JP2004137553A - Whole roller type rolling bearing - Google Patents

Whole roller type rolling bearing Download PDF

Info

Publication number
JP2004137553A
JP2004137553A JP2002303036A JP2002303036A JP2004137553A JP 2004137553 A JP2004137553 A JP 2004137553A JP 2002303036 A JP2002303036 A JP 2002303036A JP 2002303036 A JP2002303036 A JP 2002303036A JP 2004137553 A JP2004137553 A JP 2004137553A
Authority
JP
Japan
Prior art keywords
rolling bearing
full
rollers
roller type
roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002303036A
Other languages
Japanese (ja)
Other versions
JP3990254B2 (en
Inventor
Kikuo Maeda
前田 喜久男
Yukio Fujii
藤井 幸生
Kenichi Ichikawa
市川 健一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002303036A priority Critical patent/JP3990254B2/en
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to DE60303849T priority patent/DE60303849T2/en
Priority to ES03022511T priority patent/ES2255651T3/en
Priority to ES05006924T priority patent/ES2259176T3/en
Priority to EP05006924A priority patent/EP1548145B1/en
Priority to DE60305054T priority patent/DE60305054T2/en
Priority to EP03022511A priority patent/EP1411142B1/en
Priority to CNB2003101015839A priority patent/CN100398856C/en
Priority to US10/686,766 priority patent/US7490583B2/en
Publication of JP2004137553A publication Critical patent/JP2004137553A/en
Application granted granted Critical
Publication of JP3990254B2 publication Critical patent/JP3990254B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a whole roller type rolling bearing, which can be adapted to tendency of a high speed and a heavy load in application and a low viscosity of a lubricating oil. <P>SOLUTION: This rolling bearing comprises an outer ring 4, an inner ring 2 and a roller 3 all made of steel, wherein at least one of the outer ring, the inner ring and the roller is provided with a carbonitriding layer on the surface layer, and the grain sizes of the austenitic crystals on the surface layer are a specified value or larger. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ロッカーアーム用軸受やカムフォロア、ローラフォロア軸受などのように、保持器を用いない総ころタイプの転がり軸受用材料に関する。
【0002】
【従来の技術】
最近の転がり軸受の中には、たとえば、ロッカーアーム用軸受のように、保持器を用いない総ころタイプの軸受でありながら、高速、高荷重用途で使用されるものが増えている。ここで、総ころタイプの軸受とは、上述のように保持器を用いない軸受をさし、総ころ軸受と略称する場合がある。保持器のない総ころタイプの軸受では、ころ同士の干渉が避けられないので、高速になると、ころに表面損傷が生じたり、スムーズにころ位置が制御されずスキューを起こしやすい。この結果、滑り発熱や局部的な面圧上昇が起こり、計算上は大きな負荷容量を持つにもかかわらず、ピーリング、スミアリング、表面起点型剥離などの表面損傷や内部起点型剥離が生じやすかった。
【0003】
すなわち、ローラフォロア、カムフォロア、ロッカーアームなどのように総ころタイプの軸受においては、ころ同士の干渉や潤滑剤が軸受内部にうまく供給されないことにより、ころやレースに表面を起点にする剥離を生じることがある。また、組付け誤差や偏荷重の影響でころにスキューが生じ、滑りによる表面起点剥離や局部的な面圧上昇による内部起点型剥離が生じることもある。
【0004】
これまで、ロッカーアームなどの外輪外径がカムと転がり接触する用途では、主に外輪外径の改良を目的とした改良が多く行なわれてきた。しかし、その一方、ショットピーニングなどの加工による圧縮応力、高濃度浸炭窒化による高硬度(加工硬化)による長寿命化などは、主に相手カムと転動接触する外輪外径の改良のために行なわれている。また、内輪、ころ、または軸受全体の転がり寿命を伸ばすための改良は少ない。材質面からは、下記のように、浸炭窒化処理によって、耐熱性向上やミクロ組織安定性の付与、高硬度化などで軸受の長寿命化を図った例がある。
【0005】
これまでのロッカーアーム関連の寿命向上に関する公知技術は以下のとおりである。
【0006】
(1) エンジンの動弁機構用カムフォロア装置用軸受において、エンジンの定格回転数での軸受の計算寿命を1000時間以上とするもの(特許文献1参照)。
【0007】
(2) 炭化物の割合を10%〜25%とし、残留オーステナイトの初期値に対する分解率を10分の1〜10分の3とし、また、端面硬度をHV830〜960とし、さらに表面粗さの平均波長を25μm以下とした、エンジンの動弁機構用カムフォロア装置用軸受軸。上記特性を実現するために、軸受鋼に浸炭窒化処理およびハードショットピーニングを施す(特許文献2参照)。
【0008】
(3) 軸の耐摩耗性向上のため、軸に高分子化合物などの固体潤滑膜を形成したカムフォロア軸(特許文献3参照)。
【0009】
(4) 工具鋼などで製作し、焼戻し温度よりも低い温度でイオン窒化やイオンプレーティングを行ない、高硬度にしたカムフォロア軸(特許文献4参照)。
【0010】
(5) 軸に対する曲げ応力を150MPa以下に規制したエンジンにおける動弁機構用カムフォロア装置用軸受(特許文献5参照)。
【0011】
(6) 軸受構成部品の転走面に潤滑油保持性に優れたリン酸塩被膜をつけたエンジンの動弁機構用カムフォロア(特許文献6、7参照)。
【0012】
(7) 軸のころ転動領域にクラウニングをつけたエンジンの動弁機構用カムフォロア(特許文献8参照)。
【0013】
(8) 軸の転走面を構成する表層は、炭素濃度を1.2%〜1.7%にするために、高濃度浸炭処理または浸炭窒化処理を行ない、内部は硬度をHV300程度にした軸(特許文献9参照)。
【0014】
【特許文献1】
特開2000−38907号公報
【0015】
【特許文献2】
特開平10−47334号公報
【0016】
【特許文献3】
特開平10−103339号公報
【0017】
【特許文献4】
特開平10−110720号公報
【0018】
【特許文献5】
特開2000−38906号公報
【0019】
【特許文献6】
特開2000−205284号公報
【0020】
【特許文献7】
特開2002−31212号公報
【0021】
【特許文献8】
実開昭63−185917号公報
【0022】
【特許文献9】
特開平14−194438号公報
【0023】
【発明が解決しようとする課題】
今後、ロッカーアームやローラフォロア、カムフォロアなどの総ころ軸受においても、保持器を用いた通常の軸受と同様に、使用時の高速化と大荷重化、潤滑油の低粘度化が進むと予想される。このような使用条件で総ころタイプの軸受の転動寿命を長寿命化するためには、(a1)通常の荷重依存型の転動疲れ寿命における方策だけでなく、(a2)滑りや油膜切れが原因で生じる金属接触による表面損傷寿命に対しても方策をとる必要がある。しかしながら、荷重依存型の転動疲れ寿命および金属接触による表面損傷寿命の両方の寿命を、ともに大幅に延長させる技術はこれまでなかった。また、総ころタイプの軸受では、上記2種類の長寿命化の方策に加えて、さらに(a3)総ころ軸受特有のころの干渉やスキューに起因する寿命短縮に対する方策も備える必要がある。
【0024】
上記した公知の技術では、高硬度化、高圧縮応力化により転動寿命を向上させるか、または相手部材との転動面を改良する。しかし、実際に評価すると、外輪のような曲げが作用する用途の長寿命化には効果があるものの、総ころ軸受の内輪やころの長寿命化には、このような改良だけでは必ずしも大きな効果を上げることができなかった。
【0025】
本発明は、使用時の高速化と大荷重化、潤滑油の低粘度化に適用して、潤滑条件、滑り条件、荷重条件ともに厳しい使用条件においても長寿命を発揮することができる総ころタイプの転がり軸受を提供することを目的とする。
【0026】
【課題を解決するための手段】
本発明の総ころタイプの転がり軸受は、鋼製の外輪、内輪およびころからなり、外輪、内輪およびころの少なくとも1つが表層部に浸炭窒化層を備え、その表層部のオーステナイト結晶粒度が規定値以上である。
【0027】
本発明の総ころタイプの転がり軸受は、結晶粒度が細かく、かつ、耐熱性のある材質とすることにより、表面損傷(ピーリング、スミアリングなどの表面起点型剥離)寿命、内部起点剥離寿命ともに向上させることができる。具体的には、軸受鋼などの素材の加工または熱処理パターンの工夫により、一定値以上、たとえば粒度番号9番以上または、所定の場合は11番以上のオーステナイト結晶粒度を確保した浸炭窒化組織にする。このような組織を得ることにより、亀裂に対する発生、伸展抵抗性を非常に大きくすることができる。この結果、滑りによる表層発熱や接線力による表面亀裂の発生を抑えることができる。さらにこれに加えて、内部起点型剥離の亀裂に対しても、相当な長寿命化が図れることを見出した。
【0028】
上記のミクロ組織をベースに、さらに加工処理や熱処理を加え、上記の表層に圧縮応力を与え、さらに硬度上昇させることにより、さらに長寿命化を図ることができる。これらの加工処理や熱処理には、(b1)ショットピーニングや(b2)バレル加工、(b3)ローリング加工、(b4)バニッシュ加工、(b5)浸炭処理+浸炭窒化処理、(b6)浸炭窒化処理+サブゼロ処理、(b7)浸炭窒化処理+2次焼入れ+サブゼロ処理のような手法を、そのまま、または(b1)〜(b7)の手法を組み合わせて行なうことができる。
【0029】
なお、オーステナイト結晶粒度が規定値以上であるとは、JIS G 0551に規定されるオーステナイト結晶粒度試験方法において、たとえば、粒度番号7番以上、8番以上、9番以上、10番以上、10番超え、または11番以上のようにオーステナイト結晶粒の微細化の程度を限定することをさす。
【0030】
また、上記外輪、内輪およびころの少なくとも1つが、A1変態点以上で浸炭窒化処理を施され、その後A1変態点未満の温度に冷却された後、浸炭窒化処理の温度より低い焼入温度に加熱され焼入れられたものとしてもよい。
【0031】
このようなミクロ組織では、浸炭窒化処理から一度冷却された後に浸炭窒化処理の温度よりも低い焼入温度から焼き入れられるので、非常に微細なオーステナイト結晶粒を得ることができる。上記の浸炭窒化温度より低い焼入温度に加熱し焼き入れる処理を、その処理の順序から、2次焼入れまたは最終焼入れと呼ぶ場合がある。
【0032】
また、上記の焼入温度が、少なくとも浸炭窒化された鋼の表層部において、炭化物および/または窒化物とオーステナイト相とが共存する温度域であるとしてもよい。
【0033】
焼入れの際の加熱温度が浸炭窒化処理時の加熱温度よりも低いので、浸炭窒化処理の効果がおよぶ表層部における未溶解の炭化物および/または窒化物の量は浸炭窒化処理のときよりも増大する。このため、焼入温度が上記の共存温度域の場合、焼入温度において、浸炭窒化処理のときより、未溶解の炭化物/窒化物の量の比率が増大し、オーステナイト量の比率が低下する。しかも、鉄−炭素2元状態図から判断して、炭化物(セメンタイト)とオーステナイトとの共存領域において、焼入温度の低下にともないオーステナイトに固溶する炭素濃度も低くなる。なお、軸受に用いられる鋼は、SiやMnなどの他の合金元素の含有率が低いので、鉄−炭素2元系状態図を用いて十分高い精度で各温度領域や生成層を論じることができる。また、窒素は炭素と同様に、鉄中に侵入型元素として固溶し、また所定の温度域では、セメンタイトに類似した鉄との窒化物を生成するので、近似的に炭素と同じとみることができる。
【0034】
焼入温度に加熱したとき、オーステナイト粒の成長を妨げる未溶解の炭化物および/または窒化物の量が多いために、オーステナイト粒は微細となる。また、焼入れによってオーステナイトからマルテンサイトに変態した組織は、上記の熱処理の場合、炭素濃度がやや低いので、浸炭窒化処理温度から焼き入れた組織に比べて若干靭性に富んだ組織となる。すなわち、(c1)従来よりその量が多い未溶解の炭化物/窒化物と、(c2)炭素濃度が従来より低い焼入れ組織となる。
【0035】
上記の焼入温度は、790℃〜830℃としてもよい。ほとんど全ての鋼素材に対してこの温度域を適用し、焼入温度の管理を簡単化することができる。
【0036】
また、上記の外輪、内輪およびころの少なくとも1つにおいて、浸炭窒化処理前に冷間加工が施されていてもよい。
【0037】
このような冷間加工の適用により、熱処理の際のオーステナイト粒の核発生密度を増し、細粒組織を得ることができる。
【0038】
上記のオーステナイト結晶粒度番号が11番以上であるとしてもよい。このようなオーステナイト粒径の規定により、これまでの常識を超えるきわめて微細なオーステナイト粒として、安定して長い転動疲労寿命および表面損傷寿命を得ることができる。また、潤滑油の低粘度化にも十分対応することができる。
【0039】
さらに、上記の外輪、内輪およびころの少なくとも1つにおいて、500MPa以上の圧縮応力が形成されていてもよい。
【0040】
上述したように、上記のミクロ組織をベースに、さらに加工処理や熱処理を加え、上記の表層に圧縮応力を与えることにより、さらに長寿命化を図ることができる。
【0041】
【発明の実施の形態】
次に、本発明の実施の形態について図に基づいて説明する。図1は本発明の一実施の形態におけるロッカーアームの構成を示す概略正面図であり、図2は図1のII−II線に沿う断面に対応する図である。図1および図2において、カムフォロア本体1は、中央部において軸受メタルなどを介してカムフォロア軸5に回転自在に支持されている。
【0042】
このカムフォロア本体1の一方の端部には、アジャストねじ7が螺挿されている。このアジャストねじ7はロックナット8により固定され、その下端において内燃機関の給気弁もしくは排気弁の突起棹9の上端と当接している。この突起棹9はばね10の弾発力で付勢されている。
【0043】
カムフォロア本体1は、その他方の端部に二股状に形成されたローラ支持部14を一体に有している。この二股状のローラ支持部14に、ローラ軸2の両端が圧入または止め輪により固定されている。このローラ軸2の外周面中央部には、針状ころ3を介して回転自在にローラ4が支持されている。このローラ4の外周面は、ばね10の付勢力によりカム6のカム面に押し付けられている。
【0044】
ここで、ローラ軸2よりなる内輪と、針状ころ3よりなる転動体と、ローラ4よりなる外輪とにより構成される転がり軸受がロッカーアーム軸受として用いられている。このロッカーアーム軸受の軌道輪をなす内輪2および外輪4ならびにころ3のうち、少なくとも1つの部材の表層に浸炭窒化層が形成され、その表層部のオーステナイト結晶粒度が9番以上、また所定の場合には11番以上に微細化されている。
【0045】
上記のロッカーアーム軸受は、カム6と接触しながら回転するものであるため、外輪4にはカム6の押付け力と衝撃力とが作用し、圧痕の形成と繰返し曲げ応力による割れとが生じることがある。特に、エンジンの高出力化により、回転速度が大きくなるとこれらの力が増大し、割れや圧痕の危険性はますます大きくなり、転動寿命や表面損傷寿命を短縮する。
【0046】
軸受に大きな力が作用して圧痕が形成されるとき、通常は内輪と転動体(ころ)との間の面圧の方が外輪と転動体(ころ)との間の面圧より高いので、内輪に圧痕が形成されやすい。しかし、カムフォロアなどのように外輪に曲げ応力が作用しながら高面圧負荷が作用する場合には、外輪と転動体との間に圧痕が形成されやすい。本願発明者らは、上記の部材のうち、少なくとも1つの部材の表層に浸炭窒化層を形成し、その表層のオーステナイト結晶粒度番号を、たとえば9番以上、所定の場合は11番以上などとすることにより、上記の表面損傷寿命や転動寿命を長寿命化することができることを見出した。また、上記の表層部に、さらに圧縮応力を付加することにより長寿命化の度合いがさらに高まることを見出した。
【0047】
オーステナイト結晶粒を微細化した浸炭窒化層を得るには、例えば次のような方法によるのがよいが、これに限定されるわけではない。図3は、本発明のオーステナイト結晶粒が微細化された浸炭窒化層を得るための熱処理方法を例示する図であり、また、図4は、その変形例を説明する図である。図3は1次焼入れおよび2次焼入れを行なう方法を示す熱処理パターンであり、図4は焼入れ途中で材料をA1変態点温度未満に冷却し、その後、再加熱して最終的に焼入れる方法を示す熱処理パターンである。これらの図において、処理T1では鋼の素地に炭素や窒素を拡散させまた炭素の溶け込みを十分に行なった後、A1変態点未満に冷却する。次に、図中の処理T2において、処理T1よりも低温に再加熱し、そこから油焼入れを施す。この処理T1では、表層部ではオーステナイトと炭化物および/または窒化物との共存領域の温度に加熱してもよい。この共存域では、オーステナイト粒は微細であり、かつオーステナイト中の炭素(窒素)濃度は若干低いので焼入れても靭性に富んだ焼入組織を得ることができる。
【0048】
上記の熱処理により、普通焼入れ、すなわち浸炭窒化処理に引き続いてそのまま1回焼入れするよりも、表層部分を浸炭窒化しつつ、割れ強度を向上させ、表面損傷寿命および転動疲労寿命をともに向上させることができる。さらに、潤滑油の低粘度化にも対応することができるようになる。上記の熱処理方法によれば、オーステナイト結晶粒の粒径が従来の2分の1以下となるミクロ組織を得ることができる。上記の熱処理を受けた軸受部品は、転動疲労および表面損傷寿命に対して長寿命であり、低粘度化にも対応することができる。
【0049】
図5は、軸受部品のミクロ組織、とくにオーステナイト粒を示す図である。図5(a)は本発明例の軸受部品であり、図5(b)は従来の軸受部品である。すなわち、上記図3に示す熱処理パターンを適用した軸受鋼のオーステナイト結晶粒度を図5(a)に示す。また、比較のため、従来の熱処理方法による軸受鋼のオーステナイト結晶粒度を図5(b)に示す。また、図6(a)および図6(b)に、上記図5(a)および図5(b)を図解したオーステナイト結晶粒度を示す。これらオーステナイト結晶粒度を示す組織より、従来のオーステナイト粒径はJIS規格の粒度番号で10番であり、また本発明による熱処理方法によれば12番の細粒を得ることができる。また、図5(a)の平均粒径は、切片法で測定した結果、5.6μmであった。また、焼入れ温度を830℃とすると、平均粒径は8μm程度になる。
【0050】
【実施例】
試験に供した軸受は総ころ形式のニードル軸受である。内輪(軸)は外径14.64mm×幅17.3mmであり、外輪は内径18.64mm×外径24mm×幅6.9mmであり、ころは直径2mm×長さ6.8mmである。ころは26本用い、総ころの構成とした。この軸受の基本動定格荷重は8.6kN、基本静定格荷重は12.9kNである。ここで、軸受はすべて同じ材質の組合せを基本としたが、一部の軸受では材質を組合わせたり、加工を追加したものも製作した。
【0051】
製作したものの一覧表を表1に示す。サンプルの内訳は次のとおりである。なお、特に言及しない場合は、内輪、外輪およびころに同じ熱処理および加工を施した。
【0052】
【表1】

Figure 2004137553
【0053】
No.1:軸受鋼に予め強冷間加工を加え、熱処理後の結晶粒を微細にし、さらに浸炭窒化処理を行なったもの(本発明例)。
No.2:軸受鋼を浸炭窒化処理し、いったん焼入れした後、浸炭窒化処理温度より低い温度から2次焼入れを施したもの(本発明例)。
No.3:浸炭鋼に浸炭+浸炭窒化処理し、焼入れした後、低い温度で2次焼入れを施したもの(本発明例)。
【0054】
これらのオーステナイト結晶粒度番号は、上述のJIS試験方法でNo.11番以上であった。これらのものをベースに、表層に圧縮応力を形成するために、以下の加工処理を施した。
No.4:No.1の状態にさらに、内外輪にショットピーニングを加え、ころにバレル加工を施したもの(本発明例)。
No.5:No.2の状態にさらに、内外輪にショットピーニングを施し、ころにバレル加工を施したもの(本発明例)。
No.6:No.3の状態にさらに、内外輪にショットピーニングを施し、ころにバレル加工を施したもの(本発明例)。
【0055】
さらに表層硬度を高めたものとして次のものを用意した。
No.7:No.1の状態にさらに、内外輪にサブゼロ(−196℃)処理を追加したもの(本発明例)。
No.8:No.1の状態にさらに、内外輪にサブゼロ(−196℃)処理を追加した後、内外輪にショットピーニングを施し、ころにバレル加工を施したもの(本発明例)。
【0056】
内外輪ころの各要素に対し、特に転動寿命が問題になる内輪ところに、上記の方法を適用したものとして次のものを用意した。
No.9:内輪ところに浸炭窒化処理し、焼入れした後、さらに浸炭窒化処理温度より低い温度で2次焼入れを施したものを用い、外輪には標準的な熱処理品を用いたもの(本発明例)。
No.10:内外輪には、浸炭鋼に対し浸炭+浸炭窒化処理し冷却した後、浸炭窒化処理温度より低い温度で2次焼入れを施したものを用い、また、ころには軸受鋼に浸炭窒化処理を施したもの(本発明例)。
【0057】
比較例としては、表1の下欄に示す5種類のものを製作した。
No.11:内外輪およびころともに、軸受鋼の標準熱処理品を用いたもの(比較例)。
No.12:内外輪およびころともに、軸受鋼の浸炭窒化処理品を用いたもの(比較例)。
No.13:浸炭鋼の標準浸炭品を内外輪に用い、ころは軸受鋼の標準熱処理品を用いたもの(比較例)。
No.14:浸炭鋼の2次焼入れ品を用いたもの(比較例)。
No.15:No.11の状態に対してさらに、内外輪にショットピーニングを施し、ころにバレル加工を施したもの(比較例)。
【0058】
これらのサンプルの材質として、結晶粒度、硬度、500℃焼戻し硬度(耐熱性の尺度)を測定し、表1に併せて示した。
【0059】
上記のサンプルについて以下の転動疲労試験および表面損傷強度試験の評価を行なった。
【0060】
(1)転動疲労試験
外輪(内径18.64mm×外径24mm×幅6.9mm)と、内輪(軸)(外径14.64mm×幅17.3mm)と、26本のころ(径2mm×長さ6.8mm)とを組合わせ、基本動定格荷重8.6kNの30%の荷重である荷重2.58kNで転動試験を行なった。試験装置には図7に示す転動疲労試験装置を用い、試験条件は表2に示す条件によった。本転動疲労試験は外輪回転により行なった。結果を表3に示す。
【0061】
【表2】
Figure 2004137553
【0062】
【表3】
Figure 2004137553
【0063】
表3には示していないが、主に、ころまたは内輪が剥離した。No.9(本発明例)では一部外輪剥離も認められた。表3より、本発明例のものは比較例に比べ長寿命であり、いずれも標準品の約3倍、通常の浸炭窒化品の約1.5倍の長寿命を示した。
【0064】
(2)ピーリング試験
ピーリング試験条件を表4に、また試験サンプルの一覧を表5に示す。
【0065】
【表4】
Figure 2004137553
【0066】
【表5】
Figure 2004137553
【0067】
本発明例のNo.1〜No.3の材質およびこれらにショットピーニングやサブゼロを施したものの計8種類(No.1〜No.8)、比較例サンプル5種類(No.11〜No.15)の計13種類についてピーリング試験を行なった。直径40mm試験片(鏡面仕上げ)をSUJ2製の粗面試験片を相手に、一定条件で転動接触させ、一定時間後にサンプル(鏡面)試験片上に発生したピーリング、すなわち微小な剥離の集合体の面積率を測定した。この面積率の逆数をここではピーリング強度と定義し、標準品(比較例No.11)のピーリング強度を1とした場合の比率で表わした。結果を表5に示す。
【0068】
表5によれば、本発明例のものは比較例のものに比べ1.5倍以上のピーリング強度を示している。結晶粒の細かさと適度の残留オーステナイトが亀裂の発生、伸展に対する靭性を高めていると言える。またサブゼロ処理や加工処理を加えたもの(No.4〜No.8)はいずれも強度が向上している。高硬度や圧縮応力がピーリング亀裂の発生や伸展を抑えるためと考えられる。
【0069】
(3)スミアリング試験
ピーリング試験片と同様の材質の試験片を用い、スミアリング発生強度を調べた。試験条件を表6に示す。
【0070】
【表6】
Figure 2004137553
【0071】
試験片も相手試験片も同一材質の組合せで試験を行なった。結果を表5に示す。ここで、評価は、スミアリングが発生したときの相手試験片の回転速度について、標準品(比較例No.11)との比を表わしている。スミアリングに関しても、本発明例のものは標準品(比較例No.11)に比べ1.5倍以上の発生強度(発生までの回転速度)であり、他の比較例のものよりも高めである。結晶粒の細かさと適度の残留オーステナイト、細かい炭化物の存在のバランスが大きな滑り条件での表層の塑性流動を抑え、耐焼付け性を高めているといえる。加工処理を加えたものは加工なしのものより若干強度が向上している。
【0072】
(4)静的割れ強度
表5の材質のサンプルについて、図8に示す外輪(内径18.64mm×外径24mm×幅6.9mm)単体にアムスラー試験機で荷重をかけ、割れ強度を測定した。結果を表5に示す。
【0073】
割れ起点はリング内径部(転走面)表面である。表5より、通常、浸炭窒化処理を施すと、比較例No.12のように静的割れ強度は低下するが、本発明例1〜No.3のものは標準熱処理品と同じかやや向上しており、割れ強度の低下は認められない。これらに加工処理を加えた本発明例No.4〜No.6のものは一律に割れ強度が向上している。No.7のサブゼロ処理を加えたものでは、No.1のサブゼロ処理なしに比べやや割れ強度が低下しているが、これに加工処理を加えたNo.8では向上が認められる。
【0074】
一方、比較例No.12の強度低下は浸炭窒化処理が長時間の拡散処理のため、結晶粒の粗大化が起こることと、残留オーステナイト量が増えるために、局部的に引張り強度が弱い組織になったためと考えられる。No.13も同様の理由で強度低下が生じている。
【0075】
(5)割れ疲労強度
割れ疲労強度を調べるために、表5のサンプル外輪に、表7の条件で繰返し負荷し、割れ疲労強度を求めた。すなわち、外輪に98Nから所定荷重の繰返し荷重をかけ、割れるまでの繰返し数を比較した。
【0076】
【表7】
Figure 2004137553
【0077】
ここでは、荷重条件を変えて繰り返し荷重をかけ、10回の繰返しに耐える荷重を求めた。結果を、割れ疲労強度比として表5に示す。比較例の標準熱処理品の強度に対する比で記載したが、いずれも本発明例のものは割れ疲労強度が大幅に改善されている。
【0078】
割れ疲労強度に関しては、浸炭鋼をベースにした本発明例No.3やこれに圧縮応力を組合わせた本発明例No.6が好結果を示した。
【0079】
以上の結果から、潤滑条件が悪く、またころのスキューやころ同士の干渉による短寿命が発生しやすい総ころ転がり軸受において、微細な結晶粒と適度の残留オーステナイトを含むミクロ組織にすることにより、転動寿命を著しく向上させることができることを見出した。また、この仕様は、従来の浸炭窒化処理のように割れ強度を損なうことがないので、高強度、長寿命の総ころ転がり軸受にすることができる。
【0080】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【0081】
【発明の効果】
本発明の総ころタイプの転がり軸受において、微細なオーステナイト粒からなる浸炭窒化層を有する部材を配置することにより、使用時の高速化と大荷重化、潤滑油の低粘度化に適用して、十分な耐久性を確保することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態における総ころタイプの転がり軸受であるロッカーアーム軸受を示す図である。
【図2】図1におけるII−II線に沿う断面図である。
【図3】本発明の実施の形態における熱処理方法を説明する図である。
【図4】本発明の実施の形態における熱処理方法の変形例を説明する図である。
【図5】軸受部品のミクロ組織、とくに旧オーステナイト粒を示す図である。(a)は本発明例の軸受部品であり、(b)は従来の軸受部品である。
【図6】(a)は図5(a)を図解したオーステナイト粒界を示し、(b)は図5(b)を図解したオーステナイト粒界を示す。
【図7】転動疲労寿命試験機の概略図である。
【図8】静的割れ強度試験片を示す図である。
【符号の説明】
1 カムフォロア本体、2 ローラ軸(内輪)、3 針状ころ(転動体)、4ローラ(外輪)、5 カムフォロア軸、6 カム、7 アジャストねじ、8 ロックナット、9 突起棹、10 ばね、14 ローラ支持部、T1  浸炭窒化処理(その加熱温度)、T2  焼入処理(その加熱温度)。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a full-roller type rolling bearing material that does not use a retainer, such as a rocker arm bearing, a cam follower, and a roller follower bearing.
[0002]
[Prior art]
Among recent rolling bearings, for example, full-roller type bearings that do not use a retainer, such as rocker arm bearings, are increasingly used for high-speed and high-load applications. Here, the full-roller type bearing refers to a bearing that does not use a cage as described above, and may be abbreviated as a full-roller bearing. In a full-roller type bearing without a retainer, interference between the rollers is inevitable. Therefore, at high speeds, surface damage occurs on the rollers, and the roller position is not controlled smoothly, and skew is likely to occur. As a result, slip heat and local surface pressure increase occurred, and despite having a large load capacity in the calculation, surface damage such as peeling, smearing, and surface-initiated type peeling and internal-initiated type peeling were likely to occur. .
[0003]
That is, in a full-roller type bearing such as a roller follower, a cam follower, a rocker arm, or the like, separation between the rollers and the race occurs from the surface as a starting point due to interference between the rollers and the inadequate supply of the lubricant into the bearing. Sometimes. In addition, skew occurs in the rollers due to an assembly error or an unbalanced load, and surface-originated peeling due to slippage or internal origin-type peeling due to a local increase in surface pressure may occur.
[0004]
Until now, in applications where the outer ring outer diameter such as a rocker arm is in rolling contact with a cam, many improvements have been made mainly for the purpose of improving the outer ring outer diameter. However, on the other hand, the compression stress due to processing such as shot peening, and the long life due to high hardness (work hardening) due to high-concentration carbonitriding are mainly performed to improve the outer diameter of the outer ring in rolling contact with the mating cam. Have been. Also, there are few improvements to extend the rolling life of the inner ring, rollers, or the entire bearing. From the viewpoint of the material, there is an example in which the bearing life is extended by improving the heat resistance, imparting microstructure stability, and increasing the hardness by carbonitriding as described below.
[0005]
The known techniques for improving the life related to the rocker arm to date are as follows.
[0006]
(1) In a bearing for a cam follower device for an engine valve operating mechanism, the calculated life of the bearing at a rated engine speed is 1000 hours or more (see Patent Document 1).
[0007]
(2) The ratio of carbide is 10% to 25%, the decomposition ratio of the retained austenite to the initial value is 1/10 to 3/10, the end surface hardness is HV830 to 960, and the average surface roughness is A bearing shaft for a cam follower device for a valve train of an engine, the wavelength of which is 25 μm or less. In order to realize the above characteristics, the bearing steel is subjected to carbonitriding and hard shot peening (see Patent Document 2).
[0008]
(3) A cam follower shaft in which a solid lubricating film such as a polymer compound is formed on the shaft to improve the wear resistance of the shaft (see Patent Document 3).
[0009]
(4) A cam follower shaft made of tool steel or the like and hardened by ion nitriding or ion plating at a temperature lower than the tempering temperature (see Patent Document 4).
[0010]
(5) A bearing for a cam follower device for a valve train mechanism in an engine in which bending stress on a shaft is regulated to 150 MPa or less (see Patent Document 5).
[0011]
(6) A cam follower for a valve operating mechanism of an engine in which a phosphate film having excellent lubricating oil retention properties is provided on a rolling surface of a bearing component (see Patent Documents 6 and 7).
[0012]
(7) A cam follower for a valve train of an engine having a crowned rolling region of a shaft (see Patent Document 8).
[0013]
(8) The surface layer constituting the rolling surface of the shaft is subjected to a high-concentration carburizing treatment or a carbonitriding treatment in order to make the carbon concentration 1.2% to 1.7%, and the hardness inside is set to about HV300. Shaft (see Patent Document 9).
[0014]
[Patent Document 1]
JP 2000-38907 A
[Patent Document 2]
JP-A-10-47334
[Patent Document 3]
JP-A-10-103339
[Patent Document 4]
JP-A-10-110720
[Patent Document 5]
JP 2000-38906 A
[Patent Document 6]
JP 2000-205284 A
[Patent Document 7]
JP-A-2002-312212
[Patent Document 8]
JP-A-63-185917 [0022]
[Patent Document 9]
JP-A-14-194438
[Problems to be solved by the invention]
In the future, full-roller bearings such as rocker arms, roller followers, and cam followers are expected to increase the speed of use, increase the load, and reduce the viscosity of lubricating oil, similar to ordinary bearings using cages. You. In order to prolong the rolling life of a full-roller type bearing under such use conditions, not only (a1) a measure in the normal load-dependent rolling fatigue life, but also (a2) slipping and oil film breakage. It is also necessary to take measures against the surface damage life due to metal contact caused by the above. However, there has been no technique for significantly extending both the load-dependent rolling fatigue life and the life of surface damage due to metal contact. In addition, in the full-roller type bearing, it is necessary to provide (a3) a measure for shortening the life caused by roller interference and skew peculiar to the full-roller bearing in addition to the above two kinds of measures for extending the life.
[0024]
In the above-mentioned known technology, the rolling life is improved by increasing the hardness and the compressive stress, or the rolling surface with the mating member is improved. However, when actually evaluated, it is effective for extending the life of applications where bending acts like the outer ring, but such improvement alone is not necessarily effective for extending the life of the inner ring and rollers of full roller bearings. Could not be raised.
[0025]
The present invention is a full-roller type that can be applied to high speed and large load during use, low viscosity of lubricating oil, and can exhibit long life even under severe use conditions in lubrication condition, slip condition and load condition. An object of the present invention is to provide a rolling bearing.
[0026]
[Means for Solving the Problems]
The full-roller type rolling bearing of the present invention includes a steel outer ring, an inner ring, and a roller, and at least one of the outer ring, the inner ring, and the roller includes a carbonitrided layer on a surface layer, and the austenite grain size of the surface layer is a specified value. That is all.
[0027]
The full-roller type rolling bearing of the present invention is made of a material having a small crystal grain size and heat resistance, thereby improving both the life of surface damage (peeling, smearing and other surface-originated peeling) and the life of internal-origin peeling. Can be done. Specifically, a carbonitrided structure in which austenite grain size of at least a certain value, for example, grain size number 9 or more, or, in certain cases, 11 or more, is ensured by devising the processing or heat treatment pattern of a material such as bearing steel. . By obtaining such a structure, the generation and extension resistance to cracks can be extremely increased. As a result, surface heat generation due to slippage and generation of surface cracks due to tangential force can be suppressed. Further, in addition to this, it has been found that a considerably long life can be attained even for cracks caused by internal origin type peeling.
[0028]
Based on the above microstructure, further processing or heat treatment is applied to apply a compressive stress to the surface layer and further increase the hardness, thereby further extending the life. These processing and heat treatment include (b1) shot peening, (b2) barrel processing, (b3) rolling, (b4) burnishing, (b5) carburizing + carbonitriding, and (b6) carbonitriding + A method such as sub-zero treatment, (b7) carbonitriding treatment + secondary quenching + sub-zero treatment can be performed as it is or by combining the methods (b1) to (b7).
[0029]
The austenitic crystal grain size being equal to or more than the specified value means that, for example, in the austenitic crystal grain size test method specified in JIS G 0551, for example, the grain size number is 7 or more, 8 or more, 9 or more, 10 or more, 10 or more. Exceeding or limiting the degree of refinement of austenite crystal grains such as 11th or more.
[0030]
Further, at least one of the outer ring, the inner ring and the rollers is subjected to a carbonitriding treatment at a temperature equal to or higher than the A1 transformation point, and thereafter cooled to a temperature lower than the A1 transformation point, and then heated to a quenching temperature lower than the temperature of the carbonitriding treatment. It may be quenched.
[0031]
In such a microstructure, since it is quenched from a quenching temperature lower than the temperature of the carbonitriding process once cooled after the carbonitriding process, very fine austenite crystal grains can be obtained. The process of heating and quenching to a quenching temperature lower than the carbonitriding temperature described above may be referred to as secondary quenching or final quenching from the order of the processes.
[0032]
Further, the quenching temperature may be in a temperature range in which carbides and / or nitrides and an austenitic phase coexist at least in the surface layer of carbonitrided steel.
[0033]
Since the heating temperature at the time of quenching is lower than the heating temperature at the time of carbonitriding, the amount of undissolved carbide and / or nitride in the surface layer at which the effect of carbonitriding is exerted is higher than at the time of carbonitriding. . Therefore, when the quenching temperature is in the above-described coexistence temperature range, the ratio of the amount of undissolved carbide / nitride increases and the ratio of the amount of austenite decreases at the quenching temperature as compared with the case of carbonitriding. In addition, judging from the iron-carbon binary phase diagram, in the coexistence region of carbide (cementite) and austenite, the concentration of carbon dissolved in austenite decreases as the quenching temperature decreases. Since the steel used for the bearing has a low content of other alloying elements such as Si and Mn, it is possible to discuss each temperature region and generated layer with sufficiently high accuracy using an iron-carbon binary phase diagram. it can. In addition, nitrogen, like carbon, forms a solid solution in iron as an interstitial element, and in a predetermined temperature range, forms a nitride with iron similar to cementite. Can be.
[0034]
When heated to the quenching temperature, the austenite grains become fine due to the large amount of undissolved carbides and / or nitrides that hinder the growth of the austenite grains. The structure transformed from austenite to martensite by quenching has a slightly lower carbon concentration in the case of the above heat treatment, and thus has a structure slightly more tough than the structure quenched from the carbonitriding temperature. That is, (c1) an undissolved carbide / nitride having a larger amount than before, and (c2) a quenched structure having a lower carbon concentration than before.
[0035]
The quenching temperature may be 790 ° C to 830 ° C. Applying this temperature range to almost all steel materials can simplify the management of the quenching temperature.
[0036]
In addition, at least one of the outer ring, the inner ring, and the rollers may be subjected to cold working before carbonitriding.
[0037]
By applying such cold working, the nucleation density of austenite grains during heat treatment can be increased, and a fine grain structure can be obtained.
[0038]
The austenite grain size number may be 11 or more. By defining such austenite grain size, it is possible to obtain stable and long rolling fatigue life and surface damage life as extremely fine austenite grains exceeding conventional wisdom. Further, it is possible to sufficiently cope with lowering the viscosity of the lubricating oil.
[0039]
Further, a compressive stress of 500 MPa or more may be formed in at least one of the outer ring, the inner ring, and the rollers.
[0040]
As described above, the working life and the heat treatment can be further performed based on the above microstructure to give a compressive stress to the surface layer, thereby further extending the life.
[0041]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic front view showing a configuration of a rocker arm according to an embodiment of the present invention, and FIG. 2 is a view corresponding to a cross section taken along line II-II of FIG. 1 and 2, the cam follower main body 1 is rotatably supported by a cam follower shaft 5 via a bearing metal or the like at a central portion.
[0042]
An adjusting screw 7 is screwed into one end of the cam follower body 1. The adjusting screw 7 is fixed by a lock nut 8, and a lower end thereof is in contact with an upper end of a projection 9 of an air supply valve or an exhaust valve of the internal combustion engine. The protruding rod 9 is urged by the elastic force of the spring 10.
[0043]
The cam follower main body 1 integrally has a bifurcated roller support portion 14 at the other end. Both ends of the roller shaft 2 are fixed to the bifurcated roller support portion 14 by press-fitting or retaining rings. A roller 4 is rotatably supported at the center of the outer peripheral surface of the roller shaft 2 via a needle roller 3. The outer peripheral surface of the roller 4 is pressed against the cam surface of the cam 6 by the urging force of the spring 10.
[0044]
Here, a rolling bearing composed of an inner ring composed of a roller shaft 2, a rolling element composed of a needle roller 3, and an outer ring composed of a roller 4 is used as a rocker arm bearing. A carbonitrided layer is formed on the surface layer of at least one of the inner ring 2, outer ring 4 and rollers 3 forming the raceway rings of the rocker arm bearing, and the austenitic crystal grain size of the surface layer portion is 9 or more, and in a predetermined case. Are miniaturized to number 11 or more.
[0045]
Since the rocker arm bearing described above rotates while being in contact with the cam 6, the pressing force and the impact force of the cam 6 act on the outer ring 4 to form indentations and cracks due to repeated bending stress. There is. In particular, due to the high power of the engine, when the rotation speed increases, these forces increase, and the risk of cracks and indentations increases, and the rolling life and the surface damage life are shortened.
[0046]
When a large force acts on the bearing to form an indentation, the surface pressure between the inner ring and the rolling element (roller) is usually higher than the surface pressure between the outer ring and the rolling element (roller). Indentations are easily formed on the inner ring. However, when a high surface pressure load is applied while a bending stress is applied to the outer ring as in a cam follower or the like, an impression is easily formed between the outer ring and the rolling element. The present inventors form a carbonitrided layer on the surface layer of at least one of the above-mentioned members, and set the austenite grain size number of the surface layer to, for example, 9 or more, or 11 or more in a predetermined case. Thereby, it was found that the above-mentioned surface damage life and rolling life can be extended. In addition, it has been found that the degree of life extension is further increased by further applying a compressive stress to the surface layer.
[0047]
In order to obtain a carbonitrided layer in which austenite crystal grains are refined, for example, the following method is preferable, but the present invention is not limited thereto. FIG. 3 is a diagram exemplifying a heat treatment method for obtaining a carbonitrided layer in which austenite crystal grains are refined according to the present invention, and FIG. 4 is a diagram illustrating a modification thereof. FIG. 3 is a heat treatment pattern showing a method of performing primary quenching and secondary quenching, and FIG. 4 shows a method of cooling the material to below the A1 transformation point temperature during quenching, and then reheating and finally quenching. It is a heat treatment pattern shown. In these figures, in the treatment T1, after diffusing carbon and nitrogen into the steel base and sufficiently dissolving carbon, the steel is cooled to a temperature lower than the A1 transformation point. Next, in the process T2 in the figure, reheating is performed to a lower temperature than the process T1, and oil quenching is performed from there. In the treatment T1, the surface layer may be heated to a temperature in a region where austenite and carbide and / or nitride coexist. In this coexistence region, the austenite grains are fine and the carbon (nitrogen) concentration in the austenite is slightly low, so that a quenched structure with high toughness can be obtained even when quenched.
[0048]
By the above heat treatment, the surface layer is carbonitrided, the crack strength is improved, and both the surface damage life and the rolling fatigue life are improved, rather than the normal quenching, that is, the quenching treatment is performed once as it is after the carbonitriding treatment. Can be. Further, it is possible to cope with the reduction of the viscosity of the lubricating oil. According to the heat treatment method described above, a microstructure in which the grain size of austenite crystal grains is equal to or less than half of the conventional size can be obtained. The bearing component that has been subjected to the above heat treatment has a long life with respect to the rolling fatigue and the surface damage life, and can cope with a reduction in viscosity.
[0049]
FIG. 5 is a view showing a microstructure of a bearing component, particularly, austenite grains. FIG. 5A shows a bearing part according to the present invention, and FIG. 5B shows a conventional bearing part. That is, FIG. 5A shows the austenite grain size of the bearing steel to which the heat treatment pattern shown in FIG. 3 is applied. For comparison, FIG. 5B shows the austenitic crystal grain size of the bearing steel by the conventional heat treatment method. 6 (a) and 6 (b) show austenite grain sizes illustrating FIGS. 5 (a) and 5 (b). From the structure showing the austenite grain size, the conventional austenite grain size is No. 10 in JIS standard grain size number, and according to the heat treatment method of the present invention, No. 12 fine grains can be obtained. The average particle diameter in FIG. 5A was 5.6 μm as measured by the intercept method. When the quenching temperature is 830 ° C., the average particle size is about 8 μm.
[0050]
【Example】
The bearing used for the test is a full-roller type needle bearing. The inner ring (shaft) has an outer diameter of 14.64 mm × width 17.3 mm, the outer ring has an inner diameter of 18.64 mm × outer diameter 24 mm × width 6.9 mm, and the rollers have a diameter of 2 mm × length 6.8 mm. Twenty-six rollers were used, and all rollers were used. The basic dynamic load rating of this bearing is 8.6 kN, and the basic static load rating is 12.9 kN. Here, all the bearings were basically made of the same combination of materials, but some of the bearings were also manufactured by combining the materials or adding processing.
[0051]
Table 1 shows a list of the manufactured products. The breakdown of the sample is as follows. Unless otherwise stated, the same heat treatment and processing were applied to the inner ring, the outer ring and the rollers.
[0052]
[Table 1]
Figure 2004137553
[0053]
No. 1: A bearing steel that has been subjected to strong cold working in advance to make the crystal grains after heat treatment fine, and further subjected to carbonitriding (Example of the present invention).
No. 2: Bearing steel is carbonitrided, quenched once, and then subjected to secondary quenching at a temperature lower than the carbonitriding temperature (Example of the present invention).
No. 3: Carburized steel carburized + carbonitrided, quenched, and then subjected to secondary quenching at a low temperature (Example of the present invention).
[0054]
These austenite crystal grain size numbers are No. 1 in the JIS test method described above. It was 11th or more. Based on these, the following processing was performed to form a compressive stress on the surface layer.
No. 4: No. Further, shot peening was further applied to the inner and outer races in the state of No. 1, and the rollers were barrel-processed (example of the present invention).
No. 5: No. In addition, the inner and outer rings were subjected to shot peening and the rollers were subjected to barrel processing in the state of No. 2 (Example of the present invention).
No. 6: No. In the state of No. 3, the inner and outer rings were further subjected to shot peening and the rollers were subjected to barrel processing (example of the present invention).
[0055]
The following were further prepared as having higher surface layer hardness.
No. 7: No. 7 Sub-zero (-196 [deg.] C.) treatment is added to the inner and outer rings in addition to the state of No. 1 (example of the present invention).
No. 8: No. Further, after adding a sub-zero (-196 ° C.) treatment to the inner and outer rings in the state of 1, the inner and outer rings were subjected to shot peening, and the rollers were subjected to barrel processing (example of the present invention).
[0056]
For each element of the inner and outer ring rollers, the following was prepared as an example of applying the above method to the inner ring where rolling life is a problem.
No. 9: Carbonized and nitrided at the inner ring, quenched, and then subjected to secondary quenching at a temperature lower than the carbonitriding temperature, and a standard heat-treated product was used for the outer ring (Example of the present invention) .
No. 10: For the inner and outer rings, use carburized and carbonitrided carbonized steel that has been cooled and then subjected to secondary quenching at a temperature lower than the carbonitriding temperature. (Example of the present invention).
[0057]
As comparative examples, five types shown in the lower column of Table 1 were produced.
No. 11: Both inner and outer races and rollers used standard heat-treated bearing steel (comparative example).
No. 12: Both inner and outer rings and rollers used bearing steel carbonitrided (comparative example).
No. 13: Carburized steel standard carburized product was used for inner and outer rings, and rollers used standard heat-treated bearing steel (comparative example).
No. 14: A case using a secondary hardened product of carburized steel (comparative example).
No. 15: No. In addition to the state of No. 11, the inner and outer rings were subjected to shot peening, and the rollers were subjected to barrel processing (Comparative Example).
[0058]
As the materials of these samples, the crystal grain size, hardness, and tempering hardness at 500 ° C. (a measure of heat resistance) were measured, and the results are shown in Table 1.
[0059]
The above samples were evaluated in the following rolling fatigue test and surface damage strength test.
[0060]
(1) Rolling fatigue test Outer ring (inner diameter 18.64 mm x outer diameter 24 mm x width 6.9 mm), inner ring (shaft) (outer diameter 14.64 mm x width 17.3 mm), and 26 rollers (diameter 2 mm) × length 6.8 mm), and a rolling test was performed under a load of 2.58 kN, which is 30% of the basic dynamic load rating of 8.6 kN. The rolling contact fatigue test device shown in FIG. 7 was used as the test device, and the test conditions were as shown in Table 2. This rolling fatigue test was performed by rotating the outer ring. Table 3 shows the results.
[0061]
[Table 2]
Figure 2004137553
[0062]
[Table 3]
Figure 2004137553
[0063]
Although not shown in Table 3, mainly the rollers or the inner ring peeled off. No. In 9 (Example of the present invention), the outer ring was partially peeled off. Table 3 shows that the examples of the present invention have longer lifespans than the comparative examples, and all have a lifespan about three times that of the standard product and about 1.5 times that of the normal carbonitrided product.
[0064]
(2) Peeling test Table 4 shows the peeling test conditions, and Table 5 shows a list of test samples.
[0065]
[Table 4]
Figure 2004137553
[0066]
[Table 5]
Figure 2004137553
[0067]
No. of the invention example. 1 to No. A peeling test was performed on a total of 13 types of materials (No. 3 and No. 1 to No. 8) obtained by subjecting shot peening and sub-zero to these, and five types of comparative sample (No. 11 to No. 15). Was. A 40 mm diameter test piece (mirror finish) was brought into rolling contact with a rough surface test piece made of SUJ2 under certain conditions, and after a certain period of time, peeling generated on the sample (mirror face) test piece, that is, an aggregate of minute peelings The area ratio was measured. The reciprocal of this area ratio is defined here as the peeling strength, and is expressed as a ratio when the peeling strength of the standard product (Comparative Example No. 11) is set to 1. Table 5 shows the results.
[0068]
According to Table 5, the example of the present invention has a peeling strength 1.5 times or more that of the comparative example. It can be said that the fineness of the crystal grains and a moderate amount of retained austenite increase the toughness against crack generation and extension. In addition, the strengths of all the steels to which the sub-zero processing and the processing are added (No. 4 to No. 8) are improved. It is considered that high hardness and compressive stress suppress peeling crack generation and extension.
[0069]
(3) Smearing test Smearing occurrence strength was examined using a test piece of the same material as the peeling test piece. Table 6 shows the test conditions.
[0070]
[Table 6]
Figure 2004137553
[0071]
Both the test piece and the counterpart test piece were tested using the same material combination. Table 5 shows the results. Here, the evaluation represents the ratio of the rotational speed of the counterpart test piece when smearing occurs to that of the standard product (Comparative Example No. 11). As for smearing, the sample of the present invention has a generation intensity (rotational speed until generation) 1.5 times or more that of the standard product (Comparative Example No. 11), and is higher than those of the other comparative examples. is there. It can be said that the balance between the fineness of the crystal grains, the appropriate amount of retained austenite, and the presence of fine carbides suppresses the plastic flow of the surface layer under large slip conditions, and improves the seizure resistance. The processed steel has a slightly higher strength than the unprocessed steel.
[0072]
(4) Static cracking strength With respect to the samples of the materials shown in Table 5, a load was applied to the outer ring (inner diameter 18.64 mm x outer diameter 24 mm x width 6.9 mm) alone shown in Fig. 8 using an Amsler testing machine, and the cracking strength was measured. . Table 5 shows the results.
[0073]
The crack initiation point is the surface of the ring inner diameter (rolling surface). As shown in Table 5, when carbonitriding treatment is usually performed, Comparative Example No. Although the static cracking strength is reduced as shown in FIG. Sample No. 3 is the same as or slightly improved from the standard heat-treated product, and no decrease in crack strength is observed. Inventive Example Nos. 4-No. In the case of No. 6, the crack strength is uniformly improved. No. No. 7 with the sub-zero processing added, Although the cracking strength was slightly lower than that of No. 1 without the sub-zero treatment, No. 8 shows an improvement.
[0074]
On the other hand, in Comparative Example No. It is probable that the decrease in strength of No. 12 is due to the carbonitriding treatment being performed for a long period of time, resulting in coarsening of crystal grains, and an increase in the amount of retained austenite, resulting in a locally weakened tensile strength structure. No. 13 also has a reduced strength for the same reason.
[0075]
(5) Crack Fatigue Strength In order to examine the crack fatigue strength, the sample outer ring of Table 5 was repeatedly loaded under the conditions of Table 7 to determine the crack fatigue strength. That is, a repetitive load of a predetermined load was applied to the outer ring from 98 N, and the number of repetitions until cracking was compared.
[0076]
[Table 7]
Figure 2004137553
[0077]
Here, multiplied by the repeated load by changing the load conditions, to determine the load to withstand 10 5 iterations. The results are shown in Table 5 as crack fatigue strength ratios. Although the ratio is shown as a ratio to the strength of the standard heat-treated product of the comparative example, the crack fatigue strength of each of the examples of the present invention is significantly improved.
[0078]
With respect to the crack fatigue strength, the invention example No. No. Example No. 3 of the present invention in which a compressive stress was combined with No. 3 and the present invention. 6 showed a good result.
[0079]
From the above results, the lubrication condition is poor, and in the full roller rolling bearing where the short life due to the skew of the rollers and the interference between the rollers is likely to occur, by forming a microstructure including fine crystal grains and an appropriate amount of retained austenite, It has been found that the rolling life can be significantly improved. In addition, since this specification does not impair the cracking strength unlike the conventional carbonitriding treatment, a high-strength, long-life full-rolling bearing can be obtained.
[0080]
The embodiments disclosed this time are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
[0081]
【The invention's effect】
In the full-roller type rolling bearing of the present invention, by arranging a member having a carbonitrided layer composed of fine austenite grains, it is applied to increase the speed and load during use, reduce the viscosity of lubricating oil, Sufficient durability can be ensured.
[Brief description of the drawings]
FIG. 1 is a view showing a rocker arm bearing which is a full-roller type rolling bearing according to an embodiment of the present invention.
FIG. 2 is a sectional view taken along line II-II in FIG.
FIG. 3 is a diagram illustrating a heat treatment method according to the embodiment of the present invention.
FIG. 4 is a diagram illustrating a modification of the heat treatment method according to the embodiment of the present invention.
FIG. 5 is a view showing a microstructure of a bearing component, particularly old austenite grains. (A) is a bearing part of the example of the present invention, and (b) is a conventional bearing part.
6 (a) shows austenite grain boundaries illustrated in FIG. 5 (a), and FIG. 6 (b) shows austenite grain boundaries illustrated in FIG. 5 (b).
FIG. 7 is a schematic view of a rolling fatigue life tester.
FIG. 8 is a view showing a static crack strength test piece.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cam follower main body, 2 roller shaft (inner ring), 3 needle rollers (rolling element), 4 rollers (outer ring), 5 cam follower shaft, 6 cams, 7 adjusting screws, 8 lock nuts, 9 projecting rods, 10 springs, 14 rollers Supporting part, T1 carbonitriding treatment (its heating temperature), T2 quenching treatment (its heating temperature).

Claims (7)

鋼製の外輪、内輪およびころからなる総ころタイプの転がり軸受において、
前記外輪、内輪およびころの少なくとも1つが表層部に浸炭窒化層を備え、その表層部のオーステナイト結晶粒度が規定値以上である、総ころタイプの転がり軸受。
In full-roller type rolling bearings consisting of steel outer rings, inner rings and rollers,
A full-roller type rolling bearing, wherein at least one of the outer ring, the inner ring, and the rollers includes a carbonitrided layer in a surface layer portion, and the austenite crystal grain size in the surface layer portion is equal to or greater than a specified value.
前記外輪、内輪およびころの少なくとも1つが、A1変態点以上で浸炭窒化処理を施され、その後A1変態点未満の温度に冷却された後、前記浸炭窒化処理の温度より低い焼入温度に加熱され焼入れられたものである、請求項1に記載の総ころタイプの転がり軸受。At least one of the outer ring, the inner ring and the rollers is subjected to a carbonitriding treatment at a temperature not lower than the A1 transformation point, and then cooled to a temperature lower than the A1 transformation point, and then heated to a quenching temperature lower than the temperature of the carbonitriding treatment. The full-roller type rolling bearing according to claim 1, wherein the rolling bearing is hardened. 前記焼入温度が、浸炭窒化された鋼の表層部において、炭化物および/または窒化物とオーステナイト相とが共存する温度域である、請求項1または2に記載の総ころタイプの転がり軸受。The full-roller rolling bearing according to claim 1, wherein the quenching temperature is a temperature range in which a carbide and / or a nitride and an austenite phase coexist in a surface layer portion of the carbonitrided steel. 前記焼入温度が790℃〜830℃である、請求項2または3に記載の総ころタイプの転がり軸受。4. The full-roller type rolling bearing according to claim 2, wherein the quenching temperature is 790 ° C. to 830 ° C. 5. 前記外輪、内輪およびころの少なくとも1つにおいて、前記浸炭窒化処理前に冷間加工が施されている、請求項2〜4のいずれかに記載の総ころタイプの転がり軸受。The full-roller type rolling bearing according to any one of claims 2 to 4, wherein at least one of the outer ring, the inner ring, and the rollers is subjected to cold working before the carbonitriding treatment. 前記オーステナイト結晶粒度番号が11番以上である、請求項1〜5のいずれかに記載の総ころタイプの転がり軸受。The full-roller type rolling bearing according to any one of claims 1 to 5, wherein the austenite grain size number is 11 or more. 前記外輪、内輪およびころの少なくとも1つにおいて、500MPa以上の圧縮応力が形成されている、請求項1〜6のいずれかに記載の総ころタイプの転がり軸受。The full-roller type rolling bearing according to any one of claims 1 to 6, wherein a compressive stress of 500 MPa or more is formed in at least one of the outer ring, the inner ring, and the rollers.
JP2002303036A 2002-10-17 2002-10-17 Full-roller type rolling bearing Expired - Lifetime JP3990254B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2002303036A JP3990254B2 (en) 2002-10-17 2002-10-17 Full-roller type rolling bearing
ES03022511T ES2255651T3 (en) 2002-10-17 2003-10-02 BEARING OF INTEGRAL TYPE ROLLERS AND MOTOR ROLLER CAMS FOLLOWERS.
ES05006924T ES2259176T3 (en) 2002-10-17 2003-10-02 ROLLER CAM FOLLOWER FOR AN ENGINE.
EP05006924A EP1548145B1 (en) 2002-10-17 2003-10-02 Roller cam follower for an engine
DE60303849T DE60303849T2 (en) 2002-10-17 2003-10-02 Full complement radial roller bearing and roller cam follower for internal combustion engine
DE60305054T DE60305054T2 (en) 2002-10-17 2003-10-02 Roller cam follower for internal combustion engine
EP03022511A EP1411142B1 (en) 2002-10-17 2003-10-02 Full-type rolling bearing and roller cam follower for engine
CNB2003101015839A CN100398856C (en) 2002-10-17 2003-10-17 Rolling bearing filled with balls and ball cam follower for engine
US10/686,766 US7490583B2 (en) 2002-10-17 2003-10-17 Full-type rolling bearing and roller cam follower for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002303036A JP3990254B2 (en) 2002-10-17 2002-10-17 Full-roller type rolling bearing

Publications (2)

Publication Number Publication Date
JP2004137553A true JP2004137553A (en) 2004-05-13
JP3990254B2 JP3990254B2 (en) 2007-10-10

Family

ID=32450938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002303036A Expired - Lifetime JP3990254B2 (en) 2002-10-17 2002-10-17 Full-roller type rolling bearing

Country Status (2)

Country Link
JP (1) JP3990254B2 (en)
CN (1) CN100398856C (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006001124A1 (en) * 2004-06-25 2006-01-05 Ntn Corporation Rolling bearing
WO2007013422A1 (en) * 2005-07-27 2007-02-01 Thk Co., Ltd. Process for producing motion guide apparatus and motion guide apparatus produced by the process
JP2007177288A (en) * 2005-12-28 2007-07-12 Nsk Ltd Rolling supporting device, and its rolling member manufacturing method
JP2007263792A (en) * 2006-03-29 2007-10-11 Nsk Ltd Test method for radial rolling bearing
JP2009180378A (en) * 2009-05-13 2009-08-13 Ntn Corp Rolling bearing for rocker arm
JP2010510456A (en) * 2006-11-22 2010-04-02 シャエフラー カーゲー Radial roller bearings especially for supporting shafts with wind power transmissions

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006013696A1 (en) 2004-08-02 2006-02-09 Ntn Corporation Rolling bearing for rocker arm
JP2008020003A (en) * 2006-07-13 2008-01-31 Ntn Corp Process for producing track member and valve gear, and track member
US8109247B2 (en) * 2008-05-19 2012-02-07 GM Global Technology Operations LLC Wear resistant camshaft and follower material
DE102013226090A1 (en) * 2013-12-16 2015-06-18 Robert Bosch Gmbh Process for gas nitrocarburizing
DK2899398T3 (en) * 2014-01-28 2016-05-02 Siemens Ag Coated component of a wind turbine
WO2017099071A1 (en) * 2015-12-09 2017-06-15 Ntn株式会社 Shaft for bearing, and bearing

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5456136A (en) * 1991-04-24 1995-10-10 Ntn Corporation Cam follower with roller for use with engine
JP2590645B2 (en) * 1991-09-19 1997-03-12 日本精工株式会社 Rolling bearing
DE4324833C2 (en) * 1992-07-23 1997-06-05 Nsk Ltd Contact surface of a rolling or sliding pairing
US5997988A (en) * 1995-11-21 1999-12-07 Koyo Seiko Co., Ltd. Machine part
JP3752577B2 (en) * 1996-06-26 2006-03-08 光洋精工株式会社 Manufacturing method of machine parts
JP3909902B2 (en) * 1996-12-17 2007-04-25 株式会社小松製作所 Steel parts for high surface pressure resistance and method for producing the same
US6224688B1 (en) * 1997-08-18 2001-05-01 Nsk Ltd. Rolling bearing
US7438477B2 (en) * 2001-11-29 2008-10-21 Ntn Corporation Bearing part, heat treatment method thereof, and rolling bearing

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006001124A1 (en) * 2004-06-25 2006-01-05 Ntn Corporation Rolling bearing
US9033584B2 (en) 2004-06-25 2015-05-19 Ntn Corporation Rolling bearing
WO2007013422A1 (en) * 2005-07-27 2007-02-01 Thk Co., Ltd. Process for producing motion guide apparatus and motion guide apparatus produced by the process
JPWO2007013422A1 (en) * 2005-07-27 2009-02-05 Thk株式会社 Method for manufacturing motion guide device, and motion guide device manufactured using this method
JP2007177288A (en) * 2005-12-28 2007-07-12 Nsk Ltd Rolling supporting device, and its rolling member manufacturing method
JP2007263792A (en) * 2006-03-29 2007-10-11 Nsk Ltd Test method for radial rolling bearing
JP2010510456A (en) * 2006-11-22 2010-04-02 シャエフラー カーゲー Radial roller bearings especially for supporting shafts with wind power transmissions
JP2009180378A (en) * 2009-05-13 2009-08-13 Ntn Corp Rolling bearing for rocker arm

Also Published As

Publication number Publication date
JP3990254B2 (en) 2007-10-10
CN1497194A (en) 2004-05-19
CN100398856C (en) 2008-07-02

Similar Documents

Publication Publication Date Title
US7490583B2 (en) Full-type rolling bearing and roller cam follower for engine
EP1484517B1 (en) Rolling bearing, cam follower with roller, and cam
US6598571B1 (en) Cam follower with roller
JP2004293632A (en) Rolling bearing
JP5168958B2 (en) Rolling shaft
JP3990254B2 (en) Full-roller type rolling bearing
EP1701052A2 (en) Rolling bearing
JP2005195148A (en) Thrust needle roller bearing
JP5163183B2 (en) Rolling bearing
JP5168898B2 (en) Rolling shaft
JP2002180203A (en) Needle bearing components, and method for producing the components
JP5076274B2 (en) Rolling bearing
JP5318528B2 (en) Manufacturing method of cam follower with roller of engine
JP4737954B2 (en) Roller bearing for rocker arm
JP2001187921A (en) Needle roller bearing parts
JP2005337361A (en) Roller bearing
JP2004060807A (en) Rolling bearing
JP2003307223A (en) Rolling bearing and method of manufacture
JP4208797B2 (en) Rolling bearings used for rocker arms
JP2005337362A (en) Full type roller bearing
JP2004278528A (en) Cam follower with roller and steel member of engine
JP2004183589A (en) Cam-follower device
JP4368765B2 (en) Roller bearing for rocker arm
JP4886007B2 (en) Roller bearing for rocker arm
JP4737960B2 (en) Roller bearing for rocker arm

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3990254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110727

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120727

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130727

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term