JP2004137579A - HIGH Mn AUSTENITIC STEEL SHEET HAVING EXCELLENT BULLETPROOF PROPERTY - Google Patents

HIGH Mn AUSTENITIC STEEL SHEET HAVING EXCELLENT BULLETPROOF PROPERTY Download PDF

Info

Publication number
JP2004137579A
JP2004137579A JP2002304995A JP2002304995A JP2004137579A JP 2004137579 A JP2004137579 A JP 2004137579A JP 2002304995 A JP2002304995 A JP 2002304995A JP 2002304995 A JP2002304995 A JP 2002304995A JP 2004137579 A JP2004137579 A JP 2004137579A
Authority
JP
Japan
Prior art keywords
steel sheet
mass
phase structure
steel
austenite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002304995A
Other languages
Japanese (ja)
Other versions
JP3886881B2 (en
Inventor
Hiroyuki Jufuku
壽福 博之
Shoichi Kadani
甲谷 昇一
Terushi Hiramatsu
平松 昭史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2002304995A priority Critical patent/JP3886881B2/en
Publication of JP2004137579A publication Critical patent/JP2004137579A/en
Application granted granted Critical
Publication of JP3886881B2 publication Critical patent/JP3886881B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high Mn austenitic steel sheet which has improved capacity of checking the penetration of projectiles, and is suitable for the structural members of buildings, structures, vehicles, vessels or the like requiring bulletproof properties. <P>SOLUTION: The high Mn austenitic steel sheet having bulletproof properties has a chemical composition comprising, by mass, 0.7 to 1.6% C, ≤0.8% Si, 8 to 16% Mn, 0 to 1.5%, preferably, 0.1 to 1.5% Ni, 0 to 1.0%, preferably, 0.1 to 1.0% Cr, 0 to 2.0%, preferably, 0.1 to 2.0% Mo, and the balance Fe with inevitable impurities, and has a dual phase structure of austenite+10 to 60 vol.% working induced martensite. The dual phase structure is obtained preferably by performing cold working to a steel sheet subjected to solution treatment so as to be held to 950 to 1,100°C, and thereafter to be cooled to ≤500°C at a cooling rate of ≥10°C/sec. Its sheet thickness is preferably controlled to 3.5 to 12 mm. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、防弾性を必要とする建築物,構造物,車両,船舶などの構造部材に適した、弾丸の貫通を阻止する能力を向上させた高Mnオーステナイト鋼板に関するものである。
【0002】
【従来の技術】
建築物,構造物,車両,船舶などにおいては、人員や機材を弾丸や爆発による破片の衝突などから守るために、「防弾性」が要求される場合がある。そのような用途では、弾丸の貫通を阻止する性能の高い鋼板(防弾性鋼板)が構造部材として使用される。
【0003】
下記特許文献1には、Mnを8〜18%含む高Mn鋼において、V,TiまたはZrを添加することで降伏点と靱性を高めた非磁性防弾用鋼板が開示されている。しかし、この鋼板では、部材の肉厚をかなり厚くしないと近年の高性能銃器等に十分対応できない。部材の厚肉化は重量増加を招き、車両や船舶への適用を困難にする。
【0004】
特許文献2には、前記公報に開示される高Mn鋼の降伏強度をさらに向上させるために、0.3〜1.0%のVを含有させた上で溶体化処理後に3〜10%の冷間圧延を施す技術が開示されている。これによると、時効処理後にV炭化物の析出による顕著な高強度化が達成されるという。この技術は肉厚の薄い刃物材を対象としたものである。しかし、仮にこの手法を防弾用鋼板の製造に応用したとしても、昨今の強力な銃器に対応できる防弾性を例えば7〜8mmといった肉厚で実現することは難しい。
【0005】
他方、高Mn鋼以外の鋼種において防弾性の改善を図った例として、特許文献3には、C量を0.3〜0.6%に高め、Moを1〜5%添加した鋼を十分に焼き入れることによって転位密度の高いマルテンサイト主体の組織とした耐高速衝撃貫通性に優れた高強度鋼板が開示されている。この鋼板は、高性能ライフルに対応できる防弾性を有するという。しかし、組織がマルテンサイト主体であるため加工が難しいという欠点がある。
【0006】
【特許文献1】
特公昭30−4860号公報
【特許文献2】
特開昭51−92718号公報(2頁右上欄3行−右下欄3行,2頁左上欄5行目)
【特許文献3】
特開平11−264050号公報(段落0005−0009)
【0007】
【発明が解決しようとする課題】
本発明は、従来の高Mn鋼では不十分であった「防弾性」を向上させ、昨今の高性能銃器に対応できる性能を付与した防弾性鋼板を提供することを目的とする。
【0008】
【課題を解決するための手段】
発明者らは上記目的を達成するために種々検討を行った結果、高Mn鋼において、防弾性を改善する余地がまだ十分に残っていることを知見した。すなわち、高Mn鋼板の組織状態を工夫することで防弾性が大幅に向上できるのである。従来、防弾性を向上させるには、鋼板の強度(降伏応力・硬度など)を増大させる手法が採られてきた。これは、高Mn鋼に限らず、前述の焼入れマルテンサイト鋼においても基本的に同様である。
【0009】
しかし、弾丸の貫通をくい止めるには、次の2つのメカニズムを複合して機能させることが極めて効果的であることが明らかになった。
▲1▼鋼板の強度を一層増大させて変形をできるだけ阻止することにより、衝突した弾丸の運動エネルギーを大幅に減少させる。
▲2▼変形が進行した際には、その変形によって、弾丸の残った運動エネルギーをほとんどすべて吸収させる。
つまり、鋼板の強度を増大させて変形を抑えることに加え、さらに、変形時における運動エネルギーの吸収作用を積極的に利用するのである。
【0010】
研究の結果、この▲1▼+▲2▼の複合メカニズムは、高Mn鋼板の金属組織をオーステナイト+マルテンサイトの複相組織とすることにより実現可能となった。
すなわち、▲1▼のメカニズムは予め鋼板中に一定量以上のマルテンサイト相を形成させておくことによって従来の高Mn鋼よりも大幅に高レベルで機能することが確認された。
▲2▼のメカニズムを十分に機能させるためには、変形時にマルテンサイト変態が誘起されること、および、弾丸衝突部周辺が大きく変形するように鋼板の延性・靱性を確保しておくことが非常に有効である。これは、鋼板中にオーステナイト相を十分存在させることによって可能となった。
本発明はこれらの知見に基づいて完成したものである。
【0011】
すなわち、上記目的は、質量%で、C:0.7〜1.6%,Si:0.8%以下,Mn:8〜16%,Ni:0(無添加)〜1.5%好ましくは0.1〜1.5%,Cr:0(無添加)〜1.0%好ましくは0.1〜1.0%,Mo:0(無添加)〜2.0%好ましくは0.1〜2.0%であり、残部がFeおよび不可避的不純物からなる化学組成を有し、オーステナイト+10〜60体積%の加工誘起マルテンサイトからなる複相組織を有する防弾性に優れた高Mnオーステナイト鋼板によって達成される。
【0012】
その複相組織は、950〜1100℃に保持した後500℃以下の温度まで冷却速度10℃/sec以上で冷却した溶体化処理鋼板を冷間加工することによって得られるものであることが好ましい。また、本発明では、その冷間加工が、10超え〜40%の冷間圧延であるもの、さらに、板厚が3.5〜12mmであるものを提供する。
【0013】
【発明の実施の形態】
前述のように、本発明では、高Mn鋼板の金属組織をオーステナイト+マルテンサイトの複相組織とすることによって、鋼板の強度を向上させるとともに、弾丸衝突時に加工誘起マルテンサイト変態が生じ、かつ十分な延性・靱性を発揮する性質を付与する。そのためには、合金元素の含有量を以下のように規定した高Mn鋼を採用する必要がある。
【0014】
Cは、オーステナイトの安定化と強度の向上に有効である。0.7質量%未満ではオーステナイトが不安定となり、冷延後の強度も低くなる。1.6質量%を超えると高温で溶体化したのち急冷しても粒界炭化物が生成しやすく、靱性の低下を招く。防弾性を向上させるためには、C含有量を0.7〜1.6質量%に規定する必要がある。特に好ましいC含有量は0.8〜1.2質量%である。
【0015】
Siは、脱酸元素として溶解および精錬上必要である。ただし、0.8質量%を超えるとデルタフェライトの生成が促進され、強度が低下して防弾性の低下をきたす。Siは0.8質量%以下の範囲で添加する必要がある。好ましいSi含有量の下限は0.5質量%である
【0016】
Mnは、オーステナイト形成元素であり、オーステナイトの安定化に有効である。8質量%未満ではオーステナイトが不安定となり、粒界炭化物が生成しやすくなるため、靱性が低下し、防弾性は劣化する。16質量%を超えると熱間加工性が劣化し、鋼板の製造が困難になる。Mnは8〜16質量%の範囲で含有させることが重要である。特に好ましいMn含有量は11〜14質量%である。
【0017】
Niは、オーステナイトの安定化および靱性の向上に有効である。これらの効果を十分に得るには0.1質量%以上の添加が望ましい。ただし、多量の添加はコスト増を招く。Niを添加する場合は0.1〜1.5質量%の範囲で行うことが望ましい。
【0018】
Crは、オーステナイトの安定化および強度の向上に有効である。これらの効果を十分に得るには0.1質量%以上の添加が望ましい。ただし、1.0質量%を超えると延性が低下する。Crを添加する場合は0.1〜1.0質量%の範囲で行うことが望ましい。
【0019】
Moは、オーステナイトの安定化および強度の向上に有効である。これらの効果を十分に得るには0.1質量%以上の添加が望ましい。ただし、2.0質量%を超えると延性が低下するとともに、コスト増を招く。Moを添加する場合は0.1〜2.0質量%の範囲で行うことが望ましい。
【0020】
なお、本発明では、Ti,Nb,V等の特殊元素は特に必要としない。
以上のように成分元素の含有量が規定された高Mn鋼は、溶体化処理状態でオーステナイト単相組織となる。これに適度な冷間加工を施すと加工誘起マルテンサイトが生成し、金属組織をオーステナイト+マルテンサイトの複相組織とすることができる。
【0021】
種々検討の結果、加工誘起マルテンサイトの量は少なくとも10体積%を確保する必要がある。それ未満だと材料強度が不足し、弾丸の突入により容易に変形が起こるため、板厚をかなり厚くしない限り前記▲1▼のメカニズムにより弾丸の運動エネルギーを十分に減少させることが困難である。
【0022】
一方、加工誘起マルテンサイト量が60体積%を超えると、鋼板の延性・靱性が低下し、部材に加工する場合などに「板割れ」を生じやすくなる。また、部材が製造できたとしても、弾丸衝突部周辺に大きな変形をもたらすことができなくなるとともに、脆性破壊を招くようになる。さらに、残余のオーステナイト量が不足するため、弾丸衝突時の変形過程においてマルテンサイトを十分に誘起させることができなくなる。このため、やはり板厚をかなり厚くしない限り、前記▲2▼のメカニズムによって弾丸の運動エネルギーをゼロになるまで完全に吸収するとが困難となる。その場合、弾丸の貫通は防げない。
【0023】
したがって、本発明では鋼板中の組織状態を「オーステナイト+10〜60体積%の加工誘起マルテンサイトからなる複相組織」に規定する。
【0024】
このような組織状態を得るには、十分に溶体化処理された鋼材に対して、適度な冷間圧延,プレス加工,冷間鍛造などを施せばよい。例えば、最終板厚が3.5〜12mmの鋼板を製造する場合、熱延板を溶体化処理した後、10%を超え40%以下の冷間圧延を施す方法が採用できる。
【0025】
なお、従来から鋼板の組織をオーステナイト+マルテンサイトの複相組織とすることはあったが、いずれもMn含有量の低い鋼において強度・靱性バランスを向上させるため一手段であった。高Mn鋼において防弾性の観点からオーステナイト+マルテンサイトの複相組織とした例はない。
【0026】
加工誘起マルテンサイトを生成させる冷間加工の前には、鋼板を十分に溶体化処理しておくことが望ましい。例えば、熱延後の鋼板を950〜1100℃に保持して、炭化物をオーステナイト相中に完全に溶解させ、その後、上記保持温度から500℃までを冷却速度10℃/sec以上で冷却する溶体化処理を施すことが望ましい。500℃以上の温度域での冷却速度が遅いと、冷却中に炭化物が析出して靱性低下をきたすことがある。
【0027】
以上の処理により得られた複相組織鋼板は、板厚が同じならば従来の非磁性鋼板より大幅に優れた防弾性を発揮する。例えば、板厚2〜3mmの薄板でも口径の小さいピストルなどに対しては多くのケースで人命の保護に寄与しうる。したがって、要求される防弾性レベルと許容される鋼板重量との兼ね合いにより、適切な板厚のものを採用すればよい。3.5mm以上の板厚にすると、多くの銃器に対して有効な防弾性を呈する。ただし、板厚が12mmを超えると、昨今の強力なライフルに対してもオーバースペックとなり、重量増加を招くだけである。このため、一般的には3.5〜12mmの板厚とすることが望ましい。なお、高性能ライフルに対する防弾性を重視する用途では6mm以上の板厚を確保することが望ましい。特に、6〜9mmの範囲に板厚が調整された本発明の鋼板は、性能と重量のバランスに優れ、高性能ライフルを想定した場合には最も優れたコストパフォーマンスを有すると考えられる。
【0028】
【実施例】
表1に供試材の化学成分値を示す。こららの鋼を真空溶解炉にて溶製し、仕上温度:850〜900℃,巻取温度:550℃で熱間圧延して板厚7〜14mmの熱延板を得た。各熱延板について、1000℃で10分間保持した後、直ちに室温まで水冷する溶体化処理を施した。このとき、1000℃から500℃までの冷却速度は約50℃/secであった。表1のA1〜A5鋼は本発明で規定する化学組成を満たす鋼であり、いずれも溶体化処理後にオーステナイト単相組織を呈していた。一方、B1鋼はC含有量が少なく、B2鋼はMn含有量が少ないものであり、溶体化処理後のオーステナイト量が不十分であった。
溶体化処理後、50%以下の種々の冷延率で冷間圧延を行い、板厚7.0mmの試料を得た。なお、一部の試料については冷間圧延を施していない。
【0029】
【表1】

Figure 2004137579
【0030】
各試料について、マルテンサイト量,硬さ,および防弾性を調べた。
マルテンサイト量は、X線回折による積分強度比により求めた。
硬さは、鋼板の圧延方向と板厚方向を含む断面についてビッカース硬さを測定して求めた。
防弾性は、以下の方法で評価した。すなわち、超高速射撃試験装置を用い、径7mm,質量11.7gの鉛製の弾丸形状の射撃物を、固定された鋼板試料の表面に種々の速度で当て、厚さ7.0mmの板を貫通しない上限の射撃物速度をその鋼板の限界速度として求めた。ここでは、700m/sec以上の限界速度を示すものを「合格」と判定した。
表2に結果を示す。なお、表2中、冷延率:0%と表示したものは冷間圧延を施していないものである。
【0031】
【表2】
Figure 2004137579
【0032】
本発明で規定する化学組成を満たし、かつ、オーステナイト+10〜60体積%の加工誘起マルテンサイトからなる複相組織を有する本発明例のもの(試験No.4〜6,9〜12)は、限界速度700m/sec以上の優れた防弾性を示した。
これに対し、試験No.1およびNo.2はそれぞれC含有量およびMn含有量が不足するため、冷間圧延前(溶体化処理後)にオーステナイト単相組織にならなかったものである。これらは冷間圧延後に10体積%以上の加工誘起マルテンサイトを確保できず、その結果、限界速度は700m/secを大幅に下回った。また、試験No.3,8,13は冷間圧延を受けていないか冷延率が不足したために、10体積%以上の加工誘起マルテンサイトを確保できず、やはり限界速度700m/sec以上の優れた防弾性は得られなかった。試験No.7は冷延率が高すぎたため60体積%を超える加工誘起マルテンサイトが生成し、板割れが生じて防弾性テストに供することができなかった。
【0033】
【発明の効果】
本発明によれば、高Mn鋼において、防弾性を従来より大幅に向上させることができた。その性能は、実用的な板厚において昨今の高性能ライフルによる射撃に十分対応できるものである。また、マルテンサイト主体の従来材と比べ加工性が良好である。[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a high Mn austenitic steel sheet having an improved ability to prevent penetration of bullets, which is suitable for structural members such as buildings, structures, vehicles, ships, and the like that require ballistic resistance.
[0002]
[Prior art]
BACKGROUND ART In buildings, structures, vehicles, ships, and the like, "elasticity protection" may be required in order to protect personnel and equipment from bullets and collision of fragments due to explosions. In such an application, a steel plate (elastic steel plate) having a high performance of preventing penetration of bullets is used as a structural member.
[0003]
Patent Document 1 listed below discloses a nonmagnetic ballistic-resistant steel sheet in which the yield point and toughness of a high Mn steel containing 8 to 18% of Mn are increased by adding V, Ti or Zr. However, this steel plate cannot sufficiently cope with recent high-performance firearms and the like unless the thickness of the member is considerably increased. Increasing the thickness of the member causes an increase in weight, which makes it difficult to apply to vehicles and ships.
[0004]
Patent Document 2 discloses that in order to further improve the yield strength of the high Mn steel disclosed in the above-mentioned publication, 0.3 to 1.0% of V is contained, and 3 to 10% of V after solution treatment. A technique for performing cold rolling is disclosed. According to this, remarkable high strength is achieved by precipitation of V carbide after aging treatment. This technique is intended for a thin blade material. However, even if this technique is applied to the production of bulletproof steel sheets, it is difficult to achieve a ballistic resistance that can be applied to recent powerful firearms with a thickness of, for example, 7 to 8 mm.
[0005]
On the other hand, as an example of improving the ballistic resistance of steel types other than the high Mn steel, Patent Document 3 discloses a steel in which the C content is increased to 0.3 to 0.6% and Mo is added to 1 to 5%. A high-strength steel sheet excellent in high-speed impact penetration resistance having a martensite-based structure having a high dislocation density by being quenched into steel. The steel plate is said to have a ballistic resistance that can be used with high-performance rifles. However, there is a disadvantage that processing is difficult because the structure is mainly martensite.
[0006]
[Patent Document 1]
Japanese Patent Publication No. 30-4860 [Patent Document 2]
JP-A-51-92718 (page 2, upper right column, 3 lines-lower right column, 3 lines, page 2, upper left column, 5 lines)
[Patent Document 3]
JP-A-11-264050 (paragraphs 0005-0009)
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a ballistic-resistant steel sheet that has improved “ballistic resistance”, which was insufficient with conventional high-Mn steels, and that has been given a performance that can respond to recent high-performance firearms.
[0008]
[Means for Solving the Problems]
The present inventors have conducted various studies to achieve the above object, and as a result, have found that there is still enough room for improving the ballistic resistance of the high Mn steel. That is, by devising the structure of the high Mn steel sheet, the ballistic resistance can be significantly improved. Conventionally, in order to improve the ballistic resistance, a technique of increasing the strength (yield stress, hardness, etc.) of a steel sheet has been adopted. This is basically the same not only for the high Mn steel, but also for the above-mentioned quenched martensitic steel.
[0009]
However, it has been found that a combination of the following two mechanisms can be extremely effective in preventing the penetration of a bullet.
{Circle around (1)} The kinetic energy of the impacted bullet is greatly reduced by further increasing the strength of the steel plate and preventing deformation as much as possible.
(2) When the deformation progresses, the deformation absorbs almost all the remaining kinetic energy of the bullet.
That is, in addition to suppressing the deformation by increasing the strength of the steel sheet, the absorption of kinetic energy during deformation is positively utilized.
[0010]
As a result of the research, this composite mechanism of (1) + (2) has become feasible by changing the metal structure of the high Mn steel sheet to a dual phase structure of austenite + martensite.
That is, it was confirmed that the mechanism (1) functions at a much higher level than the conventional high Mn steel by forming a predetermined amount or more of martensite phase in the steel sheet in advance.
In order for the mechanism of (2) to function sufficiently, it is very important to induce martensitic transformation during deformation and to ensure the ductility and toughness of the steel sheet so that the area around the bullet impact portion is greatly deformed. It is effective for This has been made possible by making the austenitic phase sufficiently present in the steel sheet.
The present invention has been completed based on these findings.
[0011]
That is, the above-mentioned object is, in terms of mass%, C: 0.7 to 1.6%, Si: 0.8% or less, Mn: 8 to 16%, Ni: 0 (no addition) to 1.5%, preferably 0.1 to 1.5%, Cr: 0 (no addition) to 1.0%, preferably 0.1 to 1.0%, Mo: 0 (no addition) to 2.0%, preferably 0.1 to 1.0% 2.0%, the balance being Fe and unavoidable impurities, a high Mn austenitic steel sheet having excellent anti-elasticity and having a dual phase structure of austenite + 10 to 60% by volume of work-induced martensite. Achieved.
[0012]
The dual-phase structure is preferably obtained by cold working a solution-treated steel sheet cooled to a temperature of 500 ° C. or less at a cooling rate of 10 ° C./sec or more after holding at 950 to 1100 ° C. Further, in the present invention, there is provided one in which the cold working is a cold rolling of more than 10 to 40%, and further, one in which the plate thickness is 3.5 to 12 mm.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
As described above, in the present invention, the metal structure of the high Mn steel sheet is made to be a dual-phase structure of austenite + martensite, thereby improving the strength of the steel sheet and causing the work-induced martensite transformation at the time of bullet impact, and It imparts properties that exhibit excellent ductility and toughness. For that purpose, it is necessary to adopt a high Mn steel in which the content of the alloy element is specified as follows.
[0014]
C is effective for stabilizing austenite and improving strength. If the content is less than 0.7% by mass, austenite becomes unstable, and the strength after cold rolling becomes low. If the content exceeds 1.6% by mass, even if the solution is quenched after being solutionized at a high temperature, grain boundary carbides are liable to be generated, and the toughness is reduced. In order to improve the ballistic resistance, the C content needs to be regulated to 0.7 to 1.6% by mass. A particularly preferred C content is 0.8 to 1.2% by mass.
[0015]
Si is necessary for melting and refining as a deoxidizing element. However, when the content exceeds 0.8% by mass, the formation of delta ferrite is promoted, the strength is reduced, and the ballistic resistance is reduced. It is necessary to add Si in a range of 0.8% by mass or less. The lower limit of the preferred Si content is 0.5% by mass.
Mn is an austenite-forming element and is effective in stabilizing austenite. If the content is less than 8% by mass, austenite becomes unstable and grain boundary carbides are easily formed, so that the toughness is reduced and the ballistic resistance is deteriorated. If it exceeds 16% by mass, hot workability deteriorates, and it becomes difficult to produce a steel sheet. It is important that Mn is contained in the range of 8 to 16% by mass. A particularly preferred Mn content is 11 to 14% by mass.
[0017]
Ni is effective for stabilizing austenite and improving toughness. In order to obtain these effects sufficiently, it is desirable to add 0.1% by mass or more. However, a large amount of addition causes an increase in cost. When adding Ni, it is desirable to perform it in the range of 0.1 to 1.5 mass%.
[0018]
Cr is effective for stabilizing austenite and improving strength. In order to obtain these effects sufficiently, it is desirable to add 0.1% by mass or more. However, if it exceeds 1.0% by mass, the ductility decreases. When adding Cr, it is desirable to carry out in the range of 0.1 to 1.0% by mass.
[0019]
Mo is effective in stabilizing austenite and improving strength. In order to obtain these effects sufficiently, it is desirable to add 0.1% by mass or more. However, if it exceeds 2.0% by mass, ductility is reduced and cost is increased. When adding Mo, it is desirable to perform it in the range of 0.1 to 2.0% by mass.
[0020]
In the present invention, special elements such as Ti, Nb, and V are not particularly required.
The high Mn steel in which the content of the component elements is specified as described above has an austenitic single phase structure in a solution treatment state. When an appropriate cold working is performed on this, work-induced martensite is generated, and the metal structure can be made to be a double-phase structure of austenite + martensite.
[0021]
As a result of various studies, it is necessary to secure at least 10% by volume of the work-induced martensite. If the thickness is less than this, the material strength is insufficient and the deformation easily occurs due to the penetration of the bullet. Therefore, unless the plate thickness is considerably increased, it is difficult to sufficiently reduce the kinetic energy of the bullet by the mechanism (1).
[0022]
On the other hand, when the amount of work-induced martensite exceeds 60% by volume, the ductility and toughness of the steel sheet decrease, and “plate cracking” easily occurs when the steel sheet is worked. Further, even if the member can be manufactured, it will not be possible to bring about large deformation around the bullet impact portion, and it will cause brittle fracture. Furthermore, since the remaining amount of austenite is insufficient, martensite cannot be sufficiently induced in the deformation process at the time of bullet impact. For this reason, it is difficult to completely absorb the kinetic energy of the bullet until it becomes zero by the mechanism (2) unless the plate thickness is considerably increased. In that case, bullet penetration cannot be prevented.
[0023]
Therefore, in the present invention, the structure state in the steel sheet is defined as "a double phase structure composed of austenite + 10 to 60% by volume of work-induced martensite".
[0024]
In order to obtain such a microstructure, the steel material that has been sufficiently solution-treated may be subjected to appropriate cold rolling, pressing, cold forging, or the like. For example, when manufacturing a steel sheet having a final thickness of 3.5 to 12 mm, a method of subjecting a hot-rolled sheet to a solution treatment and then performing cold rolling of more than 10% and 40% or less can be adopted.
[0025]
Conventionally, the structure of the steel sheet has been made to be a dual-phase structure of austenite + martensite, but in any case, it is one means for improving the balance between strength and toughness in steel having a low Mn content. There is no example of a high Mn steel having a dual-phase structure of austenite + martensite from the viewpoint of anti-elasticity.
[0026]
It is desirable that the steel sheet be sufficiently solution-treated before the cold working for forming the work-induced martensite. For example, a solution treatment in which the steel sheet after hot rolling is maintained at 950 to 1100 ° C. to completely dissolve the carbide in the austenite phase, and then cooled from the above holding temperature to 500 ° C. at a cooling rate of 10 ° C./sec or more. It is desirable to perform a treatment. If the cooling rate in the temperature range of 500 ° C. or higher is low, carbides may precipitate during cooling, causing a decrease in toughness.
[0027]
The double-phase structure steel sheet obtained by the above-described treatment exhibits significantly better ballistic resistance than a conventional non-magnetic steel sheet if the sheet thickness is the same. For example, even a thin plate having a thickness of 2 to 3 mm can contribute to protection of human life in many cases with respect to a small diameter pistol or the like. Therefore, a steel sheet having an appropriate thickness may be used in consideration of the required level of the ballistic resistance and the allowable weight of the steel sheet. When the thickness is set to 3.5 mm or more, it is effective for many firearms. However, if the plate thickness exceeds 12 mm, it becomes overspecified even with a powerful rifle in recent years, and only increases the weight. For this reason, it is generally desirable that the thickness be 3.5 to 12 mm. In addition, it is desirable to secure a plate thickness of 6 mm or more in applications where importance is placed on the protection against high performance rifles. In particular, the steel sheet of the present invention in which the thickness is adjusted in the range of 6 to 9 mm has an excellent balance between performance and weight, and is considered to have the best cost performance when a high-performance rifle is assumed.
[0028]
【Example】
Table 1 shows the chemical component values of the test materials. These steels were melted in a vacuum melting furnace, and hot-rolled at a finishing temperature of 850 to 900 ° C and a winding temperature of 550 ° C to obtain a hot-rolled sheet having a thickness of 7 to 14 mm. Each hot rolled sheet was subjected to a solution treatment in which the sheet was held at 1000 ° C. for 10 minutes and immediately cooled with water to room temperature. At this time, the cooling rate from 1000 ° C. to 500 ° C. was about 50 ° C./sec. The A1 to A5 steels in Table 1 are steels satisfying the chemical composition specified in the present invention, and all exhibited an austenite single phase structure after the solution treatment. On the other hand, the B1 steel had a low C content and the B2 steel had a low Mn content, and the austenite content after the solution treatment was insufficient.
After the solution treatment, cold rolling was performed at various cold rolling rates of 50% or less to obtain a sample having a thickness of 7.0 mm. Note that some samples were not subjected to cold rolling.
[0029]
[Table 1]
Figure 2004137579
[0030]
For each sample, the amount of martensite, hardness, and ballistic resistance were examined.
The amount of martensite was determined from the integrated intensity ratio by X-ray diffraction.
The hardness was determined by measuring Vickers hardness of a cross section including the rolling direction and the thickness direction of the steel sheet.
The ballistic resistance was evaluated by the following method. That is, using an ultra-high-speed shooting test device, a bullet-shaped shooting object made of lead having a diameter of 7 mm and a mass of 11.7 g was applied to the surface of a fixed steel plate sample at various speeds, and a plate having a thickness of 7.0 mm was applied. The upper limit of the projectile speed that did not penetrate was determined as the limit speed of the steel sheet. Here, those showing a limit speed of 700 m / sec or more were judged as "pass".
Table 2 shows the results. In Table 2, those with a cold rolling ratio of 0% are those that have not been subjected to cold rolling.
[0031]
[Table 2]
Figure 2004137579
[0032]
The examples of the present invention (test Nos. 4 to 6, 9 to 12) satisfying the chemical composition defined in the present invention and having a double phase structure composed of austenite + 10 to 60% by volume of work-induced martensite are limited. An excellent ballistic resistance of 700 m / sec or more was exhibited.
On the other hand, Test No. 1 and No. Sample No. 2 did not have an austenitic single-phase structure before cold rolling (after solution treatment) because the C content and the Mn content were insufficient. These could not secure 10% by volume or more of work-induced martensite after cold rolling, and as a result, the critical speed was significantly lower than 700 m / sec. Test No. Nos. 3, 8, and 13 were not subjected to cold rolling or the cold rolling reduction was insufficient, so that 10% by volume or more of work-induced martensite could not be secured, and also excellent ballistic resistance with a critical speed of 700 m / sec or more was obtained. I couldn't. Test No. In No. 7, the cold rolling reduction was too high, so that work-induced martensite exceeding 60% by volume was generated, and plate cracking occurred, so that it could not be subjected to the ballistic resistance test.
[0033]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, in high Mn steel, the ballistic resistance was able to be improved significantly conventionally. Its performance is enough to cope with recent high-performance rifle shooting at a practical thickness. Also, the workability is better than that of the conventional material mainly composed of martensite.

Claims (5)

質量%で、C:0.7〜1.6%,Si:0.8%以下,Mn:8〜16%,Ni:0(無添加)〜1.5%,Cr:0(無添加)〜1.0%,Mo:0(無添加)〜2.0%であり、残部がFeおよび不可避的不純物からなる化学組成を有し、オーステナイト+10〜60体積%の加工誘起マルテンサイトからなる複相組織を有する防弾性に優れた高Mnオーステナイト鋼板。In mass%, C: 0.7 to 1.6%, Si: 0.8% or less, Mn: 8 to 16%, Ni: 0 (no addition) to 1.5%, Cr: 0 (no addition) To 1.0%, Mo: 0 (no addition) to 2.0%, the balance having a chemical composition consisting of Fe and unavoidable impurities, and a composite consisting of austenite + 10 to 60% by volume of work-induced martensite. High Mn austenitic steel sheet with phase structure and excellent in ballistic resistance. 質量%で、C:0.7〜1.6%,Si:0.8%以下,Mn:8〜16%であり、かつNi:0.1〜1.5%,Cr:0.1〜1.0%,Mo:0.1〜2.0%のうち1種以上を含み、残部がFeおよび不可避的不純物からなる化学組成を有し、オーステナイト+10〜60体積%の加工誘起マルテンサイトからなる複相組織を有する防弾性に優れた高Mnオーステナイト鋼板。In mass%, C: 0.7 to 1.6%, Si: 0.8% or less, Mn: 8 to 16%, Ni: 0.1 to 1.5%, Cr: 0.1 to 1.0%, Mo: contains at least one of 0.1 to 2.0%, and the balance has a chemical composition composed of Fe and unavoidable impurities. High Mn austenitic steel sheet having excellent dual-phase structure and excellent ballistic resistance. 複相組織は、950〜1100℃に保持した後500℃以下の温度まで冷却速度10℃/sec以上で冷却した溶体化処理鋼板を冷間加工することによって得られるものである請求項1または2に記載の鋼板。The dual-phase structure is obtained by cold working a solution-treated steel sheet cooled at a cooling rate of 10 ° C./sec or more to a temperature of 500 ° C. or less after being maintained at 950 to 1100 ° C. 3. The steel sheet according to the above. 冷間加工が10超え〜40%の冷間圧延である請求項3に記載の鋼板。The steel sheet according to claim 3, wherein the cold working is a cold rolling of more than 10 to 40%. 板厚が3.5〜12mmである請求項1〜4に記載の鋼板。The steel sheet according to claim 1, wherein the sheet thickness is 3.5 to 12 mm.
JP2002304995A 2002-10-18 2002-10-18 High Mn austenitic steel sheet with excellent anti-elasticity Expired - Fee Related JP3886881B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002304995A JP3886881B2 (en) 2002-10-18 2002-10-18 High Mn austenitic steel sheet with excellent anti-elasticity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002304995A JP3886881B2 (en) 2002-10-18 2002-10-18 High Mn austenitic steel sheet with excellent anti-elasticity

Publications (2)

Publication Number Publication Date
JP2004137579A true JP2004137579A (en) 2004-05-13
JP3886881B2 JP3886881B2 (en) 2007-02-28

Family

ID=32452255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002304995A Expired - Fee Related JP3886881B2 (en) 2002-10-18 2002-10-18 High Mn austenitic steel sheet with excellent anti-elasticity

Country Status (1)

Country Link
JP (1) JP3886881B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017111473A1 (en) * 2015-12-23 2017-06-29 주식회사 포스코 High manganese steel sheet having excellent vibration-proof property, and manufacturing method therefor
KR102058171B1 (en) 2015-10-27 2019-12-20 티엔진 윌 롱 에스씨아이. 앤 테크 컴퍼니 리미티드 Method of manufacturing multi-element alloyed high strength wear resistant steel and hot rolled plate
JP7436811B2 (en) 2020-02-28 2024-02-22 日本製鉄株式会社 Protective plates and protective structures

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102058171B1 (en) 2015-10-27 2019-12-20 티엔진 윌 롱 에스씨아이. 앤 테크 컴퍼니 리미티드 Method of manufacturing multi-element alloyed high strength wear resistant steel and hot rolled plate
WO2017111473A1 (en) * 2015-12-23 2017-06-29 주식회사 포스코 High manganese steel sheet having excellent vibration-proof property, and manufacturing method therefor
JP7436811B2 (en) 2020-02-28 2024-02-22 日本製鉄株式会社 Protective plates and protective structures

Also Published As

Publication number Publication date
JP3886881B2 (en) 2007-02-28

Similar Documents

Publication Publication Date Title
JP4423254B2 (en) High strength spring steel wire with excellent coiling and hydrogen embrittlement resistance
EP0649915B1 (en) High-strength martensitic stainless steel and method for making the same
Lang et al. Research progress and development tendency of nitrogen-alloyed austenitic stainless steels
US20080264524A1 (en) High-Strength Steel and Metal Bolt Excellent In Character of Delayed Fracture
CN104805373B (en) High-hardness and high-toughness iron-based alloy and preparation method thereof
EP1746177A1 (en) High strength bolt excellent in delayed fracture resistance and method of production of same
US10882277B2 (en) Protective composite steel plate and method for manufacturing same
Jamil et al. Mechanical properties and microstructures of steel panels for laminated composites in armoured vehicles
US10450621B2 (en) Low alloy high performance steel
AU2016238855B2 (en) Air hardenable shock-resistant steel alloys, methods of making the alloys, and articles including the alloys
El-Bitar et al. Thermo-mechanical processing of armor steel plates
JP4374361B2 (en) High-hardness hot-rolled steel sheet excellent in weldability and workability, and excellent in high-speed impact penetration performance against high-hardness flying objects and method for producing the same
JP2004137579A (en) HIGH Mn AUSTENITIC STEEL SHEET HAVING EXCELLENT BULLETPROOF PROPERTY
Siagian et al. Development of steel as anti-ballistic combat vehicle material
JP7457234B2 (en) Bolts and bolt manufacturing methods
JPH0261032A (en) Case hardening steel excellent in fatigue strength
Sanusi et al. Ballistic performance of a quenched and tempered steel against 7.62 mm calibre projectile
El-Bitar et al. Development of armor high strength steel (HSS) martensitic plates for troops carriers
US10894388B2 (en) Protective steel plate with excellent cold-bend processing performance and method for manufacturing same
JPH10121201A (en) High strength spring excellent in delayed fracture resistance
Kisku Strengthening of High-Alloy Steel through Innovative Heat Treatment Routes
Lieth et al. Effect of austenitizing and tempering on impact resistance of a hot rolled high strength steel
JP4374350B2 (en) High-hardness hot-rolled steel sheet excellent in weldability, workability, and high-speed impact penetration performance and method for producing the same
JP2005264275A (en) High-strength steel with excellent high-speed impact penetration resistance and weldability, and its manufacturing method
JPH09310116A (en) Production of high strength member excellent in delayed fracture characteristic

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050607

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061122

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees