JP2005349304A - Method and apparatus for volume reduction of surplus sludge - Google Patents

Method and apparatus for volume reduction of surplus sludge Download PDF

Info

Publication number
JP2005349304A
JP2005349304A JP2004172571A JP2004172571A JP2005349304A JP 2005349304 A JP2005349304 A JP 2005349304A JP 2004172571 A JP2004172571 A JP 2004172571A JP 2004172571 A JP2004172571 A JP 2004172571A JP 2005349304 A JP2005349304 A JP 2005349304A
Authority
JP
Japan
Prior art keywords
sludge
biological treatment
surplus
volume reduction
crushed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004172571A
Other languages
Japanese (ja)
Inventor
Toru Shiotani
徹 塩谷
Tadashi Matsuda
正 松田
Osamu Oba
修 大羽
Kazuaki Sugimoto
和明 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Engineering Co Ltd
Original Assignee
Mitsubishi Rayon Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Engineering Co Ltd filed Critical Mitsubishi Rayon Engineering Co Ltd
Priority to JP2004172571A priority Critical patent/JP2005349304A/en
Publication of JP2005349304A publication Critical patent/JP2005349304A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a practical method and apparatus for volume reduction of surplus sludge which can crush the surplus sludge stably at high crushing efficiency to solubilize it, and has a high volume-reduction ratio and high energy efficiency. <P>SOLUTION: In the surplus sludge volume reduction method which enables the biological treatment of organic wastewater in a biological treatment tank, at least a part of the surplus sludge generated by the biological treatment is crushed, and the crushed surplus sludge is returned to the biological treatment tank to be biologically treated again, the surplus sludge with a volume of 1.2-3.8 times of surplus sludge generated from the organic wastewater is agitated by a rotary vane 45, and passed through holes 46a foamed in screens 46 disposed around the rotary vane 45 to be sheared and crushed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、有機性排水を生物学的処理することにより生成した汚泥を減容化する余剰汚泥減容化方法および余剰汚泥減容化装置に関する。   The present invention relates to an excess sludge volume reduction method and an excess sludge volume reduction apparatus that reduce the volume of sludge produced by biological treatment of organic wastewater.

従来、下水処理場等の排水処理施設から発生した生汚泥や、有機物を生物学的処理して生成した余剰汚泥は、濃縮および/または脱水処理後、産業廃棄物として焼却や埋立て等により処分されてきた。しかし、産業廃棄物として焼却するには、汚泥を燃焼する過程で水分を蒸発させなければならないため、多くの熱量が必要であり経済的でなかった。また、産業廃棄物の埋立てでは、埋立地の確保が困難であった。これらのことから、余剰汚泥の減容化が求められていた。   Conventionally, raw sludge generated from wastewater treatment facilities such as sewage treatment plants and surplus sludge produced by biological treatment of organic matter are disposed of as industrial waste by incineration or landfill after concentration and / or dehydration. It has been. However, incineration as industrial waste requires evaporation of moisture in the process of burning sludge, which requires a large amount of heat and is not economical. In addition, it has been difficult to secure a landfill site for industrial waste reclamation. For these reasons, volume reduction of excess sludge has been demanded.

近年、排水処理設備等から発生する余剰汚泥の処理方法として可溶化処理が開発され、注目されている。この汚泥の可溶化処理は、余剰汚泥を機械的、物理的、化学的、生物学的な手法により余剰汚泥(微生物)の細胞壁を破砕または傷つけて可溶化(液状化)する処理である。
ここで、機械的手法としては、湿式媒体攪拌式ミル(特許文献1参照)、回転刃(特許文献2参照)、回転ディスク(特許文献3参照)、ホモジナイズ装置(特許文献4参照)などを用いて汚泥を破砕する方法が挙げられる。
物理的手法としては、オゾン処理(特許文献5参照)、加圧部・狭窄部・低圧部による噴出処理(特許文献6参照)、超音波処理(特許文献7参照)などが挙げられる。
化学的手法としては、アルカリ処理(特許文献8参照)、酸処理(特許文献9参照)、ラジカル反応処理(特許文献10参照)、殺菌処理(特許文献11参照)、パルス放電処理(特許文献12参照)、高温処理(特許文献13参照)などが挙げられる。
生物学的手法としては、可溶化酵素処理などが挙げられる(特許文献14,15参照)。
このような手法により可溶化処理した余剰汚泥を再び生物学的に処理すれば、排水処理設備等から排出される余剰汚泥量をゼロ、または極端に少なくできる。
特開平11−300393号公報 特開2000−343098号公報 特開2001−70993号公報 特開2000−24698号公報 特許第2973761号公報 特開2001−314887号公報 特許第3212969号公報 特開平11−188399号公報 特開2003−1300号公報 特開2001−96291号公報 特開平11−277087号公報 特開平11−179391号公報 特開平9−276887号公報 特許第3176563号公報 特許第3267935号公報
In recent years, solubilization treatment has been developed and attracted attention as a treatment method for excess sludge generated from wastewater treatment facilities and the like. This sludge solubilization process is a process in which surplus sludge is solubilized (liquefied) by crushing or damaging the cell wall of surplus sludge (microorganisms) by mechanical, physical, chemical, or biological techniques.
Here, as a mechanical method, a wet medium stirring mill (see Patent Document 1), a rotary blade (see Patent Document 2), a rotating disk (see Patent Document 3), a homogenizer (see Patent Document 4), or the like is used. And a method of crushing sludge.
Examples of physical methods include ozone treatment (see Patent Document 5), jetting treatment by a pressurizing part, a constriction part, and a low pressure part (see Patent Document 6), ultrasonic treatment (see Patent Document 7), and the like.
Chemical methods include alkali treatment (see Patent Literature 8), acid treatment (see Patent Literature 9), radical reaction treatment (see Patent Literature 10), sterilization treatment (see Patent Literature 11), and pulse discharge treatment (Patent Literature 12). And high temperature treatment (see Patent Document 13).
Biological techniques include solubilizing enzyme treatment (see Patent Documents 14 and 15).
If surplus sludge solubilized by such a technique is biologically treated again, the amount of surplus sludge discharged from the waste water treatment facility or the like can be reduced to zero or extremely small.
JP-A-11-300393 JP 2000-343098 A JP 2001-70993 A JP 2000-24698 A Japanese Patent No. 2973761 JP 2001-314877 A Japanese Patent No. 3212969 JP-A-11-188399 JP 2003-1300 A JP 2001-96291 A Japanese Patent Laid-Open No. 11-277087 JP 11-179391 A Japanese Patent Laid-Open No. 9-276887 Japanese Patent No. 3176563 Japanese Patent No. 3267935

しかしながら、上記汚泥の可溶化処理のうち、物理的手法、特にオゾン処理では、設備費が高く、中小規模の設備ではコストメリットが小さいという問題があった。化学的手法では、薬品を継続的に添加するため処理が煩雑になる傾向にあった。生物学的手法では充分に可溶化処理できない上に、曝気ブロワ量の増大や温調が必要になるためランニングコストがかかり、生物処理槽をこれまでより厳しく管理しなければならなかった。よって、いずれの手法も実用的ではなかった。   However, among the above-described sludge solubilization treatments, the physical method, particularly the ozone treatment, has a problem that the equipment cost is high, and the medium-scale equipment has a small cost merit. In the chemical method, since the chemicals are continuously added, the treatment tends to be complicated. Biological techniques cannot be sufficiently solubilized, and the aeration blower amount must be increased and the temperature needs to be adjusted. This requires running costs, and the biological treatment tank has to be managed more strictly. Therefore, neither method is practical.

機械的手法では他の手法と比較して安価な設備で余剰汚泥を可溶化できるという利点がある。しかし、ボールミルや湿式媒体攪拌式ミルによる破砕では、それら装置内に発生したキャビテーションにより余剰汚泥の破砕効率が著しく低下するばかりでなく、発生したキャビテーションを系外に除去することが難しかった。また、装置の磨耗により破砕効率が経時的に低下した。したがって、余剰汚泥を高い効率で安定に破砕して可溶化することが難しいため、余剰汚泥の減容化率が低かった。
また、超音波による破砕では、装置自体から発生する微振動による騒音や、超音波発生装置の寿命が短い、大容量の破砕装置の製作が難しい等の問題があり実用的ではなかった。
ホモジナイザまたはミキサによる破砕では、微細粒子(5μm未満)までの破砕が困難であり、余剰汚泥の可溶化処理として実用的ではなかった。
さらに、機械的手法はエネルギー効率が低いという問題もあった。
本発明は、上記事情に鑑みてなされたものであり、高い破砕効率で安定に余剰汚泥を破砕して可溶化することができ、余剰汚泥の減容化率が高く、しかもエネルギー効率が高く、実用的な余剰汚泥減容化方法および装置を提供することを目的とする。
The mechanical method has the advantage that the excess sludge can be solubilized with inexpensive equipment compared to other methods. However, in the crushing by a ball mill or a wet medium agitation type mill, not only the crushing efficiency of surplus sludge is remarkably lowered due to cavitation generated in these apparatuses, but also it is difficult to remove the generated cavitation out of the system. Moreover, the crushing efficiency decreased with time due to wear of the apparatus. Therefore, since it is difficult to stably crush and solubilize excess sludge with high efficiency, the volume reduction rate of excess sludge was low.
In addition, the crushing using ultrasonic waves is not practical due to problems such as noise caused by micro-vibration generated from the apparatus itself, short life of the ultrasonic generator, and difficulty in manufacturing a large-capacity crushing apparatus.
By crushing with a homogenizer or a mixer, crushing to fine particles (less than 5 μm) is difficult, and it is not practical as a solubilization treatment of excess sludge.
In addition, the mechanical method has a problem of low energy efficiency.
The present invention has been made in view of the above circumstances, can stably crush and solubilize excess sludge with high crushing efficiency, has a high volume reduction rate of surplus sludge, and has high energy efficiency, An object is to provide a practical method and apparatus for reducing excess sludge volume.

本発明の余剰汚泥減容化方法は、有機性排水を生物処理槽にて生物学的処理し、その生物学的処理により生成した余剰汚泥の少なくとも一部を破砕し、破砕した余剰汚泥を前記生物処理槽に返送して再び生物学的処理する余剰汚泥減容化方法において、
有機性排水に起因して発生する余剰汚泥量に対して1.2〜3.8倍の体積の余剰汚泥を、回転羽根により攪拌し、その回転羽根の周囲に配置したスクリーンに形成された貫通孔を通過させることにより剪断して破砕することを特徴とする。
本発明の余剰汚泥減容化装置は、有機性排水を生物学的処理する生物処理槽と、生物処理槽にて生成した余剰汚泥の少なくとも一部を破砕する汚泥破砕機と、汚泥破砕機で破砕された余剰汚泥を生物処理槽に返送する破砕汚泥返送管とを具備する余剰汚泥減容化装置において、
汚泥破砕機が、回転軸と、回転軸に取り付けられ、余剰汚泥を攪拌する回転羽根と、回転羽根の近傍に配置され、貫通孔が多数形成されたスクリーンと、回転軸を回転駆動させる駆動手段とを具備することを特徴とする。
The surplus sludge volume reduction method of the present invention is a method of biologically treating organic wastewater in a biological treatment tank, crushing at least a part of surplus sludge generated by the biological treatment, In the excess sludge volume reduction method of returning to the biological treatment tank and biologically treating it again,
The excess sludge of 1.2 to 3.8 times the volume of surplus sludge generated due to organic wastewater is stirred by a rotary blade, and the penetration formed in a screen arranged around the rotary blade It is characterized by shearing and crushing by passing through a hole.
The surplus sludge volume reduction device of the present invention includes a biological treatment tank for biologically treating organic waste water, a sludge crusher for crushing at least a part of excess sludge generated in the biological treatment tank, and a sludge crusher. In the surplus sludge volume reducing device comprising a crushed sludge return pipe for returning the crushed surplus sludge to the biological treatment tank,
A sludge crusher is attached to a rotating shaft, a rotating blade for stirring excess sludge, a screen disposed in the vicinity of the rotating blade and having a large number of through holes, and a driving means for rotationally driving the rotating shaft. It is characterized by comprising.

本発明の余剰汚泥減容化方法および余剰汚泥減容化装置では、高い破砕効率で安定に余剰汚泥を破砕して可溶化することができ、余剰汚泥の減容化率が高く、しかもエネルギー効率が高く、実用的である。   In the surplus sludge volume reduction method and surplus sludge volume reduction device of the present invention, the excess sludge can be stably crushed and solubilized with high crushing efficiency, the excess sludge volume reduction rate is high, and the energy efficiency Is high and practical.

以下、本発明の余剰汚泥減容化方法および余剰汚泥減容化装置の一実施形態例について説明する。
図1に、本実施形態例の余剰汚泥減容化装置を示す。この余剰汚泥減容化装置1は、排水供給管11から供給された有機性排水を好気状態で標準活性汚泥法により生物学的処理する生物処理槽10と、生物処理槽10から移送された汚泥を沈殿させて分離する沈殿槽20と、汚泥の一部を沈殿槽20からそのまま生物処理槽10に返送する未破砕汚泥返送管30と、汚泥の残り(余剰汚泥)の一部を破砕する汚泥破砕機40と、汚泥破砕機40にて破砕した余剰汚泥を生物処理槽10に返送する破砕汚泥返送管50と、生物処理槽10の下部に空気を供給する空気供給手段60と、余剰汚泥の残部を余剰汚泥減容化装置1外に排出する余剰汚泥排出管70とを具備して構成されている。
また、生物処理槽10と沈殿槽20とは第1の接続管12で接続され、沈殿槽20と汚泥破砕機40とは第2の接続管41で接続されており、第2の接続管41には余剰汚泥を汚泥破砕機40に供給する汚泥供給ポンプ42が取り付けられている。さらに、沈殿槽20の上部には、上澄み水を排出する上澄み水排出管21が接続されている
Hereinafter, an embodiment of an excess sludge volume reduction method and an excess sludge volume reduction device of the present invention will be described.
In FIG. 1, the excessive sludge volume reduction apparatus of this embodiment is shown. The surplus sludge volume reducing device 1 is transferred from the biological treatment tank 10 and the biological treatment tank 10 for biologically treating the organic wastewater supplied from the drainage supply pipe 11 in an aerobic state by the standard activated sludge method. A sedimentation tank 20 for precipitating and separating sludge, an uncrushed sludge return pipe 30 for returning a part of the sludge as it is from the sedimentation tank 20 to the biological treatment tank 10, and a part of the remaining sludge (surplus sludge). Sludge crusher 40, crushing sludge return pipe 50 for returning surplus sludge crushed by sludge crusher 40 to biological treatment tank 10, air supply means 60 for supplying air to the bottom of biological treatment tank 10, and excess sludge The surplus sludge discharge pipe 70 which discharges the remainder of this to the outside of the excess sludge volume reduction apparatus 1 is comprised.
In addition, the biological treatment tank 10 and the sedimentation tank 20 are connected by the first connection pipe 12, and the sedimentation tank 20 and the sludge crusher 40 are connected by the second connection pipe 41, and the second connection pipe 41. Is attached with a sludge supply pump 42 for supplying excess sludge to the sludge crusher 40. Furthermore, a supernatant water discharge pipe 21 for discharging the supernatant water is connected to the upper part of the precipitation tank 20.

この余剰汚泥減容化装置1における汚泥破砕機40は、図2および図3に示すように、回転軸44と、回転軸44に取り付けられた回転羽根45と、回転羽根45の周囲の近傍に配置され、貫通孔46a,46a・・・が多数形成された円錐形状のスクリーン46と、先端にスクリーン46が取り付けられると共に、余剰汚泥の流路になる円筒状のケーシング47と、回転軸44を回転駆動させる駆動手段48とを具備するものである。また、回転羽根45は、スクリーン46の形状に沿って縮径する形状になっている。さらに、スクリーン46の貫通孔46aは、ケーシング47側からスクリーン46の先端に向かう方向に沿って細長に開口している。
また、この余剰汚泥減容化装置1における汚泥供給ポンプ42は余剰汚泥を移送できるものであれば特に制限されない。
As shown in FIGS. 2 and 3, the sludge crusher 40 in the excess sludge volume reducing device 1 is provided with a rotating shaft 44, a rotating blade 45 attached to the rotating shaft 44, and the vicinity of the rotating blade 45. A conical screen 46 in which a large number of through-holes 46a, 46a,... Are formed, a cylindrical casing 47 serving as a surplus sludge flow path, and a rotating shaft 44. And a driving means 48 for rotationally driving. Further, the rotary blade 45 has a shape that decreases in diameter along the shape of the screen 46. Further, the through hole 46 a of the screen 46 is elongated in the direction from the casing 47 side toward the tip of the screen 46.
The sludge supply pump 42 in the excess sludge volume reducing device 1 is not particularly limited as long as it can transfer excess sludge.

そして、図1の余剰汚泥減容化装置1を用いた余剰汚泥減容化方法では、まず、排水供給管11から、活性汚泥が仕込まれた生物処理槽10に有機性排水を連続的に供給する。ここで、有機性排水とは、有機物を含有する排水のことであり、例えば、下水、農村集落排水、有機系の産業排水等が挙げられる。有機性排水は水で希釈されていてもよい。
次いで、空気供給手段60により生物処理槽10の下部に空気を供給して、活性汚泥を活性化すると共に有機性排水を攪拌する。そして、有機性排水を所定の時間、生物処理槽10内に滞留させて、活性汚泥の作用により生物学的に処理して、有機性排水中の有機物を分解させる。
In the surplus sludge volume reduction method using the excess sludge volume reducing device 1 of FIG. 1, first, organic waste water is continuously supplied from the waste water supply pipe 11 to the biological treatment tank 10 charged with activated sludge. To do. Here, the organic wastewater is wastewater containing organic matter, and examples thereof include sewage, rural village wastewater, and organic industrial wastewater. The organic waste water may be diluted with water.
Next, air is supplied to the lower part of the biological treatment tank 10 by the air supply means 60 to activate the activated sludge and stir the organic waste water. Then, the organic waste water is retained in the biological treatment tank 10 for a predetermined time, and is biologically treated by the action of activated sludge to decompose the organic matter in the organic waste water.

次いで、汚泥と水とを含む汚泥混合液を第1の接続管12を介して沈殿槽20に連続的に移送する。そして、沈殿槽20にて、比重差を利用し、汚泥を沈殿させて汚泥混合液から汚泥と水とを分離し、上澄み水である処理水を、上澄み水排出管21を介して、余剰汚泥減容化装置1から連続的に排出する。
次いで、沈殿槽20で分離した汚泥(分離汚泥)の一部を、そのまま未破砕汚泥返送管30を介して生物処理槽10に返送汚泥として連続的に返送する。返送汚泥量は、生物処理槽10内の活性汚泥量(MLSS)が所定の値になるように調整される。
また、分離汚泥の残り(余剰汚泥)の一部を、第2の接続管41を介して汚泥供給ポンプ42により汚泥破砕機40に連続的に移送し、残りの余剰汚泥を、余剰汚泥排出管70を介して余剰汚泥減容化装置1から連続的に排出する。
Next, the sludge mixed liquid containing sludge and water is continuously transferred to the sedimentation tank 20 through the first connection pipe 12. Then, using the specific gravity difference in the sedimentation tank 20, sludge is precipitated to separate sludge and water from the sludge mixture, and the treated water, which is the supernatant water, is passed through the supernatant water discharge pipe 21 to the excess sludge. It discharges continuously from the volume reduction device 1.
Next, a part of the sludge separated in the sedimentation tank 20 (separated sludge) is continuously returned as it is to the biological treatment tank 10 via the uncrushed sludge return pipe 30 as it is. The return sludge amount is adjusted so that the activated sludge amount (MLSS) in the biological treatment tank 10 becomes a predetermined value.
Further, a part of the remaining sludge (surplus sludge) is continuously transferred to the sludge crusher 40 by the sludge supply pump 42 via the second connection pipe 41, and the remaining surplus sludge is discharged to the surplus sludge discharge pipe. 70 is continuously discharged from the excess sludge volume reducing device 1.

汚泥破砕機40では、汚泥を、ケーシング47内を通して回転羽根45近傍に送り、駆動手段48で回転駆動する回転羽根45で攪拌する。その攪拌により余剰汚泥に外側方向に向いた運動エネルギーを付与し、余剰汚泥を、回転羽根45の周囲の近傍に配置されたスクリーン46の貫通孔46aに高速で通す。そして、その際に生じる剪断力により余剰汚泥を破砕するのと同時に汚泥破砕機40から排出させる(図2および図3参照)。
次いで、破砕された余剰汚泥(破砕汚泥)を、破砕汚泥返送管50を介して生物処理槽10に返送する。そして、生物処理槽10に返送した破砕汚泥を、新たに供給された有機性排水と返送汚泥と共に、再度生物学的処理する。
In the sludge crusher 40, the sludge is sent to the vicinity of the rotary blade 45 through the casing 47 and stirred by the rotary blade 45 that is driven to rotate by the driving means 48. The agitation imparts outward kinetic energy to the surplus sludge, and passes the surplus sludge at a high speed through the through-holes 46 a of the screen 46 disposed in the vicinity of the periphery of the rotary blade 45. Then, the excess sludge is crushed by the shearing force generated at that time and simultaneously discharged from the sludge crusher 40 (see FIGS. 2 and 3).
Subsequently, the crushed surplus sludge (crushed sludge) is returned to the biological treatment tank 10 through the crushed sludge return pipe 50. Then, the crushed sludge returned to the biological treatment tank 10 is biologically treated again together with the newly supplied organic waste water and the returned sludge.

破砕された余剰汚泥が再度生物学的処理された場合には、25〜40%が無機化(水・二酸化炭素等)され、60〜75%が再度余剰汚泥になる。この無機化量を考慮して、この余剰汚泥破砕方法では、破砕する余剰汚泥の体積量を、有機性排水に起因して発生する余剰汚泥量に対して1.2〜3.8倍にする。
これに対し、破砕汚泥体積量を、有機性排水に起因して発生する余剰汚泥量に対して1.2倍未満にすると、破砕された余剰汚泥を生物学的処理する量が少なくなり、余剰汚泥の減容化効果が低くなるので実用的ではなく、3.8倍より多くすると、生物処理槽10内の活性汚泥の負荷が増大して生物学的処理の能力が低下するため、処理水の水質低下を引き起こすことがある。
When the crushed surplus sludge is biologically treated again, 25-40% is mineralized (water, carbon dioxide, etc.), and 60-75% becomes surplus sludge again. Considering this amount of mineralization, in this surplus sludge crushing method, the volume of surplus sludge to be crushed is 1.2 to 3.8 times the amount of surplus sludge generated due to organic waste water. .
On the other hand, if the volume of crushed sludge is less than 1.2 times the amount of excess sludge generated due to organic wastewater, the amount of crushed excess sludge to be biologically processed will be reduced, and surplus Since the volume reduction effect of sludge becomes low, it is not practical, and if it is more than 3.8 times, the load of activated sludge in the biological treatment tank 10 increases and the capacity of biological treatment decreases, so treated water May cause deterioration of water quality.

また、この余剰汚泥破砕方法において、沈殿槽20から排出する汚泥の濃度は流動する程度であればよいが、8質量%以下であることが好ましく、0.2〜7質量%であることがより好ましく、0.4〜6質量%であることが特に好ましい。汚泥濃度が8質量%を越えた場合、汚泥の流動性が殆ど無いため実用性が低い。一方、汚泥濃度が0.2質量%未満の場合、汚泥の処理量に対して運転費、設備費が高くなり不経済になる傾向にある。ただし、汚泥が流動性しない濃度の場合でも、処理水等で希釈すれば流動させることが可能になる。   Moreover, in this surplus sludge crushing method, although the density | concentration of the sludge discharged | emitted from the sedimentation tank 20 should just be a fluid grade, it is preferable that it is 8 mass% or less, and it is more preferable that it is 0.2-7 mass%. It is preferably 0.4 to 6% by mass. When the sludge concentration exceeds 8% by mass, practicality is low because there is almost no sludge fluidity. On the other hand, when the sludge concentration is less than 0.2% by mass, the operation cost and the equipment cost are increased with respect to the sludge treatment amount, which tends to be uneconomical. However, even if the sludge has a concentration that does not flow, it can be flowed if diluted with treated water or the like.

以上説明した余剰汚泥減容化装置1および余剰汚泥減容化方法では、沈殿槽20にて分離した余剰汚泥を汚泥破砕機40の回転羽根45により攪拌して、運動エネルギーを付与し、回転羽根45の周囲に配置したスクリーン46の貫通孔46aに通す。その際、余剰汚泥の移動速度が増加して剪断力が生じ、その剪断力により余剰汚泥を破砕し、余剰汚泥中の微生物を細胞壁ごと微破砕して、細胞内の基質成分を抽出し、細胞壁を超微細に分解する。この方法では、他の機械的手法と比較して、回転羽根45が余剰汚泥以外のものに接触しないため、破砕効率および破砕のエネルギー効率の低下を防止できる。また、汚泥破砕機40の摩耗を防止できるから、長時間にわたって余剰汚泥を破砕しても破砕効率が低下しにくく、安定である。すなわち、高い効率で安定に余剰汚泥を破砕してより可溶化させることができる。しかも、動力費を抑えることができるから、エネルギー効率が高く、ランニングコストが安い。
また、生物処理槽10に返送された破砕汚泥は分解されて、容易に生物学的処理される形態になっているから、生物処理槽10にて容易に生物学的処理されて炭酸ガスと水とに分解される。そして、この余剰汚泥減容化方法では、高い効率で余剰汚泥をより可溶化させているため、生物学的処理の速度を速くでき、余剰汚泥の減容化率を高くできる。
In the excess sludge volume reducing device 1 and the excess sludge volume reduction method described above, the excess sludge separated in the sedimentation tank 20 is stirred by the rotary blade 45 of the sludge crusher 40 to impart kinetic energy, and the rotary blade It passes through a through hole 46 a of a screen 46 arranged around 45. At that time, the moving speed of the excess sludge increases and shear force is generated. The excess sludge is crushed by the shear force, the microorganisms in the excess sludge are crushed together with the cell wall, and the intracellular substrate components are extracted, and the cell wall Is decomposed to ultrafine. In this method, since the rotating blades 45 do not contact anything other than the excess sludge as compared with other mechanical methods, it is possible to prevent a reduction in crushing efficiency and crushing energy efficiency. Moreover, since the abrasion of the sludge crusher 40 can be prevented, even if excess sludge is crushed for a long time, the crushing efficiency is hardly lowered and is stable. That is, surplus sludge can be crushed and solubilized more stably with high efficiency. Moreover, since the power cost can be reduced, the energy efficiency is high and the running cost is low.
Moreover, since the crushed sludge returned to the biological treatment tank 10 is decomposed and is easily biologically processed, it is easily biologically processed in the biological treatment tank 10 so as to have carbon dioxide gas and water. And decomposed. And in this excess sludge volume reduction method, since the excess sludge is further solubilized with high efficiency, the speed of biological treatment can be increased and the volume reduction rate of the excess sludge can be increased.

また、上記余剰汚泥減容化方法では、有機性排水に起因して発生する余剰汚泥量に対して1.2〜3.8倍の体積の余剰汚泥を破砕して可溶化するので、余剰汚泥の減容化効果が高く実用的である。その上、生物処理槽10における生物学的処理の能力低下を防止できるため、処理水の水質低下を防止できる。
さらに、上記余剰汚泥減容化方法では、機械的手法により汚泥を破砕するため、汚泥濃度によらず充分な微破砕効果が得られ、処理時間が短く、小規模な設備で経済的に余剰汚泥を減容化できる。また、難分解成分の発生を伴わない余剰汚泥の破砕方法であるため、破砕汚泥を生物処理した処理水の水質は良好である。
Moreover, in the said excess sludge volume reduction method, since the surplus sludge of a volume 1.2 to 3.8 times the surplus sludge amount which originates in organic waste water is crushed and solubilized, surplus sludge The volume reduction effect is high and practical. In addition, since the ability of biological treatment in the biological treatment tank 10 can be prevented from being lowered, the quality of treated water can be prevented from being lowered.
Further, in the above-described excess sludge volume reduction method, sludge is crushed by a mechanical method, so that a sufficient fine crushing effect can be obtained regardless of the sludge concentration, the treatment time is short, and surplus sludge is economically used with small-scale equipment. Can be reduced in volume. Moreover, since it is the surplus sludge crushing method which does not accompany generation | occurrence | production of a hard-to-decompose component, the quality of the treated water which biologically processed the sludge was favorable.

なお、本発明は上述した実施形態例に限定されない。上述した実施形態例では、生物処理槽にて標準活性汚泥法により生物学的処理をしたが、他の方法で生物学的処理を行ってもよい。ただし、生物処理槽における生物学的処理は、好気状態での処理であることが好ましく、具体的には、活性汚泥法または生物膜法が好ましい。ここで、活性汚泥法としては、標準活性汚泥法以外には、例えば、酸素活性汚泥法、再曝気法、長時間曝気法、酸化溝法(オキシデーションデッチ法)、回分式活性汚泥法、膜分離活性汚泥法等が挙げられる。特に膜分離活性汚泥法では、生物処理槽を膜分離活性汚泥槽として利用でき、その場合には沈殿槽を省略できる。また、生物膜法としては、例えば、散水ろ床法、回転接触体(回転円板)法、接触曝気法、生物ろ過法、担体法等が挙げられる。これらのいずれの生物学的処理方法を採用しても、余剰汚泥を減容化できる。   The present invention is not limited to the above-described embodiment example. In the above-described embodiment, biological treatment is performed in the biological treatment tank by the standard activated sludge method, but biological treatment may be performed by other methods. However, the biological treatment in the biological treatment tank is preferably an aerobic treatment, and specifically, an activated sludge method or a biofilm method is preferred. Here, as the activated sludge method, in addition to the standard activated sludge method, for example, oxygen activated sludge method, re-aeration method, long-time aeration method, oxidation ditch method (oxidation ditch method), batch activated sludge method, membrane The separation activated sludge method and the like can be mentioned. In particular, in the membrane separation activated sludge method, the biological treatment tank can be used as a membrane separation activated sludge tank, and in this case, the sedimentation tank can be omitted. Examples of the biofilm method include a trickling filter method, a rotating contact body (rotating disk) method, a contact aeration method, a biofiltration method, a carrier method, and the like. Even if any of these biological treatment methods are employed, the volume of excess sludge can be reduced.

