JP2005028249A - Method and device for recovering pulverized coal - Google Patents

Method and device for recovering pulverized coal Download PDF

Info

Publication number
JP2005028249A
JP2005028249A JP2003194566A JP2003194566A JP2005028249A JP 2005028249 A JP2005028249 A JP 2005028249A JP 2003194566 A JP2003194566 A JP 2003194566A JP 2003194566 A JP2003194566 A JP 2003194566A JP 2005028249 A JP2005028249 A JP 2005028249A
Authority
JP
Japan
Prior art keywords
pulverized coal
coal
foaming agent
agent
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003194566A
Other languages
Japanese (ja)
Other versions
JP4969764B2 (en
Inventor
Kosuke Kimoto
浩介 木本
Kazuo Abe
一雄 阿部
Toshiaki Murata
逞詮 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2003194566A priority Critical patent/JP4969764B2/en
Publication of JP2005028249A publication Critical patent/JP2005028249A/en
Application granted granted Critical
Publication of JP4969764B2 publication Critical patent/JP4969764B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for recovering pulverized coal by which the use of a flotation machine can be eliminated and the process can be shoryened. <P>SOLUTION: The method for recovering the pulverized coal from a coal slurry containing the pulverized coal comprises: a stage where a scavenger A and a foaming agent B are added to coal slurry S1; a shearing stage where the coal slurry containing the scavenger A and the foaming agent B is rapidly stirred to impart a shearing force to the pulverized coal (c) and oil droplets (a) in the scavenger; and a floatation stage where the foaming agent B is foamed, and simultaneously, the pulverized coal (c) whose surface has been reformed by the shearing treatment is floated by utilizing foam (b) in the foaming agent. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、微粉炭の回収方法及び装置、更に詳しくは、微粉炭に水を加えて形成させた微粉炭−水スラリー(石炭スラリー)から微粉炭(精炭)を回収する方法及び装置に関するものである。
【0002】
【従来の技術】
石炭の選別は、その粒径によって選別方法が異なっているが、例えば、0.5mm以下の微粉炭は、浮選法によって選別(回収)することが行われている。
【0003】
従来、浮選法の一つとして、例えば、図7に示すように、(1)原料炭1を粉砕機2で粉砕する工程と、(2)得られた微粉炭3を混合槽4に導入した後、バインダー5および水6を加えて微粉炭の水スラリーを形成する工程と、(3)この微粉炭の水スラリーを攪拌翼を有する横型円筒状の造粒機7に送り、微粉炭の脱灰および造粒を行なう工程と、(4)得られた微小造粒炭のスラリーをコンディショナー8に導入した後、水10を加えて微小造粒炭の濃度を調整する工程と、(5)濃度調整後の微小造粒炭スラリーに起泡剤又は起泡剤を主成分とする浮選剤9を加える工程と、(6)起泡剤又は浮選剤9を添加後の微小造粒炭のスラリーを浮選機11に導入して微小造粒炭の浮選を行なう工程により構成されている浮遊回収方法が提案されている(例えば、特許文献1参照。)。
【0004】
【特許文献1】
特開昭60−122065公報(第2頁左上欄第20行〜第3頁右上欄第15行、第1図)
【0005】
【発明が解決しようとする課題】
上記の浮遊回収方法によれば、微小造粒炭12は、添加されたバインダーによって石炭単独の場合よりも相対的に疎水性になっているので、起泡剤又は起泡剤を主成分とする浮選剤により生じた気泡に付着して水面に浮上し、一方、石炭中の灰分13は、炭素分より親水性なので、浮上せずに沈下する。浮上した微小造粒炭12を、通常の浮選法と同様に、浮選機により捕集すれば、灰分の少ない微小造粒炭14を得ることができる。
【0006】
しかし、上記の浮遊回収方法は、微粉炭の回収および選別が浮選機11によって行なわれているため、微粉炭の回収および選別が浮選機11の性能に左右されるという問題がある。その上、上記の浮遊回収方法は、上記の如く、(1)〜(6)の6工程から構成されていることから、工程の短縮が要望されている。
【0007】
本発明は、係る問題を解決するためになされたものであり、その目的とするところは、浮選機の不使用、工程の短縮を計ることができる微粉炭の回収方法及び装置を提供することにある。
【0008】
【課題を解決するための手段】
上記の目的を達成するため、本発明の微粉炭の回収方法は、微粉炭を含む石炭スラリーより微粉炭の回収を行う微粉炭の回収方法において、前記石炭スラリーに捕集剤及び起泡剤を添加する工程と、前記捕集剤及び起泡剤を含有する石炭スラリーを急速攪拌して微粉炭および捕集剤の油滴に剪断力を付与するシェアーリング工程と、前記起泡剤を起泡させると同時に当該シェアーリング処理により表面が改質された微粉炭を起泡剤の気泡を利用して浮揚させる浮遊選別工程により構成されている。
【0009】
ここで、微粉炭とは、比重選別ができなくなる約0.5mm以下のサイズの石炭のことを言う。
【0010】
また、急速攪拌とは、従来のコンデショナーによる緩攪拌に対するものであり、攪拌エネルギーが10kW/m以上のことを云い、好ましくは、25kW/m〜100kW/mである。
【0011】
即ち、従来のコンデショナーは、微粉炭の沈降防止を目的としたスラリーの均一化のための攪拌であり、緩やか、例えば、攪拌エネルギーが数kW/m程度で行われるのに対し、本発明の急速攪拌は、微粉炭の粒子及び浮選油の油滴を容器(ドラム)内の固定部分(ドラムの円筒壁面、仕切板、固定翼)や移動部分(攪拌板、攪拌翼)などに強制的に接触させて剪断力を付与し、微粉炭の粒子の表面に油滴を付着、或いは、展着させて、微粉炭の表面の浮選性を改善するために、高い攪拌エネルギーで行われる。
【0012】
この発明の微粉炭回収方法によれば、急速攪拌のシェアーリング(剪断力付与)により、微粉炭の粒子及び浮選油の油滴に剪断活性面が形成され、この剪断活性面の発生により、過渡的ではあるが表面エネルギーが相対的に上がる。この表面エネルギーの増分により、微粉炭と油滴との会合により微粉炭の表面に油膜が形成できるようになる。
【0013】
上記石炭スラリーには、所望により、捕集剤及び起泡剤を同時に添加することができる。また、石炭スラリーに捕集剤を添加し、しかる後に、捕集剤の混入した石炭スラリーに起泡剤を添加することができる。
【0014】
また、捕集剤の添加量としては、微粉炭量に対して0.01〜1.0重量%、より好ましくは、0.05〜0.3重量%が望ましい。
【0015】
一方、起泡剤の添加量としては、微粉炭量に対して50〜1000ppm、より好ましくは、100〜200ppmが望ましい。
【0016】
そして、上記の微粉炭回収方法を実施するために使用される微粉炭の回収装置は、次のように構成される。
【0017】
すなわち、本発明の微粉炭の回収装置は、微粉炭を含む石炭スラリーより微粉炭の回収を行う微粉炭の回収装置において、前記石炭スラリーに捕集剤及び起泡剤を添加する手段と、前記捕集剤及び起泡剤を含有する石炭スラリーを急速攪拌して微粉炭及び捕集剤の油滴に剪断力を付与すると同時に、前記起泡剤を起泡させる微粉炭表面改質機と、該微粉炭表面改質機により表面が改質された微粉炭を起泡剤の気泡を利用して浮揚させる浮遊選別槽により構成されている。
【0018】
ここで、上記の微粉炭表面改質機は、筒形状のドラム内に、当該ドラムの長手方向に向かってドーナツ型の仕切板を多段に有すると共に、該仕切板に囲まれた攪拌室内に、石炭スラリーを急速攪拌する攪拌翼付き攪拌板を設け、かつ、前記仕切板のうち、ドラム上流側の強攪拌域内の仕切板の壁面に固定翼を設けている。
【0019】
また、この発明は、石炭スラリーに捕集剤及び起泡剤を同時に添加する手段を備えている。
【0020】
さらに、この発明は、石炭スラリーに捕集剤を添加する捕集剤添加手段と、捕集剤の混入した石炭スラリーに起泡剤を添加する起泡剤添加手段とを備えている。
【0021】
【発明の実施の形態】
以下、本発明の実施の形態を図面を用いて説明する。
図1は、本発明に係る微粉炭の回収装置の概略構成図であり、スラリー調整タンク21、スラリーポンプ22、捕集剤添加装置23、起泡剤添加装置24、微粉炭表面改質機25、浮遊式選別器26により構成されている。
【0022】
ここで、起泡剤添加装置24は、捕集剤添加装置23の下流側に位置しており、捕集剤添加装置23によって石炭スラリーS1に捕集剤Aを添加した後、石炭スラリーS1に起泡剤Bを添加するようになっている。
【0023】
尚、捕集剤添加装置23は、捕集剤タンク27と定量供給ポンプ28により構成され、起泡剤添加装置24は、起泡剤タンク29と定量供給ポンプ30により構成されている。
【0024】
上記微粉炭表面改質機25は、図1に示すように、横型多段高速ミキサーとして構成されている。この横型多段高速ミキサー25は、図示しない支持脚で基盤に支持されたドラム41と、モーター61と減速機(図示せず)とを備えて形成されており、モーター61により駆動される回転軸51に設けられた攪拌板52を高速回転することにより、石炭スラリーS1中の微粉炭の粒子c及び捕集剤の油滴aをドラム内筒壁面41a、仕切板42、攪拌板52などに接触させて剪断力付与を行って微粉炭を改質するようになっている。
【0025】
具体的に説明すると、この微粉炭表面改質機25は、図2に示すように、ドラム41内に仕切板(バッフル)42がドラム41の軸方向に略等間隔に設けられている。この仕切板42は、上下2枚の半円弧板を向かい合わせ配置したドーナツ板状に形成され、外周側をドラム41の円筒壁面41aに固定すると共に、中央部に石炭スラリーS1と捕集剤A及び起泡剤Bの混合物S2及び空気Eが流通するための流通路43が設けられている。なお、仕切板42を上下2枚の半円弧板とするのは、組立及び分解を容易とするためである。
【0026】
また、石炭スラリーS1の入口44の近傍に設けられる仕切板42a,42b、即ち、強攪拌ゾーンM内の仕切板42a,42bでは、帯状又は矩形状の固定翼48が仕切板42に突設されている。具体的には、第1の仕切板42aでは、その両面に固定翼48が設けられ、第2の仕切板42bでは、入口44側の片面のみに固定翼48がそれぞれ複数個、例えば、3個設けられている(図3参照。)。なお、符号Nは、分離ゾーンである。
【0027】
そして、ドラム41の両側の軸受部46,46で枢支される回転軸51がドラム41の内部に配設され、この回転軸51には、図4に示すように、攪拌翼53を有する攪拌板52がボス部52aを介して嵌合されている。この攪拌板52は、回転軸51の軸方向に対して垂直に設けられると共に、回転軸51の軸方向に略等間隔に配置される。これにより、攪拌板52がドラム41内に配設された時に、それぞれの攪拌板52が、仕切板42で仕切られているそれぞれの攪拌室50内に配置される。
【0028】
石炭分(微粉炭)c及び捕集剤の油滴aに十分な剪断力を付与するためには、攪拌翼53と固定翼48との隙間は、できるだけ狭い方が望ましい。
【0029】
また、攪拌翼53は、攪拌効率を高めるため、回転方向Rに対して凸で放射状になるように形成された帯状体が、攪拌板52の両面に攪拌板52に対して略垂直になるように、即ち、回転軸51の軸方向になるように設けられる。この攪拌翼53は、回転軸51の回転方向に関しては略等間隔に複数個(図4では、4個)設けられる。
【0030】
そして、ドラム41内の混合物S2に接触する部分、即ち、ドラム内周面41a、仕切板42、固定翼48、攪拌板52、攪拌翼53の表面には、微粉炭cや油滴aとの接触時に剪断力を効率良く付与するため、及び微粉炭cの接触による摩耗を防止するために、アルミナなどのセラミックライニング(図示せず)を施す。
【0031】
上記攪拌板52は、2G〜40G、より好ましくは、20G〜30Gの範囲で運転することが好ましい。ここで、Gは、攪拌翼径と回転数によって決まる遠心力である。
【0032】
図1に示すように、微粉炭と水を混合させてスラリー状にした所謂石炭スラリーS1は、一旦、スラリー調整タンク21に導入され、備え付けの攪拌機31による調整が行なわれる。
【0033】
スラリー調整タンク21内の石炭スラリーS1は、スラリーポンプ22によって微粉炭表面改質機25に供給される。その際、捕集剤タンク27内の捕集剤Aは、定量供給ポンプ28によって送出され、配管32内を通過中の石炭スラリーS1に供給される。その後、捕集剤Aが混入された石炭スラリーS2内に、起泡剤タンク29の起泡剤Bが定量供給ポンプ30によって定量供給される。この状態は、図6(a)に示す状態であり、微粉炭cと、灰dと、捕集剤の油滴a及び起泡剤の液滴bが混合している状態である。尚、Wは、水である。
【0034】
なお、この捕集剤Aとしては、灯油、軽油などの鉱油を主に使用することができる。炭質にもよるが、微粉炭量に対する重量%で0.01%〜1.0%、好ましくは0.05%〜0.3%という極少量の捕集剤Aの添加により微粉炭表面改質機25にて微粉炭フロスを形成することができる。
【0035】
一方、起泡剤Bとしては、改質された石炭スラリーを発泡させるためのものであり、パイン油、テルピネオール、ポリオキシプロピレンアルキルエーテル、高級アルコールなどを使用することができる。また、その添加量は、微粉炭量に対して50〜1000ppm、より好ましくは、100〜200ppm添加される。
【0036】
そして、石炭スラリーS1と捕集剤A及び起泡剤Bとが混合した混合物S3が、微粉炭表面改質機25により急速攪拌される。即ち、攪拌エネルギーが10kW/m以上、好ましくは、25kW/m〜100kW/mとなるような攪拌が行われる。
【0037】
図5に示すように、上記の混合物S3が入口44からドラム41内に供給されると、高速回転する攪拌翼53によって石炭スラリーS1と浮遊油A及び起泡剤Bの混合物S3が高速度で攪拌される。この高速攪拌により、混合物S3は、回転軸51と共に回転する攪拌翼53によって急速攪拌されながら、流通路43、攪拌板52と円筒壁面41aとの隙間等を通過し、順次、下流側の攪拌室50に送りだされ、改質された石炭スラリーS4となり出口45から排出される。
【0038】
更に、具体的に説明すると、入口44からドラム41の強攪拌ゾーンM内に混合物S3が供給されると、微粉炭cと油滴aを高度に分散させると共に、微粉炭cと油滴aを、円筒壁面41a、仕切板42、固定翼43、攪拌板52、攪拌翼53等の表面に接触させる。この接触により、微粉炭c及び油滴aに強い剪断力が付与され、微粉炭cの表面に非常に薄い油膜aを展着させる(図6(b)参照。)。この油膜aにより、微粉炭cの表面の濡れ性が改質及び改善し、微粉炭cの表面の親油性が高められる。その結果、浮選性が画期的に向上する。
【0039】
この剪断力の付与(シェアーリング)は、コンディショニングと異なり、急速攪拌であるため、微粉炭の粒子c、並びに、油滴aに剪断力を与え、剪断面を惹起する。この剪断面が生じた瞬間は、瞬時過渡的に高表面エネルギー性を示すので、油滴aが微粉炭の粒子cに付着・過着し易くなると考えられる。
【0040】
この微粉炭表面改質機25の構造によれば、仕切板42と攪拌板52を交互に配置しているので、この構成により、入口44から出口45へのショートパスを防止でき、効率的な混合と接触とによる剪断力付与を行うことができる。この混合と接触による剪断力付与により微粉炭cの表面への油滴aの付着を効率的に行うことができる。そのため、少量の捕集剤Aで、しかも、短時間で微粉炭cの表面の改質を行うことができる。
【0041】
そして、微粉炭表面改質機25で改質された微粉炭cは、図6(c)に示すように、油膜aが付着したまま起泡剤Bが起泡して得られた気泡eの表面に付着する。強攪拌ゾーンMの下流側の遠心分離ゾーンNにおいては、攪拌翼53により被処理物が高速攪拌されることから、起泡剤Bの起泡が盛んに行われ、その気胞eに付着する微粉炭量が増加する一方、微粉炭cより比重の大きい灰d等は、遠心力の作用によりドラム1の内筒壁面4a側に移行し、下流に移行するほど、微粉炭cとの分離が進行する。そして、気泡eに付着した微粉炭cは、少量の灰dなどと一緒に浮遊式選別器26に送られる。
【0042】
上記にように、油膜aが付着した低灰分の微粉炭cは、気泡eに付着した状態となり、水面に浮上するので、浮遊式選別器26内の堰33を越えたものを浮揚分として回収し、更に、この浮上した微粉炭cを図示しない真空濾過機等で分離し、微粉精炭Cとして回収する。
【0043】
一方の灰dは、微粉炭cよりも親水性が大きいので、浮上せずに沈降し、スラッジDとして分離される。このスラッジDは、図示しないシックナーに送られて、水と分離され、廃棄又は「低品位石炭−水スラリー」の原料として再利用される。一方、このスラッジDを分離した水は循環水として再利用される。
【0044】
従って、この微粉炭の回収方法及び装置によれば、微粉炭表面改質機25により石炭スラリーS1と捕集剤Aとの混合物S2を改質することにより、浮選精炭回収率と浮選浮遊速度とを大幅に改善することができる。また、回収率の向上により、排水中の固形分を減少することができるので、排水負荷を低減できる。
【0045】
その上、本発明に係る微粉炭の回収方法及び装置は、濃縮浮選から直接浮選まで、幅広いスラリー濃度に対応可能であり、更に、これまで浮遊法による精炭回収が困難であった浮選性不良の石炭に対しても、この表面改質法によって浮選性を改善することにより、浮選法を適用できるようになり、浮選法による微粉炭の回収を効率良く行うことができる。
【0046】
以上の説明では、石炭スラリーS1に捕集剤Aを添加後、起泡剤Bを石炭スラリーS1に添加する場合について説明したが、図1にて、2点破線で示すように、起泡剤Bの配管55を捕集剤Aの配管56に接続させ、石炭スラリーS1に捕集剤A及び起泡剤Bを同時に添加させることもできる。
【0047】
【発明の効果】
上記のように、本発明によれば、次のような効果を奏することができる。
【0048】
すなわち、微粉炭表面改質機の強攪拌ゾーンの剪断作用(シェアーリング作用)により、微粉炭の浮選性を大きく改善できるので、高い精炭回収率を実現することができる。
【0049】
また、微粉炭表面改質機の強攪拌ゾーン(シェア−リング工程)により、薄い油膜を石炭の表面に効率よく付着することができるため、従来の通常の浮選法と比べて油使用量が少量となる。しかも、微粉炭表面改質機により浮選浮遊速度が大幅に改善されので、従来必要であった浮選機を必要としなくなった。
【0050】
その上、本発明の微粉炭の回収方法により、シックナーの表層に微粉炭や浮選油が浮遊することがなくなり、排水負荷も低くなるので、シックナーや浮選テールフィルタープレス等を含む下流側の排水処理系で順調な操業を全般に渡り行うことができる。つまり、良好な浮選性達成により排水系の負荷が低減され、順調な工場運転、環境負荷の低減を図ることができる。
【0051】
その上、本発明の微粉炭回収装置によれば、石炭スラリーと浮選油の混合物とを高速攪拌し、微粉炭等に剪断力を付与して微粉炭の浮選性を改善することができる。しかも、複数の仕切板と複数の攪拌板との構成により、非常に効率よく微粉炭を改質できる。そのため、非常にコンパクトな装置となるので、設置場所が少なくて済む。従って、既存の微粉炭の浮選システムにおいても、浮選プロセスの前段に容易に組み込むことができる。
【図面の簡単な説明】
【図1】本発明に係る微粉炭の回収装置の概略構成図である。
【図2】微粉炭表面改質機の断面図である。
【図3】図2のX−X’矢視図である。
【図4】図2のY−Y’矢視図である。
【図5】微粉炭表面改質機の作用説明図である。
【図6】(a)微粉炭等の混合状態を示す図、(b)微粉炭の表面改質状態を示す図、(c)気胞に付着した表面改質微粉炭を示す図である。
【図7】従来の微粉炭回収方法説明図である。
【符号の説明】
A 捕集剤
B 起泡剤
b 起泡剤の気泡
c 微粉炭
S1 微粉炭を含む石炭スラリー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for collecting pulverized coal, and more particularly to a method and apparatus for collecting pulverized coal (fine coal) from pulverized coal-water slurry (coal slurry) formed by adding water to pulverized coal. It is.
[0002]
[Prior art]
For the selection of coal, the selection method differs depending on the particle size. For example, pulverized coal of 0.5 mm or less is selected (collected) by the flotation method.
[0003]
Conventionally, as one of the flotation methods, for example, as shown in FIG. 7, (1) a step of pulverizing raw coal 1 with a pulverizer 2 and (2) introducing the obtained pulverized coal 3 into a mixing tank 4 Then, a step of adding a binder 5 and water 6 to form a water slurry of pulverized coal, and (3) sending the water slurry of pulverized coal to a horizontal cylindrical granulator 7 having a stirring blade, A step of deashing and granulating, (4) a step of adjusting the concentration of the microgranulated coal by adding water 10 after introducing the obtained slurry of the microgranulated coal into the conditioner 8, and (5) A step of adding a foaming agent or a flotation agent 9 mainly composed of a foaming agent to the finely granulated coal slurry after the concentration adjustment; and (6) the microgranulated coal after the addition of the foaming agent or the flotation agent 9 Proposed a flotation recovery method that consists of a step of flotation of fine granulated coal by introducing the slurry into the flotation machine 11 Is (e.g., see Patent Document 1.).
[0004]
[Patent Document 1]
JP-A-60-122065 (page 2, upper left column, line 20 to page 3, upper right column, line 15, line 1)
[0005]
[Problems to be solved by the invention]
According to the above floating recovery method, the microgranulated coal 12 is relatively more hydrophobic than the case of the coal alone due to the added binder, so that the foaming agent or the foaming agent is the main component. It adheres to the bubbles generated by the flotation agent and floats on the water surface. On the other hand, the ash 13 in the coal is more hydrophilic than the carbon, so it sinks without floating. If the floated fine granulated coal 12 is collected by a flotation machine as in the normal flotation method, the fine granulated coal 14 with less ash content can be obtained.
[0006]
However, the above-described floating recovery method has a problem that the collection and sorting of pulverized coal is performed by the flotation machine 11, and thus the collection and sorting of pulverized coal depends on the performance of the flotation machine 11. Moreover, since the above floating recovery method is composed of the six steps (1) to (6) as described above, it is desired to shorten the steps.
[0007]
The present invention has been made to solve such problems, and an object of the present invention is to provide a method and an apparatus for recovering pulverized coal that can reduce the use of a flotation machine and the shortening of processes. It is in.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the method for recovering pulverized coal according to the present invention is a method for recovering pulverized coal from a coal slurry containing pulverized coal. In the method for recovering pulverized coal, a collecting agent and a foaming agent are added to the coal slurry. A step of adding, a sharing step of rapidly stirring the coal slurry containing the scavenger and the foaming agent to impart shear force to the pulverized coal and oil droplets of the scavenger, and foaming the foaming agent At the same time, the pulverized coal whose surface is modified by the shearing process is floated by using the bubbles of the foaming agent.
[0009]
Here, pulverized coal refers to coal having a size of about 0.5 mm or less that makes specific gravity selection impossible.
[0010]
In addition, the rapid stirring is for a gentle stirring with conventional conditioners, stirring energy refers to a 10 kW / m 3 or more, preferably, 25kW / m 3 ~100kW / m 3.
[0011]
That is, the conventional conditioner is stirring for homogenizing the slurry for the purpose of preventing sedimentation of pulverized coal, and is performed gently, for example, at a stirring energy of about several kW / m 3 , whereas in the present invention Rapid stirring forces pulverized coal particles and oil droplets of flotation oil to the fixed part (drum cylindrical wall surface, partition plate, fixed blade) or moving part (stirring plate, stirring blade) in the container (drum). In order to improve the flotation properties of the surface of the pulverized coal by applying a shearing force to the surface of the pulverized coal and attaching or spreading oil droplets on the surface of the particles of the pulverized coal, high agitation energy is used.
[0012]
According to the pulverized coal recovery method of the present invention, shearing active surfaces are formed on the particles of pulverized coal and oil droplets of the flotation oil by shearing (giving shearing force) of rapid stirring, and by generating this shearing active surface, Although it is transient, surface energy rises relatively. By this increase in surface energy, an oil film can be formed on the surface of the pulverized coal due to the association between the pulverized coal and the oil droplets.
[0013]
If desired, a trapping agent and a foaming agent can be simultaneously added to the coal slurry. Moreover, a foaming agent can be added to the coal slurry which added the collection agent to coal slurry, and mixed the collection agent after an appropriate time.
[0014]
Further, the addition amount of the collecting agent is preferably 0.01 to 1.0% by weight, more preferably 0.05 to 0.3% by weight, based on the amount of pulverized coal.
[0015]
On the other hand, the addition amount of the foaming agent is preferably 50 to 1000 ppm, more preferably 100 to 200 ppm, based on the amount of pulverized coal.
[0016]
And the collection apparatus of the pulverized coal used in order to implement said pulverized coal collection method is comprised as follows.
[0017]
That is, the pulverized coal recovery device of the present invention is a pulverized coal recovery device that recovers pulverized coal from a coal slurry containing pulverized coal, the means for adding a collecting agent and a foaming agent to the coal slurry, A pulverized coal surface reformer that foams the foaming agent at the same time as applying a shearing force to the oil droplets of the pulverized coal and the collection agent by rapidly stirring the coal slurry containing the collection agent and the foaming agent; The pulverized coal surface reformer comprises a floating sorting tank that floats the pulverized coal whose surface has been modified using bubbles of a foaming agent.
[0018]
Here, the pulverized coal surface reformer has a multi-stage donut-shaped partition plate in the longitudinal direction of the drum in a cylindrical drum, and in the stirring chamber surrounded by the partition plate, A stirring plate with stirring blades for rapidly stirring the coal slurry is provided, and among the partition plates, fixed blades are provided on the wall surface of the partition plate in the strong stirring region on the drum upstream side.
[0019]
The present invention also includes means for simultaneously adding a scavenger and a foaming agent to the coal slurry.
[0020]
Furthermore, this invention is equipped with the collection agent addition means which adds a collection agent to coal slurry, and the foaming agent addition means which adds a foaming agent to the coal slurry in which the collection agent was mixed.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a pulverized coal recovery apparatus according to the present invention, in which a slurry adjustment tank 21, a slurry pump 22, a collecting agent addition apparatus 23, a foaming agent addition apparatus 24, and a pulverized coal surface reformer 25 are illustrated. The floating sorter 26 is configured.
[0022]
Here, the foaming agent addition device 24 is located on the downstream side of the collection agent addition device 23, and after adding the collection agent A to the coal slurry S1 by the collection agent addition device 23, the coal slurry S1 is added. Foaming agent B is added.
[0023]
The collecting agent adding device 23 is composed of a collecting agent tank 27 and a quantitative supply pump 28, and the foaming agent adding device 24 is composed of a foaming agent tank 29 and a quantitative supply pump 30.
[0024]
The pulverized coal surface reformer 25 is configured as a horizontal multistage high-speed mixer, as shown in FIG. The horizontal multistage high-speed mixer 25 includes a drum 41 supported on a base by a support leg (not shown), a motor 61 and a speed reducer (not shown), and a rotating shaft 51 driven by the motor 61. By rotating the stirring plate 52 provided at a high speed, the particles c of the pulverized coal in the coal slurry S1 and the oil droplets a of the collecting agent are brought into contact with the drum inner cylinder wall surface 41a, the partition plate 42, the stirring plate 52, and the like. The pulverized coal is modified by applying shearing force.
[0025]
More specifically, in the pulverized coal surface reformer 25, as shown in FIG. 2, partition plates (baffles) 42 are provided in the drum 41 at substantially equal intervals in the axial direction of the drum 41. The partition plate 42 is formed in a donut plate shape in which two upper and lower semicircular arc plates are arranged to face each other, and the outer peripheral side is fixed to the cylindrical wall surface 41a of the drum 41, and the coal slurry S1 and the collecting agent A at the center. And the flow path 43 for the mixture S2 of the foaming agent B and the air E to distribute | circulate is provided. The reason why the partition plate 42 is made of two upper and lower semicircular arc plates is to facilitate assembly and disassembly.
[0026]
Further, in the partition plates 42 a and 42 b provided in the vicinity of the inlet 44 of the coal slurry S 1, that is, the partition plates 42 a and 42 b in the strong agitation zone M, strip-shaped or rectangular fixed blades 48 project from the partition plate 42. ing. Specifically, the first partition plate 42a is provided with fixed blades 48 on both surfaces thereof, and the second partition plate 42b has a plurality of, for example, three fixed blades 48 on only one surface on the inlet 44 side. Provided (see FIG. 3). Note that the symbol N is a separation zone.
[0027]
A rotating shaft 51 pivotally supported by bearings 46 on both sides of the drum 41 is disposed inside the drum 41, and the rotating shaft 51 has a stirring blade 53 as shown in FIG. The plate 52 is fitted through the boss portion 52a. The stirring plate 52 is provided perpendicular to the axial direction of the rotating shaft 51 and is disposed at substantially equal intervals in the axial direction of the rotating shaft 51. Thereby, when the stirring plate 52 is disposed in the drum 41, each stirring plate 52 is disposed in each stirring chamber 50 partitioned by the partition plate 42.
[0028]
In order to give a sufficient shearing force to the coal component (pulverized coal) c and the oil droplets a of the collecting agent, the gap between the stirring blade 53 and the fixed blade 48 is desirably as narrow as possible.
[0029]
Further, in order to increase the stirring efficiency, the stirring blade 53 is formed so that the belt-like bodies that are convex and radial with respect to the rotation direction R are substantially perpendicular to the stirring plate 52 on both sides of the stirring plate 52. That is, it is provided so as to be in the axial direction of the rotating shaft 51. A plurality of stirring blades 53 (four in FIG. 4) are provided at substantially equal intervals in the rotational direction of the rotating shaft 51.
[0030]
And the part which contacts the mixture S2 in the drum 41, ie, the drum inner peripheral surface 41a, the partition plate 42, the fixed blade 48, the stirring plate 52, and the surface of the stirring blade 53, are mixed with pulverized coal c and oil droplets a. A ceramic lining (not shown) such as alumina is applied in order to efficiently apply a shearing force at the time of contact and to prevent wear due to contact with the pulverized coal c.
[0031]
The stirring plate 52 is preferably operated in the range of 2G to 40G, more preferably 20G to 30G. Here, G is a centrifugal force determined by the stirring blade diameter and the rotational speed.
[0032]
As shown in FIG. 1, so-called coal slurry S <b> 1 in which pulverized coal and water are mixed to form a slurry is once introduced into a slurry adjustment tank 21, and is adjusted by a provided stirrer 31.
[0033]
The coal slurry S <b> 1 in the slurry adjustment tank 21 is supplied to the pulverized coal surface reformer 25 by the slurry pump 22. At that time, the collection agent A in the collection agent tank 27 is sent out by the fixed supply pump 28 and supplied to the coal slurry S <b> 1 passing through the pipe 32. Thereafter, the foaming agent B in the foaming agent tank 29 is quantitatively supplied by the constant supply pump 30 into the coal slurry S2 in which the collecting agent A is mixed. This state is a state shown in FIG. 6A, in which the pulverized coal c, the ash d, the oil droplet a of the collecting agent, and the droplet b of the foaming agent are mixed. W is water.
[0034]
As the scavenger A, mineral oils such as kerosene and light oil can be mainly used. Although it depends on the quality of the coal, the surface of the pulverized coal is improved by adding a very small amount of the trapping agent A of 0.01% to 1.0%, preferably 0.05% to 0.3% by weight with respect to the amount of pulverized coal. The machine 25 can form pulverized coal floss.
[0035]
On the other hand, the foaming agent B is for foaming the modified coal slurry, and pine oil, terpineol, polyoxypropylene alkyl ether, higher alcohol and the like can be used. Moreover, the addition amount is 50-1000 ppm with respect to the amount of pulverized coal, More preferably, 100-200 ppm is added.
[0036]
Then, the mixture S3 in which the coal slurry S1, the collecting agent A, and the foaming agent B are mixed is rapidly stirred by the pulverized coal surface reformer 25. That is, agitation energy 10 kW / m 3 or more, preferably, agitation such that 25kW / m 3 ~100kW / m 3 is performed.
[0037]
As shown in FIG. 5, when the mixture S3 is supplied into the drum 41 from the inlet 44, the mixture S3 of the coal slurry S1, the floating oil A, and the foaming agent B is rotated at a high speed by the stirring blade 53 that rotates at high speed. Stir. By this high-speed stirring, the mixture S3 passes through the flow passage 43, the gap between the stirring plate 52 and the cylindrical wall surface 41a and the like while being rapidly stirred by the stirring blade 53 that rotates together with the rotating shaft 51. 50, and becomes a modified coal slurry S4 and discharged from the outlet 45.
[0038]
More specifically, when the mixture S3 is supplied from the inlet 44 into the strong stirring zone M of the drum 41, the pulverized coal c and the oil droplets a are highly dispersed, and the pulverized coal c and the oil droplets a are dispersed. The cylindrical wall surface 41a, the partition plate 42, the fixed blade 43, the stirring plate 52, the stirring blade 53, and the like are brought into contact with each other. By this contact, a strong shearing force is applied to the pulverized coal c and the oil droplets a, and a very thin oil film a is spread on the surface of the pulverized coal c (see FIG. 6B). The oil film a improves and improves the wettability of the surface of the pulverized coal c, and enhances the lipophilicity of the surface of the pulverized coal c. As a result, the flotation performance is dramatically improved.
[0039]
The application of shearing force (sharing) is rapid agitation unlike conditioning, and therefore a shearing force is applied to the pulverized coal particles c and the oil droplets a to induce a shearing surface. At the moment when the shear surface is generated, it is considered that the oil droplets a are likely to adhere to and adhere to the particles c of the pulverized coal because the surface energy is instantaneously transiently exhibited.
[0040]
According to the structure of the pulverized coal surface reformer 25, since the partition plates 42 and the stirring plates 52 are alternately arranged, this configuration can prevent a short path from the inlet 44 to the outlet 45, which is efficient. A shearing force can be applied by mixing and contacting. By applying a shearing force by this mixing and contact, the oil droplets a can be efficiently attached to the surface of the pulverized coal c. Therefore, the surface of the pulverized coal c can be modified with a small amount of the collecting agent A in a short time.
[0041]
Then, the pulverized coal c modified by the pulverized coal surface reformer 25 is, as shown in FIG. 6 (c), the bubbles e obtained by foaming the foaming agent B while the oil film a is adhered. Adhere to the surface. In the centrifugal separation zone N on the downstream side of the strong stirring zone M, the object to be treated is stirred at high speed by the stirring blade 53, so that foaming of the foaming agent B is actively performed and fine powder adhering to the air bubbles e While the amount of coal increases, the ash d having a specific gravity larger than that of the pulverized coal c moves to the inner cylinder wall surface 4a side of the drum 1 due to the action of centrifugal force, and the separation from the pulverized coal c progresses as it moves downstream. To do. The pulverized coal c adhering to the bubbles e is sent to the floating sorter 26 together with a small amount of ash d.
[0042]
As described above, the low ash pulverized coal c to which the oil film a has adhered becomes attached to the bubbles e and floats on the water surface, so that the portion exceeding the weir 33 in the floating sorter 26 is recovered as the levitation component. Further, the pulverized coal c that has floated is separated by a vacuum filter or the like (not shown) and recovered as pulverized coal C.
[0043]
One ash d is more hydrophilic than pulverized coal c, and thus settles without being floated and separated as sludge D. This sludge D is sent to a thickener (not shown), separated from water, and discarded or reused as a raw material for “low-grade coal-water slurry”. On the other hand, the water from which the sludge D is separated is reused as circulating water.
[0044]
Therefore, according to this pulverized coal recovery method and apparatus, the pulverized coal surface reformer 25 modifies the mixture S2 of the coal slurry S1 and the scavenger A to thereby improve the flotation refined coal recovery rate and flotation. The floating speed can be greatly improved. Moreover, since the solid content in the wastewater can be reduced by improving the recovery rate, the drainage load can be reduced.
[0045]
In addition, the pulverized coal recovery method and apparatus according to the present invention can handle a wide range of slurry concentrations from concentrated flotation to direct flotation, and furthermore, it has been difficult to recover fine coal by the flotation method until now. Even for coal with poor selectivity, flotation can be applied by improving flotation by this surface modification method, and pulverized coal can be efficiently recovered by flotation. .
[0046]
In the above description, the case where the foaming agent B is added to the coal slurry S1 after the collection agent A is added to the coal slurry S1 has been described. However, as shown in FIG. It is also possible to connect the pipe 55 of the B to the pipe 56 of the collecting agent A and simultaneously add the collecting agent A and the foaming agent B to the coal slurry S1.
[0047]
【The invention's effect】
As described above, according to the present invention, the following effects can be achieved.
[0048]
That is, since the flotation property of pulverized coal can be greatly improved by the shearing action (sharing action) of the strong stirring zone of the pulverized coal surface reformer, a high coal recovery rate can be realized.
[0049]
In addition, a strong agitation zone (sharing process) of the pulverized coal surface reformer allows a thin oil film to be efficiently attached to the surface of the coal, so the amount of oil used is less than that of the conventional flotation method. A small amount. Moreover, since the flotation floatation speed has been greatly improved by the pulverized coal surface reformer, the flotation machine that has been conventionally required is no longer required.
[0050]
In addition, the pulverized coal recovery method of the present invention prevents the pulverized coal and flotation oil from floating on the surface of the thickener and lowers the drainage load. The wastewater treatment system can be operated smoothly throughout. In other words, the drainage system load is reduced by achieving good flotation performance, and smooth factory operation and reduction of environmental load can be achieved.
[0051]
Moreover, according to the pulverized coal recovery apparatus of the present invention, the coal slurry and the mixture of the flotation oil can be stirred at high speed, and shear force can be applied to the pulverized coal to improve the flotation property of the pulverized coal. . Moreover, the pulverized coal can be modified very efficiently by the configuration of the plurality of partition plates and the plurality of stirring plates. As a result, the device is very compact and requires less installation space. Therefore, even the existing pulverized coal flotation system can be easily incorporated in the previous stage of the flotation process.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a pulverized coal recovery apparatus according to the present invention.
FIG. 2 is a sectional view of a pulverized coal surface reformer.
FIG. 3 is a view taken along the line XX ′ of FIG.
4 is a view taken along arrow YY ′ of FIG. 2;
FIG. 5 is an operation explanatory view of a pulverized coal surface reformer.
6A is a diagram showing a mixed state of pulverized coal and the like, FIG. 6B is a diagram showing a surface modified state of the pulverized coal, and FIG. 6C is a diagram showing surface modified pulverized coal adhering to air bubbles.
FIG. 7 is an explanatory view of a conventional pulverized coal recovery method.
[Explanation of symbols]
A Collecting agent B Foaming agent b Foaming agent bubble c Pulverized coal S1 Coal slurry containing pulverized coal

Claims (9)

微粉炭を含む石炭スラリーより微粉炭の回収を行う微粉炭の回収方法において、前記石炭スラリーに捕集剤及び起泡剤を添加する工程と、前記捕集剤及び起泡剤を含有する石炭スラリーを急速攪拌して微粉炭および捕集剤の油滴に剪断力を付与するシェアーリング工程と、前記起泡剤を起泡させると同時に当該シェアーリング処理により表面が改質された微粉炭を起泡剤の気泡を利用して浮揚させる浮遊選別工程により構成してなる微粉炭の回収方法。In the pulverized coal recovery method for recovering pulverized coal from coal slurry containing pulverized coal, a step of adding a collection agent and a foaming agent to the coal slurry, and a coal slurry containing the collection agent and the foaming agent And a pulverized coal whose surface has been modified by the sharing process at the same time that the foaming agent is foamed. A method for recovering pulverized coal, which is constituted by a floating sorting step in which bubbles of a foaming agent are floated. 石炭スラリーに捕集剤及び起泡剤を同時に添加する請求項1記載の微粉炭の回収方法。The method for recovering pulverized coal according to claim 1, wherein the collecting agent and the foaming agent are simultaneously added to the coal slurry. 石炭スラリーに捕集剤を添加し、しかる後に、前記石炭スラリーに起泡剤を添加する請求項1記載の微粉炭の回収方法。The method for recovering pulverized coal according to claim 1, wherein a collecting agent is added to the coal slurry, and then a foaming agent is added to the coal slurry. 捕集剤を、微粉炭量に対して0.01〜1.0重量%添加する請求項1、2又は3記載の微粉炭の回収方法。The method for recovering pulverized coal according to claim 1, 2 or 3, wherein the collecting agent is added in an amount of 0.01 to 1.0% by weight based on the amount of pulverized coal. 起泡剤を、微粉炭量に対して50〜1000ppmの添加する請求項1、2又は3記載の微粉炭の回収方法。The method for recovering pulverized coal according to claim 1, 2 or 3, wherein the foaming agent is added in an amount of 50 to 1000 ppm based on the amount of pulverized coal. 微粉炭を含む石炭スラリーより微粉炭の回収を行う微粉炭の回収装置において、前記石炭スラリーに捕集剤及び起泡剤を添加する手段と、前記捕集剤及び起泡剤を含有する石炭スラリーを急速攪拌して微粉炭及び捕集剤の油滴に剪断力を付与すると同時に、前記起泡剤を起泡させる微粉炭表面改質機と、該微粉炭表面改質機により表面が改質された微粉炭を起泡剤の気泡を利用して浮揚させる浮遊選別槽により構成してなる微粉炭の回収装置。In a pulverized coal recovery apparatus that recovers pulverized coal from coal slurry containing pulverized coal, means for adding a collection agent and a foaming agent to the coal slurry, and a coal slurry containing the collection agent and the foaming agent Is rapidly stirred to apply shear force to the pulverized coal and the oil droplets of the scavenger, and at the same time, the pulverized coal surface reformer for foaming the foaming agent, and the surface is modified by the pulverized coal surface reformer An apparatus for recovering pulverized coal, comprising a floating sorting tank for levitating the pulverized coal made by using bubbles of a foaming agent. 微粉炭表面改質機は、筒形状のドラム内に、当該ドラムの長手方向に向かってドーナツ型の仕切板を多段に有すると共に、該仕切板に囲まれた攪拌室内に、石炭スラリーを急速攪拌する攪拌翼付き攪拌板を設け、かつ、前記仕切板のうち、ドラム上流側の強攪拌域内の仕切板の壁面に固定翼を設けてなる請求項6記載の微粉炭の回収装置。The pulverized coal surface reformer has a doughnut-shaped partition plate in multiple stages in the longitudinal direction of the drum in a cylindrical drum, and rapidly stirs the coal slurry in the stirring chamber surrounded by the partition plate. An apparatus for recovering pulverized coal according to claim 6, wherein a stirring plate with stirring blades is provided, and a fixed blade is provided on a wall surface of the partition plate in the strong stirring zone upstream of the drum among the partition plates. 石炭スラリーに捕集剤及び起泡剤を同時に添加する手段を備えてなる請求項6記載の微粉炭の回収装置。The apparatus for recovering pulverized coal according to claim 6, comprising means for simultaneously adding a scavenger and a foaming agent to the coal slurry. 石炭スラリーに捕集剤を添加する捕集剤添加手段と、捕集剤の混入した石炭スラリーに起泡剤を添加する起泡剤添加手段とを備えてなる請求項6記載の微粉炭の回収装置。The collection | recovery of pulverized coal of Claim 6 provided with the collection agent addition means which adds a collection agent to coal slurry, and the foaming agent addition means which adds a foaming agent to the coal slurry in which the collection agent was mixed. apparatus.
JP2003194566A 2003-07-09 2003-07-09 Method and apparatus for collecting pulverized coal Expired - Fee Related JP4969764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003194566A JP4969764B2 (en) 2003-07-09 2003-07-09 Method and apparatus for collecting pulverized coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003194566A JP4969764B2 (en) 2003-07-09 2003-07-09 Method and apparatus for collecting pulverized coal

Publications (2)

Publication Number Publication Date
JP2005028249A true JP2005028249A (en) 2005-02-03
JP4969764B2 JP4969764B2 (en) 2012-07-04

Family

ID=34205700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003194566A Expired - Fee Related JP4969764B2 (en) 2003-07-09 2003-07-09 Method and apparatus for collecting pulverized coal

Country Status (1)

Country Link
JP (1) JP4969764B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007054773A (en) * 2005-08-26 2007-03-08 Mitsui Eng & Shipbuild Co Ltd Unburned carbon removal method in coal ash
JP2007181748A (en) * 2005-12-29 2007-07-19 Mitsui Eng & Shipbuild Co Ltd Method of removing unburned carbon from fly ash
JP2008163103A (en) * 2006-12-27 2008-07-17 Mitsui Zosen Plant Engineering Inc Reformation system of floatation filter cake
JP2014526953A (en) * 2011-06-21 2014-10-09 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド Method for recovering lithium cobalt oxide from lithium ion batteries
CN109759239A (en) * 2019-03-28 2019-05-17 中国矿业大学 A kind of floatation process using brine waste processing coal slime

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5721025A (en) * 1980-07-14 1982-02-03 Hitachi Ltd Buffer type gas breaker
JPS57145183A (en) * 1981-03-04 1982-09-08 Babcock Hitachi Kk Coal deashing
JPS59193993A (en) * 1983-04-19 1984-11-02 Ube Ind Ltd De-ashing device for coal
JPS63104668A (en) * 1986-10-21 1988-05-10 Mitsubishi Heavy Ind Ltd Flotation method
JPS63141660A (en) * 1986-12-02 1988-06-14 Mitsubishi Heavy Ind Ltd Flotation device
JP2004141797A (en) * 2002-10-25 2004-05-20 Mitsui Eng & Shipbuild Co Ltd Flotation method of pulverized coal, pulverized coal surface modification apparatus, and flotation system of pulverized coal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5721025A (en) * 1980-07-14 1982-02-03 Hitachi Ltd Buffer type gas breaker
JPS57145183A (en) * 1981-03-04 1982-09-08 Babcock Hitachi Kk Coal deashing
JPS59193993A (en) * 1983-04-19 1984-11-02 Ube Ind Ltd De-ashing device for coal
JPS63104668A (en) * 1986-10-21 1988-05-10 Mitsubishi Heavy Ind Ltd Flotation method
JPS63141660A (en) * 1986-12-02 1988-06-14 Mitsubishi Heavy Ind Ltd Flotation device
JP2004141797A (en) * 2002-10-25 2004-05-20 Mitsui Eng & Shipbuild Co Ltd Flotation method of pulverized coal, pulverized coal surface modification apparatus, and flotation system of pulverized coal

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007054773A (en) * 2005-08-26 2007-03-08 Mitsui Eng & Shipbuild Co Ltd Unburned carbon removal method in coal ash
JP2007181748A (en) * 2005-12-29 2007-07-19 Mitsui Eng & Shipbuild Co Ltd Method of removing unburned carbon from fly ash
JP2008163103A (en) * 2006-12-27 2008-07-17 Mitsui Zosen Plant Engineering Inc Reformation system of floatation filter cake
JP2014526953A (en) * 2011-06-21 2014-10-09 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド Method for recovering lithium cobalt oxide from lithium ion batteries
US9972830B2 (en) 2011-06-21 2018-05-15 Warner Babcock Institute For Green Chemistry, Llc Method for the recovery of lithium cobalt oxide from lithium ion batteries
JP2018095968A (en) * 2011-06-21 2018-06-21 ワーナー バブコック インスティチュート フォア グリーン ケミストリー リミテッド ライアビリティー カンパニー Method for recovery of lithium cobalt oxide from lithium ion batteries
CN109759239A (en) * 2019-03-28 2019-05-17 中国矿业大学 A kind of floatation process using brine waste processing coal slime
CN109759239B (en) * 2019-03-28 2020-01-17 中国矿业大学 Flotation process for treating coal slime by using salt-containing wastewater

Also Published As

Publication number Publication date
JP4969764B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
JP4917309B2 (en) How to remove unburned carbon in fly ash
CN100455357C (en) Method of removing unburned carbon from fly ash
KR101287486B1 (en) Apparatus for removing of unburned carbon from fly ash and relevant removing method
JP2007054773A (en) Unburned carbon removal method in coal ash
Lu et al. Dispersion behavior and attachment of high internal phase water-in-oil emulsion droplets during fine coal flotation
KR20090109529A (en) Method of removing unburned carbon from coal ash
JPS61293566A (en) Method and apparatus for separating carbonaceous component from powery coal containing inorganic solid
EP2861352B1 (en) Methods for separating and dewatering fine particles
JP4346299B2 (en) Pulverized coal flotation method, pulverized coal surface reformer, and pulverized coal flotation system
JP4969764B2 (en) Method and apparatus for collecting pulverized coal
US8127931B2 (en) Apparatus for removing unburned carbon in fly ash
JPH0711268A (en) Production of deashed high-concentration coal-water slurry
JPS6044085A (en) Concentrating method of sludge
CN108246154A (en) A kind of multi-effect flotation high shear size mixing device
GB2058737A (en) Concentrating sludge
US2744626A (en) Process for the removal of ash and water from raw material containing coal
JP4751139B2 (en) Equipment for removing unburned carbon in fly ash
JPH07213950A (en) Apparatus for decarbonization of coal ash
CN111003832A (en) Pretreatment equipment and method for oil stain and SS in polishing solution wastewater
Luo et al. Enhanced coarse coal slime separation in a gravity–flotation coupled separator with up-flow feeding and dual-concentrate
JP3558513B2 (en) Method for separating and recovering useful metals from waste
CN105858970A (en) Novel air floating method and air floating machine
RU2063813C1 (en) Method for recovery of diamonds from ores
JPH0124140Y2 (en)
JP2005186056A (en) Cleaning method for contaminated soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110223

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees