with the pulverized coal c and the oil droplet a. A ceramic lining 60 of alumina or the like is applied to efficiently apply a shearing force and to prevent abrasion due to contact with the pulverized coal c. The grid-like hatching in the figure indicates that the ceramic lining 60 is provided, and although the figure is partially grid-like hatched, it is provided on the entire surface.
[0054]
The rotating shaft 51 is connected to the speed reducer 62 by the chain coupling 64, and the speed reducer 62 is connected to the motor 61 by the chain coupling 63.
[0055]
The size and shape of the pulverized coal surface reforming apparatus 10 vary greatly depending on the quality and amount of carbon to be treated, but as an example, the diameter of the drum 41 shown in FIG. 4 is about 1.3 mφ.
[0056]
Next, a shearing process using the pulverized coal surface reforming apparatus 10 will be described.
[0057]
In the pulverized coal surface reforming apparatus 10, the mixture S2 of the coal slurry S1 and the flotation oil A is supplied into the drum 41 from the inlet 44, and the rotating shaft 51 is rotated at a high speed, whereby the coal supplied from the inlet 44 is supplied. The mixture S2 of the slurry S1 and the floating oil A is stirred at high speed. Due to this high-speed stirring, the mixture S2 passes through the flow passage 43, the gap between the stirring plate 52 and the cylindrical wall surface 41a, etc., while being rapidly stirred by the stirring plate 52 that rotates together with the rotation of the rotating shaft 51, and is sequentially downstream. And is converted into a modified coal slurry S3 and discharged from the outlet 45.
[0058]
By the rapid stirring in the drum 41, the pulverized coal c and the oil droplet a are highly dispersed, and the pulverized coal c and the oil droplet a are separated from the cylindrical wall surface 41a, the partition plate 42, the fixed blade 43, the stirring plate 52, and the stirring blade. 53 and the like. By this contact, a strong shearing force is applied to the pulverized coal c and the oil droplet a, and a very thin oil film a is spread on the surface of the pulverized coal c. This oil film a improves and improves the wettability of the surface of the pulverized coal c, increases the lipophilicity of the surface of the pulverized coal c, and dramatically improves flotation.
[0059]
This shearing force (shearing) is rapid stirring unlike conditioning, so that a shearing force is applied to the pulverized coal particles c and the oil droplets a to induce a shear surface. At the moment when the shear surface is generated, the surface energy is instantaneously and transiently high, so that the oil droplets a can easily adhere to the particles c of the pulverized coal. That is, at the moment when the shear surface is generated, it is considered that water and oil are excluded from the shear surface and the shear surface is in a state close to a vacuum.
[0060]
Further, according to the structure of the pulverized coal surface reforming device 15, the partition plates 42 and the stirring plates 52 are alternately arranged. Short path can be prevented, and efficient mixing and application of shear force by contact can be performed. By applying the shearing force by the mixing and the contact, the oil droplet a can be efficiently attached to the surface of the pulverized coal c. Therefore, the surface of the pulverized coal c can be modified with a small amount of the flotation oil A and in a short time.
[0061]
Therefore, the pulverized coal surface reforming device 15 having this configuration is a very compact device, and requires less installation space. Therefore, even in the existing pulverized coal flotation system, it can be easily incorporated in the pre-stage of the flotation process.
[0062]
Next, examples of the present invention will be described.
[0063]
FIG. 8 shows an example of the surface modification effect of applying the pulverized coal flotation method of the present invention to pulverized coal having poor flotation properties. According to FIG. 8, the flotation time related to the yield of the clean coal and the flotation speed in the flotation method is shown by comparing the embodiment of the present flotation method with the comparative example of the conventional flotation method. It can be seen that is greatly improved.
[0064]
FIG. 9 shows the material balance of the example and the comparative example. In the example, while the yield of clean coal is increased as compared to the comparative example, the ash content of the tailing is increased, and the combustible coal and incombustible ash are separated with extremely high efficiency. I understand. As a result, it can be seen that the outflow of coal that should be originally recovered to the tailing is reduced, and consequently the concentration in the downstream thickener, the dewatering of the concentrated tailing, and the use of the circulating water of the overflow water can be performed smoothly.
