JP2004137910A - Wind mill for horizontal axis type wind power generator - Google Patents

Wind mill for horizontal axis type wind power generator Download PDF

Info

Publication number
JP2004137910A
JP2004137910A JP2002300863A JP2002300863A JP2004137910A JP 2004137910 A JP2004137910 A JP 2004137910A JP 2002300863 A JP2002300863 A JP 2002300863A JP 2002300863 A JP2002300863 A JP 2002300863A JP 2004137910 A JP2004137910 A JP 2004137910A
Authority
JP
Japan
Prior art keywords
wind
horizontal axis
blade
power generator
axis type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002300863A
Other languages
Japanese (ja)
Other versions
JP3875618B2 (en
Inventor
Tsuneo Noguchi
野口 常夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002300863A priority Critical patent/JP3875618B2/en
Publication of JP2004137910A publication Critical patent/JP2004137910A/en
Application granted granted Critical
Publication of JP3875618B2 publication Critical patent/JP3875618B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wind mill for a horizontal axis type wind power generator, in which a wind speed range where power generation can be performed by increasing rotating torque even in a low wind speed is enlarged, and which can be mass-produced at low cost. <P>SOLUTION: The wind mill for a horizontal axis type wind power generator has a rotating shaft in an approximately wind force direction, and is constituted by radially connecting a plurality of blades to the rotating shaft through a connection member. In the wind mill, wind receiving faces of the blades are formed in such a manner that base end sides thereof are rectangular blade parts of an aspect ratio of 1.5 or more, and delta blade parts of an aspect ratio of 1.5 or less are connected to the outside of the rectangular blade parts. A twist angle of 10 to 20 degrees is set between both side parts of the rectangular blade part, and the delta blade parts is in a flat shape. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、略風力の方向に回転軸を有し、この回転軸に複数枚のブレードを放射状に連結してなる水平軸型風力発電機用風車に関し、さらに詳細には、ブレードの受風面形状を変えてブレードの空気力学的な性質を変えることにより、低風速時の回転トルクを増大させ、発電可能な風速範囲の拡大を図った水平軸型風力発電機用風車に関する。
【0002】
【従来の技術】
一般に、風力発電機に用いられる水平軸型の風車は、自然風のエネルギーを効率的に採用できるように、水平方向、すなわち風力方向に回転軸を有し、この回転軸に固設されたハブ等の連結部材に複数枚のブレードを放射状に連結してなり、屋上等の高所に設置されて使用されている。(例えば特許文献1参照)
【0003】
【特許文献1】
特開2000−310179号公報(第2頁、図6)
【0004】
【発明が解決しようとする課題】
ところで、風力発電を行なう場合には一定の風量が必要であるが、日本では山野が多いため年間の平均風速が10m/秒以下の領域がほとんどであり、十分な風量が得られないのが実情である。この風速は地表からの高さが増すにつれて増大するが、だからといってこの風車を高所に設置するとなれば、大掛かりな設備や費用が必要となるので、例えば個人住宅用の、中型ないし小型の水平軸型風力発電機用風車としては問題があった。
【0005】
加えて、ブレードの取付け角(ピッチ)が固定された水平軸型風車は、風車の最大回転数に限界があり、また、風車に発生する回転トルクによって有効な発電が可能な範囲が限定されてしまい、有効迎え角が15度前後で、また、風速が5m/秒以下の低風速でブレードが失速し、有効に回転トルクを発生しない等の理由により実用化には問題があった。
【0006】
そこで、従来、このような低速域に対処するため、各ブレードの本体に夫々先端に向かって進退する補助ブレード、あるいは補助翼を内蔵させておき、低風速時にこれらの補助ブレードあるいは補助翼を伸長させて翼の揚力を増大させ、回転トルクを増大させるようにした水平軸型風力発電機用風車が提案されている。(例えば特許文献2参照)
【0007】
【特許文献2】
特開2001−231615号公報(第1頁、図2、図11)
【0008】
しかしながら、このように各ブレード本体に補助ブレード、あるいは補助翼を内蔵させるとなると風車自体の構造が複雑かつ大型化してしまい、このため部品点数や工数が増大して製造コストがアップし、また、強風を受けた場合等には破損する懸念があった。
【0009】
本発明は上記実情に鑑みなされたもので、本発明の目的は、低風速時においていも、回転トルクを増大して発電可能な風速範囲を拡大することが可能であり、かつ、安価に量産し得る水平軸型風力発電機用風車を提供することにある。
【0010】
【課題を解決するための手段】
本発明の上記目的は、略風力の方向に回転軸を有し、該回転軸に連結部材を介して複数枚のブレードを放射状に連結してなる水平軸型風力発電機用風車において、前記ブレードの受風面の基本形状を、基端側をアスペクト比1.5以上の矩形翼部とすると共に該矩形翼部の外側にアスペクト比1.5以下のデルタ翼部を連接して形成し、かつ、前記矩形翼部の両側部間に10度〜20度の捩り角を設定すると共に前記デルタ翼部を平面形状とすることにより、達成される。
【0011】
また、本発明の上記目的は、前記矩形翼部の翼形は、直線、または、低いレイノルズ数で高い揚力係数を有する翼形における翼弦長の20%〜80%の範囲の形状であることにより、より効果的に達成される。
【0012】
また、本発明の上記目的は、前記ブレードの連結部に前記回転軸と直交する面に対し20度〜25度の取付け角が設定されていることにより、より効果的に達成される。
【0013】
さらにまた、本発明の上記目的は、前記ブレードはアルミニウム合金、または、プラスチック材により形成されていることにより、より効果的に達成される。
【0014】
【発明の実施の形態】
以下、図面を参照しながら、本発明の実施形態を説明する。
【0015】
図1は、本発明の実施例に係わる水平軸型風力発電機用風車1の正面図、すなわち受風面側から見た図である。図示するように、本風車1では、略風力の方向、すなわち水平方向に配置された回転軸2にハブ3が固着され、このハブ3に翼根連結部材4を介して複数枚(本実施例では4枚)のブレード5が回転軸2の軸線と直交する平面のラジアル(放射)方向に等間隔に連結されている。このブレード5は風力により矢印Nの方向に回転される。なお、回転軸2の奥側端部は、図示しない支持部材等の公知の手段を介して発電機に接続されている。
【0016】
本実施例ではブレード5の基本的な平面形状、すなわち受風面の基本形状が、図2(A)に模式的に示すように、abcdで形成される矩形翼部5Xと、efgで形成されるデルタ翼部5Yとの組合せからなっている。ここに、矩形翼部5Xはアスペクト比が1.5以上に設定され、一方のデルタ翼部5Yはアスペクト比が1,5以下に設定されている。なお、図においてOは回転軸2の軸心を示している。
【0017】
図2(B)に実線で示すように、矩形翼部5Xの一端部側、すなわち翼根部5Xa側は扇形に形成され、この中央部がハブ3に連結された細長板状の翼根連結部材4にビス6によって固定されている。一方、矩形翼部5Xの他端部側は、角部dがデルタ翼部5Yの左傾斜辺efの略中点と交差する位置でデルタ翼部5Yに連接されている。なお、矩形翼部5Xとデルタ翼部5Yの連接部分、及び、デルタ翼部5Yの角部e,f,gには、図示するような丸みが付され、ブレード5の全体形状がモデファイされている。
【0018】
本風車1では、ブレード5の受風面形状が以上のとおり形成されているので、翼部、とくにデルタ翼部5Yの失速に至るまでの有効迎え角が30度〜40度と大きくなり、この部分で、5m/秒以下の低風速時においても有効な揚力を発生させて回転トルクを増大させることができ、これにより発電可能な風速範囲を拡大できる。
【0019】
本風車1では、ブレード5を形成する矩形翼部5Xとデルタ翼部5Yとが、厚さが3〜5mm程度のアルミニウム合金板をプレス加工することにより一体的に形成されている。なお、このほか、例えばプラスチック(FRPを含む)材で一体的に成型すること可能である。このように、本風車1ではブレード5が軽量な材料によりシンプルな構造に設計されているので、ブレード5を安価に量産することができ、これにより本風車1自体の製造コストを大幅に低減することができる。
【0020】
以上のとおり矩形翼部5Xとデルタ翼部5Yとで構成されたブレード5は、図1に示すように、翼根連結部材4を介して回転軸2の軸線と直交する面のラジアル方向に等間隔に配置され、ハブ3にその翼根部5Xaが取り付けられるが、本風車1ではこの翼根部5Xaが前記回転軸2と直交する面に対し20度〜25度の取付け角αもって設けられている。
【0021】
図3(A)はこの状態を示す図2(B)のA−A断面矢視図である。図示するように、端部がa,bで示される翼根部5Xaの断面側端部(矩形翼部5Xの内側断面端部)は、回転軸2と直交する面Fに対し取付け角α(20°〜25°>α>0°)に設定されている。
【0022】
また、本風車1においては、矩形翼部5Xの両側部間、すなわち図2(B)に示す矩形翼部5Xの短辺abと短辺cd間には10度〜20度の捩り角βが設定されている。
【0023】
図3(B)はこの状態を示す図2(B)のB−B断面矢視図である。図示するように、断面端部がc,dで示される矩形翼部5Xの外側断面端部は、前記翼根部5Xaの取付け角αに対し捩り角β(10°〜20°>β>0°)をもって設定されている。
【0024】
さらにまた、本風車1においては、矩形翼部5Xの翼形が、NACA4字系翼形、RAF翼形、ゲッチンゲン翼形等で代表される低いレイノルズ数で高い揚力係数を有し飛行機等に使用される流線形の翼形の一部に形成されている。
【0025】
すなわち、この矩形翼部5Xの翼形は、図4に太線で示すように、前記流線形の翼形6において、翼弦長Lに対し前縁Gより20%〜80%の範囲における(図4で曲線L1L2で示される)上部側翼形6uに形成されている。
【0026】
なお、このような翼形を有する矩形翼部5Xに対し、この矩形翼部5Xに連接して設けられるデルタ翼部5Yは平面形状に形成されている。このようなデルタ翼部5Yを矩形翼部5Xの外側に設けることにより、前述したように、失速に至るまでの有効迎え角を30度〜40度と大きくすることができ、この部分で、5m/秒以下の低風速時においても有効な揚力を発生させて回転トルクを増大させることができ、これにより発電可能な風速範囲を拡大することができる。
【0027】
以上のとおり、ブレード5に対し、取付け角αを20度〜25度に設定し、かつ、捩り角βを10度〜20度に設定することにより、ブレード5の受風面の全面が有効に揚力を発生することが、本発明者の実験によって確認されている。
【0028】
以上、本発明の内容を一実施例に基づき説明したが、本発明は必ずしも上記実施例に限定されるものではなく、例えば構成を次のように変更することができる。
【0029】
前記実施例ではブレードの設置枚数を4枚としたが、この枚数は2枚以上、すなわち複数枚であればその数は限定されるものではない。なお、風車の起動時から回転時のバランスを考えると、枚数を偶数枚に設定することが望ましい。
【0030】
また、前記実施例ではブレードの矩形翼部5Xにおける翼形を、低いレイノルズ数で高い揚力係数を有する翼形における翼弦長の20%〜80パーセントの範囲の形状を用いたが、この形状は直線形状であっても、前記と同様の効果が得られることが確認されている。
【0031】
さらにまた、ブレードを回転軸に対し連結する手段として、ハブ、連結部材、ブレードの三者を一枚板で、あるいは一体成型等により形成し、これを回転軸に直接取り付けるようにすることも可能である。
【0032】
【発明の効果】
以上に詳述したように、前記特許請求の範囲、請求項1〜3に記載されたブレードの受風面形状及び取付け構造の改良に係わる発明によれば、空気力学的な性質を変えることにより、低風速時においても有効な揚力を発生させて回転トルクを増大させることができ、発電可能な風速範囲を拡大することができる。よって、本発明に係わる水平軸型風力発電機用風車は、例えば中・低層ビルや個人住宅の屋上等の低所に設置して使用することが可能となり、省電力システムを構築する発電機として広く利用することができる。
【0033】
とくに、ブレード自体を軽量な材料によりコンパクトな構造に製作できるので、ブレードを安価に量産することができ、これにより、水平軸型風力発電機用風車全体の製造コストを低減化することができる。また、強風による破損の心配も不要である。
【図面の簡単な説明】
【図1】本発明の実施例に係わる水平軸型風力発電機用風車1の正面図である。
【図2】(A)は、本実施例におけるブレード5の基本的な平面形状、すなわち受風面の基本形状をに模式的に示す図、(B)は、このブレード5の全体形状がモデファイされた図である。
【図3】(A)は、図2(B)のA−A断面矢視図、(B)は同図のB−B断面矢視図である。
【図4】本実施例における矩形翼部の形状を示す図である。
【符号の説明】
1       (本発明に係わる)水平軸型風力発電機用風車
2        回転軸
3       ハブ
4       翼根連結部材
5       ブレード
5X      矩形翼部
5Xa     翼根部
5Y      デルタ翼部
6       流線形翼形
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wind turbine for a horizontal axis wind power generator having a rotation axis substantially in the direction of wind, and a plurality of blades radially connected to the rotation axis, and more particularly to a wind receiving surface of the blade. The present invention relates to a wind turbine for a horizontal axis wind power generator, in which the shape of a blade is changed to change the aerodynamic properties of the blade, thereby increasing the rotational torque at low wind speeds and expanding the wind speed range in which power can be generated.
[0002]
[Prior art]
Generally, a horizontal axis type windmill used for a wind power generator has a rotation axis in a horizontal direction, that is, a wind direction, so that a natural wind energy can be efficiently used, and a hub fixed to the rotation axis. A plurality of blades are radially connected to a connecting member such as the above, and are used at a high place such as a rooftop. (For example, see Patent Document 1)
[0003]
[Patent Document 1]
JP-A-2000-310179 (page 2, FIG. 6)
[0004]
[Problems to be solved by the invention]
By the way, when wind power is generated, a constant air volume is required, but in Japan there are many mountains and the average annual wind speed in most areas is 10 m / sec or less, and the actual air volume cannot be obtained. It is. This wind speed increases as the height from the ground increases, but installing this wind turbine at a high place requires large-scale equipment and cost.For example, a medium-sized or small horizontal shaft for private residences There was a problem as a windmill for wind turbines.
[0005]
In addition, a horizontal axis type wind turbine having a fixed blade mounting angle (pitch) has a limitation on the maximum number of rotations of the wind turbine, and the range in which effective power generation is possible is limited by the rotational torque generated in the wind turbine. As a result, there is a problem in practical use because the blade is stalled at an effective angle of attack of about 15 degrees and at a low wind speed of 5 m / sec or less and does not effectively generate rotational torque.
[0006]
Therefore, conventionally, in order to cope with such a low speed region, auxiliary blades or auxiliary wings which advance and retreat toward the tip of each blade are built in, and these auxiliary blades or auxiliary wings are extended at low wind speed. There has been proposed a windmill for a horizontal axis type wind generator in which the lift of the wing is increased to increase the rotational torque. (For example, see Patent Document 2)
[0007]
[Patent Document 2]
JP 2001-231615 A (page 1, FIG. 2, FIG. 11)
[0008]
However, when an auxiliary blade or an auxiliary wing is incorporated in each blade main body in this way, the structure of the wind turbine itself becomes complicated and large, and therefore the number of parts and man-hours increase, and the manufacturing cost increases. There was a concern that it would be damaged in the event of a strong wind.
[0009]
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to increase the rotational torque and expand the wind speed range in which power can be generated even at a low wind speed, and to mass-produce at low cost. It is another object of the present invention to provide a wind turbine for a horizontal axis type wind power generator.
[0010]
[Means for Solving the Problems]
The object of the present invention is to provide a wind turbine for a horizontal axis wind power generator having a rotating shaft in a direction of substantially wind and connecting a plurality of blades radially to the rotating shaft via a connecting member. The basic shape of the wind receiving surface, the base end side is a rectangular wing portion having an aspect ratio of 1.5 or more, and a delta wing portion having an aspect ratio of 1.5 or less is formed outside the rectangular wing portion, and formed. In addition, this is achieved by setting a twist angle of 10 to 20 degrees between both side portions of the rectangular wing portion and making the delta wing portion a planar shape.
[0011]
Further, the object of the present invention is that the airfoil of the rectangular airfoil has a shape in a range of 20% to 80% of a chord length of a airfoil having a straight line or a high lift coefficient at a low Reynolds number. Is more effectively achieved.
[0012]
Further, the above object of the present invention can be more effectively achieved by setting a mounting angle of 20 degrees to 25 degrees with respect to a plane orthogonal to the rotation axis at the connecting portion of the blade.
[0013]
Still further, the above object of the present invention is more effectively achieved when the blade is formed of an aluminum alloy or a plastic material.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0015]
FIG. 1 is a front view of a wind turbine 1 for a horizontal axis type wind power generator according to an embodiment of the present invention, that is, a view as viewed from a wind receiving surface side. As shown in the figure, in the wind turbine 1, a hub 3 is fixed to a rotating shaft 2 arranged substantially in the direction of wind, that is, in a horizontal direction, and a plurality of hubs 3 are connected to the hub 3 via a blade root connecting member 4 (this embodiment). (Four blades) are connected at equal intervals in a radial (radial) direction on a plane orthogonal to the axis of the rotating shaft 2. This blade 5 is rotated in the direction of arrow N by wind power. The rear end of the rotating shaft 2 is connected to the generator via a known means such as a support member (not shown).
[0016]
In this embodiment, the basic planar shape of the blade 5, that is, the basic shape of the wind receiving surface is formed by a rectangular wing portion 5X formed of abcd and efg, as schematically shown in FIG. And a delta wing 5Y. Here, the rectangular wing 5X has an aspect ratio of 1.5 or more, and the delta wing 5Y has an aspect ratio of 1.5 or less. In the drawings, O indicates the axis of the rotating shaft 2.
[0017]
As shown by the solid line in FIG. 2 (B), one end of the rectangular blade portion 5X, that is, the blade root portion 5Xa side is formed in a fan shape, and the central portion thereof is connected to the hub 3 in the form of an elongated plate-shaped blade root connecting member. 4 is fixed by screws 6. On the other hand, the other end of the rectangular wing 5X is connected to the delta wing 5Y at a position where the corner d intersects the approximate middle point of the left inclined side ef of the delta wing 5Y. The connecting portion between the rectangular wing portion 5X and the delta wing portion 5Y and the corners e, f, and g of the delta wing portion 5Y are rounded as shown in the figure, and the overall shape of the blade 5 is modified. I have.
[0018]
In the wind turbine 1, since the wind receiving surface shape of the blade 5 is formed as described above, the effective angle of attack until the wing, especially the delta wing 5Y stalls, becomes as large as 30 to 40 degrees. In some portions, an effective lift can be generated even at a low wind speed of 5 m / sec or less to increase the rotational torque, thereby expanding the wind speed range in which power can be generated.
[0019]
In the wind turbine 1, the rectangular wings 5X and the delta wings 5Y forming the blades 5 are integrally formed by pressing an aluminum alloy plate having a thickness of about 3 to 5 mm. In addition, it is also possible to integrally mold with, for example, a plastic (including FRP) material. As described above, since the blade 5 of the present wind turbine 1 is designed to have a simple structure by using a lightweight material, the blade 5 can be mass-produced at low cost, thereby greatly reducing the manufacturing cost of the present wind turbine 1 itself. be able to.
[0020]
As described above, the blade 5 composed of the rectangular wing portion 5X and the delta wing portion 5Y is, as shown in FIG. 1, arranged in a radial direction on a plane orthogonal to the axis of the rotating shaft 2 via the blade root connecting member 4. The blade roots 5Xa are arranged at intervals and are attached to the hub 3. The blade roots 5Xa are provided at an attachment angle α of 20 to 25 degrees with respect to a plane orthogonal to the rotation shaft 2 in the wind turbine 1. .
[0021]
FIG. 3A is a sectional view taken along the line AA of FIG. 2B showing this state. As shown in the figure, the cross-sectional side end (the inner cross-sectional end of the rectangular wing 5X) of the blade root 5Xa whose ends are indicated by a and b is attached to a plane F orthogonal to the rotation axis 2 by an attachment angle α (20). ° to 25 °>α> 0 °).
[0022]
Further, in the wind turbine 1, a twist angle β of 10 to 20 degrees is formed between the both sides of the rectangular wing 5X, that is, between the short side ab and the short side cd of the rectangular wing 5X shown in FIG. Is set.
[0023]
FIG. 3B is a cross-sectional view taken along the line BB of FIG. 2B showing this state. As shown in the figure, the outer cross-sectional end of the rectangular wing portion 5X whose cross-sectional end is indicated by c and d has a torsion angle β (10 ° to 20 °>β> 0 °) with respect to the mounting angle α of the blade root 5Xa. ).
[0024]
Furthermore, in the wind turbine 1, the airfoil of the rectangular airfoil portion 5X has a low Reynolds number and a high lift coefficient represented by the NACA 4-shaped airfoil, the RAF airfoil, the Göttingen airfoil, and is used for airplanes and the like. It is formed in part of a streamlined airfoil.
[0025]
That is, as shown by the bold line in FIG. 4, the airfoil of the rectangular wing portion 5X is in the range of 20% to 80% of the chord length L from the leading edge G in the streamlined airfoil 6 (see FIG. 4). 4 (indicated by curve L1L2).
[0026]
In addition, with respect to the rectangular wing portion 5X having such an airfoil, the delta wing portion 5Y provided to be connected to the rectangular wing portion 5X is formed in a planar shape. By providing such a delta wing portion 5Y outside the rectangular wing portion 5X, as described above, the effective angle of attack until stall can be increased to 30 to 40 degrees. Even at a low wind speed of not more than / sec, an effective lift can be generated to increase the rotational torque, thereby expanding the wind speed range in which power can be generated.
[0027]
As described above, by setting the attachment angle α to 20 to 25 degrees and the torsion angle β to 10 to 20 degrees with respect to the blade 5, the entire surface of the wind receiving surface of the blade 5 can be effectively used. The generation of lift has been confirmed by experiments performed by the present inventors.
[0028]
As described above, the content of the present invention has been described based on one embodiment. However, the present invention is not necessarily limited to the above-described embodiment, and for example, the configuration can be changed as follows.
[0029]
In the above embodiment, the number of blades is four, but the number is not limited as long as the number is two or more, that is, a plurality of blades. In consideration of the balance from the start of the wind turbine to the rotation thereof, it is desirable to set the number of sheets to an even number.
[0030]
In the above-described embodiment, the airfoil of the rectangular wing portion 5X of the blade has a shape in the range of 20% to 80% of the chord length of the airfoil having a low Reynolds number and a high lift coefficient. It has been confirmed that the same effects as described above can be obtained even with a linear shape.
[0031]
Furthermore, as means for connecting the blade to the rotating shaft, the hub, the connecting member, and the blade may be formed as a single plate or by integral molding or the like, and this may be directly attached to the rotating shaft. It is.
[0032]
【The invention's effect】
As described in detail above, according to the invention relating to the improvement of the wind receiving surface shape and the mounting structure of the blades described in the claims and claims 1 to 3, by changing the aerodynamic property Even at a low wind speed, an effective lift can be generated to increase the rotational torque, and the wind speed range in which power can be generated can be expanded. Therefore, the wind turbine for a horizontal axis type wind power generator according to the present invention can be installed and used in a low place such as a middle / low-rise building or the roof of a private house, and used as a generator for constructing a power saving system. Can be widely used.
[0033]
In particular, since the blade itself can be manufactured in a compact structure using a lightweight material, the blade can be mass-produced at a low cost, thereby reducing the manufacturing cost of the entire wind turbine for a horizontal axis wind power generator. Also, there is no need to worry about damage due to strong winds.
[Brief description of the drawings]
FIG. 1 is a front view of a wind turbine 1 for a horizontal axis type wind power generator according to an embodiment of the present invention.
FIG. 2A is a diagram schematically showing a basic plane shape of a blade 5 in the present embodiment, that is, a basic shape of a wind receiving surface, and FIG. 2B is a diagram showing that the overall shape of the blade 5 is modified. FIG.
3A is a sectional view taken along the line AA in FIG. 2B, and FIG. 3B is a sectional view taken along the line BB in FIG.
FIG. 4 is a view showing the shape of a rectangular wing in the present embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Horizontal axis type wind turbine (according to the present invention) 2 Rotary shaft 3 Hub 4 Blade connecting member 5 Blade 5X Rectangular wing 5Xa Blade root 5Y Delta wing 6 Streamline airfoil

Claims (4)

略風力の方向に回転軸を有し、該回転軸に連結部材を介して複数枚のブレードを放射状に連結してなる水平軸型風力発電機用風車において、前記ブレードの受風面の基本形状を、基端側をアスペクト比1.5以上の矩形翼部とすると共に該矩形翼部の外側にアスペクト比1.5以下のデルタ翼部を連接して形成し、かつ、前記矩形翼部の両側部間に10度〜20度の捩り角を設定すると共に前記デルタ翼部を平面形状としたことを特徴とする水平軸型風力発電機用風車。In a wind turbine for a horizontal axis wind power generator having a rotating shaft in a direction of substantially wind and connecting a plurality of blades radially to the rotating shaft via a connecting member, a basic shape of a wind receiving surface of the blade The base end side is a rectangular wing part having an aspect ratio of 1.5 or more, and a delta wing part having an aspect ratio of 1.5 or less is formed continuously outside the rectangular wing part. A windmill for a horizontal axis wind power generator, wherein a twist angle of 10 to 20 degrees is set between both side portions and the delta wing portion is formed in a plane shape. 前記矩形翼部の翼形は、直線、または、低いレイノルズ数で高い揚力係数を有する翼形における翼弦長の20%〜80%の範囲の形状であることを特徴とする請求項1に記載の水平軸型風力発電機用風車。The airfoil of the rectangular wing portion has a shape ranging from 20% to 80% of a chord length of a straight or an airfoil having a high lift coefficient at a low Reynolds number. Wind turbine for horizontal axis type wind generator. 前記ブレードの連結部に前記回転軸と直交する面に対し20度〜25度の取付け角が設定されていることを特徴とする請求項1または請求項2に記載の水平軸型風力発電機用風車。3. The horizontal axis type wind power generator according to claim 1, wherein an attachment angle of 20 ° to 25 ° with respect to a plane orthogonal to the rotation axis is set in the connection portion of the blade. 4. Windmill. 前記ブレードはアルミニウム合金、または、プラスチック材により形成されていることを特徴とする請求項1ないし請求項3に記載の水平軸型風力発電機用風車。The windmill for a horizontal axis type wind power generator according to claim 1, wherein the blade is formed of an aluminum alloy or a plastic material.
JP2002300863A 2002-10-15 2002-10-15 Wind turbine for horizontal axis wind power generator Expired - Fee Related JP3875618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002300863A JP3875618B2 (en) 2002-10-15 2002-10-15 Wind turbine for horizontal axis wind power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002300863A JP3875618B2 (en) 2002-10-15 2002-10-15 Wind turbine for horizontal axis wind power generator

Publications (2)

Publication Number Publication Date
JP2004137910A true JP2004137910A (en) 2004-05-13
JP3875618B2 JP3875618B2 (en) 2007-01-31

Family

ID=32449428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002300863A Expired - Fee Related JP3875618B2 (en) 2002-10-15 2002-10-15 Wind turbine for horizontal axis wind power generator

Country Status (1)

Country Link
JP (1) JP3875618B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1931876A1 (en) * 2005-10-04 2008-06-18 O'Connor, Arthur Benjamin Wind turbine
WO2012073813A1 (en) * 2010-12-01 2012-06-07 Matsuda Isamu Propeller type windmill and wind power generation apparatus
WO2013161752A1 (en) * 2012-04-23 2013-10-31 学校法人文理学園 Windmill blade and windmill
WO2016103572A1 (en) * 2014-12-25 2016-06-30 テラル株式会社 Rotor
TWI627350B (en) * 2016-05-13 2018-06-21 Teral Inc Rotor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1931876A1 (en) * 2005-10-04 2008-06-18 O'Connor, Arthur Benjamin Wind turbine
EP1931876A4 (en) * 2005-10-04 2011-12-07 Hush Wind Energy Ltd Wind turbine
WO2012073813A1 (en) * 2010-12-01 2012-06-07 Matsuda Isamu Propeller type windmill and wind power generation apparatus
WO2013161752A1 (en) * 2012-04-23 2013-10-31 学校法人文理学園 Windmill blade and windmill
JP2013241930A (en) * 2012-04-23 2013-12-05 Bunri Gakuen Windmill blade and windmill
WO2016103572A1 (en) * 2014-12-25 2016-06-30 テラル株式会社 Rotor
JP2016121616A (en) * 2014-12-25 2016-07-07 テラル株式会社 Rotor
US10288036B2 (en) 2014-12-25 2019-05-14 Teral Inc. Rotor
TWI627350B (en) * 2016-05-13 2018-06-21 Teral Inc Rotor

Also Published As

Publication number Publication date
JP3875618B2 (en) 2007-01-31

Similar Documents

Publication Publication Date Title
JP3451085B1 (en) Windmill for wind power generation
CN1904355B (en) Methods and apparatus for producing wind energy with reduced wind turbine noise
US9284944B2 (en) Vertical shaft type darius windmill
US7726935B2 (en) Wind turbine rotor projection
US7914259B2 (en) Wind turbine blades with vortex generators
US8550786B2 (en) Vertical axis wind turbine with self-starting capabilities
EP2267298A2 (en) Wind turbine blade with rotatable fins at the tip
DK200801654A (en) Multi-section wind turbine rotor blades and wind turbines incorporating the same
US20110194938A1 (en) Segmented wind turbine airfoil/blade
WO2002059464A1 (en) Fluid machinery
EP2834517A2 (en) Twisted blade root
JPWO2010007684A1 (en) Wind turbine for wind power generation and manufacturing method thereof
KR20120061264A (en) Vertical axis wind turbine having cascaded mutiblade
JP5110550B1 (en) Propeller windmill for small generator
JP2005090332A (en) Darrieus wind turbine
JP2004084522A (en) Blade and wind power generator with it
JP3875618B2 (en) Wind turbine for horizontal axis wind power generator
JP2001065446A (en) Cascade structure for vertical shaft type windmill and vertical shaft type windmill
EP2236819A1 (en) Vertical axis wind turbine
CN201187403Y (en) Self-adapting four-blade wind wheel for wind power generation
JP3987960B2 (en) Fluid machinery
CN201187402Y (en) Self-adapting three-blade wind wheel for wind power generation
CN101319653B (en) Self-adapting wind wheel for wind power generation
JP2009180228A (en) Vertical axis type wind mill
US20180017037A1 (en) Hub and Rotor Assemby for Wind Turbines with Conjoined Turbine Blades

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040219

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050510

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060417

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees