JP2004137537A - High-strength high-workability induction hardened steel - Google Patents

High-strength high-workability induction hardened steel Download PDF

Info

Publication number
JP2004137537A
JP2004137537A JP2002302246A JP2002302246A JP2004137537A JP 2004137537 A JP2004137537 A JP 2004137537A JP 2002302246 A JP2002302246 A JP 2002302246A JP 2002302246 A JP2002302246 A JP 2002302246A JP 2004137537 A JP2004137537 A JP 2004137537A
Authority
JP
Japan
Prior art keywords
strength
machinability
workability
steel
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002302246A
Other languages
Japanese (ja)
Inventor
Takayuki Katsura
桂 隆之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2002302246A priority Critical patent/JP2004137537A/en
Publication of JP2004137537A publication Critical patent/JP2004137537A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide steel products which are improved in the fatigue strength of non-hardened portions and the rolling strength, pitting resistant strength, wear resistance, fatigue strength, etc., of hardened portions while minimizing the hardness increase of after forging and assuring machinability and cold workability. <P>SOLUTION: The high-strength high-workability induction hardened steel which is steel containing, by mass %, 0.5 to 0.7% C, 0.5 to 1.0% Si, 0.5 to 1.0% Mn, ≤0.4% Cr, ≤0.035% S, 0.01 to 0.15% V, > 0.015 to <0.050% Al, and >0.010 to <0.025% N, and consisting of the balance Fe and inevitable impurities, is used by induction hardening part of components after forging and has the excellent machinability within a range from 0.5 to 0.7% C. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、等速ジョイント、ハブユニット等、鋼材を鍛造成形した後、部品の一部を高周波焼入れして用いられる鋼に関する。
【0002】
【従来の技術】
例えば、等速ジョイント、ハブユニット等の部品は、鋼材を冷間鍛造、温間鍛造あるいは熱間鍛造またはこれらの組み合わせにて成形し、特に強度の必要な部分には高周波焼入れしている。このような用途には、JIS−S53C(非特許文献1参照)、SAE1055(非特許文献2参照)、SAE1070(非特許文献3参照)等の鋼材が主に用いられている。
【0003】
しかし、近年の使用環境の過酷化、あるいは軽量化を目指した小型化、薄肉化のため、従来の焼入れ硬化部は一層の耐転がり強度、耐摩耗性、疲労強度が求められるだけでなく、従来では鍛造上がりの強度で十分であった非硬化部の疲労強度向上も求められるようになっている。また、これらの部品は鍛造後に切削加工を受ける部位が多く、近年ますます強くなる加工コスト低減の要求から、被削性の向上も強く求められる。
【0004】
このような要求に対し、C、Si、Crの増量や、Mo等の添加により、焼入れ部に求められる特性を向上させるとともに、非硬化部の硬度上昇により、非硬化部の疲労強度を上昇させる対策が考えられる。しかしながら、これらの部品は鍛造後に切削加工を受け、冷間加工を受ける場合もあることから、いたずらに非硬化部の硬度を上げることは切削加工、冷間加工で不利となるだけでなく、Cr、Moの添加は素材費の上昇にもつながる。また、非硬化部の疲労強度向上に対しては、疲労強度不足部に焼入れを行う対策が考えられるが、部品製造工程数の増加につながり、製造コストが上昇するという問題点がある。したがって、鍛造上がりの硬さの上昇をできるだけ抑えて非硬化部の被削性、冷間加工性を確保しながら、非硬化部の疲労強度上昇および硬化部の要求特性向上を同時に達成することが、これらの部品に使用される材料の課題となる。
【0005】
【特許文献1】
特開2002−226938
【非特許文献1】
JIS G 4051、機械構造用炭素鋼鋼材、S53C
【非特許文献2】
SAE No.1055(自動車技術者協会規格、アメリカ)
【非特許文献3】
SAE No.1070(自動車技術者協会規格、アメリカ)
【0006】
【発明が解決しようとする課題】
本発明は、上記の課題を解決するためのものであり、鍛造上がりの硬さ上昇を最小限に抑え、被削性、冷間加工性を確保しながら、非硬化部の疲労強度、硬化部の耐転がり強度、耐ピッチング強度、耐摩耗性、疲労強度等を向上させた鋼材を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の上記課題を解決するための手段は、請求項1の発明では、質量%で、C:0.5〜0.7%、Si:0.5〜1.0%、Mn:0.5〜1.0%、Cr:0.4%以下、S:0.035%以下、V:0.01〜0.15%、Al:0.015超〜0.050%未満、N:0.010超〜0.025%未満を含有し、残部Feおよび不可避不純物からなり、鍛造後に部品の一部を高周波焼入れして使用することを特徴とする被削性に優れた高強度高加工性高周波焼入用鋼である。
【0008】
なお、請求項1の手段において、鋼成分のC量およびSi量は、さらに減縮して、望ましい範囲として、C:0.5〜0.6%、Si:0.7〜0.9%とする。
【0009】
請求項2の発明では、請求項1の手段の高強度高加工性高周波焼入用鋼において、炭素当量式を(1)式で表すとき、炭素当量:Ceqは(2)式を満足することを特徴とする高強度高加工性高周波焼入用鋼である。
【0010】
【数4】
eq=C%+1/7Si%+1/5Mn%+1/9Cr%−5/7S%+V%    (1)
【0011】
【数5】
0.75≦Ceq≦0.90       (2)
【0012】
請求項3の発明では、請求項1の手段の高強度高加工性高周波焼入用鋼において、(3)式を満足することを特徴とする高強度高加工性高周波焼入用鋼である。
【0013】
【数6】
0.013≦0.34Al%+0.66N%≦0.030   (3)
【0014】
本発明における鋼成分の限定理由を説明する。なお、%は質量%で示す。
【0015】
C:0.5〜0.7%、望ましくは0.5〜0.6%
Cは、焼入性を確保するための元素で、通常の高周波焼入れ焼戻しにより硬さ60HRC以上を確保するために、C量の下限を0.5%とする。また、0.7%を超えると、焼入れ時に残留オーステナイトが多く発生するようになり、硬さに対するC増量の効果が小さくなる。さらに、組織的には非焼入れ部の初析フェライト量が消滅し、被削性が大きく低下する。そこでC:0.5〜0.7%とする。ところで、特に高い硬さが要求される場合を除いては、初析フェライトを十分に残し、狙いの炭素当量:Ceqに対し、他の合金元素添加の余地を残すため、0.5〜0.6%が望ましい。
【0016】
Si:0.5〜1.0%、望ましくは0.7〜0.9%
Si量は本発明において最も重要な役割を果たすもので、非硬化部の硬さの上昇を最小限に抑えながら、疲労強度、被削性を向上させ、さらに硬化部の耐転がり強度、耐ピッチング強度、耐摩耗性、疲労強度の向上に寄与する。硬化部の耐転がり強度、耐ピッチング強度、耐摩耗性、疲労強度に対しては0.5%以上で効果があり、1.0%を超えると効果は飽和する。そこでSi:0.5〜1.0%とする。ただし、被削性に関しては、0.7〜0.9%が最も優れるので、望ましくは0.7〜0.9%とする。
【0017】
Mn:0.5〜1.0%、望ましくは0.6〜1.0%
Mn量を低下させると、高周波焼入れの短時間加熱によるオーステナイト化が不十分となり、十分な焼入れ硬さが得られない。本発明鋼の範囲では0.5%以上が最低限必要となる。0.6%以上が望ましい。また、Mnの増量は非硬化部の疲労強度を向上させるが、初析フェライトを減少させ、被削性を著しく低下させるため、1.0%を上限とする。そこでMn:0.5〜1.0%、望ましくは0.6〜1.0%とする。
【0018】
S:0.035%以下
Sは被削性を向上させる元素で、添加量を増やすと被削性には有利であるが、非金属介在物であるMnSを生成するため、耐転がり強度を低下する。したがって、耐転がり強度への影響が見られない0.035%を上限とする。
【0019】
Cr:0.4%以下
Crは、焼入れ性、鍛造硬さを調整するために添加量を調整して添加すればよいが、セメンタイト中に濃縮し、焼入れ前の加熱の際、炭素のマトリックスへの固溶を阻害する。高周波焼入れの短時間加熱ではこれが問題となるため、0.4%以下とする。
【0020】
V:0.01〜0.15%
VはSiと並んで、本発明において重要な役割を果たし、非硬化部の疲労強度の向上と被削性の向上に寄与する元素である。V添加により、組織中の最弱部である初析フェライトがVCの析出硬化により強化され、疲労強度が向上する。また、V添加より生成するVNを核として初析フェライトが安定して球状に析出し、被削性を大幅に向上させる。C:0.5%以下ではVの添加にかかわらず、初析フェライトが層状であっても十分な量析出するため、V添加による被削性向上効果はほとんど無い。一方、C:0.7%以上ではVを添加しても初析フェライトがほとんど析出しないため、被削性向上効果は無い。層状の初析フェライトがわずかに析出し、被削性に対して不十分な領域であるC:0.5〜0.7%の範囲においてのみ、Vを添加し、球状の初析フェライトを安定的に析出させることで被削性を向上させることができる。V:0.01%未満ではその効果が飽和するので、V:0.15%を超えてもその効果は変わらないので、V:0.01〜0.15%とする。
【0021】
Al:0.015超〜0.050%未満
AlはNと化合して、AlNとして鋼中に析出する。温間あるいは熱間鍛造時において、このAlNのピンニング効果により結晶粒の粗大化が防止できる。Al:0.015%以下ではその効果が十分には得られず、Al:0.050%以上では靱性を劣化させるので、Al:0.015超〜0.050%未満とする。
【0022】
N:0.010超〜0.025%未満
NはAlと化合して、AlNとして鋼中に析出する。温間あるいは熱間鍛造時において、このAlNのピンニング効果により結晶粒の粗大化が防止できる。N:0.010%以下ではその効果が十分には得られず、N:0.025%以上ではその効果が飽和するので、N:0.010超〜0.025%未満とする。
【0023】
0.75≦Ceq≦0.90とする理由
熱間鍛造、温間鍛造の硬さは、炭素当量:Ceqで予測できる。鍛造後の硬さは高いほど疲労強度には有利であるが、加工に対しては不利となる。本発明鋼の範囲付近で、炭素当量と熱間鍛造硬さの関係を実験にて確認したところ、図9に示すような関係が得られた。炭素当量を0.75≦Ceq≦0.90とすることで、非焼入れ部の疲労強度と通常の加工方法による加工性が両立できる19.5〜26.5HRCとなる。したがって、この炭素当量:Ceqの範囲の成分とすることで、加工性と疲労強度が両立する鋼を確実に得ることができ、特に加工工程中に熱間鍛造を含む場合には、この範囲となることが多い。
【0024】
0.013≦0.34Al%+0.66N%≦0.030とする理由
温間鍛造時あるいは熱間鍛造時において、上記の式の範囲とすることでAlNのピンニング効果により結晶粒の粗大化が抑制できる。この鍛造時に析出しているAlN量が多いほど、結晶粒は小さくなる。結晶粒微細化により非硬化部の疲労強度、及び加工性を向上させることが可能である。鍛造時に析出しているAlN量は0.34Al%+0.66N%から求めることができる。これが0.013未満では結晶粒粗大化抑制効果がほとんどなく、0.030を超えるものではその効果が飽和するので、0.34Al%+0.66N%の値を0.013〜0.030とする。
【0025】
【発明の実施の形態】
以下に本発明の実施の形態を実施例を通じて説明する。100kg真空誘導炉(VIM)にて下記の表1、表2、表3に示す成分の供試鋼を溶製する。なお、表1〜表3の供試鋼の化学成分におけるP、Ni、Mo、Oは不純物として不可避的に含有されるものである。得られた鋼を熱間鍛造により所定の寸法に鍛伸し、旋削加工にてそれぞれ実施例の試験片に加工する。
【0026】
【実施例】
上記の供試鋼において、表1のヒート1〜10の10種は図1に示すC量における評価に使用の供試鋼で、ヒート8、ヒート9、ヒート10は本発明の望ましいC量の範囲から外れるものである。さらに表1のヒート11〜23の13種は図2、図3、図4に示すSi量における評価に使用の供試鋼で、ヒート11〜16は本発明のSi量の範囲より少なく、ヒート22および23は本発明のSi量の範囲より多く外れるものを示す。
【0027】
【表1】

Figure 2004137537
【0028】
さらに、表2のヒート24〜35の12種は図5、図6、図7に示すMn量における評価に使用の供試鋼で、ヒート24〜26は本発明のMn量の範囲より少なく、ヒート33〜35は本発明のMn量の範囲より多く外れるものである。さらに、表2のヒート36〜43の8種は図8のS量における評価に使用の供試鋼でヒート42および43は本発明のS量の範囲より多く外れるものである。
【0029】
【表2】
Figure 2004137537
【0030】
さらに、表3のヒート44〜51の8種は図9、図10に示すV量における評価に使用の供試鋼である。ヒート44は本発明のV量の範囲より少なく、ヒート50および51は本発明のV量の範囲より多く外れるものである。さらに、表3のヒート52〜62の11種は図11、12における評価に使用の供試鋼で、ヒート52〜54はAl、N量のいずれかが本発明のAl、N量の範囲より少なく外れるもので、ヒート61および62はAl、N量のいずれかが本発明のAl、N量の範囲より多く外れるものである。
【0031】
【表3】
Figure 2004137537
【0032】
以上の各ヒートの供試鋼におけるそれぞれの試験片を作製して以下の試験を行い、それぞれの結果を各図に示す。
【0033】
▲1▼被削性(ドリル寿命試験)
φ30mmの熱間鍛造材をフライス盤にて24×18×300mmの角材に加工し、ドリル穿孔試験を行い、ドリル寿命までの穿孔数で被削性を評価した。試験条件は各図に示すように、ドリル径:φ5mm、ドリル材質:SKH51、切削速度:20m/min、送り:0.2mm/rev、切削油:なし(乾式)、穿孔深度:15mm、評価方法:穿孔不能までの穴数である。
図1に見られるように、C量の上昇につれて被削性は低下し、0.6%を超えると急激に低下する。
図4に見られるように、Si量は1%以下では被削性への影響は小さいが、0.7〜0.9%が最も優れる。1%を超えると被削性は急激に低下する。
図7に見られるように、Mn量の増加とともに被削性は低下する。1%を超えると特に低下が著しい。
図10に見られるように、Vを添加することにより被削性は向上する。ただし、0.15%を超えると被削性は低下する。
図12に見られるように、Al、N量の増加と共に被削性は向上する。ただし、0.34Al%+0.66N%=0.030程度でその効果は飽和する。
【0034】
▲2▼疲労試験(回転曲げ疲労試験)
φ20mmの熱間鍛造材を旋削にて試験部φ8mmの回転曲げ疲労試験片に加工し、回転曲げ疲労試験を行い疲労強度で評価した。
図2に見られるように、Si量の増加とともに疲労強度は向上する。
図5に見られるように、Mn量の増加とともに疲労強度は向上する。
図9に見られるように、V量の増加とともに疲労強度は向上する。
さらに図11に見られるようにAl、N量の増加とともに疲労強度は向上する。
【0035】
▲3▼転がり寿命試験(ラジアル荷重)
φ20mmの鍛造材よりφ12mm×22mmの試験片を旋削により加工し、高周波焼入れ焼戻し後、表面研磨して転がり寿命試験を、図3に示すように、Pmax:5880MPa、荷重:ラジアル方向、温度:室温の各条件にて行い、L10寿命で評価した。図3に示すように、Si量増加とともに転がり寿命は向上するが、0.5%以上で効果が大きい。
【0036】
▲4▼転がり寿命試験(スラスト荷重)
φ65mmの鍛造材よりφ60×7.2mmの試験片を旋削により加工し、高周波焼入れ焼戻し後、表面研磨して転がり寿命試験を、図8に示すように、Pmax=5292MPa、荷重:スラスト方向、温度:室温の条件で行い、L10寿命で評価した。図8に示すように、S量が、0.035%を超えると転がり寿命は低下し始める。
【0037】
▲5▼短時間加熱焼入れ試験
φ30mmの熱間鍛造材からφ3×10mmを切り出し、1000℃−1secにて加熱後、ヘリウムガスにより急冷し、焼入れ硬さを測定した。図6に見られるように、Mn量0.4%未満では、十分にオーステナイト化せず、硬さが不十分であった。
【0038】
【発明の効果】
以上に説明したように、本発明は、鋼成分においてC量、Mn量を加工性を悪化させない範囲にとどめ、Si量およびN量を増加して高強度化させ、AlN量を増加して結晶粒を微細化することで、鍛造上がりの硬さ上昇を最小限に抑え、被削性、冷間加工性を確保しながら、非硬化部の疲労強度を向上させ、さらに硬化部の耐転がり強度、転がり寿命、耐ピッチング強度、耐摩耗性、疲労強度等を向上させ、鍛造後に部品の一部を高周波焼入れして使用する高強度高加工性高周波焼入用鋼材で、従来にない優れた特性を有するものである。
【図面の簡単な説明】
【図1】ドリル穿孔試験における鋼材のC量と穿孔数の関係による被削性を示すグラフである。
【図2】回転曲げ疲労試験によるSi量と疲労強度の関係を示すグラフである。
【図3】ラジアル方向の荷重における転がり寿命試験におけるSi量とL10寿命の関係を示すグラフである。
【図4】ドリル穿孔試験における鋼材のSi量と穿孔数の関係による被削性を示すグラフである。
【図5】回転曲げ疲労試験によるMn量と疲労強度の関係を示すグラフである。
【図6】短時間加熱焼入れ試験におけるMn量と焼入れ硬さの関係を示すグラフである。
【図7】ドリル穿孔試験における鋼材のMn量と穿孔数の関係による被削性を示すグラフである。
【図8】スラスト方向の荷重における転がり寿命試験におけるS量とL10寿命の関係を示すグラフである。
【図9】回転曲げ試験によるV量と疲労強度の関係を示すグラフである。
【図10】ドリル穿孔試験における鋼材のV量と穿孔数の関係による被削性を示すグラフである。
【図11】回転曲げ試験によるAl、N量と疲労強度の関係を示すグラフである。
【図12】ドリル穿孔試験における鋼材のAl、N量と穿孔数の関係による被削性を示すグラフである。
【図13】炭素当量と熱間鍛造硬さの関係を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to steel that is used by forging a steel material, such as a constant velocity joint or a hub unit, and then induction hardening a part of the component.
[0002]
[Prior art]
For example, components such as a constant velocity joint and a hub unit are formed by cold forging, warm forging, hot forging or a combination thereof, and induction hardening is applied to a part particularly requiring strength. For such applications, steel materials such as JIS-S53C (see Non-Patent Document 1), SAE1055 (see Non-Patent Document 2), and SAE1070 (see Non-Patent Document 3) are mainly used.
[0003]
However, in recent years, due to the severer use environment or the miniaturization and thickness reduction aiming at weight reduction, the conventional quenched and hardened part not only requires more rolling resistance, wear resistance, fatigue strength, but also Thus, improvement in the fatigue strength of the non-hardened portion where the strength after forging was sufficient has been required. In addition, many of these parts are subjected to cutting after forging, and in recent years demands for ever-increasing cutting costs have led to a strong demand for improved machinability.
[0004]
In response to such demands, the properties required for the quenched portion are improved by increasing the amount of C, Si, Cr, and the addition of Mo, and the fatigue strength of the non-hardened portion is increased by increasing the hardness of the non-hardened portion. Countermeasures are possible. However, since these parts are subjected to cutting and cold working after forging, it is not only disadvantageous to increase the hardness of the unhardened part by cutting and cold working, but also to The addition of Mo also leads to an increase in material costs. In order to improve the fatigue strength of the non-hardened portion, a countermeasure of quenching the fatigue-strength-deficient portion is conceivable. However, this leads to an increase in the number of component manufacturing steps and an increase in manufacturing cost. Therefore, it is possible to simultaneously increase the fatigue strength of the non-hardened part and improve the required characteristics of the hardened part while securing the machinability and cold workability of the non-hardened part by minimizing the increase in hardness after forging. Thus, the material used for these components becomes an issue.
[0005]
[Patent Document 1]
JP-A-2002-226938
[Non-patent document 1]
JIS G 4051, carbon steel for machine structure, S53C
[Non-patent document 2]
SAE No. 1055 (Standard of the Society of Automotive Engineers, USA)
[Non-Patent Document 3]
SAE No. 1070 (Automotive Engineers Association Standard, USA)
[0006]
[Problems to be solved by the invention]
The present invention is intended to solve the above-mentioned problems, and minimizes the rise in hardness of forged parts, and ensures machinability and cold workability while maintaining the fatigue strength of uncured parts and the hardened parts. An object of the present invention is to provide a steel material having improved rolling resistance, pitting resistance, wear resistance, fatigue strength and the like.
[0007]
[Means for Solving the Problems]
Means for solving the above-mentioned problems of the present invention are, in the invention of claim 1, C: 0.5 to 0.7%, Si: 0.5 to 1.0%, and Mn: 0. 5 to 1.0%, Cr: 0.4% or less, S: 0.035% or less, V: 0.01 to 0.15%, Al: more than 0.015 to less than 0.050%, N: 0 High strength and high workability with excellent machinability characterized by containing more than 0.010% to less than 0.025%, the balance being Fe and unavoidable impurities, and using a part of a part after forging by induction hardening. Steel for induction hardening.
[0008]
In the means of claim 1, the C content and the Si content of the steel component are further reduced, and as desirable ranges, C: 0.5 to 0.6% and Si: 0.7 to 0.9%. I do.
[0009]
According to the second aspect of the present invention, in the high-strength and high-workability induction hardening steel of the first aspect, when the carbon equivalent formula is represented by the formula (1), the carbon equivalent: C eq satisfies the formula (2). It is a high strength, high workability induction hardening steel characterized by the above.
[0010]
(Equation 4)
C eq = C% + / Si% + MnMn% + 99Cr% −5 / 7S% + V% (1)
[0011]
(Equation 5)
0.75 ≦ C eq ≦ 0.90 (2)
[0012]
According to a third aspect of the present invention, there is provided the high-strength high-workability induction hardening steel according to the first aspect, wherein the high-strength high-workability induction hardening steel satisfies the expression (3).
[0013]
(Equation 6)
0.013 ≦ 0.34Al% + 0.66N% ≦ 0.030 (3)
[0014]
The reasons for limiting the steel components in the present invention will be described. In addition,% is shown by mass%.
[0015]
C: 0.5 to 0.7%, desirably 0.5 to 0.6%
C is an element for securing hardenability, and the lower limit of the amount of C is set to 0.5% in order to secure hardness of 60 HRC or more by ordinary induction hardening and tempering. On the other hand, if it exceeds 0.7%, a large amount of retained austenite is generated during quenching, and the effect of increasing C on hardness becomes small. Further, structurally, the amount of pro-eutectoid ferrite in the unquenched portion disappears, and the machinability is greatly reduced. Therefore, C is set to 0.5 to 0.7%. However, except in cases where particularly high hardness is required, sufficiently leave pro-eutectoid ferrite, the aim carbon equivalent of: to C eq, to leave room for other alloying elements added, 0.5 to 0 0.6% is desirable.
[0016]
Si: 0.5 to 1.0%, desirably 0.7 to 0.9%
The Si content plays the most important role in the present invention, and improves the fatigue strength and machinability while minimizing the increase in hardness of the non-hardened part, and further improves the rolling resistance and pitting resistance of the hardened part. It contributes to the improvement of strength, wear resistance and fatigue strength. The effect on the rolling resistance, pitting resistance, wear resistance, and fatigue strength of the hardened portion is 0.5% or more, and the effect is saturated when it exceeds 1.0%. Therefore, Si is set to 0.5 to 1.0%. However, regarding the machinability, 0.7-0.9% is the best, so it is desirably 0.7-0.9%.
[0017]
Mn: 0.5 to 1.0%, desirably 0.6 to 1.0%
If the amount of Mn is reduced, austenitization by short-time heating in induction quenching becomes insufficient, and sufficient quenching hardness cannot be obtained. At least 0.5% is required in the range of the steel of the present invention. 0.6% or more is desirable. Further, increasing the amount of Mn improves the fatigue strength of the unhardened portion, but decreases the amount of proeutectoid ferrite and significantly reduces machinability, so the upper limit is 1.0%. Therefore, Mn: 0.5 to 1.0%, desirably 0.6 to 1.0%.
[0018]
S: 0.035% or less S is an element that improves machinability, and increasing the amount of addition is advantageous for machinability, but generates MnS, which is a non-metallic inclusion, and therefore reduces the rolling resistance. I do. Therefore, the upper limit is 0.035% at which no effect on rolling resistance is observed.
[0019]
Cr: 0.4% or less Cr may be added by adjusting the addition amount in order to adjust hardenability and forging hardness. However, it is concentrated in cementite, and when heated before quenching, it becomes a carbon matrix. Inhibits solid solution. Since this poses a problem in short-time heating by induction hardening, the content is set to 0.4% or less.
[0020]
V: 0.01 to 0.15%
V, along with Si, plays an important role in the present invention, and is an element that contributes to the improvement of the fatigue strength of the non-hardened portion and the machinability. By the addition of V, proeutectoid ferrite, which is the weakest part in the structure, is strengthened by precipitation hardening of VC, and fatigue strength is improved. In addition, proeutectoid ferrite is stably deposited in a spherical shape with VN generated by V addition as a nucleus, thereby greatly improving machinability. C: At 0.5% or less, irrespective of the addition of V, a sufficient amount of proeutectoid ferrite is precipitated even in the form of a layer, so that the addition of V has little effect on machinability. On the other hand, when C is 0.7% or more, proeutectoid ferrite hardly precipitates even if V is added, and thus there is no effect of improving machinability. Layered proeutectoid ferrite is slightly precipitated, and C is an area insufficient for machinability. C: V is added only in the range of 0.5 to 0.7% to stabilize spherical proeutectoid ferrite. Machinability can be improved by precipitating uniformly. If V is less than 0.01%, the effect is saturated, and if V exceeds 0.15%, the effect is not changed. Therefore, V is set to 0.01 to 0.15%.
[0021]
Al: more than 0.015 to less than 0.050% Al combines with N and precipitates in steel as AlN. During warm or hot forging, the AlN pinning effect can prevent crystal grains from becoming coarse. If Al: 0.015% or less, the effect cannot be sufficiently obtained, and if Al: 0.050% or more, the toughness is deteriorated. Therefore, Al: more than 0.015 to less than 0.050%.
[0022]
N: more than 0.010 to less than 0.025% N combines with Al and precipitates in steel as AlN. During warm or hot forging, the AlN pinning effect can prevent crystal grains from becoming coarse. If the content of N is 0.010% or less, the effect cannot be sufficiently obtained, and if the content of N is 0.025% or more, the effect is saturated. Therefore, the content of N is more than 0.010 to less than 0.025%.
[0023]
Reason for 0.75 ≦ C eq ≦ 0.90 The hardness of hot forging and warm forging can be predicted by carbon equivalent: C eq . The higher the hardness after forging, the better the fatigue strength, but it is disadvantageous for working. When the relationship between the carbon equivalent and the hot forging hardness was confirmed by experiments near the range of the steel of the present invention, the relationship shown in FIG. 9 was obtained. By setting the carbon equivalent to 0.75 ≦ C eq ≦ 0.90, it becomes 19.5 to 26.5 HRC in which the fatigue strength of the non-quenched portion and the workability by a normal processing method can be compatible. Therefore, by setting the component in the range of the carbon equivalent: C eq , it is possible to reliably obtain a steel having both workability and fatigue strength. Particularly, when hot forging is included in the working process, this range is used. Often becomes.
[0024]
0.013 ≦ 0.34Al% + 0.66N% ≦ 0.030 Reasons for setting during the warm forging or hot forging, by setting the range of the above formula, the pinning effect of AlN increases the grain size. Can be suppressed. The larger the amount of AlN precipitated during the forging, the smaller the crystal grains. It is possible to improve the fatigue strength and workability of the unhardened portion by making the crystal grains fine. The amount of AlN precipitated during forging can be determined from 0.34 Al% + 0.66 N%. If it is less than 0.013, there is almost no effect of suppressing grain coarsening, and if it exceeds 0.030, the effect is saturated. Therefore, the value of 0.34 Al% + 0.66 N% is set to 0.013 to 0.030. .
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described through examples. In a 100 kg vacuum induction furnace (VIM), test steels having the components shown in Tables 1, 2 and 3 below are melted. In addition, P, Ni, Mo, and O in the chemical components of the test steels in Tables 1 to 3 are inevitably contained as impurities. The obtained steel is forged to a predetermined size by hot forging, and each is processed into a test piece of the example by turning.
[0026]
【Example】
In the test steels described above, ten types of heats 1 to 10 in Table 1 are test steels used for evaluation at the C amount shown in FIG. 1, and heat 8, heat 9, and heat 10 have the desired C amount of the present invention. Out of range. Further, 13 types of heats 11 to 23 in Table 1 are test steels used for the evaluation of the amount of Si shown in FIGS. 2, 3, and 4, and heats 11 to 16 are smaller than the range of the amount of Si of the present invention. Reference numerals 22 and 23 denote those out of the range of the amount of Si of the present invention.
[0027]
[Table 1]
Figure 2004137537
[0028]
Further, twelve types of heats 24 to 35 in Table 2 are test steels used for the evaluation of the Mn content shown in FIGS. 5, 6, and 7, and heats 24 to 26 are smaller than the range of the Mn content of the present invention, Heats 33 to 35 are out of the range of the Mn content of the present invention. Further, eight types of heats 36 to 43 in Table 2 are test steels used for the evaluation of the S content in FIG. 8, and heats 42 and 43 are out of the range of the S content of the present invention.
[0029]
[Table 2]
Figure 2004137537
[0030]
Further, eight types of heats 44 to 51 in Table 3 are test steels used for evaluation at the V amount shown in FIGS. Heat 44 is less than the V amount range of the present invention, and heats 50 and 51 are more than the V amount range of the present invention. Further, 11 types of heats 52 to 62 in Table 3 are test steels used for the evaluation in FIGS. 11 and 12, and the heats 52 to 54 are such that any of the Al and N amounts is within the range of the Al and N amounts of the present invention. In the heats 61 and 62, any of the Al and N contents deviates more than the range of the Al and N amounts of the present invention.
[0031]
[Table 3]
Figure 2004137537
[0032]
Each test piece of the test steel of each heat described above was prepared and the following tests were performed, and the respective results are shown in each figure.
[0033]
(1) Machinability (drill life test)
A hot forged material having a diameter of 30 mm was machined into a square having a size of 24 × 18 × 300 mm using a milling machine, a drilling test was performed, and the machinability was evaluated based on the number of holes drilled until the life of the drill. As shown in each figure, the test conditions are as follows: drill diameter: φ5 mm, drill material: SKH51, cutting speed: 20 m / min, feed: 0.2 mm / rev, cutting oil: none (dry), drilling depth: 15 mm, evaluation method : Number of holes until the hole cannot be pierced.
As can be seen from FIG. 1, the machinability decreases as the C content increases, and sharply decreases when it exceeds 0.6%.
As can be seen from FIG. 4, the effect on machinability is small when the amount of Si is 1% or less, but 0.7 to 0.9% is most excellent. If it exceeds 1%, the machinability sharply decreases.
As can be seen in FIG. 7, the machinability decreases as the Mn content increases. If it exceeds 1%, the decrease is particularly remarkable.
As can be seen from FIG. 10, machinability is improved by adding V. However, if it exceeds 0.15%, the machinability decreases.
As can be seen from FIG. 12, the machinability improves as the Al and N contents increase. However, the effect saturates when 0.34 Al% + 0.66 N% = about 0.030.
[0034]
(2) Fatigue test (rotating bending fatigue test)
A hot forged material having a diameter of 20 mm was processed into a rotary bending fatigue test piece having a test portion of 8 mm by turning, and a rotary bending fatigue test was performed to evaluate the fatigue strength.
As can be seen in FIG. 2, the fatigue strength improves with an increase in the amount of Si.
As can be seen in FIG. 5, the fatigue strength increases with an increase in the amount of Mn.
As can be seen from FIG. 9, the fatigue strength increases with an increase in the amount of V.
Further, as can be seen from FIG. 11, the fatigue strength improves with the increase in the amount of Al and N.
[0035]
(3) Rolling life test (radial load)
A φ12 mm × 22 mm test piece was machined by turning from a φ20 mm forged material, induction hardened and tempered, then surface polished to perform a rolling life test. As shown in FIG. 3, Pmax: 5880 MPa, load: radial direction, temperature: room temperature be made in each of the conditions of, it was evaluated in the L 10 life. As shown in FIG. 3, the rolling life improves with an increase in the amount of Si, but the effect is large at 0.5% or more.
[0036]
(4) Rolling life test (thrust load)
A φ60 × 7.2 mm test piece was processed by turning from a φ65 mm forged material, induction hardened and tempered, and then polished to perform a rolling life test. As shown in FIG. 8, Pmax = 5292 MPa, load: thrust direction, temperature : carried out under the conditions of room temperature, it was evaluated in the L 10 life. As shown in FIG. 8, when the S amount exceeds 0.035%, the rolling life starts to decrease.
[0037]
{Circle around (5)} Short-time heat quenching test φ3 × 10 mm was cut out of a hot forged material of φ30 mm, heated at 1000 ° C. for 1 sec, quenched with helium gas, and quenched hardness was measured. As shown in FIG. 6, when the Mn content was less than 0.4%, austenite was not sufficiently formed, and the hardness was insufficient.
[0038]
【The invention's effect】
As described above, the present invention keeps the C content and the Mn content in the steel component within a range that does not deteriorate the workability, increases the Si content and the N content to increase the strength, and increases the AlN content to increase the crystallinity. By making the grains finer, the increase in hardness after forging is minimized, machinability and cold workability are ensured, while the fatigue strength of the non-hardened part is improved, and the rolling resistance of the hardened part is further improved. High-strength, high-workability steel material for induction hardening, which improves rolling life, pitting strength, abrasion resistance, fatigue strength, etc., and uses a part of parts hardened by induction after forging. It has.
[Brief description of the drawings]
FIG. 1 is a graph showing machinability according to the relationship between the C content of a steel material and the number of drilled holes in a drill drilling test.
FIG. 2 is a graph showing a relationship between a Si amount and a fatigue strength in a rotating bending fatigue test.
3 is a graph showing the relationship between the Si content and the L 10 life of life test rolling in the radial direction of the load.
FIG. 4 is a graph showing machinability according to the relationship between the amount of Si and the number of holes in a steel material in a drill hole test.
FIG. 5 is a graph showing the relationship between the amount of Mn and the fatigue strength in a rotating bending fatigue test.
FIG. 6 is a graph showing the relationship between Mn content and quenching hardness in a short-time heat quenching test.
FIG. 7 is a graph showing machinability according to the relationship between the amount of Mn of a steel material and the number of holes in a drill hole test.
8 is a graph showing the relation between the S content and L 10 life of life test rolling in the thrust direction of the load.
FIG. 9 is a graph showing a relationship between a V amount and a fatigue strength in a rotational bending test.
FIG. 10 is a graph showing machinability according to the relationship between the V amount of steel and the number of holes in a drilling test.
FIG. 11 is a graph showing the relationship between the amounts of Al and N and fatigue strength in a rotational bending test.
FIG. 12 is a graph showing machinability according to the relationship between the amounts of Al and N of steel and the number of drilled holes in a drilling test.
FIG. 13 is a graph showing the relationship between carbon equivalent and hot forging hardness.

Claims (3)

質量%で、C:0.5〜0.7%、Si:0.5〜1.0%、Mn:0.5〜1.0%、Cr:0.4%以下、S:0.035%以下、V:0.01〜0.15%、Al:0.015超〜0.050%未満、N:0.010超〜0.025%未満を含有し、残部Feおよび不可避不純物からなり、鍛造後に部品の一部を高周波焼入れして使用することを特徴とする高強度高加工性高周波焼入用鋼。In mass%, C: 0.5 to 0.7%, Si: 0.5 to 1.0%, Mn: 0.5 to 1.0%, Cr: 0.4% or less, S: 0.035 %, V: 0.01 to 0.15%, Al: more than 0.015 to less than 0.050%, N: more than 0.010 to less than 0.025%, the balance being Fe and unavoidable impurities A high strength, high workability induction hardening steel characterized in that a part of the part is subjected to induction hardening after forging. 請求項1に記載の高強度高加工性高周波焼入用鋼において、炭素当量式を(1)式で表すとき、炭素当量:Ceqは(2)式を満足することを特徴とする高強度高加工性高周波焼入用鋼。
Figure 2004137537
Figure 2004137537
The high-strength and high-workability steel for induction hardening according to claim 1, wherein the carbon equivalent: C eq satisfies the expression (2) when the carbon equivalent is expressed by the expression (1). High workability induction hardening steel.
Figure 2004137537
Figure 2004137537
請求項1に記載の高強度高加工性高周波焼入用鋼において、(3)式を満足することを特徴とする高強度高加工性高周波焼入用鋼。
Figure 2004137537
The high-strength, high-workability induction hardening steel according to claim 1, which satisfies the expression (3).
Figure 2004137537
JP2002302246A 2002-10-16 2002-10-16 High-strength high-workability induction hardened steel Pending JP2004137537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002302246A JP2004137537A (en) 2002-10-16 2002-10-16 High-strength high-workability induction hardened steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002302246A JP2004137537A (en) 2002-10-16 2002-10-16 High-strength high-workability induction hardened steel

Publications (1)

Publication Number Publication Date
JP2004137537A true JP2004137537A (en) 2004-05-13

Family

ID=32450384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002302246A Pending JP2004137537A (en) 2002-10-16 2002-10-16 High-strength high-workability induction hardened steel

Country Status (1)

Country Link
JP (1) JP2004137537A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008296694A (en) * 2007-05-30 2008-12-11 Ntn Corp Flange structure
JP2014031526A (en) * 2012-08-01 2014-02-20 Nippon Steel & Sumitomo Metal Metallic material
JP2019526702A (en) * 2016-07-01 2019-09-19 イルジン グローバル カンパニー リミテッド Bearing steel and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008296694A (en) * 2007-05-30 2008-12-11 Ntn Corp Flange structure
JP2014031526A (en) * 2012-08-01 2014-02-20 Nippon Steel & Sumitomo Metal Metallic material
JP2019526702A (en) * 2016-07-01 2019-09-19 イルジン グローバル カンパニー リミテッド Bearing steel and manufacturing method thereof

Similar Documents

Publication Publication Date Title
EP2092089B1 (en) Austempered ductile iron, method for producing this and component comprising this iron
US20110002807A1 (en) Steel for induction hardening
WO2009057731A1 (en) Martensitic non-heat-treated steel for hot forging and non-heat-treated steel hot forgings
WO2006008960A1 (en) Component for machine structure, method for producing same, and material for high-frequency hardening
JP4047499B2 (en) Carbonitriding parts with excellent pitting resistance
US20120222778A1 (en) Rolling/sliding part and production method thereof
JP2000054069A (en) Carburized material excellent in rolling fatigue characteristic
JP2007131871A (en) Steel for induction hardening
US6383311B1 (en) High strength drive shaft and process for producing the same
JP3095845B2 (en) High speed steel for end mills
EP1069201A2 (en) Steel for induction hardening
AU2018318501B2 (en) Steel with High Hardness and Excellent Toughness
JP2004137537A (en) High-strength high-workability induction hardened steel
JP3495998B2 (en) High strength induction hardened steel with excellent machinability
US6740175B2 (en) High strength steel for induction hardening
JP3745233B2 (en) High strength induction hardening steel
JPH07188895A (en) Manufacture of parts for machine structure use
JP2000017374A (en) Age hardening type high strength bainitic steel and its production
JP4263567B2 (en) Constant velocity joint or hub unit
JP2005015900A (en) High strength steel for induction hardening having excellent cold workability
US20050205171A1 (en) Steel for induction hardening
JP2005187892A (en) High strength steel for induction hardening having excellent machinability
KR101280547B1 (en) Steel for mechanical and structural parts having ultra fine grain size after induction hardening and method of manufacturing the same
JP2005002366A (en) High hardness steel for induction hardening having excellent cold work properties
JP4170212B2 (en) Induction hardening steel with excellent cold workability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060810

A131 Notification of reasons for refusal

Effective date: 20060829

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070403