[0065]
【The invention's effect】
As is clear from the above description, the pulverized coal flotation method, pulverized coal surface reforming apparatus, and pulverized coal flotation system according to the present invention can provide the following effects.
[0066]
In the conventional pulverized coal flotation method of the prior art, the value of the hydrogen atom ratio [H / C × 100], which is the ratio of hydrogen to carbon, which was unrecoverable at zero yield, seems to be 80 or less. Even with a high coal quality, the flotation property of pulverized coal can be greatly improved in the shearing step before the flotation step, so that a high clean coal recovery rate can be realized.
[0067]
In addition, a thin oil film can be efficiently attached to coal by the sharing process, so that the amount of oil used is small compared to the conventional ordinary flotation method.
[0068]
In addition, the flotation flotation speed has been greatly improved, and the residence time in the flotation machine can be reduced, so that the number of flotation machines can be reduced. The operation at is possible.
[0069]
In addition, pulverized coal and flotation oil do not float on the surface of the thickener downstream of the pulverized coal flotation system of the present invention, and the drainage load is reduced. Smooth operation can be performed throughout the downstream wastewater treatment system. That is, the load on the drainage system is reduced by achieving good flotation properties, and smooth factory operation and reduction of environmental load can be achieved.
[0070]
According to the pulverized coal surface reforming apparatus according to the present invention, the mixture of the coal slurry and the flotation oil can be stirred to impart a shearing force to the pulverized coal and the like, thereby improving the flotation property of the pulverized coal, and With the configuration of the plurality of partition plates and the plurality of stirring plates, pulverized coal can be modified very efficiently. As a result, the device becomes very compact, and the installation place is reduced. Therefore, even in the existing pulverized coal flotation system, it can be easily incorporated in the pre-stage of the flotation process.
[0071]
Further, according to the pulverized coal surface reforming apparatus, high flotation properties can be imparted to the pulverized coal, so that the residence time in the flotation machine can be shortened. Therefore, the capacity and number of flotation machines can be reduced or reduced, and the power consumption required for flotation machine operation can be reduced.
[Brief description of the drawings]
FIG. 1 is a diagram showing a process flow of a pulverized coal flotation system for carrying out a pulverized coal flotation method according to the present invention.
FIG. 2 shows the principle of flotation performed by the pulverized coal flotation method according to the present invention.
FIG. 3 is a view schematically showing a pulverized coal surface reforming apparatus according to the present invention.
FIG. 4 is a side view showing a cross section of the pulverized coal surface reforming apparatus of FIG.
FIG. 5 is a view taken in the direction of arrows XX in FIG. 4;
FIG. 6 is a diagram showing a stirring plate and a stirring blade of the pulverized coal surface reforming device.
FIG. 7 is a side sectional view showing the shape of the stirring blade, and the lower half is an end view of the stirring plate showing the shape of the stirring plate.
FIG. 8 is a diagram showing the relationship between the floating time and the yield in the example and the comparative example.
FIG. 9 is a graph showing yields in an example (charcoal A) and a comparative example (charcoal A).
FIG. 10 is a diagram showing the weight ratios of raw coal before flotation and components of modified coal after application of the pulverized coal flotation method of the present invention in Example (A coal).
FIG. 11 is a coal quality diagram showing the relationship between the type of F coal and the atomic ratio of its elemental components.
[Explanation of symbols]
10 Surface modification section
15 Pulverized coal surface reformer
20 Flotation processing section
41 drums
42 Divider
43 Flow passage
48 fixed wing
50 Stirring chamber
51 Rotary axis
52 stir plate
53 stirring blade
A flotation oil
C Clean coal
D Settling sludge
E air
a oil drop
c Pulverized coal
d ash
e bubbles
S1 Coal slurry
S2 Mixture of coal slurry and flotation oil
S3 Reformed coal slurry
S4 Adjusted coal slurry

