CN201187403Y - Self-adapting four-blade wind wheel for wind power generation - Google Patents

Self-adapting four-blade wind wheel for wind power generation Download PDF

Info

Publication number
CN201187403Y
CN201187403Y CNU200820080326XU CN200820080326U CN201187403Y CN 201187403 Y CN201187403 Y CN 201187403Y CN U200820080326X U CNU200820080326X U CN U200820080326XU CN 200820080326 U CN200820080326 U CN 200820080326U CN 201187403 Y CN201187403 Y CN 201187403Y
Authority
CN
China
Prior art keywords
accessory pinna
blade tip
blade
accessory
wind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNU200820080326XU
Other languages
Chinese (zh)
Inventor
何立武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CNU200820080326XU priority Critical patent/CN201187403Y/en
Application granted granted Critical
Publication of CN201187403Y publication Critical patent/CN201187403Y/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Abstract

The utility model discloses a self-adapting quadrifoliate wind wheel applied to an aero-generator. The self-adapting quadrifoliate wind wheel comprises an A wind blade, a B wind blade, a C wind blade, a D wind blade, an A pressing tablet, a B pressing tablet, a C pressing tablet, a D pressing tablet and a joint flange; pinnae, the number of which is 4 to 9, are arranged on each wind blade along the spanwise direction, clearances are left between two pinnae, namely, the space d between two adjacent pinnae is 3 to 8mm, so an established angle Q between each pinna and a steadying bar ranges from 0.5 to 16.33 degrees, wherein, the established angle Q is the included angle between a chord line and a rotating surface; the space h between a leaf apex that is arranged at the end part of an extended section of the steadying bar and the last pinna also ranges from 3 to 8mm; the space H0 between five leaf apex pinnae which are arranged on the leaf apex along the chordwise direction also ranges from 3 to 8mm; in addition, the included angle Beta between two adjacent leaf apex pinnae ranges from 10 to 20 degrees.

Description

Used for wind power generation self adaption four blade wind-wheels
Technical field
The utility model relates to a kind of wind wheel structure, more particularly says, is meant a kind of self adaption four blade wind-wheels that are applicable to wind-driven generator.Accessory pinna on this wind wheel, tip structure have adopted aerodynamics and the bionical technological scheme that combines of birds flight.
Background technique
Wind-power electricity generation is to utilize wind-force to drive the air vane rotation, sees through the speed lifting of booster engine with rotation again, impels generator for electricity generation.Wind-power electricity generation does not need fuel, can not produce radiation or atmospheric pollution yet, be a kind of green energy resource.
The wind wheel startup wind speed that existing wind-driven generator uses is generally 3~4 meter per seconds (gentle breeze) and could starts, and the specified generating wind speed of its wind wheel mostly is 8~13 meter per seconds (5~strong breeze) greatly, and such wind environment is less in the whole world, can't large size promote the use of.
Summary of the invention
In order to overcome the existing required big defective of few, the specified generating wind speed of wind environment of generator wind wheel, the utility model proposes a kind of aerodynamics and birds fly bionical that combine, have an aspect ratio wind wheel little, flexible blades.The advantage of these used for wind power generation self adaption four blade wind-wheels is: start wind speed little (1~2 meter per second, 1~light breeze); Specified generating wind speed is lower, can be designed to 5~7 meter per seconds (moderate breeze), can be fit to wide geographic area.Under the condition of equal rotor diameter and natural wind speed, after this self-adapting wind wheel for wind power generation and prior three-blade, four blade wind-wheels (blade of wind wheel is the one configuration) exchange, can improve generated output more than 30%.
A kind of self adaption four blade wind-wheels of wind-driven generator that are applicable to of the present utility model include 4 fan blades, 4 compressing tablets and a land;
A fan blade 1 includes 6 accessory pinnas (A accessory pinna 11, B accessory pinna 12, C accessory pinna 13, D accessory pinna 14, E accessory pinna 15 are identical with F accessory pinna 16 structures, and A accessory pinna 11, B accessory pinna 12, C accessory pinna 13, D accessory pinna 14, E accessory pinna 15 and F accessory pinna 16 are arranged to direction in turn along exhibition), a blade tip 17 and an A strut 1A; A strut 1A is divided into exhibition long section 1c and connecting end 1a; A accessory pinna 11 is divided into B connecting end 101 and accessory pinna compliant section 104; Blade tip 17 is divided into C connecting end 171 and plumage point compliant section 174, and blade tip compliant section 174 is provided with 5 blade tip accessory pinnas (A blade tip accessory pinna 17A, B blade tip accessory pinna 17B, C blade tip accessory pinna 17C, D blade tip accessory pinna 17D are identical with E blade tip accessory pinna 17E structure, and A blade tip accessory pinna 17A, B blade tip accessory pinna 17B, C blade tip accessory pinna 17C, D blade tip accessory pinna 17D and E blade tip accessory pinna 17E arrange in turn along chordwise direction); The connecting end 1a of A strut 1A places in the A half slot 5A of A land 5.The long section of the exhibition of A strut 1A 1c upper edge exhibition is equipped with A accessory pinna 11, B accessory pinna 12, C accessory pinna 13, D accessory pinna 14, E accessory pinna 15, F accessory pinna 16, blade tip 17 in turn to direction.Land 5 includes disk body 59, coupling shaft 60, and the below of disk body 59 is a coupling shaft 60.On the disk body 59 of land 5, be that the center of circle cutting process that evenly distributes goes out 4 half slots with core O point.Described A compressing tablet 6A includes pressure-bearing surface 63, A location piece 61, B location piece 62, and A location piece 61, B location piece 62 are separately positioned on the both sides of pressure-bearing surface 63, have B screw hole 64 on the pressure-bearing surface 63.A fan blade 1 is made up of A strut 1A, 6 accessory pinnas, blade tips 17, and 6 accessory pinnas are A accessory pinna 11, B accessory pinna 12, C accessory pinna 13, D accessory pinna 14, E accessory pinna 15, F accessory pinna 16 along exhibition to putting in order of direction, and the exhibition of A fan blade 1 is a blade tip 17 to the end.The structure of A accessory pinna 11 (referring to shown in Figure 3): A accessory pinna 11 includes B connecting end 101 and accessory pinna compliant section 104.The accessory pinna compliant section 104 of described A accessory pinna 11 is straight platy structure, and it is straight, and the plate end is an arc surface.
In the utility model, the spacing of two adjacent accessory pinnas is d=3~8mm, and the established angle Q string of a musical instrument of each accessory pinna and strut and the angle of surface of revolution are 0.5 °~16.33 °.The blade tip and the spacing between last a slice accessory pinna that are installed in the long section of the exhibition end of strut also are h=3~8mm, and blade tip spacing between 5 blade tip accessory pinnas that chordwise direction is provided with also is H 0=3~8mm, and the angle between adjacent two blade tip accessory pinnas is β=10~20 degree.
Description of drawings
Fig. 1 is the wind wheel structure figure that the utlity model has 4 fan blades.
Figure 1A is the wind wheel structure figure that has cowling.
Fig. 2 is the structural drawing of A fan blade of the present utility model.
Fig. 2 A is that the A of Fig. 2 is to view.
Fig. 3 is the structural drawing of the utility model fan blade accessory pinna.
Fig. 4 is the structural drawing of the utility model fan blade blade tip.
Fig. 4 A is the front view of the utility model fan blade blade tip.
Fig. 5 is the structural drawing of the utility model A land.
Fig. 6 is the structural drawing of the utility model A compressing tablet.
Fig. 7 is the structural drawing of the utility model A strut.
Among the figure: 1.A fan blade 2.B fan blade 3.C fan blade 4.D fan blade
1A.A the long section of strut 1a.A connecting end 1b.A bolt hole 1c. exhibition 1d.E bolt hole
1B.B strut 1C.C strut 1D.D strut 11.A accessory pinna 12.B accessory pinna
13.C accessory pinna 14.D accessory pinna 15.E accessory pinna 16.F accessory pinna 17. blade tips
17A.A blade tip accessory pinna 17B.B blade tip accessory pinna 17C.C blade tip accessory pinna 17D.D blade tip accessory pinna 17E.E blade tip accessory pinna
101.B connecting end 102.A through hole 103.C bolt hole 104. accessory pinna compliant section 105.D bolts hole
171.C connecting end 172.B through hole 173.F bolt hole 174. blade tip compliant section 175.G bolts hole
5.A land 5A.A half slot 5B.B half slot 5C.C half slot 5D.D half slot
51.A narrow slit 52.B narrow slit 53.C narrow slit 54.D narrow slit 55.E narrow slit
56.F narrow slit 57.G narrow slit 58.H narrow slit 59. disk bodies 60. coupling shafts
6A.A compressing tablet 6B.B compressing tablet 6C.C compressing tablet 6D.D compressing tablet
61.A location piece 62.B location piece 63. pressure-bearing surface 64.B screw holes 7. cowlings
Embodiment
Below in conjunction with accompanying drawing configuration of the present utility model is described in further detail.
The utility model is a kind of self adaption four blade wind-wheels that are applicable to wind-driven generator, and this self adaption wind wheel (referring to shown in Figure 1) includes 4 fan blades, 4 compressing tablets and a land; 4 fan blades are meant the identical A fan blade 1 of structure, B fan blade 2, C fan blade 3, D fan blade 4; 4 compressing tablets are meant the identical A compressing tablet 6A of structure, B compressing tablet 6B, C compressing tablet 6C, D compressing tablet 6D.
In the utility model, because the exhibition at fan blade is provided with 4~9 accessory pinnas on direction, and leave the gap between each accessory pinna, the spacing of two promptly adjacent accessory pinnas is d=3~8mm, and the established angle Q string of a musical instrument of each accessory pinna and strut and the angle of surface of revolution are 0.5 °~16.33 °.The blade tip and the spacing between last a slice accessory pinna that are installed in the long section of the exhibition end of strut also are h=3~8mm, and blade tip spacing between 5 blade tip accessory pinnas that chordwise direction is provided with also is H 0=3~8mm, and the angle between adjacent two blade tip accessory pinnas is β=10~20 degree.
In the utility model, be example with the wind wheel of four fan blades, four fan blades are evenly distributed on the A land 5, the structure of four fan blades identical (referring to shown in Figure 1); Described four fan blades are meant A fan blade 1, B fan blade 2, C fan blade 3 and D fan blade 4.Wherein, (referring to shown in Figure 2) A fan blade 1 includes 6 accessory pinnas (A accessory pinna 11, B accessory pinna 12, C accessory pinna 13, D accessory pinna 14, E accessory pinna 15 are identical with F accessory pinna 16 structures, and A accessory pinna 11, B accessory pinna 12, C accessory pinna 13, D accessory pinna 14, E accessory pinna 15 and F accessory pinna 16 are arranged to direction in turn along exhibition), a blade tip 17 and an A strut 1A; A strut 1A is divided into exhibition long section 1c and connecting end 1a; A accessory pinna 11 is divided into B connecting end 101 and accessory pinna compliant section 104; Blade tip 17 is divided into C connecting end 171 and plumage point compliant section 174, and blade tip compliant section 174 is provided with 5 blade tip accessory pinnas (A blade tip accessory pinna 17A, B blade tip accessory pinna 17B, C blade tip accessory pinna 17C, D blade tip accessory pinna 17D are identical with E blade tip accessory pinna 17E structure, and A blade tip accessory pinna 17A, B blade tip accessory pinna 17B, C blade tip accessory pinna 17C, D blade tip accessory pinna 17D and E blade tip accessory pinna 17E arrange in turn along chordwise direction); The connecting end 1a of A strut 1A places in the A half slot 5A of A land 5.The long section of the exhibition of A strut 1A 1c upper edge exhibition is equipped with A accessory pinna 11, B accessory pinna 12, C accessory pinna 13, D accessory pinna 14, E accessory pinna 15, F accessory pinna 16, blade tip 17 in turn to direction.Concrete structure is referring to Fig. 1, Fig. 2, Fig. 3, Fig. 4, Fig. 4 A, Fig. 5, Fig. 6, shown in Figure 7.
The structure of land 5 (referring to shown in Figure 5): land 5 includes disk body 59, coupling shaft 60, and the below of disk body 59 is a coupling shaft 60.On the disk body 59 of land 5, be that the center of circle cutting process that evenly distributes goes out 4 half slots (A half slot 5A, B half slot 5B, C half slot 5C, D half slot 5D), 8 narrow slits (A narrow slit 51, B narrow slit 52, C narrow slit 53, D narrow slit 54, E narrow slit 55, F narrow slit 56, G narrow slit 57, H narrow slit 58) with core O point.The both sides of A half slot 5A have A narrow slit 51, B narrow slit 52 respectively, and the both sides of B half slot 5B have C narrow slit 53, D narrow slit 54 respectively, and the both sides of C half slot 5C have E narrow slit 55, F narrow slit 56 respectively, and the both sides of D half slot 5D have G narrow slit 57, H narrow slit 58 respectively.The bottom of A land 5 is provided with the coupling shaft 60 that is connected usefulness with generator.A half slot 5A is used to place the A strut 1A of A fan blade 1.
The land that the utility model is used, the half slot that has on its disk body are to come supporting according to the fan blade number of being installed.Being provided with the half slot of corresponding number on disk body, and being provided with two narrow slits in the both sides of each half slot, is that the core O point with disk body is that the center of circle is equally distributed.
The structure of A compressing tablet 6A (referring to shown in Figure 6): described A compressing tablet 6A includes pressure-bearing surface 63, A location piece 61, B location piece 62, and A location piece 61, B location piece 62 are separately positioned on the both sides of pressure-bearing surface 63, have B screw hole 64 on the pressure-bearing surface 63.
The structure of A fan blade 1 (referring to shown in Figure 2): A fan blade 1 is made up of A strut 1A, 6 accessory pinnas, blade tips 17,6 accessory pinnas are A accessory pinna 11, B accessory pinna 12, C accessory pinna 13, D accessory pinna 14, E accessory pinna 15, F accessory pinna 16 along exhibition to putting in order of direction, and the exhibition of A fan blade 1 is a blade tip 17 to the end; F accessory pinna 16 and blade tip accessory pinna 17 are at a distance of h=3~8mm; Adjacent two accessory pinnas are at a distance of d=3~8mm, promptly have between A accessory pinna 11 and the B accessory pinna 12 at a distance of d=3~8mm, between B accessory pinna 12 and the C accessory pinna 13 at a distance of d=3~8mm, between C accessory pinna 13 and the D accessory pinna 14 at a distance of d=3~8mm, between D accessory pinna 14 and the E accessory pinna 15 at a distance of d=3~8mm, between E accessory pinna 15 and the F accessory pinna 16 at a distance of d=3~8mm, d=3~8mm apart between F accessory pinna 16 and the blade tip 17.
The structure of A accessory pinna 11 (referring to shown in Figure 3): A accessory pinna 11 includes B connecting end 101 and accessory pinna compliant section 104.The accessory pinna compliant section 104 of described A accessory pinna 11 is straight platy structure, and it is straight, and the plate end is an arc surface.Have A through hole 102 on the B connecting end 101 of described A accessory pinna 11, A through hole 102 is provided with C bolt hole 103, D bolt hole 105, and C bolt hole 103 and D bolt hole 105 symmetries, and the long section of the exhibition 1c that A through hole 102 is used for A strut 1A passes.Flexibly connecting to a: end of bolt passes C bolt hole 103 (opening on the A through hole 102), E bolt hole 1d (opening on A strut 1A), D bolt hole 105 (opening on A through hole 102) back in turn of A accessory pinna 11 and A strut 1A cooperates with nut, realizes A accessory pinna 11 and A strut 1 flexibly connecting at the long section 1c of exhibition.In the utility model, A accessory pinna 11 is 0.5 °~16.33 ° (referring to shown in Figure 3) with the established angle Q string of a musical instrument of A strut 1A and the angle of surface of revolution.For the installation that makes each accessory pinna and A strut 1A forms layout shown in Fig. 2 A, the number of degrees (number of degrees can be to increase progressively layout every 3 °, 5 ° or 6.5 °) by increasing progressively established angle Q successively are just change A accessory pinna 11, B accessory pinna 12, C accessory pinna 13, D accessory pinna 14, E accessory pinna 15 and F accessory pinna 16 mounting point on A strut 1A and can realize.In the utility model, established angle Q is designed to a value range of 0.5 °~16.33 °, and increases progressively established angle Q number of degrees mode successively and carry out 6 accessory pinnas are installed on the A strut 1A installing employing.Minimum 0.5 ° of the established angle that blade tip 17 is promptly arranged, maximum 16.33 ° of A accessory pinna 11 established angles.In the utility model, all accessory pinnas can be realized to the wind speed direction bending by flexibly connecting on strut.
The structure of blade tip 17 (shown in Fig. 2, Fig. 4, Fig. 4 A): blade tip 17 includes C connecting end 171 and blade tip compliant section 174.The blade tip compliant section 174 upper edge chordwise direction of described blade tip 17 are provided with A blade tip accessory pinna 17A, B blade tip accessory pinna 17B, C blade tip accessory pinna 17C, D blade tip accessory pinna 17D and E blade tip accessory pinna 17E in turn, and with C blade tip accessory pinna 17C be the center symmetry with A blade tip accessory pinna 17A, B blade tip accessory pinna 17B, D blade tip accessory pinna 17D, E blade tip accessory pinna 17E are arranged on the both sides of C blade tip accessory pinna 17C.Have B through hole 172 on the C connecting end 171 of the blade tip 17 of described blade tip 17, B through hole 172 is provided with F bolt hole 173, G bolt hole 175, and F bolt hole 173 and G bolt hole 175 symmetries, and the long section of the exhibition 1c that B through hole 172 is used for A strut 1A passes.The exhibition of blade tip 17 and A strut 1A long section 1c is connected: an end of bolt passes F tapped hole 173 (opening on the B through hole 172), E bolt hole 1d (opening on A strut 1A), G tapped hole 175 (opening on B through hole 172) back in turn and cooperates with nut, realizes blade tip 17 and A strut 1 flexibly connecting at the long section 1c of exhibition.In the utility model, also can be provided with 3,5,7 blade tip accessory pinnas on the blade tip compliant section 174 of blade tip 17, the spacing H between adjacent two blade tip accessory pinnas 0Be 3~8mm, blade tip sideline and strut angle are β=10~20 degree.The blade tip accessory pinna is flexibility.The height H that is in the C blade tip accessory pinna 17C at center is omited length, and other blade tip accessory pinna length successively decrease 5~15% successively.
The structure of A strut 1A (referring to shown in Figure 7): A strut 1A is divided into A connecting end 1a and the long section of exhibition 1c, and the A connecting end 1a of A strut 1A is provided with A bolt hole 1b (A bolt hole 1b runs through the A connecting end 1a of A strut 1A).The long section of the exhibition of A strut 1A 1c is provided with a plurality of E bolt hole 1d (E bolt hole 1d runs through the long section of the exhibition 1c of A strut 1A, a plurality of E bolt hole 1d be used for being connected with accessory pinna, blade tip use).A bolt hole 1b is used for by the cooperation of bolts and nuts A strut 1A and A compressing tablet 6A, A land 5 being flexibly connected.E bolt hole 1d is used for by the cooperation of bolts and nuts a plurality of accessory pinnas and blade tip being fixed on the long section of the exhibition 1c of A strut 1A.A strut 1A can be hollow cylinder bar, perhaps filled circles mast.
A fan blade 1 is connected with A land 5: in the utility model, the A connecting end 1a of A strut 1A places in the A half slot 5A, A compressing tablet 6A is pressed on the A connecting end 1a of A strut 1A, and the A location piece 61 of A compressing tablet 6A, B location piece 62 is fastened on the A narrow slit 51 of A land 5, adopt bolt to pass B bolt hole 64 (B bolt hole 64 is opened on the pressure surface 63 of A compressing tablet 6A) in turn in the B narrow slit 52, A bolt hole 1b (A bolt hole 1b is opened on the A connecting end 1a of A strut 1A), bolt hole (this bolt hole is opened in the A half slot 5A of A land 5) back cooperates with nut realizes A compressing tablet 6A, flexibly connecting of A strut 1A and A land 5, with A fan blade 1 flexibility on land.Its excess-three fan blade (B fan blade 2, C fan blade 3, D fan blade 4) connects identical with the A fan blade with land.
The performance design of wind wheel:
The lift of 1 accessory pinna is in the fan blade of self adaption wind wheel:
Figure Y20082008032600091
In the formula, Cy represents lift coefficient, and ρ represents atmospheric density, V Close 2The aggregate velocity of expression wind speed and wind wheel rotational speed, S represents the area of this accessory pinna.
The resistance of 1 accessory pinna is in the fan blade of self adaption wind wheel:
Figure Y20082008032600092
In the formula, Cx represents resistance coefficient.
The blade tip place rotation air speed (during zero load) of each fan blade of self adaption wind wheel is V Revolve=KV Wind, K represents fan blade ratio of lift coefficient to drag coefficient, V WindThe natural wind speed of expression self adaption wind wheel environment of living in.
The blade tip established angle Q and the aggregate velocity V of fan blade when unloaded Close 2Angle of attack α satisfy ty ( Q + α ) = 1 k , Ty represents tangent, and K represents the fan blade ratio of lift coefficient to drag coefficient.
Used for wind power generation self adaption four blade wind-wheels of the present utility model are by aerodynamics and the bionical product that combines of birds flight.Wind wheel is in halted state, and is out-of-date as wind, and blade plane becomes 90 degree approximately with wind speed direction, and accessory pinna makes the air-flow angle of attack near favorable upstreaming angle to the wind speed direction bending, and wind wheel begins to rotate, so the starting wind velocity of fan blade is little.Though the fan blade broad of the utility model design, owing to tangential and blade tip are opened up to cracking, fan blade back side eddy current reduces, and has improved the ratio of lift coefficient to drag coefficient of fan blade.Design has 3~5 fan blades on the utility model four blade wind-wheels, design 4~9 accessory pinnas on each fan blade, a blade tip, the aspect ratio of fan blade<6, impeller solidity height and fan blade ratio of lift coefficient to drag coefficient are big, so efficient height, can use in low wind speed region, enlarge the using scope of wind-driven generator effectively.Four blade wind-wheels of the present utility model can overcome the shortcoming that existing blower fan could generate electricity when high wind speed starts, can reduce fan starting and generating wind speed.Be mainly reflected in: 1. existing wind wheel fan blade starts wind speed height (3~4 meter per seconds, gentle breeze), and the utility model wind wheel fan blade can start below 2 meter per seconds (light breeze); 2. the existing specified generating wind speed of fan blade big (8~13 meter per seconds, 5~strong breeze), the region that the whole world is fit to this condition is few, and most time is in outage state; The utility model four blade wind-wheel fan blades can be at the specified generating of 5~7 meter per seconds (moderate breeze), generating dutation ratio height.3. each accessory pinna is flexible, can adapt to the preferable air-flow angle of attack automatically, and each accessory pinna all can produce lift, therefore starting easily, and ratio of lift coefficient to drag coefficient is big, the efficient height, specified generating wind speed is low, and the region that is fit to generating is wide.Under equivalent diameter and natural wind friction velocity, the utility model used for wind power generation self adaption four blade wind-wheels can improve generated output more than 30% after exchanging with existing four blade wind-wheels (blade of wind wheel is the one configuration).

Claims (8)

1, a kind of self adaption four blade wind-wheels that are applicable to wind-driven generator is characterized in that: this self adaption wind wheel includes 4 fan blades, 4 compressing tablets and land (5);
4 fan blades are meant the identical A fan blade (1) of structure, B fan blade (2), C fan blade (3), D fan blade (4);
4 compressing tablets are meant the identical A compressing tablet (6A) of structure, B compressing tablet (6B), C compressing tablet (6C), D compressing tablet (6D);
A fan blade (1) includes 6 accessory pinnas, a blade tip (17) and an A strut (1A); 6 accessory pinnas are meant the identical A accessory pinna (11) of structure, B accessory pinna (12), C accessory pinna (13), D accessory pinna (14), E accessory pinna (15) and F accessory pinna (16), and A accessory pinna (11), B accessory pinna (12), C accessory pinna (13), D accessory pinna (14), E accessory pinna (15) and F accessory pinna (16) are arranged on the Zhan Changduan (1c) that is installed in A strut (1A) to direction in turn along exhibition; A strut (1A) is divided into Zhan Changduan (1c) and connecting end (1a); A accessory pinna (11) is divided into B connecting end (101) and accessory pinna compliant section (104); Blade tip (17) is divided into C connecting end (171) and plumage point compliant section (174), and blade tip compliant section (174) is provided with the identical A blade tip accessory pinna (17A) of structure, B blade tip accessory pinna (17B), C blade tip accessory pinna (17C), D blade tip accessory pinna (17D) and E blade tip accessory pinna (17E), and A blade tip accessory pinna (17A), B blade tip accessory pinna (17B), C blade tip accessory pinna (17C), D blade tip accessory pinna (17D) and E blade tip accessory pinna (17E) are arranged in turn along chordwise direction; C blade tip accessory pinna (17C) be the center symmetry with A blade tip accessory pinna (17A), B blade tip accessory pinna (17B), D blade tip accessory pinna (17D), E blade tip accessory pinna (17E) are arranged on the both sides of C blade tip accessory pinna (17C); Have B through hole (172) on the C connecting end (171) of described blade tip (17), B through hole (172) is provided with F bolt hole (173), G bolt hole (175), and F bolt hole (173) and G bolt hole (175) symmetry, the Zhan Changduan (1c) that B through hole (172) is used for A strut (1A) passes; The connecting end (1a) of A strut (1A) places in the A half slot (5A) of A land (5);
Described A compressing tablet (6A) includes pressure-bearing surface (63), A location piece (61), B location piece (62), and A location piece (61), B location piece (62) are separately positioned on the both sides of pressure-bearing surface (63), have B screw hole (64) on the pressure-bearing surface (63);
The disk body (59) of described land (5) is provided with 4 half slots, 8 narrow slits, and 4 half slots are meant A half slot (5A), B half slot (5B), C half slot (5C), D half slot (5D); 8 narrow slits are meant A narrow slit (51), the B narrow slit (52) that is arranged on A half slot (5A) both sides, the C narrow slit (53) of B half slot (5B) both sides, D narrow slit (54), the E narrow slit (55) of C half slot (5C) both sides, F narrow slit (56), the G narrow slit (57) of D half slot (5D) both sides, H narrow slit (58); The bottom of 4 half slots is respectively equipped with bolt hole.
2, self adaption four blade wind-wheels according to claim 1, it is characterized in that: leave the gap between each accessory pinna, the spacing that is adjacent two accessory pinnas is d=3~8mm, and the established angle Q string of a musical instrument of each accessory pinna and strut and the angle of surface of revolution are 0.5 °~16.33 °; The blade tip and the spacing between last a slice accessory pinna that are installed in the long section of the exhibition end of strut also are h=3~8mm, and blade tip spacing between 5 blade tip accessory pinnas that chordwise direction is provided with also is H 0=3~8mm, and the angle between adjacent two blade tip accessory pinnas is β=10~20 degree.
3, self adaption four blade wind-wheels according to claim 1, it is characterized in that: 5 blade tip accessory pinnas on the described blade tip (17) are that the center symmetry is with A blade tip accessory pinna (17A), B blade tip accessory pinna (17B) with C blade tip accessory pinna (17C), D blade tip accessory pinna (17D), E blade tip accessory pinna (17E) are arranged on the both sides of C blade tip accessory pinna (17C), and A blade tip accessory pinna (17A) and B blade tip accessory pinna (17B), D blade tip accessory pinna (17D) successively decreases 5~15% successively with the height H of the aspect ratio C blade tip accessory pinna (17C) of E blade tip accessory pinna (17E).
4, self adaption four blade wind-wheels according to claim 1 is characterized in that: the established angle Q string of a musical instrument of each accessory pinna and strut and the angle of surface of revolution are 0.5 °~16.33 °.
5, self adaption four blade wind-wheels according to claim 5 is characterized in that: each accessory pinna and strut change the established angle Q relation of each accessory pinna on strut by increasing progressively the same number of degrees successively.
6, self adaption four blade wind-wheels according to claim 1, it is characterized in that: the lift of 1 accessory pinna is in the fan blade of self adaption wind wheel:
Figure Y2008200803260003C1
The resistance of 1 accessory pinna is in the fan blade of self adaption wind wheel:
Figure Y2008200803260003C2
In the formula, Cy represents lift coefficient, and ρ represents atmospheric density, V Close 2The aggregate velocity of expression wind speed and wind wheel rotational speed, S represents the area of this accessory pinna, Cx represents resistance coefficient.
7, self adaption four blade wind-wheels according to claim 1 is characterized in that: the blade tip place rotation air speed of each fan blade of self adaption wind wheel is V Revolve=KV Wind, K represents fan blade ratio of lift coefficient to drag coefficient, V WindThe natural wind speed of expression self adaption wind wheel environment of living in.
8, self adaption four blade wind-wheels according to claim 1 is characterized in that: the blade tip established angle Q and the aggregate velocity V of fan blade when unloaded Close 2Angle of attack α satisfy ty ( Q + α ) = 1 k , Ty represents tangent, and K represents the fan blade ratio of lift coefficient to drag coefficient.
CNU200820080326XU 2008-04-30 2008-04-30 Self-adapting four-blade wind wheel for wind power generation Expired - Fee Related CN201187403Y (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNU200820080326XU CN201187403Y (en) 2008-04-30 2008-04-30 Self-adapting four-blade wind wheel for wind power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNU200820080326XU CN201187403Y (en) 2008-04-30 2008-04-30 Self-adapting four-blade wind wheel for wind power generation

Publications (1)

Publication Number Publication Date
CN201187403Y true CN201187403Y (en) 2009-01-28

Family

ID=40310424

Family Applications (1)

Application Number Title Priority Date Filing Date
CNU200820080326XU Expired - Fee Related CN201187403Y (en) 2008-04-30 2008-04-30 Self-adapting four-blade wind wheel for wind power generation

Country Status (1)

Country Link
CN (1) CN201187403Y (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101319653B (en) * 2008-04-30 2010-04-07 何立武 Self-adapting wind wheel for wind power generation
GB2468903A (en) * 2009-03-26 2010-09-29 Ronald Denzil Pearson Aerofoil tip vortex reducing structure
WO2014064088A1 (en) * 2012-10-22 2014-05-01 New World Energy Enterprises Ltd A turbine blade system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101319653B (en) * 2008-04-30 2010-04-07 何立武 Self-adapting wind wheel for wind power generation
GB2468903A (en) * 2009-03-26 2010-09-29 Ronald Denzil Pearson Aerofoil tip vortex reducing structure
WO2014064088A1 (en) * 2012-10-22 2014-05-01 New World Energy Enterprises Ltd A turbine blade system

Similar Documents

Publication Publication Date Title
US7927070B2 (en) Pitch controlled wind turbine blade, a wind turbine and use thereof
TWI231840B (en) Windmill for wind power generation
EP1095216B1 (en) Wind turbine
DK178360B1 (en) Root flap for rotor blade in wind turbine
US20090074585A1 (en) Wind turbine blades with trailing edge serrations
US10400744B2 (en) Wind turbine blade with noise reducing micro boundary layer energizers
US20110042962A1 (en) Vertical shaft type darius windmill
US20110135477A1 (en) Method and Apparatus for Increasing Lift on Wind Turbine Blade
US20100119374A1 (en) Wind turbine & wind turbine blade
US20100166556A1 (en) Partial arc shroud for wind turbine blades
US20120207610A1 (en) Wind turbine blade
KR100940013B1 (en) Blade of Wind Power Generator for Stall control and Steady speed operation in Low Wind Speed
US8936435B2 (en) System and method for root loss reduction in wind turbine blades
EP2863052A1 (en) Wind turbine blade and wind turbine generator
CN113847207A (en) Double-wind-wheel wind turbine generator set
CN201187403Y (en) Self-adapting four-blade wind wheel for wind power generation
CN1719023B (en) Resistance and lifting force composite wind pwoer device
CN201187402Y (en) Self-adapting three-blade wind wheel for wind power generation
CN101319653B (en) Self-adapting wind wheel for wind power generation
US7854595B2 (en) Wind turbine blade tip shapes
JP3875618B2 (en) Wind turbine for horizontal axis wind power generator
US6457671B1 (en) Funneled rotary foil
CN211900866U (en) Wind power blade and horizontal shaft wind driven generator
JP5433553B2 (en) Wind turbine blade, wind power generator equipped with the wind turbine blade, and wind turbine blade design method
CN110645141A (en) Wind power blade noise reduction trailing edge structure

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090128

Termination date: 20120430