JP2004140040A - Method for evaluating vertical mosfet - Google Patents

Method for evaluating vertical mosfet Download PDF

Info

Publication number
JP2004140040A
JP2004140040A JP2002301159A JP2002301159A JP2004140040A JP 2004140040 A JP2004140040 A JP 2004140040A JP 2002301159 A JP2002301159 A JP 2002301159A JP 2002301159 A JP2002301159 A JP 2002301159A JP 2004140040 A JP2004140040 A JP 2004140040A
Authority
JP
Japan
Prior art keywords
mosfet
gate electrode
vertical mosfet
epitaxial growth
lateral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002301159A
Other languages
Japanese (ja)
Inventor
Takuya Nomura
野村 拓也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2002301159A priority Critical patent/JP2004140040A/en
Publication of JP2004140040A publication Critical patent/JP2004140040A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To evaluate the embedded depth of the gate electrode of a vertical MOSFET by fabricating the vertical MOSFET becoming an actual product and an evaluation element on the same semiconductor substrate by the same process and then measuring the electrical characteristics of the evaluation element. <P>SOLUTION: In the fabrication process of a vertical MOSFET, an n-type vertical MOSFET becoming an actual product and a p-type lateral MOSFET for evaluation having a gate electrode structure identical to that of the vertical MOSFET are fabricated on the same semiconductor substrate 11 by performing ion implantation for forming the source region 17 of the vertical MOSFET while masking the forming region of the lateral MOSFET. The embedded depth of the gate electrode 16 of the lateral MOSFET is determined by measuring the threshold voltage of the lateral MOSFET for evaluation and then the embedded depth of the gate electrode 16 of the vertical MOSFET is evaluated based on the depth thus determined. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、埋め込みゲート電極を有する縦型MOSFETの評価方法に関し、特に縦型MOSFETの埋め込みゲート電極の埋め込み深さを評価する方法に関する。
【0002】
【従来の技術】
図4は、n型の縦型MOSFETの一般的な構成を示す断面図である。図4に示す構成の縦型MOSFETは、以下のようにして作製される。まず、n型半導体基板11上のn型エピタキシャル成長層12に、ホウ素等のp型不純物を注入し、拡散させてp型チャネル層13を形成する。ついで、異方性ドライエッチングによりトレンチ14を形成する。このトレンチ14の底部は、p型チャネル層13を貫通し、n型エピタキシャル成長層12内に埋め込まれている。
【0003】
ついで、トレンチ14の内側にゲート絶縁膜15を形成し、さらにその内側をポリシリコンで埋め、ゲート電極16とする。ついで、基板表面を、ソース領域を形成するためのイオン注入マスクで覆い、ヒ素等のn型不純物をイオン注入し、拡散させて、トレンチ14の両側部にn型ソース領域17を形成する。ついで、ゲート電極16の上を層間絶縁膜18で覆い、基板表面にn型ソース領域17およびp型チャネル層13に電気的に接続するソース電極19を形成し、図4に示す状態となる。なお、ゲート電極16は、図4に示す断面とは異なる断面において基板表面に露出する金属電極に接続されている。
【0004】
この構成では、n型エピタキシャル成長層12がドレイン領域となる。さらに、図4には示されていないが、ドレイン電極およびパッシベーション膜が形成される。図4に破線で示すように、埋め込みゲート電極16を有する縦型MOSFETでは、基板表面にソース21が設けられ、トレンチ底部にドレイン22が設けられ、トレンチ側壁に沿って縦方向(深さ方向)にチャネル23が形成される。
【0005】
上述した構成の縦型MOSFETの素子特性は、p型チャネル層13およびn型エピタキシャル成長層12に埋め込まれているゲート電極16の埋め込み深さにより決まる。そのため、埋め込みゲート電極16の埋め込み深さを評価する必要がある。従来、この評価は、実際の製品となる縦型MOSFETを作製するウェハとは別に、製品にならない評価用の素子を作製するウェハを用意し、そのウェハに、実際の製造プロセスと同じプロセスで評価用の素子(縦型MOSFET)を作製し、その素子の断面形状を電子顕微鏡等により観察するという方法で実施されている。なお、評価用の素子を作製せずに、実際の製造プロセスの途中で評価する方法は、未だ開示されておらず、技術が確立していない。
【0006】
【発明が解決しようとする課題】
しかしながら、上述した従来の評価方法では、製品にならないウェハが必要であり、またこのウェハに製品にならない素子を作製するため、コストの増大を招くという問題点がある。また、評価用素子の断面形状の観察をおこなう際に、観察用試料の作製および電子顕微鏡等の操作を手作業でおこなうため、製造リードタイムの増加を招くという問題点があった。
【0007】
本発明は、上記問題点に鑑みてなされたものであって、同一半導体基板上に、実際の製品となる縦型MOSFETと評価用の素子を同一プロセスで作製し、その評価用素子の電気的特性を測定することにより、縦型MOSFETのゲート電極の埋め込み深さを評価する縦型MOSFETの評価方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明にかかる縦型MOSFETの評価方法は、縦型MOSFETの製造プロセスにおいて、横型MOSFETの形成領域をマスクした状態で、縦型MOSFETのソース領域を形成するためのイオン注入をおこなうことにより、同一半導体基板上に、実際の製品となる第1導電型の縦型MOSFETとともに、その縦型MOSFETと同じゲート電極構造を有する評価用の第2導電型の横型MOSFETを作製し、その評価用横型MOSFETのしきい値電圧を測定して、縦型MOSFETのゲート電極の埋め込み深さを評価することを特徴とする。
【0009】
この発明によれば、横型MOSFETに関し、そのゲート電極の埋め込み深さが深くなると、チャネル長が長くなり、しきい値電圧が高くなるので、横型MOSFETのしきい値電圧を測定し、横型MOSFETのゲート電極の埋め込み深さを求めることによって、横型MOSFETと同じゲート電極構造を有する縦型MOSFETのゲート電極の埋め込み深さを評価することができる。
【0010】
【発明の実施の形態】
以下に、本発明の実施の形態について図面を参照しつつ詳細に説明する。図1は、本発明にかかる方法の実施に用いられる評価用のp型の横型MOSFETの構成を示す断面図である。図1に示すように、n型半導体基板11上にn型エピタキシャル成長層12が積層され、そのn型エピタキシャル成長層12の表面層にp型チャネル層13が形成されている。これらn型半導体基板11、n型エピタキシャル成長層12およびp型チャネル層13は、図1に示す横型MOSFETとは別の箇所に作製されたn型の縦型MOSFET(図4参照)と共通である。
【0011】
第2のトレンチ34は、p型チャネル層13を貫通してn型エピタキシャル成長層12にまで達している。第2のトレンチ34は、縦型MOSFETのトレンチ(図4参照、符号14)と同じ深さであり、また同じ開口幅である。第2のトレンチ34の内側にはゲート絶縁膜15が設けられている。ゲート絶縁膜15の内側は、ゲート電極16となるポリシリコンで埋められている。また、ゲート電極16は、層間絶縁膜18により覆われており、図1に示す断面とは異なる断面において基板表面に露出する金属電極(図には現われていない)に接続されている。ゲート絶縁膜15、ゲート電極16および層間絶縁膜18は、縦型MOSFET(図4参照)と共通である。
【0012】
この横型MOSFETでは、p型チャネル層13において、第2のトレンチ34の一方の側方部分、図示例では左側の破線で示す部分がソース41となり、その反対側の側方部分、図示例では右側の破線で示す部分がドレイン42となる。したがって、基板表面上には、ソース41上にソース電極39が形成され、ドレイン42上にドレイン電極38が形成されている。ソース電極39およびドレイン電極38は、縦型MOSFETのソース電極(図4参照、符号19)と共通である。また、チャネル43は、n型エピタキシャル成長層12に形成される。
【0013】
上述した構成の横型MOSFETは、縦型MOSFET(図4参照)と同一の製造プロセスで製造される。ただし、縦型MOSFETのn型ソース領域(図4参照、符号17)を形成するためにヒ素等のn型不純物をイオン注入する際に、横型MOSFETの形成領域をイオン注入マスクで覆い、横型MOSFETの形成領域にn型不純物がイオン注入されないようにする。また、縦型MOSFETのソース電極(図4参照、符号19)を形成する際に、横型MOSFETにおいてソース電極39とドレイン電極38とが絶縁されるパターンとする。
【0014】
図2は、図1に示す横型MOSFETのチャネル長と、埋め込みゲート電極のエピタキシャル成長層内への埋め込み深さとの関係を示す特性図である。図2に示すように、横型MOSFETでは、ゲート電極16のn型エピタキシャル成長層12内への埋め込み深さが深くなると、n型エピタキシャル成長層12内でのゲート絶縁膜15に沿う距離が長くなるので、ソース41とドレイン42との間の距離、すなわちチャネル長が長くなる。
【0015】
図3は、図1に示す横型MOSFETのしきい値電圧とチャネル長との関係を示す特性図である。図3に示すように、横型MOSFETでは、チャネル長が長くなると、しきい値電圧が高くなる。したがって、横型MOSFETのしきい値電圧を測定することによって、図2および図3に示す関係より、横型MOSFETのゲート電極16のn型エピタキシャル成長層12内への埋め込み深さを知ることができる。
【0016】
そして、図1に示す横型MOSFETのゲート電極構造と、図4に示す縦型MOSFETのゲート電極構造とは同じであるため、縦型MOSFETのゲート電極16のn型エピタキシャル成長層12内への埋め込み深さを求めることができる。したがって、縦型MOSFETのゲート電極16がp型チャネル層13およびn型エピタキシャル成長層12に対してどの程度深く埋め込まれているかということを評価することができる。
【0017】
上述した実施の形態によれば、実際の製品となるn型の縦型MOSFETを作製するウェハに、縦型MOSFETとともに、その縦型MOSFETと同じゲート電極構造を有する評価用のp型の横型MOSFETを作製することができる。その横型MOSFETのしきい値電圧を測定し、横型MOSFETのゲート電極16の埋め込み深さを求めることによって、縦型MOSFETのゲート電極16の埋め込み深さを評価することができる。
【0018】
以上において本発明は、上述した実施の形態に限らず、種々変更可能である。また、実施の形態では、第1導電型をn型とし、第2導電型をp型としたが、その逆でも同様である。
【0019】
【発明の効果】
本発明によれば、実際の製品となる第1導電型の縦型MOSFETを作製するウェハに、縦型MOSFETとともに、その縦型MOSFETと同じゲート電極構造を有する評価用の第2導電型の横型MOSFETを作製することができる。そして、横型MOSFETの電気的特性を測定して、横型MOSFETのゲート電極の埋め込み深さを求めることによって、縦型MOSFETのゲート電極の埋め込み深さを評価することができる。
【図面の簡単な説明】
【図1】本発明にかかる縦型MOSFETの評価方法に用いられる評価用の横型MOSFETの構成を示す断面図である。
【図2】図1に示す横型MOSFETのチャネル長と埋め込みゲート電極のエピタキシャル成長層内への埋め込み深さとの関係を示す特性図である。
【図3】図1に示す横型MOSFETのしきい値電圧とチャネル長との関係を示す特性図である。
【図4】縦型MOSFETの構成を示す断面図である。
【符号の説明】
11 n型半導体基板
12 n型エピタキシャル成長層
13 p型チャネル層
14 トレンチ
15 ゲート絶縁膜
16 ゲート電極
17 n型ソース領域
21,41 ソース
22,42 ドレイン
23,43 チャネル
34 第2のトレンチ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for evaluating a vertical MOSFET having a buried gate electrode, and more particularly to a method for evaluating a buried depth of a buried gate electrode of a vertical MOSFET.
[0002]
[Prior art]
FIG. 4 is a cross-sectional view showing a general configuration of an n-type vertical MOSFET. The vertical MOSFET having the configuration shown in FIG. 4 is manufactured as follows. First, a p-type impurity such as boron is implanted into an n-type epitaxial growth layer 12 on an n-type semiconductor substrate 11 and diffused to form a p-type channel layer 13. Next, the trench 14 is formed by anisotropic dry etching. The bottom of the trench 14 penetrates the p-type channel layer 13 and is buried in the n-type epitaxial growth layer 12.
[0003]
Next, a gate insulating film 15 is formed inside the trench 14, and the inside is further filled with polysilicon to form a gate electrode 16. Next, the substrate surface is covered with an ion implantation mask for forming a source region, and n-type impurities such as arsenic are ion-implanted and diffused to form n-type source regions 17 on both sides of the trench 14. Next, the gate electrode 16 is covered with an interlayer insulating film 18 and a source electrode 19 electrically connected to the n-type source region 17 and the p-type channel layer 13 is formed on the surface of the substrate, resulting in the state shown in FIG. The gate electrode 16 is connected to a metal electrode exposed on the substrate surface in a cross section different from the cross section shown in FIG.
[0004]
In this configuration, the n-type epitaxial growth layer 12 becomes a drain region. Further, although not shown in FIG. 4, a drain electrode and a passivation film are formed. As shown by a broken line in FIG. 4, in a vertical MOSFET having a buried gate electrode 16, a source 21 is provided on a substrate surface, a drain 22 is provided on a trench bottom, and a vertical direction (depth direction) is provided along a trench side wall. Channel 23 is formed.
[0005]
The element characteristics of the vertical MOSFET having the above-described configuration are determined by the burying depth of the gate electrode 16 buried in the p-type channel layer 13 and the n-type epitaxial growth layer 12. Therefore, it is necessary to evaluate the buried depth of the buried gate electrode 16. Conventionally, in this evaluation, a wafer for fabricating a device for evaluation that does not become a product is prepared separately from a wafer for fabricating a vertical MOSFET that becomes an actual product, and the wafer is evaluated using the same process as the actual manufacturing process. (Vertical MOSFET) is manufactured, and the cross-sectional shape of the element is observed by an electron microscope or the like. It should be noted that a method of performing evaluation in the course of an actual manufacturing process without producing an element for evaluation has not been disclosed yet, and the technology has not been established.
[0006]
[Problems to be solved by the invention]
However, in the above-described conventional evaluation method, a wafer that does not become a product is required, and since an element that does not become a product is manufactured on this wafer, there is a problem that the cost is increased. In addition, when observing the cross-sectional shape of the evaluation element, the production of an observation sample and the operation of an electron microscope and the like are performed manually, which causes a problem that the production lead time is increased.
[0007]
The present invention has been made in view of the above problems, and a vertical MOSFET as an actual product and an element for evaluation are manufactured in the same process on the same semiconductor substrate, and the electrical characteristics of the element for evaluation are electrically controlled. It is an object of the present invention to provide a method for evaluating a vertical MOSFET in which the characteristics are measured to evaluate the buried depth of a gate electrode of the vertical MOSFET.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a method for evaluating a vertical MOSFET according to the present invention is an ion forming method for forming a source region of a vertical MOSFET while masking a formation region of a horizontal MOSFET in a vertical MOSFET manufacturing process. By performing the implantation, on the same semiconductor substrate, a second conductive type lateral MOSFET for evaluation having the same gate electrode structure as that of the first conductive type vertical MOSFET as an actual product is manufactured. Then, the threshold voltage of the lateral MOSFET for evaluation is measured, and the burying depth of the gate electrode of the vertical MOSFET is evaluated.
[0009]
According to the present invention, with respect to the lateral MOSFET, when the burying depth of the gate electrode is increased, the channel length is increased and the threshold voltage is increased. Therefore, the threshold voltage of the lateral MOSFET is measured, and By obtaining the buried depth of the gate electrode, the buried depth of the gate electrode of the vertical MOSFET having the same gate electrode structure as the lateral MOSFET can be evaluated.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view showing a configuration of a p-type lateral MOSFET for evaluation used in carrying out a method according to the present invention. As shown in FIG. 1, an n-type epitaxial growth layer 12 is stacked on an n-type semiconductor substrate 11, and a p-type channel layer 13 is formed on a surface layer of the n-type epitaxial growth layer 12. The n-type semiconductor substrate 11, the n-type epitaxial growth layer 12, and the p-type channel layer 13 are common to an n-type vertical MOSFET (see FIG. 4) manufactured at a location different from the lateral MOSFET shown in FIG. .
[0011]
The second trench 34 penetrates through the p-type channel layer 13 and reaches the n-type epitaxial growth layer 12. The second trench 34 has the same depth and the same opening width as the trench of the vertical MOSFET (see FIG. 4, reference numeral 14). The gate insulating film 15 is provided inside the second trench 34. The inside of the gate insulating film 15 is filled with polysilicon to be the gate electrode 16. The gate electrode 16 is covered with an interlayer insulating film 18 and is connected to a metal electrode (not shown in the figure) exposed on the substrate surface in a cross section different from the cross section shown in FIG. The gate insulating film 15, the gate electrode 16, and the interlayer insulating film 18 are common to the vertical MOSFET (see FIG. 4).
[0012]
In this lateral MOSFET, in the p-type channel layer 13, one side portion of the second trench 34, a portion indicated by a broken line on the left side in the illustrated example becomes the source 41, and a side portion on the opposite side thereof, the right side in the illustrated example The portion indicated by the broken line is the drain 42. Therefore, the source electrode 39 is formed on the source 41 and the drain electrode 38 is formed on the drain 42 on the substrate surface. The source electrode 39 and the drain electrode 38 are common to the source electrode (see FIG. 4, reference numeral 19) of the vertical MOSFET. Further, the channel 43 is formed in the n-type epitaxial growth layer 12.
[0013]
The horizontal MOSFET having the above-described configuration is manufactured by the same manufacturing process as the vertical MOSFET (see FIG. 4). However, when an n-type impurity such as arsenic is ion-implanted to form an n-type source region (see FIG. 4, reference numeral 17) of the vertical MOSFET, the formation region of the horizontal MOSFET is covered with an ion implantation mask, To prevent the n-type impurity from being ion-implanted into the formation region of. Further, when forming the source electrode (see reference numeral 19 in FIG. 4) of the vertical MOSFET, the source electrode 39 and the drain electrode 38 in the horizontal MOSFET are insulated.
[0014]
FIG. 2 is a characteristic diagram showing the relationship between the channel length of the lateral MOSFET shown in FIG. 1 and the buried depth of the buried gate electrode in the epitaxial growth layer. As shown in FIG. 2, in the lateral MOSFET, when the burying depth of the gate electrode 16 in the n-type epitaxial growth layer 12 increases, the distance along the gate insulating film 15 in the n-type epitaxial growth layer 12 increases. The distance between the source 41 and the drain 42, that is, the channel length becomes longer.
[0015]
FIG. 3 is a characteristic diagram showing the relationship between the threshold voltage and the channel length of the lateral MOSFET shown in FIG. As shown in FIG. 3, in the lateral MOSFET, as the channel length increases, the threshold voltage increases. Therefore, by measuring the threshold voltage of the lateral MOSFET, it is possible to know the burying depth of the gate electrode 16 of the lateral MOSFET in the n-type epitaxial growth layer 12 from the relationship shown in FIGS.
[0016]
Since the gate electrode structure of the lateral MOSFET shown in FIG. 1 is the same as the gate electrode structure of the vertical MOSFET shown in FIG. 4, the burying depth of the gate electrode 16 of the vertical MOSFET in the n-type epitaxial growth layer 12 is reduced. Can be asked for. Therefore, it is possible to evaluate how deeply the gate electrode 16 of the vertical MOSFET is buried in the p-type channel layer 13 and the n-type epitaxial growth layer 12.
[0017]
According to the above-described embodiment, a p-type horizontal MOSFET for evaluation having the same gate electrode structure as the vertical MOSFET is provided on a wafer for producing an n-type vertical MOSFET as an actual product, together with the vertical MOSFET. Can be produced. By measuring the threshold voltage of the lateral MOSFET and obtaining the buried depth of the gate electrode 16 of the lateral MOSFET, the buried depth of the gate electrode 16 of the vertical MOSFET can be evaluated.
[0018]
In the above, the present invention is not limited to the above-described embodiment, but can be variously modified. In the embodiment, the first conductivity type is n-type and the second conductivity type is p-type, but the reverse is also true.
[0019]
【The invention's effect】
According to the present invention, a second conductive type horizontal MOSFET for evaluation having the same gate electrode structure as the vertical MOSFET is provided on a wafer for manufacturing the first conductive vertical MOSFET as an actual product together with the vertical MOSFET. A MOSFET can be manufactured. Then, by measuring the electrical characteristics of the lateral MOSFET and determining the buried depth of the gate electrode of the lateral MOSFET, the buried depth of the gate electrode of the vertical MOSFET can be evaluated.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a configuration of a horizontal MOSFET for evaluation used in a method for evaluating a vertical MOSFET according to the present invention.
FIG. 2 is a characteristic diagram showing a relationship between a channel length of the lateral MOSFET shown in FIG. 1 and a buried depth of a buried gate electrode in an epitaxial growth layer.
FIG. 3 is a characteristic diagram showing a relationship between a threshold voltage and a channel length of the lateral MOSFET shown in FIG.
FIG. 4 is a cross-sectional view illustrating a configuration of a vertical MOSFET.
[Explanation of symbols]
Reference Signs List 11 n-type semiconductor substrate 12 n-type epitaxial growth layer 13 p-type channel layer 14 trench 15 gate insulating film 16 gate electrode 17 n-type source region 21, 41 source 22, 42 drain 23, 43 channel 34 second trench

Claims (3)

第1導電型の半導体基板上に第1導電型のエピタキシャル成長層を有し、前記エピタキシャル成長層上に第2導電型のチャネル層を有し、前記チャネル層を貫通して前記エピタキシャル成長層内にまで達するトレンチの内側にゲート絶縁膜を有し、前記ゲート絶縁膜の内側に埋め込みゲート電極を有し、前記チャネル層表面の前記トレンチの側部に第1導電型のソース領域を有し、前記エピタキシャル成長層をドレイン領域とする第1導電型の縦型MOSFETの前記ゲート電極の埋め込み深さを評価するにあたって、
前記半導体基板上に前記エピタキシャル成長層を有し、前記エピタキシャル成長層上に前記チャネル層を有し、前記トレンチと同じ深さの第2のトレンチを有し、前記第2のトレンチの内側にゲート絶縁膜を有し、該ゲート絶縁膜の内側に埋め込みゲート電極を有し、前記チャネル層の、前記第2のトレンチの両側部分をそれぞれ第2導電型のソース領域および第2導電型のドレイン領域とし、オン状態のときに前記第2のトレンチ内の前記ゲート絶縁膜と前記エピタキシャル成長層との接触部分に沿ってチャネルが形成される第2導電型の横型MOSFETを、前記縦型MOSFETと同一の製造プロセスで、前記縦型MOSFETとは異なる箇所に作製する工程と、
前記横型MOSFETのチャネルの電気的特性を測定し、その測定結果に基づいて、前記縦型MOSFETのゲート電極の埋め込み深さを評価する工程と、
を含むことを特徴とする縦型MOSFETの評価方法。
A first conductivity type epitaxial growth layer on the first conductivity type semiconductor substrate, a second conductivity type channel layer on the epitaxial growth layer, and penetrating the channel layer into the epitaxial growth layer; A gate insulating film inside the trench, a buried gate electrode inside the gate insulating film, a first conductivity type source region on a side of the trench on the surface of the channel layer, the epitaxial growth layer In evaluating the buried depth of the gate electrode of the vertical MOSFET of the first conductivity type having a drain region,
Having the epitaxial growth layer on the semiconductor substrate, having the channel layer on the epitaxial growth layer, having a second trench having the same depth as the trench, and having a gate insulating film inside the second trench Having a buried gate electrode inside the gate insulating film, wherein both side portions of the second trench of the channel layer are a second conductivity type source region and a second conductivity type drain region, respectively; A second conductivity type lateral MOSFET, in which a channel is formed along a contact portion between the gate insulating film and the epitaxial growth layer in the second trench when in the ON state, is manufactured in the same manufacturing process as the vertical MOSFET. A step of fabricating the vertical MOSFET at a location different from the vertical MOSFET;
Measuring the electrical characteristics of the channel of the lateral MOSFET, and evaluating the embedded depth of the gate electrode of the vertical MOSFET based on the measurement result;
A method for evaluating a vertical MOSFET, comprising:
前記横型MOSFETのしきい値電圧と前記横型MOSFETのチャネル長との関係、および前記横型MOSFETのチャネル長と前記横型MOSFETの埋め込みゲート電極が前記エピタキシャル成長層内に埋め込まれた深さとの関係を予め求めておく工程と、
前記横型MOSFETのしきい値電圧を測定し、その測定により得られたしきい値電圧に基づいて前記横型MOSFETのチャネル長を求め、その求めたチャネル長に基づいて前記横型MOSFETの埋め込みゲート電極の埋め込み深さを求め、その求めた埋め込み深さに基づいて縦型MOSFETの前記ゲート電極の埋め込み深さを評価する工程と、
を含むことを特徴とする請求項1に記載の縦型MOSFETの評価方法。
The relationship between the threshold voltage of the lateral MOSFET and the channel length of the lateral MOSFET and the relationship between the channel length of the lateral MOSFET and the depth at which the buried gate electrode of the lateral MOSFET is buried in the epitaxial growth layer are obtained in advance. And the process of
The threshold voltage of the lateral MOSFET is measured, the channel length of the lateral MOSFET is determined based on the threshold voltage obtained by the measurement, and the buried gate electrode of the lateral MOSFET is determined based on the determined channel length. Determining a burying depth, and evaluating the burying depth of the gate electrode of the vertical MOSFET based on the obtained burying depth;
The method for evaluating a vertical MOSFET according to claim 1, comprising:
前記縦型MOSFETのソース領域を形成するために前記チャネル層に第1導電型の不純物を注入する際に、前記横型MOSFETの形成領域に前記不純物が注入されないように前記横型MOSFETの形成領域をマスクすることを特徴とする請求項1または2に記載の縦型MOSFETの評価方法。When implanting a first conductivity type impurity into the channel layer to form a source region of the vertical MOSFET, mask the formation region of the lateral MOSFET so that the impurity is not implanted into the formation region of the lateral MOSFET. The method for evaluating a vertical MOSFET according to claim 1, wherein the evaluation is performed.
JP2002301159A 2002-10-15 2002-10-15 Method for evaluating vertical mosfet Pending JP2004140040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002301159A JP2004140040A (en) 2002-10-15 2002-10-15 Method for evaluating vertical mosfet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002301159A JP2004140040A (en) 2002-10-15 2002-10-15 Method for evaluating vertical mosfet

Publications (1)

Publication Number Publication Date
JP2004140040A true JP2004140040A (en) 2004-05-13

Family

ID=32449569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002301159A Pending JP2004140040A (en) 2002-10-15 2002-10-15 Method for evaluating vertical mosfet

Country Status (1)

Country Link
JP (1) JP2004140040A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310607A (en) * 2005-04-28 2006-11-09 Denso Corp Evaluation method to evaluate position relation of pn junction face of semiconductor with bottom portion of trench
JP2008034432A (en) * 2006-07-26 2008-02-14 Denso Corp Method of inspecting semiconductor device
JP2013171851A (en) * 2012-02-17 2013-09-02 Fuji Electric Co Ltd Method of evaluating trench average depth and switching characteristics of trench gate type mos semiconductor device, and method of selecting semiconductor chip
JP2017045011A (en) * 2015-08-28 2017-03-02 日本電信電話株式会社 Method for measuring pn junction position of optical modulator
CN110164974A (en) * 2018-06-28 2019-08-23 华为技术有限公司 A kind of semiconductor devices and manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310607A (en) * 2005-04-28 2006-11-09 Denso Corp Evaluation method to evaluate position relation of pn junction face of semiconductor with bottom portion of trench
JP2008034432A (en) * 2006-07-26 2008-02-14 Denso Corp Method of inspecting semiconductor device
JP2013171851A (en) * 2012-02-17 2013-09-02 Fuji Electric Co Ltd Method of evaluating trench average depth and switching characteristics of trench gate type mos semiconductor device, and method of selecting semiconductor chip
JP2017045011A (en) * 2015-08-28 2017-03-02 日本電信電話株式会社 Method for measuring pn junction position of optical modulator
CN110164974A (en) * 2018-06-28 2019-08-23 华为技术有限公司 A kind of semiconductor devices and manufacturing method
CN110164974B (en) * 2018-06-28 2020-09-18 华为技术有限公司 Semiconductor device and manufacturing method

Similar Documents

Publication Publication Date Title
US6706615B2 (en) Method of manufacturing a transistor
JP4577355B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
JP2006210368A (en) Vertical semiconductor device and its fabrication process
US20070111423A1 (en) Method of fabricating semiconductor device
US20080023787A1 (en) Semiconductor device
JP2012138600A (en) Method of manufacturing mos-gated semiconductor devices
JPH07122745A (en) Semiconductor device and its manufacture
TW591752B (en) Symmetric trench MOSFET device and method of making same
US20080150018A1 (en) Semiconductor device
JP2005510088A (en) Trench metal oxide semiconductor field effect transistor device with polycrystalline silicon source contact structure
JP2002270841A (en) Semiconductor device and manufacturing method of the same
KR100948663B1 (en) Method of forming device comprising a plurality of trench mosfet cells, and method of forming shallow and deep dopant implants
JP2002016080A (en) Manufacturing method of trench-gate type mosfet
US7372088B2 (en) Vertical gate semiconductor device and method for fabricating the same
JP2010010408A (en) Semiconductor device and method of manufacturing the same
JP2004140040A (en) Method for evaluating vertical mosfet
JP5446388B2 (en) Method for manufacturing integrated semiconductor device
KR101026484B1 (en) Vertical transistor and method of manufacturing the same
KR20090064659A (en) Semiconductor device and method of fabricating the same
JP2000349289A (en) Semiconductor device and manufacture thereof
JP2003273354A (en) Semiconductor device and method for manufacturing the same
JP2006140239A (en) Semiconductor device and its manufacturing method
JP3999225B2 (en) Semiconductor device and manufacturing method thereof
TW200847431A (en) A semiconductor device and a method for manufacturing the same
US5143859A (en) Method of manufacturing a static induction type switching device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20040209

Free format text: JAPANESE INTERMEDIATE CODE: A7424