以下、本発明を実施例により具体的に説明する。
(実施例1)
図1に示す余剰汚泥減容化装置1を用い、まず、生物化学的酸素消費量(BOD)を1,000mg/L、化学的酸素消費量(COD)を600mg/L、浮遊物質量を150mg/Lに調整した汚水(有機性排水)を1,000L/日で生物処理槽10に定量供給した。ここで、生物処理槽10は標準活性汚泥法により汚水を好気的に生物学的処理する処理槽であり、有効容量が1,000Lのものである。また、生物学的処理するための滞留時間を24時間とした。
空気供給手段60により生物処理槽10内を曝気攪拌して、活性汚泥を充分に攪拌しつつ残留酸素濃度を2.0mg/Lにして、生物処理槽10におけるMLSSが4,000mg/Lになるように生物学的処理を実施した。次いで、生物処理槽10から汚泥と水とを第1の移送管12を介して沈殿槽20に連続的に移送し、比重差により沈殿槽20にて汚泥と水とに分離した。そして、上澄み水を、上澄み水排出管21を介して、余剰汚泥減容化装置1から連続的に排出した。
一方、沈殿槽20で分離した分離汚泥の一部を、そのまま未破砕汚泥返送管30を介して生物処理槽10に連続的に返送し、残りの分離汚泥を余剰汚泥として余剰汚泥排出管70を介して余剰汚泥減容化装置1から連続的に排出した。
ここで、返送汚泥の返送率を100%とした際、沈殿槽20での汚泥濃度は8,000mg/Lになった。この条件にて、有機性排水に起因して発生する余剰汚泥は、乾燥質量として450g/日であり、体積としては56.2L/日であった。
Hereinafter, the present invention will be specifically described by way of examples.
(Example 1)
Using the excess sludge volume reduction apparatus 1 shown in FIG. 1, first, the biochemical oxygen consumption (BOD) is 1,000 mg / L, the chemical oxygen consumption (COD) is 600 mg / L, and the suspended solids amount is 150 mg. Sewage (organic wastewater) adjusted to / L was quantitatively supplied to the biological treatment tank 10 at 1,000 L / day. Here, the biological treatment tank 10 is a treatment tank for aerobically biologically treating sewage by a standard activated sludge method, and has an effective capacity of 1,000 L. The residence time for biological treatment was 24 hours.
The inside of the biological treatment tank 10 is aerated and stirred by the air supply means 60, and the residual oxygen concentration is 2.0 mg / L while sufficiently stirring the activated sludge, so that the MLSS in the biological treatment tank 10 is 4,000 mg / L. Biological treatment was performed as follows. Next, sludge and water were continuously transferred from the biological treatment tank 10 to the settling tank 20 via the first transfer pipe 12 and separated into sludge and water in the settling tank 20 due to the difference in specific gravity. And the supernatant water was continuously discharged | emitted from the excess sludge volume reduction apparatus 1 via the supernatant water discharge pipe 21. FIG.
On the other hand, a part of the separated sludge separated in the sedimentation tank 20 is continuously returned to the biological treatment tank 10 through the uncrushed sludge return pipe 30 as it is, and the remaining sludge is used as surplus sludge as an excess sludge discharge pipe 70. Through the excess sludge volume reduction device 1.
Here, when the return rate of the returned sludge was 100%, the sludge concentration in the sedimentation tank 20 was 8,000 mg / L. Under this condition, the excess sludge generated due to the organic waste water was 450 g / day as a dry mass and 56.2 L / day as a volume.

次に、有機性排水に起因して発生する余剰汚泥量(56.2L/日)に対して2.6倍、すなわち、146.12L/日の余剰汚泥を、汚泥供給ポンプ42により汚泥破砕機40に供給し、4時間破砕した。
ここで、汚泥破砕機40としては、エム・テクニック株式会社製のCLM−0.8Sを用いた。この汚泥破砕機40は、回転軸44と、回転軸44に取り付けられた回転羽根45と、回転羽根45の周囲の近傍に配置された円錐形状のスクリーン46と、先端にスクリーン46が取り付けられた円筒状のケーシング47と、回転軸44に接続された駆動手段48とを具備するものである。また、回転羽根45は、スクリーン46の形状に沿って縮径する形状になっている。さらに、スクリーン46の貫通孔46aは、ケーシング47側からスクリーン46の先端に向かう方向に沿って細長に開口している。
Next, 2.6 times the surplus sludge amount (56.2 L / day) generated due to organic wastewater, that is, 146.12 L / day surplus sludge is sludge crusher by the sludge supply pump 42. 40 and crushed for 4 hours.
Here, CLM-0.8S made by M Technique Co., Ltd. was used as the sludge crusher 40. The sludge crusher 40 includes a rotary shaft 44, a rotary blade 45 attached to the rotary shaft 44, a conical screen 46 disposed in the vicinity of the periphery of the rotary blade 45, and a screen 46 attached to the tip. A cylindrical casing 47 and driving means 48 connected to the rotating shaft 44 are provided. Further, the rotary blade 45 has a shape that decreases in diameter along the shape of the screen 46. Further, the through hole 46 a of the screen 46 is elongated in the direction from the casing 47 side toward the tip of the screen 46.

そして、破砕した余剰汚泥を、破砕汚泥返送管50を介して生物処理槽10に戻し、新たに供給された汚水および返送汚泥と共に、再び生物学的処理をした。この際の生物処理槽10内のMLSSも4,000mg/Lとした。
このように、余剰汚泥を破砕処理しつつ生物学的処理したところ、沈殿槽20からの処理水の水質は、表1に示すように、BODが19mg/L、CODが41mg/L、浮遊物質量が12mg/Lであった。その後、同一条件にて生物学的処理、汚泥破砕を30日間継続したところ、処理水水質に変化はなかった。また、30日間で余剰汚泥減容化装置から排出された余剰汚泥は乾燥質量として540gであり、余剰汚泥の減容化率は96%であった。
The crushed surplus sludge was returned to the biological treatment tank 10 via the crushed sludge return pipe 50, and biological treatment was performed again together with the newly supplied sewage and return sludge. The MLSS in the biological treatment tank 10 at this time was also set to 4,000 mg / L.
In this way, when the surplus sludge was biologically treated while being crushed, the quality of the treated water from the sedimentation tank 20 was as shown in Table 1, BOD 19 mg / L, COD 41 mg / L, suspended matter The amount was 12 mg / L. Then, when biological treatment and sludge crushing were continued for 30 days under the same conditions, the quality of the treated water was not changed. Moreover, the excess sludge discharged | emitted from the excess sludge volume reduction apparatus in 30 days was 540g as dry mass, and the volume reduction rate of the excess sludge was 96%.

Figure 2005349304
Figure 2005349304

(実施例2)
実施例1において、破砕する余剰汚泥の体積量を、有機性排水に起因して発生する余剰汚泥量に対して1.4倍、すなわち、78.68L/日とした点以外は実施例1と同様に汚水の生物学的処理をした。その結果、沈殿槽20からの処理水の水質は、表1に示すように、BODが17mg/L、CODが36mg/L、浮遊物質量が10mg/Lであった。その後、同一条件にて生物学的処理、汚泥破砕を30日間継続したところ、処理水水質に変化はなかった。また、30日間で余剰汚泥減容化装置から排出された余剰汚泥は乾燥質量として1,620gであり、余剰汚泥の減容化率は78%であった。
(Example 2)
In Example 1, the volume amount of surplus sludge to be crushed is 1.4 times that of surplus sludge generated due to organic wastewater, that is, 78.68 L / day. Similarly, the wastewater was biologically treated. As a result, as shown in Table 1, the quality of the treated water from the settling tank 20 was 17 mg / L for BOD, 36 mg / L for COD, and 10 mg / L for the amount of suspended solids. Then, when biological treatment and sludge crushing were continued for 30 days under the same conditions, the quality of the treated water was not changed. Moreover, the excess sludge discharged | emitted from the excess sludge volume reduction apparatus in 30 days was 1,620g as dry mass, and the volume reduction rate of the excess sludge was 78%.

(実施例3)
実施例1において、破砕する余剰汚泥の体積量を、有機性排水に起因して発生する余剰汚泥量に対して3.2倍、すなわち、179.84L/日とした点以外は実施例1と同様に汚水の生物学的処理をした。その結果、沈殿槽20からの処理水の水質は、表1に示すように、BODが22mg/L、CODが42mg/L、浮遊物質量が13mg/Lであった。その後、同一条件にて生物学的処理、汚泥破砕を30日間継続したところ、処理水水質に変化はなかった。また、30日間で余剰汚泥減容化装置から排出された余剰汚泥は乾燥質量として135gであり、余剰汚泥の減容化率は99%であった。
(Example 3)
In Example 1, the volume of surplus sludge to be crushed is 3.2 times that of surplus sludge generated due to organic wastewater, that is, 179.84 L / day. Similarly, the wastewater was biologically treated. As a result, as shown in Table 1, the quality of the treated water from the precipitation tank 20 was 22 mg / L for BOD, 42 mg / L for COD, and 13 mg / L for the amount of suspended solids. Then, when biological treatment and sludge crushing were continued for 30 days under the same conditions, the quality of the treated water was not changed. Moreover, the excess sludge discharged | emitted from the excess sludge volume reduction apparatus in 30 days was 135g as dry mass, and the volume reduction rate of the excess sludge was 99%.

(実施例4)
生物処理槽による生物処理方法として膜分離活性汚泥法を採用した。その際に用いた膜は三菱レイヨン株式会社製の公称孔径0.4μm中空糸膜で、膜濾過流束を0.4m/(m・日)とした。
そして、生物処理槽10内のMLSSを8,000mg/Lとし、沈殿槽20を用いずに生物処理槽10から余剰汚泥を汚泥供給ポンプに直接移送した点以外は、実施例1と同様に汚水の生物学的処理をした。その結果、処理水の水質は、表1に示すように、BODが9mg/L、CODが24mg/L、浮遊物質量が0mg/Lであった。その後、同一条件にて生物学的処理、汚泥破砕を30日間継続したところ、処理水水質に変化はなかった。また、30日間で余剰汚泥減容化装置から排出された余剰汚泥は乾燥質量として270gであり、余剰汚泥の減容化率は98%であった。
Example 4
Membrane separation activated sludge method was adopted as a biological treatment method by biological treatment tank. The membrane used at that time was a hollow fiber membrane having a nominal pore size of 0.4 μm manufactured by Mitsubishi Rayon Co., Ltd., and the membrane filtration flux was 0.4 m 3 / (m 2 · day).
And the MLSS in the biological treatment tank 10 is set to 8,000 mg / L, and the sewage is the same as in Example 1 except that the excess sludge is directly transferred from the biological treatment tank 10 to the sludge supply pump without using the sedimentation tank 20. Of biological treatment. As a result, as shown in Table 1, the water quality of the treated water was 9 mg / L for BOD, 24 mg / L for COD, and 0 mg / L for the amount of suspended solids. Then, when biological treatment and sludge crushing were continued for 30 days under the same conditions, the quality of the treated water was not changed. Moreover, the excess sludge discharged | emitted from the excess sludge volume reduction apparatus in 30 days was 270g as dry mass, and the volume reduction rate of the excess sludge was 98%.

(実施例5)
生物処理槽10による生物処理方法として生物膜法を採用した。その生物膜の担体としては三菱レイヨン・エンジニアリング株式会社製のパワーチューブ(ポリプロピレン製、6φ×6mmL)を用い、それを生物処理槽10の有効容量の20容量%(200L)充填し、生物を馴養した。
馴養完了後の処理水の水質は、BODが22mg/L、CODが44mg/L、浮遊物質量が10mg/Lであった。また、その際に発生した余剰汚泥は乾燥質量で400g/日であり、沈殿槽20内の汚泥濃度は8,000mg/Lであった。
次いで、沈殿槽20から、有機性排水に起因して発生する余剰汚泥量(50L/日)に対して2.4倍量、すなわち120L/日の余剰汚泥を、汚泥供給ポンプ42により汚泥破砕機40に供給し、余剰汚泥を3時間破砕した。そして、破砕した余剰汚泥を、破砕汚泥返送管50を介して生物処理槽10に戻し、新たに供給された汚水と返送汚泥と共に再び生物学的処理をした。
その結果、沈殿槽20からの処理水の水質は、表1に示すように、BODが24mg/L、CODが48mg/L、浮遊物質量が17mg/Lであった。その後、同一条件にて生物学的処理、汚泥破砕を30日間継続したところ、処理水水質に変化はなかった。また、30日間で余剰汚泥減容化装置から排出された余剰汚泥は乾燥質量として480gであり、余剰汚泥の減容化率は96%であった。
(Example 5)
The biofilm method was adopted as a biological treatment method using the biological treatment tank 10. As a biofilm carrier, a power tube manufactured by Mitsubishi Rayon Engineering Co., Ltd. (polypropylene, 6φ × 6 mmL) is used, and 20% by volume (200 L) of the effective capacity of the biological treatment tank 10 is filled to acclimate the organism. did.
The quality of the treated water after the completion of the acclimatization was 22 mg / L for BOD, 44 mg / L for COD, and 10 mg / L for the amount of suspended solids. Moreover, the excess sludge generated at that time was 400 g / day in terms of dry mass, and the sludge concentration in the sedimentation tank 20 was 8,000 mg / L.
Next, 2.4 times the surplus sludge generated due to organic wastewater (50 L / day) from the sedimentation tank 20, that is, 120 L / day of surplus sludge is sludge crusher by a sludge supply pump 42. The excess sludge was crushed for 3 hours. Then, the crushed surplus sludge was returned to the biological treatment tank 10 through the crushed sludge return pipe 50, and biological treatment was performed again together with newly supplied sewage and return sludge.
As a result, as shown in Table 1, the quality of the treated water from the settling tank 20 was 24 mg / L for BOD, 48 mg / L for COD, and 17 mg / L for the amount of suspended solids. Then, when biological treatment and sludge crushing were continued for 30 days under the same conditions, the quality of the treated water was not changed. Moreover, the excess sludge discharged | emitted from the excess sludge volume reduction apparatus in 30 days was 480g as dry mass, and the volume reduction rate of the excess sludge was 96%.

(比較例1)
実施例1にて、汚泥破砕機として一般的なホモジナイザを使用した点以外は、実施例1と同様にして汚水の生物学的処理をした。
その結果、沈殿槽20からの処理水の水質は、表1に示すように、BODが75mg/L、CODが120mg/L、浮遊物質量が45mg/Lであった。その後、同一条件にて生物学的処理、汚泥破砕を30日間継続したところ、処理水水質に変化はなかった。また、30日間で余剰汚泥減容化装置から排出された余剰汚泥は乾燥質量として13,100gであり、余剰汚泥の減容化率は3%であった。
(Comparative Example 1)
In Example 1, the wastewater was biologically treated in the same manner as in Example 1 except that a general homogenizer was used as the sludge crusher.
As a result, as shown in Table 1, the quality of the treated water from the settling tank 20 was 75 mg / L for BOD, 120 mg / L for COD, and 45 mg / L for the amount of suspended solids. Then, when biological treatment and sludge crushing were continued for 30 days under the same conditions, the quality of the treated water was not changed. Moreover, the excess sludge discharged | emitted from the excess sludge volume reduction apparatus in 30 days was 13,100g as dry mass, and the volume reduction rate of the excess sludge was 3%.

(比較例2)
実施例1において、破砕する余剰汚泥の体積量を、有機性排水に起因して発生する余剰汚泥量に対して0.6倍とした点以外は実施例1と同様に汚水の生物学的処理をした。その結果、沈殿槽20からの処理水の水質は、表1に示すように、BODが21mg/L、CODが43mg/L、浮遊物質量が45mg/Lであった。その後、同一条件にて生物学的処理、汚泥破砕を30日間継続したところ、処理水水質に変化はなかった。また、30日間で余剰汚泥減容化装置から排出された余剰汚泥は乾燥質量として10,950gであり、余剰汚泥の減容化率は18.9%であった。
(Comparative Example 2)
In Example 1, the biological treatment of sewage in the same manner as in Example 1 except that the volume of excess sludge to be crushed was 0.6 times the amount of excess sludge generated due to organic wastewater. Did. As a result, as shown in Table 1, the quality of the treated water from the settling tank 20 was 21 mg / L for BOD, 43 mg / L for COD, and 45 mg / L for the amount of suspended solids. Then, when biological treatment and sludge crushing were continued for 30 days under the same conditions, the quality of the treated water was not changed. Moreover, the excess sludge discharged | emitted from the excess sludge volume reduction apparatus in 30 days was 10,950g as dry mass, and the volume reduction rate of the excess sludge was 18.9%.

(比較例3)
実施例1において、破砕する余剰汚泥の体積量を、有機性排水に起因して発生する余剰汚泥量に対して4.0倍とした点以外は実施例1と同様に汚水の生物学的処理をした。その結果、沈殿槽20からの処理水の水質は、表1に示すように、BODが115mg/L、CODが207mg/L、浮遊物質量が81mg/Lであった。その後、同一条件にて生物学的処理、汚泥破砕を30日間継続したところ、処理水水質に変化はなかった。また、30日間で余剰汚泥減容化装置から排出された余剰汚泥は乾燥質量として4,560gであり、余剰汚泥の減容化率は66.2%であった。
(Comparative Example 3)
Biological treatment of sewage in the same manner as in Example 1 except that the volume of surplus sludge to be crushed is 4.0 times the amount of surplus sludge generated due to organic wastewater. Did. As a result, as shown in Table 1, the water quality of the treated water from the sedimentation tank 20 was 115 mg / L for BOD, 207 mg / L for COD, and 81 mg / L for the amount of suspended solids. Then, when biological treatment and sludge crushing were continued for 30 days under the same conditions, the quality of the treated water was not changed. Moreover, the excess sludge discharged | emitted from the excess sludge volume reduction apparatus in 30 days was 4,560g as dry mass, and the volume reduction rate of the excess sludge was 66.2%.

実施例1〜5では、有機性排水に起因して発生する余剰汚泥量に対して1.2〜3.8倍の体積の余剰汚泥を、回転羽根により攪拌し、その回転羽根の周囲に配置されたスクリーンに形成された貫通孔に通過させることにより剪断して破砕した。そのため、余剰汚泥減容化率が高く、しかも処理水の水質が良好であった。
一方、比較例1では、ホモジナイザで余剰汚泥を破砕したので破砕が不充分であり、余剰汚泥減容化率が低かった。
比較例2では、有機性排水に起因して発生する余剰汚泥量に対して1.2倍未満の体積の余剰汚泥を、回転羽根により攪拌し、その回転羽根の周囲に配置されたスクリーンに形成された貫通孔に通過させることにより剪断して破砕したため、余剰汚泥減容化率が低かった。
比較例3では、有機性排水に起因して発生する余剰汚泥量に対して3.8倍より多い体積の余剰汚泥を、回転羽根により攪拌し、その回転羽根の周囲に配置されたスクリーンに形成された貫通孔に通過させることにより剪断して破砕したため、処理水の水質が悪化した。
In Examples 1 to 5, excess sludge having a volume of 1.2 to 3.8 times the amount of excess sludge generated due to organic wastewater is stirred by a rotary blade and arranged around the rotary blade. The resulting screen was sheared and crushed by passing it through a through-hole formed in the screen. Therefore, the excess sludge volume reduction rate was high, and the quality of the treated water was good.
On the other hand, in Comparative Example 1, surplus sludge was crushed with a homogenizer, so crushing was insufficient, and the excess sludge volume reduction rate was low.
In Comparative Example 2, surplus sludge having a volume of less than 1.2 times the amount of surplus sludge generated due to organic waste water is stirred by a rotary blade and formed on a screen arranged around the rotary blade. The excess sludge volume reduction rate was low because the material was sheared and crushed by passing through the through hole.
In Comparative Example 3, surplus sludge having a volume larger than 3.8 times the amount of surplus sludge generated due to organic wastewater is stirred by a rotary blade and formed on a screen arranged around the rotary blade. Since the material was sheared and crushed by passing through the formed through hole, the quality of the treated water deteriorated.

本発明に係る余剰汚泥減容化装置の一実施形態例を示す模式図である。It is a schematic diagram which shows one embodiment of the excess sludge volume reduction apparatus which concerns on this invention. 本実施形態例における汚泥破砕機の概略構成図である。It is a schematic block diagram of the sludge crusher in the example of this embodiment. 図2の汚泥破砕機先端を拡大した図である。It is the figure which expanded the sludge crusher front-end | tip of FIG.

符号の説明Explanation of symbols

1 余剰汚泥減容化装置
10 生物処理槽
40 汚泥破砕機
44 回転軸
45 回転羽根
46 スクリーン
46a 貫通孔
48 駆動手段
50 破砕汚泥返送管
DESCRIPTION OF SYMBOLS 1 Surplus sludge volume reduction apparatus 10 Biological treatment tank 40 Sludge crusher 44 Rotating shaft 45 Rotary blade 46 Screen 46a Through-hole 48 Drive means 50 Crushing sludge return pipe

Claims (2)

有機性排水を生物処理槽にて生物学的処理し、その生物学的処理により生成した余剰汚泥の少なくとも一部を破砕し、破砕した余剰汚泥を前記生物処理槽に返送して再び生物学的処理する余剰汚泥減容化方法において、
有機性排水に起因して発生する余剰汚泥量に対して1.2〜3.8倍の体積の余剰汚泥を、回転羽根により攪拌し、その回転羽根の周囲に配置したスクリーンに形成された貫通孔を通過させることにより剪断して破砕することを特徴とする余剰汚泥減容化方法。
Biological treatment of organic wastewater in a biological treatment tank, crushing at least part of excess sludge generated by the biological treatment, returning the crushed excess sludge to the biological treatment tank and biological again In the excess sludge volume reduction method to be processed,
The excess sludge of 1.2 to 3.8 times the volume of surplus sludge generated due to organic wastewater is stirred by a rotary blade, and the penetration formed in a screen arranged around the rotary blade A surplus sludge volume reduction method characterized by shearing and crushing by passing through a hole.
有機性排水を生物学的処理する生物処理槽と、生物処理槽にて生成した余剰汚泥の少なくとも一部を破砕する汚泥破砕機と、汚泥破砕機で破砕された余剰汚泥を生物処理槽に返送する破砕汚泥返送管とを具備する余剰汚泥減容化装置において、
汚泥破砕機が、回転軸と、回転軸に取り付けられ、余剰汚泥を攪拌する回転羽根と、回転羽根の近傍に配置され、貫通孔が多数形成されたスクリーンと、回転軸を回転駆動させる駆動手段とを具備することを特徴とする余剰汚泥減容化装置。

A biological treatment tank that biologically treats organic wastewater, a sludge crusher that crushes at least part of excess sludge generated in the biological treatment tank, and surplus sludge crushed by the sludge crusher is returned to the biological treatment tank. In the surplus sludge volume reducing device comprising a crushed sludge return pipe,
A sludge crusher is attached to a rotating shaft, a rotating blade for stirring excess sludge, a screen disposed in the vicinity of the rotating blade and having a large number of through holes, and a driving means for rotationally driving the rotating shaft. An excess sludge volume reduction device characterized by comprising:

JP2004172571A 2004-06-10 2004-06-10 Method and apparatus for volume reduction of surplus sludge Pending JP2005349304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004172571A JP2005349304A (en) 2004-06-10 2004-06-10 Method and apparatus for volume reduction of surplus sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004172571A JP2005349304A (en) 2004-06-10 2004-06-10 Method and apparatus for volume reduction of surplus sludge

Publications (1)

Publication Number Publication Date
JP2005349304A true JP2005349304A (en) 2005-12-22

Family

ID=35584199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004172571A Pending JP2005349304A (en) 2004-06-10 2004-06-10 Method and apparatus for volume reduction of surplus sludge

Country Status (1)

Country Link
JP (1) JP2005349304A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021285A (en) * 2005-07-12 2007-02-01 Mitsubishi Rayon Eng Co Ltd Method and apparatus for reducing volume of excess sludge
JP2008119655A (en) * 2006-11-15 2008-05-29 Nittetsu Kankyo Engineering Kk Organic waste water treatment method and chemical used for this method
JP2010046649A (en) * 2008-08-25 2010-03-04 Akita Univ Crushing method of surplus sludge, volume reducing method of surplus sludge, and crushing apparatus of surplus sludge
JP2012200695A (en) * 2011-03-28 2012-10-22 Asahi Organic Chemicals Industry Co Ltd Method of treating organic wastewater
KR20150086239A (en) * 2012-09-21 2015-07-27 디.시. 워터 앤 수어 오쏘러티 Method and apparatus for water treatment using screens
US10464832B2 (en) 2012-09-21 2019-11-05 D.C. Water & Sewer Authority Apparatus for water treatment using a physical separator
CN112876014A (en) * 2021-01-12 2021-06-01 安徽中环环保科技股份有限公司 Method and reactor for releasing carbon source by shearing and crushing sludge through low-speed hydraulic cyclone

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000354887A (en) * 1999-06-14 2000-12-26 Unitika Ltd Treatment method of organic wastewater
JP2002219376A (en) * 2001-01-26 2002-08-06 Mitsubishi Rayon Eng Co Ltd Method for crushing sludge

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000354887A (en) * 1999-06-14 2000-12-26 Unitika Ltd Treatment method of organic wastewater
JP2002219376A (en) * 2001-01-26 2002-08-06 Mitsubishi Rayon Eng Co Ltd Method for crushing sludge

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007021285A (en) * 2005-07-12 2007-02-01 Mitsubishi Rayon Eng Co Ltd Method and apparatus for reducing volume of excess sludge
JP2008119655A (en) * 2006-11-15 2008-05-29 Nittetsu Kankyo Engineering Kk Organic waste water treatment method and chemical used for this method
JP2010046649A (en) * 2008-08-25 2010-03-04 Akita Univ Crushing method of surplus sludge, volume reducing method of surplus sludge, and crushing apparatus of surplus sludge
JP2012200695A (en) * 2011-03-28 2012-10-22 Asahi Organic Chemicals Industry Co Ltd Method of treating organic wastewater
KR20150086239A (en) * 2012-09-21 2015-07-27 디.시. 워터 앤 수어 오쏘러티 Method and apparatus for water treatment using screens
JP2015533642A (en) * 2012-09-21 2015-11-26 ディー.シー. ウォーター アンド スーアー オーソリティー Method and apparatus for water treatment using a screen
US9802847B2 (en) 2012-09-21 2017-10-31 D.C. Water & Sewer Authority Method and apparatus for wastewater treatment using screens
US10287195B2 (en) 2012-09-21 2019-05-14 District Of Columbia Water And Sewer Authority Method and apparatus for water treatment using screens
US10464832B2 (en) 2012-09-21 2019-11-05 D.C. Water & Sewer Authority Apparatus for water treatment using a physical separator
KR102249604B1 (en) 2012-09-21 2021-05-10 디.시. 워터 앤 수어 오쏘러티 Method and apparatus for water treatment using screens
CN112876014A (en) * 2021-01-12 2021-06-01 安徽中环环保科技股份有限公司 Method and reactor for releasing carbon source by shearing and crushing sludge through low-speed hydraulic cyclone
CN112876014B (en) * 2021-01-12 2023-11-07 安徽中环环保科技股份有限公司 Method and reactor for releasing carbon source by shearing broken sludge through low-speed hydraulic cyclone

Similar Documents

Publication Publication Date Title
JP4947679B2 (en) CO2 reduction line atomizing wastewater treatment method
JP3944379B2 (en) Waste water treatment method and waste water treatment equipment
JP2008055291A (en) Water treating device
EP1138635A1 (en) Liquid treating method and liquid treating system
JP5425992B2 (en) Water treatment equipment
JP2007021285A (en) Method and apparatus for reducing volume of excess sludge
JP2007136366A (en) Biological wastewater treatment apparatus and biological wastewater treatment method
JP5167447B2 (en) Water treatment equipment
JP4947741B2 (en) CO2 reduction wastewater treatment apparatus and CO2 reduction wastewater treatment method
JP2005349304A (en) Method and apparatus for volume reduction of surplus sludge
JP2008194602A (en) Method and apparatus for methane fermentation of organic waste
JP2011025200A5 (en)
JP2003164890A (en) Waste water treatment system and mixing equipment
KR100420561B1 (en) Micro Dissolved Oxygen Flotation System
JP4271991B2 (en) Ozone water treatment equipment
JP5053629B2 (en) Distributed device
JP2006320777A (en) Waste water treatment apparatus
JP2007111598A (en) Apparatus for treating waste water
JP2018126703A (en) Decomposition purification method of hardly decomposable organic compound
JP2007117867A (en) Method and equipment for treating organic solid
JP2011072932A (en) Method and apparatus for treating wastewater
JP2005125249A (en) Sludge treating apparatus
JP2001205291A (en) Method for treating wastewater containing polyethylene glycol
JP5022128B2 (en) Sludge volume reduction equipment
JP2000051883A (en) Method for treating activated sludge of drainage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100803

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207