JP2004138292A - Expansion valve - Google Patents

Expansion valve Download PDF

Info

Publication number
JP2004138292A
JP2004138292A JP2002302147A JP2002302147A JP2004138292A JP 2004138292 A JP2004138292 A JP 2004138292A JP 2002302147 A JP2002302147 A JP 2002302147A JP 2002302147 A JP2002302147 A JP 2002302147A JP 2004138292 A JP2004138292 A JP 2004138292A
Authority
JP
Japan
Prior art keywords
valve
refrigerant
pressure
expansion valve
valve body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002302147A
Other languages
Japanese (ja)
Inventor
Tomonori Shimura
志村 智紀
Eiji Fukuda
福田 栄二
Kazuhiko Watanabe
渡辺 和彦
Kimimichi Yano
矢野 公道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2002302147A priority Critical patent/JP2004138292A/en
Publication of JP2004138292A publication Critical patent/JP2004138292A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • F25B41/335Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant via diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/068Expansion valves combined with a sensor
    • F25B2341/0683Expansion valves combined with a sensor the sensor is disposed in the suction line and influenced by the temperature or the pressure of the suction gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Temperature-Responsive Valves (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the noise in passing a refrigerant by preventing the rapid response of a valve element of an expansion valve. <P>SOLUTION: A valve body 30 of this expansion valve 101' has a valve chest 35, and controls a flow rate of the refrigerant from a channel 32c toward an evaporator by switching the flow rate at the valve element 32d and an orifice 32a. The refrigerant returning from the evaporator is passed through the channel 34, and returned to a compressor side. A delay member 50 is fitted to a rod 316' operating the valve element 32d. The negative pressure is applied to the channel 34 in starting the compressor, and a power element opens the valve element 32d, but the rapid valve opening is inhibited by the presence of the delay member 50, and the flowing noise of the refrigerant can be reduced. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、車両用空調装置の冷凍サイクルに用いられる膨張弁に関する。
【0002】
【従来の技術】
従来、冷凍サイクルに用いられる膨張弁として、蒸発器から出た低圧冷媒の温度と圧力に対応して、蒸発器に送出される冷媒の流量を制御するいわゆる温度式膨張弁がある。
この種の膨張弁として、例えば特開2001−50617号公報(特許文献1参照)に示すように、自動車の空気調和装置の冷凍サイクルに使用されている。
【0003】
即ち、図2に示すように冷凍サイクル1は、エンジンにより駆動されるコンプレッサ2と、該コンプレッサ2の吐出側に接続されるコンデンサ3と、コンデンサ3に接続されるレシーバ4と、レシーバ4からの液相冷媒を気液二相冷媒に断熱膨張させる膨張弁5と、膨張弁5に接続されるエバポレータ6とから構成されている。
【0004】
上記膨張弁5には、角柱状のアルミニューム製の膨張弁本体5aに液相冷媒が流入する高圧側通路5bと断熱膨張された気液二相冷媒が流入する低圧側通路5cとが設けられ、高圧側通路5bと低圧側通路5cとはオリフィス7を介して連通し、更に該オリフィス7を通過する冷媒量を調整する弁体8を弁室8dに備えている。
【0005】
また、膨張弁5は、膨張弁本体5aに低圧冷媒通路5dが貫通して形成され、低圧冷媒通路5d内には作動棒9aが摺動可能に配置され、該作動棒9aは、膨張弁本体5aの上部に固定されたパワーエレメント部9により駆動される。該パワーエレメント部9はその内部がステンレス製のダイアフラム9dによって気密に区画され、上部気密室9cと下部気密室9c’とが、上カバー9fと下カバー9f’とによって形成されている。作動棒9aの上端の円盤部9eはダイアフラム9dに当接する。さらに、パワーエレメント部9において、上カバー9fの中央部には、チューブ装着穴9gが穿設され、該チューブ装着穴9gにはキャピラリチューブ9hが取り付けられている。また、下カバー9f’は弁本体5aに螺着により取り付けられ、弁本体5aに固定さている。
【0006】
更に、膨張弁本体5aの下部には、支持部材8cを介して弁体8を閉弁方向に押圧する圧縮コイルばね8aが弁室8d内に配設されており、弁室8dは膨張弁本体5aと螺合する調節ねじ8bにより形成され、Oリング8eにより気密が保持される。また、作動棒9aの摺動により弁体8を開弁方向に移動する作動棒9bが作動棒9aの下端に当接している。
【0007】
そして、パワーエレメント部9内の作動棒9aが低圧冷媒通路5d内の温度を前記上部圧力室9cに伝達し、その温度に応じて上部圧力室9cの圧力が変化する。例えば、温度が高い場合は上部圧力室9cの圧力が上昇して前記ダイアフラム9dが作動棒9aを押し下げると、弁体8は開弁方向に移動してオリフィス7の冷媒通過量が増加し、エバポレータ6の温度が下げられる。
【0008】
一方、温度が低い場合には、上部圧力9cの圧力が下降し、前記ダイアフラム9dによる作動棒9aを押し下げる力が弱まり、弁体8は閉弁方向に付勢する圧縮コイルばね8aにより閉弁方向に移動してオリフィス7の冷媒通過量が減少し、エバポレータ6の温度が上げられる。
【0009】
このように膨張弁5は、低圧冷媒通路5d内の温度変化に応じて、弁体8を移動させてオリフィス7の開口面積を変化させ、冷媒通過量を調整してエバポレータ6の温度調整を図っている。そして、この種の膨張弁5においては、液相冷媒から気液二相冷媒に断熱膨張させるオリフィス7の開口面積は、弁体8を閉弁方向に押圧するばね荷重可変の圧縮コイルばね8aのばね荷重を調節ねじ8bで調節することによって設定されている。
【0010】
また、図3は従来の膨張弁の他の例を示す縦断面図であり、冷媒サイクル1と共に示しており、図2とは感温駆動棒の構成が相違している(例えば、特許文献2参照)。図3に示す膨張弁101では、弁本体30は、図2に示す従来例と同様の弁本体が用いられており、基本的にはエバポレータ6に送り込まれる高圧冷媒が通る高圧側通路32bと低圧側通路32cとの間に形成されらオリフィス32aと、上記オリフィス32aに上記冷媒の上流側から対向するように配置された球状の弁体32dと、上記弁体を上流側から上記オリフィスに向けて付勢するための付勢手段32eと、上記付勢手段の付勢力を上記弁体32dに伝えるために上記付勢手段と上記弁体との間に配設された弁部材32fと、エバポレータ6から送り出される低圧冷媒の温度に対応して動作するパワーエレメント部36と、弁体32dとの間に配置される感温棒と作動棒とが一体に形成されたオリフィス内を挿通する感温駆動棒318を設け、上記パワーエレメント部36の動作に応じて上記弁体32dを上記オリフィス32aに対して接離させるようにしたことにより、オリフィスを通過する冷媒流量を制御するようになっている。
【0011】
パワーエレメント部36は、可撓性のある金属薄板であるステンレス製のダイアフラム36aと、このダイアフラム36aを挟んで互いに密着して設けられ、上記ダイアフラムを気密壁面として、その上下に区画された二つの圧力室となる上部圧力室36b及び下部圧力室36cをそれぞれ構成する気密壁となるステンレス製の上カバー36d及び下カバー36hと、上部圧力室36bにダイアフラム駆動媒体となる所定冷媒を封入するためのめくら栓36iとを備え、下部圧力室36cはオリフィス32aの中心線に対して同心的に形成された均圧孔36eを介して低圧冷媒通路34に連通されている。低圧冷媒通路34には、エバポレータ6からの冷媒蒸気が流れ、通路34は気相冷媒の通路となり、その気相冷媒の圧力が均圧孔36eを介して下部圧力室36cに負荷されている。また、下カバー36hには、筒状の取付座362が形成され、取付座362がねじ孔361に螺着により取付けられ、弁本体30に固定されている。
【0012】
感温駆動棒318は、その上端部36kが分離されて別体に構成されると共に、感温棒は作動棒と一体に例えばステンレス製の細径のロッド部材316として構成されてる。その上端部36kは、ダイアフラム36aの下面に当接される一端部が径方向に拡大されたストッパ部312に形成されると共に他端部が中央部に突起部315を形成して下部圧力36c内に摺動自在に挿入される大径部314に形成されてなる。さらに、ロッド部316の上端は大径部314の突起部315の内部に嵌合し、その下端が弁体32dに当接している。
感温棒を構成するロッド部材316は、パワーエレメント部36のダイアフラム36aの変位に応じて低圧冷媒通路34を横切って進退自在に駆動されるので、ロッド部材316に沿って低圧側通路32cと低圧冷媒通路34間を連通するクリアランス(隙間)が形成されることとなり、この連通を防止するためのロッド部材316の外周に密着するOリング40を大径の孔38内に配置し、両通路間にOリング40が存在するようにしている。なお、41はOリング40の移動を阻止するためロッド部材316に設けられた歯付き止め輪である。
また、35は弁室であり、オリフィス32aと同軸に形成される有底の室であり、高圧側通路32bに連通しプラグ39によって密閉されており、オリフィス32aを介して低圧側通路32cに連通する。
【0013】
【特許文献1】
特開2001−50617号公報(第2頁、図7)
【特許文献2】
特開2000−304381号公報(第3頁、図8)
【0014】
【発明が解決しようとする課題】
ところで、上記従来の膨張弁において、コンプレッサ2の起動によって、低圧冷媒通路34の圧力低下により、パワーエレメント部36内の上部圧力室36bと下部圧力室36cとの差圧が大となり、これによるダイアフラム36aの変位によりロッド部材316は押し下げられることにより弁体32dは急速に応答して、オリフィス32aから離間し、弁体32dが全開に近い状態に制御される。この結果、レシーバ4から高圧側通路32bを通ってエバポレータ6に向う冷媒の流量が急速に多くなり、冷媒の流動音が大きくなる場合が生じる。
【0015】
さらに、上記多量の冷媒が低圧冷媒通路34からパワーエレメント36の下部圧力室36c側へ流入することにより、上部圧力室36bと下部圧力室36cとの差圧が小となりロッド部材316を押し下げる力が弱まり、弁体32dは急速に閉弁方向に制御される。この弁体32dの応答により、オリフィス32aの冷媒通過量が急速に減少し、冷媒の流動音は一時的に減少する。この後、冷媒通過量の減少によりエバポレータ6の温度が高くなり、上部圧力室36bの圧力が上昇し、ダイアフラム36aがロッド部材316を押し下げ弁体32dが再び開弁方向に制御され、この弁体32dの応答により、エバポレータ6に向かう冷媒の流量が急速に多くなり、冷媒の流動にともない再び冷媒の流動音が大きくなる場合が生じる。
【0016】
かくの如き弁体32dの応答にしたがった冷媒の流動による冷媒流動音が発生すると、冷媒流動音が大きくかつ冷媒流動音が変動するため、人に耳障りな音となり不快感を与えることになる。
【0017】
この発明は、上記事情に鑑みてなされたものであり、その目的は、冷媒のパワーエレメントへの流入を抑制することにより、弁体の急速な応答を回避し、弁体の閉弁方向の応答を緩慢に行い冷媒の流動音を低減することが可能な膨張弁を提供することにある。
【0018】
【課題を解決するための手段】
上記目的を達成するために本発明に係る膨張弁は、高圧側通路と、低圧側通路と、これら通路間を連通するオリフィスと、低圧冷媒通路及び上記オリフィスに対向配置される弁体とをその内部に有する弁本体と、ダイアフラムで区画された圧力室を有する上記弁本体の外部に設けられるパワーエレメントと、上記圧力室の圧力変動に応じた上記ダイアフラムの変位によって上記弁体を駆動する感温駆動棒と、上記弁体により上記オリフィスの開度が制御される膨張弁において、
上記感温駆動棒がロッド部材で構成されると共に上記ロッド部材は、上記パワーエレメントに流入する冷媒の流量を抑制する抑制部材を具備していることを特徴とする。
【0019】
かかる膨張弁によれば、抑制部材により、パワーエレメントに向かって流入する冷媒の流量を制限でき、さらにロッド部材によりパワーエレメントの圧力室への温度伝達を遅延させることができるので、上記圧力室の圧力変化が緩慢に生じることとなり、上記弁体の閉弁方向の応答は緩慢になり、したがってオリフィスの冷媒通過量は徐々に減少するので、パワーエレメントの圧力室の圧力上昇も緩慢になり、弁体の急速な開弁方向の応答は回避され、急激な冷媒流量の増大が阻止でき、冷媒の流動音を低減できる。
【0020】
また、本発明の膨張弁においては、上記抑制部材は、上記ロッド部材に圧入されて上記低圧冷媒通路とパワーエレメント間に配置されていることを特徴とする。
かかる膨張弁によれば、従来の膨張弁のロッド部材に抑制部材を圧入するので、従来の膨張弁の構成を大幅に変更することなく、弁体の閉弁方向の応答を緩慢にできる組立性のよい膨張弁を実現できる。
【0021】
さらにまた、本発明の膨張弁においては、上記ロッド部材は、抑制部材が圧入されると共にその一端が上記ダイアフラムに当接するストッパ部に形成された突起部内に嵌合し、その他端が上記弁体に当接していることを特徴とする。
かかる膨張弁によれば、ロッド部材はストッパ部と嵌合されているので、パワーエレメントの圧力室への温度伝達はより遅延されるので、上記圧力室の圧力変化はより緩慢に生じて、上記弁体の閉弁方向の応答をより緩慢にすることができる。
【0022】
【発明の実施の形態】
本発明に係る膨張弁の一実施の形態について図面に基づいて説明する。
図1は、膨張弁の一実施の形態を示す断面図であり、冷凍サイクルを省略して示している。
【0023】
図1において、図3に示す従来の膨張弁とは、基本的構成は同一であり、図3と同一符号は、同一又は均等部分を示し、膨張弁101’では、弁本体30は、図3に示す従来例と同様の弁本体が用いられており、基本的にはエバポレータに送り込まれる高圧冷媒が通る高圧側通路32bと低圧側通路32cとの間に形成されたオリフィス32aと、上記オリフィス32aに上記冷媒の上流側から対向するように配置された球状の弁体32dと、上記弁体を上流側から上記オリフィスに向けて付勢するための付勢手段32eと、上記付勢手段の付勢力を上記弁体32dに伝えるために上記付勢手段と上記弁体との間に配置された弁部材32fと、低圧冷媒通路34を通るエバポレータから送り出される低圧冷媒の温度に対応して動作するパワーエレメント部36と弁体32bとの間に配置されるオリフィス32a内を挿通するロッド部材316’を設け、上記パワーエレメント部36の動作に応じて上記ロッド部材316’により上記弁体32dを上記オリフィス32aに対して接離させるようにしたことにより、オリフィス32aを通過する冷媒流量を制御するようになっている。
【0024】
ロッド部材316’は、その上端部36kがパワーエレメント部36を上部圧力室36bと下部圧力室36cに区画するダイアフラム36aの下面に当接される端部が径方向に拡大されたストッパ部312と下部圧力室36c内で摺動可能に配設された大径部314とを有している。ダイアフラム36aの変位はロッド部材316’を介して弁体32dに伝達され、ロッド部材316’における上端部36kの大径部314は下部圧力室36c内を摺動すべくストッパ部312が下カバー36hに支持される。ロッド部材316’の上端は大径部314の突起部315の内部に嵌合し、その下端は弁体32dに当接している。
【0025】
而して、ロッド部材316’には抑制部材50が、圧入により具備されており、抑制部材50は大径の円筒部50aとこれに連続する小径の円筒部50bとで一体に、例えばステンレス又はアルミニウム等の金属で形成され、中心に貫通孔50cを有する。貫通孔50cによりロッド部材316’に圧入される。大径の円筒部50aは均圧孔36e内に配置されると共に小径の円筒部50bは低圧冷媒通路34内に配置され、弁本体30と所定のクリアランスを保ってロッド部材316’に圧入されている。
【0026】
かかる構成によれば、抑制部材50が低圧冷媒通路34とパワーエレメント36の下部圧力室36cとの間に配置されているので、低圧冷媒通路34から下部圧力室36cへ流入する冷媒の流量を抑制することができ、上部圧力室36bと下部圧力室36cとの差圧を緩慢に小さくさせることとなり、ロッド部材316’を押し下げる力はゆっくり弱まる。したがって、弁体35dは閉弁方向に緩慢に応答することになる。この結果、オリフィス32aの冷媒通過量は徐々に減少して、冷媒はエバポレータへ向かうことになり、パワーエレメント36の上部圧力室36bの圧力上昇も緩慢になり、ダイアフラム36がロッド部材316’をゆっくり押し下げ、弁体32dの開弁方向への急速な応答を回避することにより、エバポレータへ向かう冷媒の急速な増大を阻止でき、冷媒の流動による冷媒の流動音を低減できる。
【0027】
さらに、ロッド部材316’は、その一端が大径部314の突起部315の内部に嵌合しているので、低圧冷媒通路34の冷媒の温度は、ロッド部材316’より上部圧力室36bに伝達されるのに比して、より遅延して上部圧力室36bに伝達され、上記弁体32dの応答をより緩慢にするのを助長することになる。
【0028】
しかも、図1に示す実施の形態においては、図3に示す従来の膨張弁の構成を大幅に変更することなく、組立性の良い膨張弁を実現して冷媒流動音を低減できるのである。
【0029】
以上実施の形態について説明したが、本発明は上記形態に限定されるものではなく、本発明の範囲内で種々に変更して実施することができる。即ち、本実施の形態では、図1に示す膨張弁において、抑制部材50としては、金属製に限らず樹脂製とすることができる。
【0030】
【発明の効果】
本発明によれば、冷凍サイクルの起動時における弁体の急激な応答を回避できるので、冷媒流量を抑制して、冷媒流動音を低減できる。
【図面の簡単な説明】
【図1】本発明の膨張弁の一実施の形態を示す断面図。
【図2】従来の膨張弁の構成を示す断面図。
【図3】従来の他の膨張弁の構成を示す断面図。
【符号の説明】
30 弁本体
32a オリフィス
32d 弁体
34 低圧冷媒通路
36 パワーエレメント
36a ダイアフラム
36b 上部圧力室
36c 下部圧力室
36e 均圧孔
316’ ロッド部材
50 抑制部材
50a 大径の円筒部
50b 小径の円筒部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an expansion valve used for a refrigeration cycle of a vehicle air conditioner.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as an expansion valve used in a refrigeration cycle, there is a so-called thermal expansion valve that controls a flow rate of a refrigerant sent to an evaporator according to a temperature and a pressure of a low-pressure refrigerant discharged from an evaporator.
As this type of expansion valve, for example, as disclosed in Japanese Patent Application Laid-Open No. 2001-50617 (see Patent Document 1), it is used in a refrigeration cycle of an air conditioner of an automobile.
[0003]
That is, as shown in FIG. 2, the refrigeration cycle 1 includes a compressor 2 driven by an engine, a condenser 3 connected to a discharge side of the compressor 2, a receiver 4 connected to the condenser 3, It comprises an expansion valve 5 for adiabatically expanding a liquid-phase refrigerant into a gas-liquid two-phase refrigerant, and an evaporator 6 connected to the expansion valve 5.
[0004]
The expansion valve 5 is provided with a high-pressure side passage 5b through which a liquid-phase refrigerant flows into a prismatic aluminum expansion valve body 5a, and a low-pressure side passage 5c through which an adiabatic expanded gas-liquid two-phase refrigerant flows. The high-pressure side passage 5b and the low-pressure side passage 5c communicate with each other through an orifice 7, and a valve body 8 for adjusting the amount of refrigerant passing through the orifice 7 is provided in a valve chamber 8d.
[0005]
In the expansion valve 5, a low-pressure refrigerant passage 5d is formed through the expansion valve main body 5a, and an operating rod 9a is slidably disposed in the low-pressure refrigerant passage 5d. It is driven by a power element unit 9 fixed on the upper part of 5a. The inside of the power element portion 9 is airtightly partitioned by a stainless steel diaphragm 9d, and an upper airtight chamber 9c and a lower airtight chamber 9c 'are formed by an upper cover 9f and a lower cover 9f'. The disk portion 9e at the upper end of the operating rod 9a contacts the diaphragm 9d. Further, in the power element section 9, a tube mounting hole 9g is formed in the center of the upper cover 9f, and a capillary tube 9h is mounted in the tube mounting hole 9g. The lower cover 9f 'is attached to the valve body 5a by screwing, and is fixed to the valve body 5a.
[0006]
Further, a compression coil spring 8a that presses the valve body 8 in the valve closing direction via a support member 8c is provided in a lower portion of the expansion valve main body 5a in the valve chamber 8d. The airtightness is maintained by an O-ring 8e, which is formed by an adjusting screw 8b screwed with 5a. An operating rod 9b that moves the valve body 8 in the valve opening direction by sliding the operating rod 9a is in contact with a lower end of the operating rod 9a.
[0007]
The operating rod 9a in the power element 9 transmits the temperature in the low-pressure refrigerant passage 5d to the upper pressure chamber 9c, and the pressure in the upper pressure chamber 9c changes according to the temperature. For example, when the temperature is high, when the pressure in the upper pressure chamber 9c rises and the diaphragm 9d pushes down the operating rod 9a, the valve body 8 moves in the valve opening direction, and the refrigerant passage amount of the orifice 7 increases, and the evaporator The temperature of 6 is lowered.
[0008]
On the other hand, when the temperature is low, the pressure of the upper pressure 9c drops, the force of the diaphragm 9d pushing down the operating rod 9a is weakened, and the valve body 8 is compressed in the valve closing direction by a compression coil spring 8a urged in the valve closing direction. And the amount of refrigerant passing through the orifice 7 decreases, and the temperature of the evaporator 6 increases.
[0009]
As described above, the expansion valve 5 moves the valve body 8 in accordance with the temperature change in the low-pressure refrigerant passage 5 d to change the opening area of the orifice 7, and adjusts the amount of the refrigerant to be passed to adjust the temperature of the evaporator 6. ing. In the expansion valve 5 of this type, the opening area of the orifice 7 for adiabatically expanding the liquid-phase refrigerant into the gas-liquid two-phase refrigerant is determined by the compression coil spring 8a having a variable spring load that presses the valve body 8 in the valve closing direction. It is set by adjusting the spring load with the adjusting screw 8b.
[0010]
FIG. 3 is a longitudinal sectional view showing another example of the conventional expansion valve, and is shown together with the refrigerant cycle 1. The configuration of the temperature-sensitive drive rod is different from that of FIG. reference). In the expansion valve 101 shown in FIG. 3, a valve body similar to the conventional example shown in FIG. 2 is used as the valve body 30. Basically, the high pressure side passage 32b through which the high pressure refrigerant sent to the evaporator 6 passes is connected to the low pressure side. An orifice 32a formed between the side passage 32c, a spherical valve element 32d arranged to face the orifice 32a from the upstream side of the refrigerant, and the valve element facing the orifice from the upstream side. A biasing means 32e for biasing, a valve member 32f disposed between the biasing means and the valve body for transmitting the biasing force of the biasing means to the valve body 32d, and an evaporator 6 Temperature-sensitive drive that passes through an orifice in which a temperature-sensitive rod and an operating rod disposed between the power element portion 36 that operates according to the temperature of the low-pressure refrigerant sent from the valve and the valve element 32d are integrally formed. Stick 31 The provided the valve body 32d in response to operation of the power element portion 36 by which so as to contact and separate with respect to the orifice 32a, and controls the refrigerant flow through the orifice.
[0011]
The power element portion 36 is provided with a stainless steel diaphragm 36a, which is a flexible thin metal plate, and provided in close contact with each other with the diaphragm 36a interposed therebetween. An upper cover 36d and a lower cover 36h made of stainless steel, which are airtight walls constituting the upper pressure chamber 36b and the lower pressure chamber 36c which are pressure chambers, respectively, and a predetermined refrigerant which is a diaphragm drive medium is sealed in the upper pressure chamber 36b. The lower pressure chamber 36c is provided with a blind plug 36i, and communicates with the low-pressure refrigerant passage 34 through an equalizing hole 36e formed concentrically with the center line of the orifice 32a. Refrigerant vapor from the evaporator 6 flows through the low-pressure refrigerant passage 34, and the passage 34 serves as a passage for a gas-phase refrigerant, and the pressure of the gas-phase refrigerant is applied to the lower pressure chamber 36c via the equalizing hole 36e. Further, a cylindrical mounting seat 362 is formed on the lower cover 36h, and the mounting seat 362 is screwed to the screw hole 361 and fixed to the valve body 30.
[0012]
The temperature-sensitive drive rod 318 is configured separately with its upper end 36k separated, and the temperature-sensitive rod is integrally formed with the operating rod as a small-diameter rod member 316 made of, for example, stainless steel. One end of the upper end 36k which is in contact with the lower surface of the diaphragm 36a is formed in a stopper portion 312 which is enlarged in the radial direction, and the other end forms a projection 315 in the center to form a lower pressure 36c. The large diameter portion 314 is slidably inserted into the large diameter portion 314. Further, the upper end of the rod portion 316 is fitted inside the projection 315 of the large diameter portion 314, and the lower end thereof is in contact with the valve body 32d.
The rod member 316 constituting the temperature sensing rod is driven to move forward and backward across the low-pressure refrigerant passage 34 according to the displacement of the diaphragm 36 a of the power element portion 36, so that the low-pressure side passage 32 c and the low-pressure passage 32 c are moved along the rod member 316. A clearance (gap) communicating between the refrigerant passages 34 is formed, and an O-ring 40 that is in close contact with the outer periphery of the rod member 316 for preventing the communication is arranged in the large-diameter hole 38, and between the two passages. An O-ring 40 is provided. Reference numeral 41 denotes a toothed retaining ring provided on the rod member 316 to prevent the O-ring 40 from moving.
Reference numeral 35 denotes a valve chamber, which is a bottomed chamber formed coaxially with the orifice 32a, communicates with the high-pressure side passage 32b, is sealed by a plug 39, and communicates with the low-pressure side passage 32c via the orifice 32a. I do.
[0013]
[Patent Document 1]
JP 2001-50617 A (page 2, FIG. 7)
[Patent Document 2]
JP-A-2000-304381 (page 3, FIG. 8)
[0014]
[Problems to be solved by the invention]
By the way, in the above-mentioned conventional expansion valve, the differential pressure between the upper pressure chamber 36b and the lower pressure chamber 36c in the power element portion 36 becomes large due to the pressure drop in the low-pressure refrigerant passage 34 due to the activation of the compressor 2, and the diaphragm When the rod member 316 is pushed down by the displacement of 36a, the valve element 32d responds quickly, moves away from the orifice 32a, and is controlled to a state where the valve element 32d is almost fully open. As a result, the flow rate of the refrigerant from the receiver 4 to the evaporator 6 through the high-pressure side passage 32b rapidly increases, and the flow noise of the refrigerant may increase.
[0015]
Further, the large amount of the refrigerant flows from the low-pressure refrigerant passage 34 into the lower pressure chamber 36c of the power element 36, so that the pressure difference between the upper pressure chamber 36b and the lower pressure chamber 36c becomes small, and the force for pushing down the rod member 316 is reduced. It weakens, and the valve element 32d is rapidly controlled in the valve closing direction. Due to the response of the valve element 32d, the amount of refrigerant passing through the orifice 32a decreases rapidly, and the flow noise of the refrigerant temporarily decreases. Thereafter, the temperature of the evaporator 6 increases due to the decrease in the amount of the refrigerant passing therethrough, the pressure in the upper pressure chamber 36b rises, the diaphragm 36a pushes down the rod member 316, and the valve body 32d is again controlled in the valve opening direction. Due to the response of 32d, the flow rate of the refrigerant flowing toward the evaporator 6 rapidly increases, and the flow noise of the refrigerant may increase again with the flow of the refrigerant.
[0016]
When the refrigerant flow noise due to the flow of the refrigerant in accordance with the response of the valve element 32d as described above, the refrigerant flow noise is large and the refrigerant flow noise fluctuates.
[0017]
The present invention has been made in view of the above circumstances, and has as its object to prevent a rapid response of a valve body by suppressing the refrigerant from flowing into a power element, and to provide a response in a valve closing direction of the valve body. The present invention is to provide an expansion valve capable of reducing the flow noise of the refrigerant by performing the operation slowly.
[0018]
[Means for Solving the Problems]
In order to achieve the above object, an expansion valve according to the present invention includes a high-pressure side passage, a low-pressure side passage, an orifice communicating between these passages, and a low-pressure refrigerant passage and a valve body disposed to face the orifice. A valve element provided therein, a power element provided outside the valve body having a pressure chamber partitioned by a diaphragm, and a temperature-sensitive element for driving the valve element by displacement of the diaphragm according to a pressure change in the pressure chamber. In a drive rod, an expansion valve in which the opening degree of the orifice is controlled by the valve body,
The temperature-sensitive drive rod is constituted by a rod member, and the rod member includes a suppression member for suppressing a flow rate of the refrigerant flowing into the power element.
[0019]
According to such an expansion valve, the flow rate of the refrigerant flowing toward the power element can be limited by the suppression member, and the temperature transmission to the pressure chamber of the power element can be delayed by the rod member. Since the pressure change occurs slowly, the response of the valve body in the valve closing direction becomes slow, and thus the amount of refrigerant passing through the orifice gradually decreases, so that the pressure rise in the pressure chamber of the power element also becomes slow, and the valve A rapid response of the body in the valve opening direction is avoided, a rapid increase in the refrigerant flow rate can be prevented, and the flow noise of the refrigerant can be reduced.
[0020]
Further, in the expansion valve of the present invention, the suppression member is press-fitted into the rod member and disposed between the low-pressure refrigerant passage and the power element.
According to such an expansion valve, since the suppressing member is press-fitted into the rod member of the conventional expansion valve, the response in the valve closing direction of the valve body can be made slow without significantly changing the configuration of the conventional expansion valve. A good expansion valve can be realized.
[0021]
Still further, in the expansion valve of the present invention, the rod member is press-fitted with the suppressing member, and one end of the rod member is fitted into a projection formed on a stopper portion abutting on the diaphragm, and the other end is the valve body. Is characterized by being in contact with.
According to such an expansion valve, since the rod member is fitted with the stopper portion, the temperature transmission to the pressure chamber of the power element is further delayed, so that the pressure change in the pressure chamber occurs more slowly, The response in the valve closing direction of the valve body can be made slower.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of an expansion valve according to the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view showing an embodiment of the expansion valve, in which a refrigeration cycle is omitted.
[0023]
1, the basic configuration is the same as that of the conventional expansion valve shown in FIG. 3, and the same reference numerals as those in FIG. 3 denote the same or equivalent parts. And an orifice 32a formed between a high-pressure side passage 32b and a low-pressure side passage 32c through which a high-pressure refrigerant sent to an evaporator basically passes, and the orifice 32a A spherical valve element 32d disposed so as to face from the upstream side of the refrigerant, an urging means 32e for urging the valve element toward the orifice from the upstream side, and an urging means of the urging means. The valve member 32f disposed between the urging means and the valve body for transmitting the force to the valve body 32d, and operates in accordance with the temperature of the low-pressure refrigerant sent from the evaporator passing through the low-pressure refrigerant passage 34. Power d A rod member 316 'is inserted through the inside of the orifice 32a disposed between the lumen portion 36 and the valve body 32b, and the valve member 32d is moved by the rod member 316' according to the operation of the power element portion 36. The flow of the refrigerant passing through the orifice 32a is controlled by being brought into contact with and separated from the orifice 32a.
[0024]
The rod member 316 'has a stopper portion 312 whose upper end portion 36k is in contact with the lower surface of the diaphragm 36a that divides the power element portion 36 into an upper pressure chamber 36b and a lower pressure chamber 36c, and whose end portion is radially enlarged. A large diameter portion 314 slidably disposed in the lower pressure chamber 36c. The displacement of the diaphragm 36a is transmitted to the valve body 32d via the rod member 316 ', and the large diameter portion 314 of the upper end 36k of the rod member 316' slides in the lower pressure chamber 36c. Supported by The upper end of the rod member 316 'is fitted inside the projection 315 of the large diameter portion 314, and the lower end is in contact with the valve body 32d.
[0025]
Thus, the rod member 316 'is provided with the suppressing member 50 by press-fitting, and the suppressing member 50 is integrally formed of the large-diameter cylindrical portion 50a and the small-diameter cylindrical portion 50b connected thereto, for example, stainless steel or the like. It is formed of a metal such as aluminum and has a through hole 50c at the center. It is press-fitted into the rod member 316 'through the through hole 50c. The large-diameter cylindrical portion 50a is disposed in the pressure-equalizing hole 36e, and the small-diameter cylindrical portion 50b is disposed in the low-pressure refrigerant passage 34. The large-diameter cylindrical portion 50a is pressed into the rod member 316 'while maintaining a predetermined clearance with the valve body 30. I have.
[0026]
According to such a configuration, since the suppression member 50 is disposed between the low-pressure refrigerant passage 34 and the lower pressure chamber 36c of the power element 36, the flow rate of the refrigerant flowing from the low-pressure refrigerant passage 34 into the lower pressure chamber 36c is suppressed. As a result, the pressure difference between the upper pressure chamber 36b and the lower pressure chamber 36c is gradually reduced, and the force for pushing down the rod member 316 'is gradually reduced. Therefore, the valve element 35d responds slowly in the valve closing direction. As a result, the amount of refrigerant passing through the orifice 32a gradually decreases, the refrigerant moves toward the evaporator, the pressure in the upper pressure chamber 36b of the power element 36 increases slowly, and the diaphragm 36 moves the rod member 316 'slowly. By pressing down and avoiding a rapid response of the valve body 32d in the valve opening direction, a rapid increase in the refrigerant flowing toward the evaporator can be prevented, and the flow noise of the refrigerant due to the flow of the refrigerant can be reduced.
[0027]
Further, since one end of the rod member 316 ′ is fitted inside the projection 315 of the large-diameter portion 314, the temperature of the refrigerant in the low-pressure refrigerant passage 34 is transmitted from the rod member 316 ′ to the upper pressure chamber 36 b. This is transmitted to the upper pressure chamber 36b with a longer delay than that performed, which helps to make the response of the valve body 32d slower.
[0028]
Moreover, in the embodiment shown in FIG. 1, it is possible to realize an expansion valve with good assemblability and reduce the refrigerant flow noise without largely changing the configuration of the conventional expansion valve shown in FIG.
[0029]
Although the embodiments have been described above, the present invention is not limited to the above embodiments, and can be implemented with various modifications within the scope of the present invention. That is, in the present embodiment, in the expansion valve shown in FIG. 1, the suppression member 50 may be made of resin instead of metal.
[0030]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, since the rapid response of the valve body at the time of the start of a refrigeration cycle can be avoided, refrigerant | coolant flow volume can be suppressed and refrigerant | coolant flow noise can be reduced.
[Brief description of the drawings]
FIG. 1 is a sectional view showing one embodiment of an expansion valve of the present invention.
FIG. 2 is a sectional view showing a configuration of a conventional expansion valve.
FIG. 3 is a cross-sectional view showing the configuration of another conventional expansion valve.
[Explanation of symbols]
30 valve body 32a orifice 32d valve body 34 low-pressure refrigerant passage 36 power element 36a diaphragm 36b upper pressure chamber 36c lower pressure chamber 36e equalizing hole 316 'rod member 50 suppressing member 50a large-diameter cylindrical portion 50b small-diameter cylindrical portion

Claims (3)

高圧側通路と、低圧側通路と、これら通路間を連通するオリフィスと、低圧冷媒通路及び上記オリフィスに対向配置される弁体とをその内部に有する弁本体と、ダイアフラムで区画された圧力室を有する上記弁本体の外部に設けられるパワーエレメントと、上記圧力室の圧力変動に応じた上記ダイアフラムの変位によって上記弁体を駆動する感温駆動棒と、上記弁体により上記オリフィスの開度が制御される膨張弁において、
上記感温駆動棒がロッド部材で構成されると共に上記ロッド部材は、上記パワーエレメントに流入する冷媒の流量を抑制する抑制部材を具備していることを特徴とする膨張弁。
A high-pressure side passage, a low-pressure side passage, an orifice communicating between these passages, a valve body having therein a low-pressure refrigerant passage and a valve body disposed to face the orifice, and a pressure chamber partitioned by a diaphragm. A power element provided outside the valve body, a temperature-sensitive drive rod for driving the valve element by displacement of the diaphragm in accordance with a pressure change in the pressure chamber, and an opening degree of the orifice controlled by the valve element. Expansion valve
The expansion valve, wherein the temperature-sensitive drive rod is formed of a rod member, and the rod member includes a suppression member that suppresses a flow rate of the refrigerant flowing into the power element.
上記抑制部材は、上記ロッド部材に圧入されて上記低圧冷媒通路とパワーエレメント間に配置されていることを特徴とする請求項1記載の膨張弁。The expansion valve according to claim 1, wherein the suppression member is press-fitted into the rod member and disposed between the low-pressure refrigerant passage and a power element. 上記ロッド部材は、その一端が上記ダイアフラムに当接するストッパ部に形成された突起部内に嵌合し、その他端が上記弁体に当接していることを特徴とする請求項2記載の膨張弁。3. The expansion valve according to claim 2, wherein one end of the rod member is fitted into a projection formed on a stopper portion abutting on the diaphragm, and the other end abuts on the valve body.
JP2002302147A 2002-10-16 2002-10-16 Expansion valve Pending JP2004138292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002302147A JP2004138292A (en) 2002-10-16 2002-10-16 Expansion valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002302147A JP2004138292A (en) 2002-10-16 2002-10-16 Expansion valve

Publications (1)

Publication Number Publication Date
JP2004138292A true JP2004138292A (en) 2004-05-13

Family

ID=32450316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002302147A Pending JP2004138292A (en) 2002-10-16 2002-10-16 Expansion valve

Country Status (1)

Country Link
JP (1) JP2004138292A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109854805A (en) * 2017-11-30 2019-06-07 浙江三花汽车零部件有限公司 A kind of expansion valve
CN109854806A (en) * 2017-11-30 2019-06-07 浙江三花汽车零部件有限公司 A kind of expansion valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109854805A (en) * 2017-11-30 2019-06-07 浙江三花汽车零部件有限公司 A kind of expansion valve
CN109854806A (en) * 2017-11-30 2019-06-07 浙江三花汽车零部件有限公司 A kind of expansion valve

Similar Documents

Publication Publication Date Title
KR101047368B1 (en) Expansion valve
JP2006189240A (en) Expansion device
JPH11182983A (en) Expansion valve integrated with solenoid valve
JPH10253199A (en) Thermal expansion valve
JP4041334B2 (en) Expansion valve and refrigeration cycle
JP4142290B2 (en) Expansion valve
JP5933210B2 (en) Valve device
JPH11287536A (en) Expansion valve
JPH10288424A (en) Temperature type expansion valve
JP2003121030A (en) Expansion valve
JP2004093106A (en) Expansion valve
JP2004138292A (en) Expansion valve
JP2001012824A (en) Control valve
JP5369259B2 (en) Expansion valve
JP6175628B2 (en) Expansion valve
JP2000220917A (en) Supercooling degree control type expansion valve
JP4081295B2 (en) Expansion valve
JP4077308B2 (en) Expansion valve
JPH08210734A (en) Temperature type expansion valve
JP5463209B2 (en) Expansion valve
JP2005331166A (en) Expansion valve
JP2007147147A (en) Expansion valve
JP2001091106A (en) Expansion valve
JPH11182982A (en) Expansion valve
JP2002350015A (en) Expansion valve and fitting structure thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080314

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080425