Claims (7)

0.5mm以下の微粉状石炭を含む石炭スラリーから微粉炭の回収を行う微粉炭の浮選方法であって、石炭スラリーに浮選油を添加する油分添加工程と、該油分添加工程の後の、石炭スラリーを急速攪拌して微粉炭の粒子及び浮選油の油滴に剪断力を付与するシェアーリング工程と、該シェアーリング工程の後の、微粉炭を浮揚させて精炭回収をする浮選工程とを含み、前記微粉状石炭が、該石炭に含まれる炭素原子に対する水素原子の割合である水素原子比の100倍の値〔H/C×100〕が、0〜80であることを特徴とする微粉炭の浮選方法。A pulverized coal flotation method for recovering pulverized coal from coal slurry containing pulverized coal of 0.5 mm or less, comprising: an oil addition step of adding flotation oil to the coal slurry; and A shearing step of rapidly agitating a coal slurry to apply a shearing force to particles of pulverized coal and oil droplets of flotation oil; and a floating step of recovering clean coal by floating pulverized coal after the shearing step. And a selection step, wherein the finely divided coal has a value of 100 times the hydrogen atom ratio [H / C × 100], which is a ratio of hydrogen atoms to carbon atoms contained in the coal, being 0 to 80. A feature of pulverized coal flotation. 前記油分添加工程において、浮選油の添加量を、乾原炭に対して重量%で、0.005%〜0.05%とすることを特徴とする請求項1記載の微粉炭の浮選方法。2. The flotation of pulverized coal according to claim 1, wherein in the oil addition step, an amount of the flotation oil is 0.005% to 0.05% by weight based on dry raw coal. 3. Method. 微粉炭の浮選工程の前のシェアーリング工程を行う急速攪拌装置であって、円筒形状のドラムの内側に流通路を中心に有する仕切板を複数設けて、中心部で連通する複数の攪拌室を形成すると共に、該攪拌室内で回転してドラム内の石炭スラリーを急速攪拌する攪拌翼付きの攪拌板を複数枚備えた回転軸を前記流通路内に配設したことを特徴とする微粉炭表面改質装置。A rapid stirring apparatus for performing a shearing step before a pulverized coal flotation step, wherein a plurality of partition plates having a flow path at the center are provided inside a cylindrical drum, and a plurality of stirring chambers communicating with each other at a central portion are provided. And a rotating shaft having a plurality of agitating plates with agitating blades for rotating in the agitating chamber and rapidly agitating the coal slurry in the drum is disposed in the flow passage. Surface modification equipment. 前記攪拌板の攪拌翼を、前記攪拌板から前記回転軸の軸方向に突出させて設けると共に、前記回転軸の軸方向から見た時に、前記攪拌板の回転方向に対して前方側が凸となる形状に形成したことを特徴とする請求項3記載の微粉炭表面改質装置。The stirring blade of the stirring plate is provided so as to protrude from the stirring plate in the axial direction of the rotating shaft, and when viewed from the axial direction of the rotating shaft, the front side is convex with respect to the rotating direction of the stirring plate. The pulverized coal surface reforming apparatus according to claim 3, wherein the apparatus is formed in a shape. 前記攪拌板の前記回転軸の近傍に、流通穴を設けたことを特徴とする請求項3又は4記載の微粉炭表面改質装置。The pulverized coal surface reforming apparatus according to claim 3, wherein a circulation hole is provided near the rotation axis of the stirring plate. 前記仕切板の少なくとも一つに、前記回転軸の軸方向に突出する固定翼を設けたことを特徴とする請求項3〜5のいずれか1項に記載の微粉炭表面改質装置。The pulverized coal surface reforming apparatus according to any one of claims 3 to 5, wherein a fixed wing protruding in an axial direction of the rotating shaft is provided on at least one of the partition plates. 表面改質部と浮選処理部とを有してなり、前記表面改質部が、請求項3〜6のいずれか一つの微粉炭の表面改質装置と浮選油供給システムを備え、前記浮選処理部が、少なくとも一つの浮選機を備えていることを特徴とする微粉炭の浮選システム。A surface modification unit and a flotation processing unit, wherein the surface modification unit includes a pulverized coal surface modification device and a flotation oil supply system according to any one of claims 3 to 6, A pulverized coal flotation system, wherein the flotation processing unit includes at least one flotation machine.
JP2002311080A 2002-10-25 2002-10-25 Pulverized coal flotation method, pulverized coal surface reformer, and pulverized coal flotation system Expired - Fee Related JP4346299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002311080A JP4346299B2 (en) 2002-10-25 2002-10-25 Pulverized coal flotation method, pulverized coal surface reformer, and pulverized coal flotation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002311080A JP4346299B2 (en) 2002-10-25 2002-10-25 Pulverized coal flotation method, pulverized coal surface reformer, and pulverized coal flotation system

Publications (2)

Publication Number Publication Date
JP2004141797A true JP2004141797A (en) 2004-05-20
JP4346299B2 JP4346299B2 (en) 2009-10-21

Family

ID=32456414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002311080A Expired - Fee Related JP4346299B2 (en) 2002-10-25 2002-10-25 Pulverized coal flotation method, pulverized coal surface reformer, and pulverized coal flotation system

Country Status (1)

Country Link
JP (1) JP4346299B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005028249A (en) * 2003-07-09 2005-02-03 Mitsui Eng & Shipbuild Co Ltd Method and device for recovering pulverized coal
JP2007167825A (en) * 2005-12-26 2007-07-05 Mitsui Eng & Shipbuild Co Ltd Removing method of unburned carbon in fly ash
JP2007181748A (en) * 2005-12-29 2007-07-19 Mitsui Eng & Shipbuild Co Ltd Method of removing unburned carbon from fly ash
KR100749757B1 (en) * 2007-05-16 2007-08-16 한국지질자원연구원 Separation of unburned coal from briquette ash by flotation
JP2008163103A (en) * 2006-12-27 2008-07-17 Mitsui Zosen Plant Engineering Inc Reformation system of floatation filter cake
EP1685907A4 (en) * 2003-10-09 2008-10-22 Taiheiyo Cement Corp Method of removing unburned carbon from fly ash
CN102121705A (en) * 2010-04-22 2011-07-13 神华集团有限责任公司 High-temperature coal oil mixture preparation method
WO2018002448A1 (en) * 2016-06-30 2018-01-04 Haarla Oy Method for improving separation of mineral particles by high intensity conditioning
WO2018103714A1 (en) * 2016-12-09 2018-06-14 成都斯力康科技股份有限公司 System for silicon slag separation using floatation method
WO2021008324A1 (en) * 2019-07-15 2021-01-21 中国矿业大学 Liquid-solid composite collector for coal slime flotation and preparation method therefor
CN113369023A (en) * 2021-04-27 2021-09-10 郑慧彬 Energy-concerving and environment-protective type flotation device for ore dressing

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005028249A (en) * 2003-07-09 2005-02-03 Mitsui Eng & Shipbuild Co Ltd Method and device for recovering pulverized coal
EP1685907A4 (en) * 2003-10-09 2008-10-22 Taiheiyo Cement Corp Method of removing unburned carbon from fly ash
US8551223B2 (en) 2003-10-09 2013-10-08 Taiheiyo Cement Corporation Method of removing unburned carbon from fly ash
JP2007167825A (en) * 2005-12-26 2007-07-05 Mitsui Eng & Shipbuild Co Ltd Removing method of unburned carbon in fly ash
JP2007181748A (en) * 2005-12-29 2007-07-19 Mitsui Eng & Shipbuild Co Ltd Method of removing unburned carbon from fly ash
JP2008163103A (en) * 2006-12-27 2008-07-17 Mitsui Zosen Plant Engineering Inc Reformation system of floatation filter cake
KR100749757B1 (en) * 2007-05-16 2007-08-16 한국지질자원연구원 Separation of unburned coal from briquette ash by flotation
CN102121705A (en) * 2010-04-22 2011-07-13 神华集团有限责任公司 High-temperature coal oil mixture preparation method
WO2018002448A1 (en) * 2016-06-30 2018-01-04 Haarla Oy Method for improving separation of mineral particles by high intensity conditioning
WO2018103714A1 (en) * 2016-12-09 2018-06-14 成都斯力康科技股份有限公司 System for silicon slag separation using floatation method
WO2021008324A1 (en) * 2019-07-15 2021-01-21 中国矿业大学 Liquid-solid composite collector for coal slime flotation and preparation method therefor
CN113369023A (en) * 2021-04-27 2021-09-10 郑慧彬 Energy-concerving and environment-protective type flotation device for ore dressing

Also Published As

Publication number Publication date
JP4346299B2 (en) 2009-10-21

Similar Documents

Publication Publication Date Title
KR101123662B1 (en) Method of removing unburned carbon from fly ash
KR101287486B1 (en) Apparatus for removing of unburned carbon from fly ash and relevant removing method
JP2004141797A (en) Flotation method of pulverized coal, pulverized coal surface modification apparatus, and flotation system of pulverized coal
JP4917309B2 (en) How to remove unburned carbon in fly ash
CN112058889B (en) Efficient integrated cleaning system and method for petroleum hydrocarbon organic contaminated soil
CN1642862A (en) Method and device for clarification of liquids, particularly water, loaded with material in suspension
JPS61293566A (en) Method and apparatus for separating carbonaceous component from powery coal containing inorganic solid
CN104582856B (en) The method for being separated and being dehydrated to fine grained
US5223147A (en) Process of treating contaminated soils
CN109019739A (en) A kind of water process air floatation machine
JP2007061732A (en) Method for treating waste oil
JP2015074697A (en) Method and apparatus for deashing and cleaning brown coal
CN111138057A (en) E+Device and method for deep treatment of oily sludge by micro-nano bubble ozone
CN111389597B (en) Polar mixed reagent for low-rank coal flotation and flotation process
JP4969764B2 (en) Method and apparatus for collecting pulverized coal
JP4751139B2 (en) Equipment for removing unburned carbon in fly ash
JP5053629B2 (en) Distributed device
CN114212853B (en) Air floatation tank for demulsification of emulsified oil-containing wastewater, wastewater treatment system comprising air floatation tank and method
JP2013128915A (en) Method and apparatus for treating dust
CN113522182A (en) Preparation method of used oil collecting agent for low-rank coal flotation
JP2005349304A (en) Method and apparatus for volume reduction of surplus sludge
CN111003832A (en) Pretreatment equipment and method for oil stain and SS in polishing solution wastewater
CN212397613U (en) Multi-source mixed resource treatment system for hydrocarbon-containing waste
CN115259562B (en) Air floatation scum sludge conditioning method
CN101391823A (en) Method for removing oil, especially emulsible oil from oil pollution and apparatus thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090714

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140724

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees