JP2004135489A - Current detecting method for inverter, its current detecting circuit, its abnormality detecting method, abnormality detecting circuit, display device, information processor, testing method, and testing device - Google Patents

Current detecting method for inverter, its current detecting circuit, its abnormality detecting method, abnormality detecting circuit, display device, information processor, testing method, and testing device Download PDF

Info

Publication number
JP2004135489A
JP2004135489A JP2003183034A JP2003183034A JP2004135489A JP 2004135489 A JP2004135489 A JP 2004135489A JP 2003183034 A JP2003183034 A JP 2003183034A JP 2003183034 A JP2003183034 A JP 2003183034A JP 2004135489 A JP2004135489 A JP 2004135489A
Authority
JP
Japan
Prior art keywords
inverter
current
circuit
change
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003183034A
Other languages
Japanese (ja)
Other versions
JP3655295B2 (en
Inventor
Minoru Senba
仙波 稔
Shoji Hachisuga
蜂須賀 生治
Shuichi Yadoshi
矢通 修一
Masaru Tanaka
田中 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2003183034A priority Critical patent/JP3655295B2/en
Priority to TW092119315A priority patent/TWI226210B/en
Priority to US10/620,597 priority patent/US7598748B2/en
Priority to EP03015677A priority patent/EP1385360B1/en
Priority to DE60334053T priority patent/DE60334053D1/en
Priority to KR1020030049678A priority patent/KR100953250B1/en
Priority to CNB03150194XA priority patent/CN1245634C/en
Publication of JP2004135489A publication Critical patent/JP2004135489A/en
Application granted granted Critical
Publication of JP3655295B2 publication Critical patent/JP3655295B2/en
Priority to US11/616,631 priority patent/US7486082B2/en
Priority to US11/616,623 priority patent/US7492162B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • G01R31/42AC power supplies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/285Arrangements for protecting lamps or circuits against abnormal operating conditions
    • H05B41/2851Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/285Arrangements for protecting lamps or circuits against abnormal operating conditions
    • H05B41/2851Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions
    • H05B41/2855Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions against abnormal lamp operating conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/54Testing for continuity
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/04Display protection
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/28Current transformers
    • H01F38/30Constructions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • H02H1/0015Using arc detectors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily detect changes of a circuit current caused by abnormalities of electrical discharge or the like in a non-contact state with a current route regarding an inverter which converts DC input to AC output and supplies the AC output to a load such as an FL pipe. <P>SOLUTION: The inverter 2 converts the DC input into the AC output and supplies the AC output to the load (the FL pipe 4). The changes of the circuit current are detected through the medium of magnetic flux changes Δψ caused by the changes of the circuit current of the inverter generated due to the electrical discharge. For example, when the changes of the circuit current occur due to breaking of wire electrical discharge and ground fault electrical discharge generated in the current route including the load of the inverter 2, the magnetic flux changes occur between core gaps of circuit wirings 14, 16, 52, and 54 and a transformer (an inverter transformer 22). The changes of the circuit current are detected in a non-contact state with the circuit wiring and the transformer or the like through the medium of the magnetic flux changes. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、液晶表示装置のバックライト用蛍光管等、各種負荷に交流出力を供給するインバータに関し、特に、回路配線の断線放電や高低圧部間の接近放電等で生じる回路電流の変化を、磁束変化を媒介にして検出するインバータの電流検出方法、その電流検出回路、その異常検出方法、その異常検出回路、表示装置、情報処理装置、試験方法及び試験装置に関する。
【0002】
液晶表示装置(LCD)には、バックライト用光源に蛍光管(FL管)が使用され、その点灯装置にはインバータが使用されている。このインバータには輝度調整等のため、定電流回路が採用されており、FL管は、定電流駆動により、例えば、1.5kV程度の高電圧、数mA程度の低電流で点灯させている。そして、インバータから交流出力が供給されるFL管を含む電流ルートは、インバータトランスの高圧側巻線からFL管までの配線区間であり、インバータトランスの巻線、プリント配線板上の導体パターン、コネクタ、配線等、多数の部材を経由しているため長く、しかも、回路配線が細く、外圧により変形し易いものである。携帯電話機やノート型パーソナルコンピュータにあっては、FL管点灯装置の設置空間はとりわけ狭く、インバータからFL管に至る細い配線は外圧による変形を受け易い。
【0003】
このようなインバータの電流ルートに断線が生じると、その断線で電流が遮断されるが、その電流が高圧定電流であるため、FL管の電流ルートには、断線時、電圧上昇が起こり、断線個所で生起した放電が継続して電流ルートが維持されるおそれがある。電流ルートが維持されると、管電流が流れ、FL管の点灯が持続する。点灯状態から動作異常を知ることができないため、その動作異常の発見が遅れることになる。係る異常状態の継続は好ましくないことである。
【0004】
そこで、液晶表示装置のバックライト用蛍光管等、各種負荷に交流出力を供給するインバータに関し、回路配線の断線放電、高低圧部間の破壊放電、地絡放電等の異常を検出し、異常継続の回避やその表示等に関する技術開発が要請されているのである。
【0005】
【従来の技術】
従来、このようなインバータの動作異常の検出や、その異常動作の継続回避に関する技術について、次のような先行特許文献が存在している。
【0006】
【特許文献1】
特開平6−140173号公報
【0007】
【特許文献2】
特開平11−121190号公報
【0008】
【特許文献3】
特開平9−113546号公報
【0009】
特許文献1は、放電ランプ点灯システムのための保護装置として、異常時、放電ランプを消灯させてもトランジスタインバータの動作が維持されることの不都合を回避するものであって、インバータの出力を取り出して発振状態をモニタ回路で監視し、放電ランプ内の短絡等の異常をモニタパルス電圧から検出し、異常時、直流電圧の供給停止によりインバータの動作停止、放電ランプを消灯させるものである。しかしながら、このような保護装置では、インバータ出力を取り出して監視するモニタ回路や、モニタパルス電圧が正常か異常かを判定するマイクロコンピュータ等を必要として構成が複雑であるとともに、インバータの出力を外部に取り出しているため、インバータ側では動作条件の変化に対応する等の対策が必要となる。
【0010】
また、特許文献2は、放電灯点灯装置として、放電灯に印加する高周波電圧がグランドや低圧部との間で放電したとき、高周波電圧の値が低下することに着目して放電灯に接続した高周波電圧検出抵抗を以て高周波電圧を検出し、この高周波電圧を整流して直流電圧に変換し、そのレベルが異常レベルであるとき、放電灯点灯装置の動作を停止させている。しかしながら、この放電灯点灯装置では、放電灯に直結される高周波電圧検出抵抗を必要とし、正常時と異常時(放電時)との差異を高周波電圧検出抵抗で構成された抵抗分圧回路の分圧比やスイッチングトランジスタのスレッショルドレベル等によって判定するため、異常か正常かの判定精度が低く、正常時のレベル変動で動作を停止するおそれがある。この放電灯点灯装置においても、高圧部側に高周波電圧検出抵抗を接続して高周波電圧を検出しているため、回路条件の変更等、検出電圧の取出しに格別の対策が必要となる。
【0011】
また、特許文献3には、過電流検出回路に関し、スイッチング電源部から負荷に供給する電流を検出するカレントトランスを用いることが開示されている。この過電流検出回路は、負荷に流れる過電流を検出して発生させた過電流検出信号によりスイッチング電源部を制御し、スイッチング電源部から負荷に直流出力電圧を垂下させる構成にすぎない。これは、電流ルートや負荷側に発生する放電による回路電流の変化を検出するものではない。
【0012】
【発明が解決しようとする課題】
ところで、回路配線の断線箇所や高低圧部間に放電が生じている場合、その放電に起因する電気的な変化をチェックすることは可能である。断線箇所に放電が生じているとき、インバータ内部にはその放電を表す電圧や電流が増加するものの、その変化量は少なく、その検出電圧と基準電圧とを単純に比較しても異常時と正常時とのレベル差が小さい場合には誤動作を生じ易く、実用的でない。断線放電や高低圧部間の絶縁破壊放電の検出精度を高めるためには、微分回路やタイマ回路等を組み合わせた回路が必要であるが、係る回路は複雑である上、インバータにこのような回路を追加することはコストアップを招来し、実用的ではない。また、微小放電のように、通常動作時と放電時の波形変化量が少ない場合には、微分回路を用いても、十分な検出精度が得られず、しかも、誤動作が生じ易く、信頼性に欠ける。
【0013】
インバータを用いてFL管等の負荷を駆動する場合、電流ルートに生じる断線放電や高低圧部間の放電を発見し、異常状態の継続を防止することはインバータやその負荷側の動作の信頼性を維持する上で不可欠であるが、かかる課題は、特許文献1〜3には開示されておらず、その解決手段も提示されていない。
【0014】
また、LCDの微少放電による障害は、LCDの組立て作業による不良であるが、その不良は目視確認等によって検出し、その検出の確実性や信頼性は低い。
高圧部とその周辺グランドとの間に生じる地絡放電の多くは、高圧配線の被覆に発生した傷や配線の部材間噛み込み、半田付け部分の絶縁チューブの破れ等によるものであり、LCD内半導体のストレス印加による場合もある。このため、絶縁耐圧の追加試験が必要である。また、高圧電流ルートの断線放電は、半田付け部の断線、コネクタ接触不良、配線の断線等に起因しており、このような放電の電気的な検出方法は、電流波形の観測によっているが、試験設備の準備や試験時間が長い。また、検査には、外観の目視確認も実施されている。このような試験が施された製品でも時間経過後に発生する発煙障害の検出は困難である。このため、LCDでは断線放電や地絡放電等の障害を容易に発見でき、信頼性の高い試験結果が得られる試験方法や試験装置が望まれてきたのである。
【0015】
そこで、本発明は、直流入力を交流出力に変換し、該交流出力をFL管等の負荷に供給するインバータに関し、放電等の異常による回路電流の変化を電流ルートに非接触で容易に検出することを目的とする。
【0016】
また、本発明の他の目的として、直流入力を交流出力に変換し、該交流出力をFL管等の負荷に供給するインバータに関し、異常時の給電継続を停止し、不測の事態を未然に回避することにある。
【0017】
また、本発明の他の目的として、表示の信頼性を高めた情報処理装置を提供することにある。
【0018】
また、本発明の他の目的として、直流入力を交流出力に変換し、該交流出力を負荷に供給するインバータを用いる試験方法及び試験装置に関し、信頼性の高い試験結果が得られる試験方法及び試験装置を提供する。
【0019】
【課題を解決するための手段】
上記目的を達成するため、本発明のインバータの電流検出方法は、直流入力を交流出力に変換し、該交流出力を負荷に供給するインバータの電流検出方法であって、放電に起因して生ずる前記インバータの回路電流の変化による磁束変化を媒介にし、前記回路電流の変化を検出する構成である。
【0020】
インバータの負荷を含む電流ルートに生じた断線放電や、回路配線の高低圧部間の接近放電、即ち、地絡放電が生じると、インバータの回路電流に変化を生じ、その変化が回路配線やトランスのコアギャップ間に磁束変化を生じさせる。そこで、この回路電流の変化を磁束変化を媒介にして検出すれば、回路配線やトランス等に非接触で回路電流の変化を検出でき、その変化から電流ルートに生じている放電等の異常を知ることができる。
【0021】
上記目的を達成するため、本発明のインバータの電流検出回路は、直流入力を交流出力に変換し、該交流出力を負荷に供給するインバータの電流検出回路であって、放電に起因して生ずる前記インバータの回路電流の変化による磁束変化を媒介にし、前記回路電流の変化を検出する電流検出部30を備えた構成である。
即ち、電流検出部には、磁束変化が検出され、その磁束変化により回路電流の変化が回路配線に非接触で取り出される。そこで、電流ルートに生じた断線放電や、地絡放電等の異常を知ることができる。
【0022】
上記目的を達成するためには、本発明のインバータの電流検出回路において、前記電流検出部は、前記インバータの回路配線(16等)又はトランス(インバータトランス22)のコアギャップ間に隣接して設置された検出導体(電流検出線36)により、前記回路配線又はトランスのコアギャップ間に生じる磁束変化を検出する構成としてもよい。このような構成とすれば、電流ルートの断線放電や地絡放電によって回路電流に変化が生じると、回路配線やトランスのコアギャップ間にはそれに応じた磁束変化が発生し、この磁束変化が検出導体に作用すると、高電圧を発生させる。この高電圧は、磁束変化により、回路電流の変化に依存するので、この高電圧により回路電流の変化が容易に検出され、電流ルートに生じた断線放電や地絡放電等の異常を知ることができる。この場合、磁束変化を検出しているので、インバータ側の回路に影響を及ぼすことがなく、インバータの動作に無関係に、回路配線等に非接触で、誤動作なく高精度に回路電流の変化が検出され、微分回路等が不要で回路構成を複雑化させることもない。
【0023】
上記目的を達成するため、本発明のインバータの異常検出方法は、直流入力を交流出力に変換し、該交流出力を負荷に供給するインバータの異常検出方法であって、放電に起因して生ずる前記インバータの回路電流の変化による磁束変化を媒介にして前記回路電流の変化を検出し、その検出結果に基づき、前記負荷を含む電流ルートに異常があるか否かを検出する構成である。
【0024】
係る構成とすれば、磁束変化を媒介にして非接触で検出された回路電流の変化のレベルが所定レベルを超えたか否かにより、負荷を含む電流ルートに異常があるか否かを容易に知ることができる。
【0025】
上記目的を達成するため、本発明のインバータの異常検出回路は、直流入力を交流出力に変換し、該交流出力を負荷(FL管4)に供給するインバータ2の異常検出回路であって、電流検出部30と、検出信号出力部(コンパレータ34)とを備えている。電流検出部は、放電に起因して生ずる前記インバータの回路電流の変化による磁束変化を媒介にして前記回路電流の変化を検出する構成であり、検出信号出力部は、電流検出部の検出結果により、前記負荷を含む電流ルートに異常があるか否かを表す検出信号を出力する構成である。
【0026】
このような構成において、FL管(4)等の負荷にインバータ(2)から高圧出力が供給されているとき、インバータと負荷との間の電流ルートに断線放電や地絡放電等の異常が発生すると、インバータの回路電流が変化し、この回路電流の変化は回路配線(14、16、52、54、70、72)に磁束変化Δφを生じさせる。負荷に高圧出力を供給しているインバータでは、電流ルートが断線しても、その断線箇所に放電が生じて電流ルートが維持される。この場合、その放電の継続で回路電流に変化を生じ、回路配線に磁束変化を生じさせる。また、出力側の高圧部と低圧部との間に絶縁破壊による地絡放電によっても回路電流に急激な変化を生じさせ、これが回路配線に急激な磁束変化Δφを生じさせる。この磁束変化の作用で電流検出部には、回路電流の変化が検出され、その変化を表す高電圧が取り出される。これにより、検出信号出力部には、FL管等の負荷を含む電流ルートに断線放電や地絡放電等の異常があるか否かを表す検出信号が得られる。従って、インバータ側の回路電流や電圧に触れることなく間接的に電流ルートに異常があるか否かを知ることができる。
【0027】
この場合、磁束変化を媒介にして回路電流の変化を検出しているので、インバータの回路条件等に何らの変更を加えることなく、インバータ側の回路構成と無関係に非接触で回路電流の変化を検出でき、電流ルートに異常があるか否かを知ることが可能である。
【0028】
上記目的を達成するためには、本発明のインバータの異常検出回路において、前記インバータは、動作異常時、前記検出信号を受けてインバータ動作を停止させる制御部(インバータ制御部20)を備える構成としてもよい。電流ルートに断線放電や地絡放電等の異常が生じたとき、インバータの動作を停止させるので、動作異常の継続からインバータや負荷が防護される。
【0029】
上記目的を達成するため、本発明の表示装置は、上記インバータの電流検出回路、又は上記インバータの異常検出回路を備え、異常時、その異常又は前記インバータの動作停止を表示する構成である。
【0030】
この表示装置の表示には、画像表示、ブザー音、その他の音声告知等を含むものである。そこで、表示装置では、検出信号出力部からの検出信号を受け、異常時、
(1) 断線放電や地絡放電等の異常を表す表示、
(2) インバータ動作の停止表示、
(3) (1) 又は(2) の表示又は双方の表示
を行う。これらの表示から、動作異常やインバータの動作停止を容易に知ることができ、可及的速やかに必要な対策を講じることが可能となる。
【0031】
上記目的を達成するため、本発明の情報処理装置は、上記インバータの電流検出回路、上記インバータの異常検出回路、又は上記表示装置を備えた構成である。このような情報処理装置によれば、本発明に係るインバータを用いて放電管等の照明負荷を駆動する点灯装置の他、電源回路等の給電系統を構成することができる。そして、このようなインバータの電流検出回路や異常検出回路を用いて情報処理装置を構成すれば、放電等の動作異常を即座に発見し、又はその動作異常の継続を回避でき、その動作異常の表示や動作停止を表示することができ、以て表示装置の防護を図ることができる。また、各種回路の電源装置の信頼性を高めることができ、給電系の動作異常の継続から情報処理装置を防護することができ、動作の信頼性の向上に寄与することができる。
【0032】
上記目的を達成するため、本発明の試験方法は、直流入力を交流出力に変換し、該交流出力を負荷に供給するインバータを用いた試験方法であって、放電に起因して生ずる前記インバータの回路電流の変化による磁束変化を媒介にし、前記回路電流の変化を検出し、その検出結果により前記負荷を含む電流ルートに異常があるか否かを判定する構成である。
【0033】
また、上記目的を達成するため、本発明の試験装置は、直流入力を交流出力に変換し、該交流出力を負荷に供給するインバータと、放電に起因して生ずる前記インバータの回路電流の変化による磁束変化を媒介にし、前記回路電流の変化を検出する電流検出部とを備え、前記電流検出部の検出結果により、前記負荷を含む電流ルートに異常があるか否かを判定する構成である。
【0034】
係る構成とすれば、電流ルートの断線放電や地絡放電等による回路電流の変化を磁束変化を媒介に検出し、その検出結果から電流ルートの断線放電や地絡放電等の異常が容易にしかも高精度に検出される。また、この試験は、インバータを電源とする負荷側の電流ルートに何等の電気的な影響を及ぼすことなく、異常があるか否かを判定することが可能である。
【0035】
【発明の実施の形態】
本発明のインバータの電流検出方法、その電流検出回路、その異常検出方法、その異常検出回路の実施形態について、図1を参照して説明する。図1は、本発明の実施形態に係るFL管点灯装置を示している。このFL管点灯装置1は、液晶表示装置(LCD)のバックライト用FL管点灯装置を構成している。
【0036】
このFL管点灯装置1は、直流入力を交流出力に変換するインバータ2を備えるとともに、その交流出力が供給される負荷としてFL管4を備え、インバータ2には回路配線に発生する断線放電や絶縁破壊放電を検出する異常検出回路6が接続されている。
【0037】
インバータ2において、直流入力を受ける直流入力端子8、10には、直流電源12が接続されて交流に変換すべき直流入力が加えられている。この直流電源12には、バッテリの他、AC−DCコンバータ等、各種直流電源が含まれる。
また、直流入力端子8、10には、回路配線14、16が接続されて直流入力電流の電流ルートが形成されているとともに、入力平滑用コンデンサ18が接続されている。回路配線14、16は例えば、プリント配線基板上の導体パターンで構成され、また、入力平滑用コンデンサ18は、直流入力に含まれる電圧リップル等の変動成分を除去するフィルタを構成しており、変動する直流入力を平滑し、安定化させる。そして、インバータ制御部20には、直流入力端子8、10及び回路配線14、16を通して直流入力が供給されている。このインバータ制御部20は、図示しない例えば、スイッチング素子として複数のトランジスタからなるプッシュプル型インバータ回路部、ドライブ回路部、スイッチング制御部等を含んで構成され、インバータトランス22の一次巻線24等を帰還回路に含む発振回路を構成しており、この実施形態では、回路配線14の給電を切り換える手段としてスイッチ26が内蔵されている。このスイッチ26はインバータ制御部20の制御入力部としてのラッチ入力端子28に加えられる制御入力によって外部から動作を切り換えることができる。なお、このインバータ制御部20には、既に市販されている汎用制御IC(例えば、TI、TL5001等)等、公知のものを使用することができるので、その回路構成の詳細は省略する。
【0038】
そして、このインバータ2において、動作異常を検出する異常検出回路6は、回路電流を検出する電流検出部30と、放電に起因して生ずる回路電流の変化を検出する電流変化検出部32と、検出した回路電流の変化レベルが異常であるか否かを判定する判定部としてコンパレータ34とを備えている。
【0039】
電流検出部30は、インバータ2の回路配線16等から回路電流の変化により生じる磁束変化を媒介にし、回路電流の変化を検出する回路部であって、この実施形態では、低電位側の回路配線16側を電流検出部位に設定している。この電流検出部30には、回路配線16に生じる磁束変化Δφを媒介にして回路電流の変化を検出する検出導体として電流検出線36が設置されている。この場合、検出すべき回路電流の変化として直流入力電流id が検出対象である。電流検出線36は回路配線16に生じる磁束変化Δφを捕捉可能な間隔で回路配線16に併設された配線導体である。
【0040】
次に、電流検出部30について、図2を参照して説明する。図2は電流検出部30の一例を示している。電流検出部30は、プリント配線基板38に設置された回路配線16と同様の配線パターンからなる電流検出線36で構成され、この実施形態では、回路配線16の配線パターンと電流検出線36の配線パターンは平行パターンを構成している。即ち、直線状の回路配線16に対して平行な直線状部分を持つ電流検出線36が設置され、直流入力電流id の変化によって回路配線16に生じる磁束変化Δφを電流検出線36に作用させている。この場合、aは電流検出線36の幅、bはその長さであり、電流検出線36と回路配線16との間には所定の絶縁間隔Dが設定されている。この絶縁間隔Dを狭小化すれば、磁束変化Δφの検出感度が高められる。
【0041】
そして、電流検出線36には磁束変化Δφの作用で発生した電圧を取り出すための検出端子40、42が設けられ、これら検出端子40、42に得られる検出電圧が回路電流の変化を検出する電流変化検出部32に加えられている。この電流変化検出部32は、この実施形態の場合、検出電圧を整流して直流レベルに変換する変換部としてダイオード44を備えており、このダイオード44が検出端子40側に接続され、ダイオード44のカソード側と検出端子42との間には、フィルタ回路としてコンデンサ46が設置されているとともに、検出レベルの調整部を構成する抵抗48が接続されている。ダイオード44には、断線放電等による電流変化の検出に対応するため、例えば、逆回復時間が早いショットキーダイオードを使用する。係る構成により、電流変化検出部32は、回路電流の変化を直流電圧の変化に変換する電流・電圧変換部として構成され、コンデンサ46及び抵抗48には回路電流の変化に対応した直流電圧が得られ、この電圧レベルが回路電流の変化、この場合、直流入力電流id の変化を表す。
【0042】
この電流変化検出部32の検出信号は検出信号出力部を構成するコンパレータ34に加えられている。コンパレータ34は、検出信号の増幅部を構成するとともに、回路電流の変化レベルから動作異常か否かを判定する判定部であって、検出信号と動作異常を表す所定レベルとの比較を行う。この場合、所定レベルとは、例えば、回路配線の断線放電や、回路配線の高圧部と低圧部との間の接近放電(絶縁破壊放電)等の動作異常を判定可能な基準レベルであり、正常動作時のレベル又は該レベルより僅かに高いレベルとする等、異常か正常かを判別できればどのようなレベル設定でもよい。そこで、コンパレータ34は、検出電圧と所定レベルとの比較により、例えば、検出電圧のレベルが所定レベル以下のとき、正常を表す低(L)レベル、検出電圧のレベルが所定レベルを超えたとき、動作異常を表す高(H)レベルとなる検出信号Vsを出力する。この検出信号Vsは、インバータ制御部20のラッチ入力端子28に加えられ、正常時、インバータ制御部20の動作維持、動作異常時、インバータ制御部20の動作停止に用いられる。この実施形態では、動作異常時、ラッチ入力端子28に加えられた検出信号Vsによってスイッチ26が開かれ、インバータ制御部20に対する給電が解除され、インバータ2の動作が停止状態に制御される。
【0043】
また、インバータトランス22の二次巻線50には回路配線52、54が接続されて出力電流の電流ルートが構成されている。一方の回路配線52にはバラストコンデンサ56が介挿されて交流出力端子としての接続コネクタ58、他方の回路配線54には定電流検出抵抗60が介挿されて交流出力端子としての接続コネクタ62が接続され、各接続コネクタ58、62には負荷であるFL管4が接続され、このFL管4はLCD64のバックライトを構成している。バラストコンデンサ56はFL管4に流れる管電流を安定化する安定部を構成し、また、定電流検出抵抗60に検出された管電流はインバータ制御部20側に加えられ、管電流の定電流化に用いられる。従って、インバータ制御部20のスイッチング動作として、直交変換動作によって交流を発生させるとともに、インバータトランス22の昇圧により、インバータトランス22の二次巻線50に高周波の高圧出力が得られる。この高圧出力が回路配線52、54及び接続コネクタ58、62を通してFL管4に加えられる。この実施形態では、単一の二次巻線50に単一のFL管4を接続した場合を示しているが、複数のFL管を設置してもよく、その場合、バラストコンデンサ56は各FL管毎に設置される。
【0044】
次に、このFL管点灯装置1の動作について、図3及び図4を参照して説明する。図3のAは正常時の動作波形、図3のBは異常時の動作波形を示し、図4は電流ルートに断線放電又は地絡放電が生じている場合を示している。
【0045】
このようなインバータ2を用いてFL管4を定電流駆動すると、FL管4は一定の駆動電流によって点灯する。動作が正常な場合には、交流出力の動作波形は、図3のAに示す正弦波波形nwとなるが、例えば、図4に示すように、回路配線54に断線を生じると、その断線箇所66に放電が生じ、この放電によって電流ルートが維持される。このような動作異常時の動作波形は、図3のBに示すように、正常時の正弦波波形nwに放電波形dwが重畳された異常波形となる。放電波形dwは緩やかな交流出力の基本波より急激に変化し、高い周波数成分を持つノイズ(高周波)であるが、このような波形成分は回路電流の電流値を増加させることはなく、回路電流の変化量を増加させるにすぎない。そして、放電波形dwは、正常時の正弦波波形nwのレベル変化に対して周期的に発生する。このような現象は、電流波形だけではなく、電圧波形についても言えるが、電圧波形より電流波形の変化が大きいことが実験により確認されている。
【0046】
このような放電によって電流ルートが維持されると、インバータトランス22の出力電流i2 、インバータトランス22の入力電流i1 、直流入力電流id 、インバータ制御部20内のドライブ電流等、回路電流が急変し、電流ルートを構成している回路配線14、16の周囲には回路電流の急激な変化を表す激しい磁束変化Δφを生じる。このとき、電流検出線36には急激な磁束変化Δφが検出され、その両端に回路電流の変化を表す高電圧が発生する。この高電圧はダイオード44で整流され、コンデンサ46によって平滑されるので、放電時には急激な電流変化を表すレベルを持つ直流電圧が得られる。この直流電圧はコンパレータ34に加えられて所定レベルと比較され、コンパレータ34には正常か動作異常かを表す検出信号Vsが得られる。
【0047】
この検出信号Vsが動作停止出力としてインバータ制御部20のラッチ入力端子28に加えられると、インバータ制御部20は、スイッチ26がOFF状態となって、インバータ動作を停止して交流出力が解除され、FL管4が消灯状態になるとともに、放電の継続が遮断される。この結果、インバータ2及びFL管4は動作異常の継続から開放される。
【0048】
また、図4中に破線で示すように、交流出力側の高圧部とシャーシ等の低圧部との間の接近による絶縁破壊等で放電68が発生すると、その動作波形は、図3のBに示すように、断線放電と同様、正常時の正弦波波形nwに放電波形dwが重畳された異常波形となる。
【0049】
この場合にも、回路配線16の回路電流の急激な変化が磁束変化Δφを生じさせ、この磁束変化Δφが電流検出部30の電流検出線36に検出されるので、コンパレータ34には、動作異常を表す検出信号Vsが得られる。この結果、インバータ制御部20によるインバータ動作が停止され、交流出力の解除により、FL管4は消灯状態になるとともに、放電の継続が遮断される。同様に、インバータ2及びFL管4は動作異常の継続から開放される。
【0050】
この実施形態について、作用、効果は次の通りである。
【0051】
この実施形態では、インバータ制御部20の入力電流側に電流検出部30を設置したので、出力側の電流ルートの断線放電や絶縁破壊放電等の動作異常で生じた入力電流の急変を磁束変化Δφで捉え、検出端子40、42に動作異常を表す高電圧を発生させることができる。即ち、高圧側での動作異常の検出に比較して絶縁対策が容易であり、安全性に優れている。
【0052】
磁束変化Δφを媒介にして回路電流の変化を検出するので、回路配線16に電流検出線36を平行に配置した極めて簡単な構成により、回路電流の急変を表す電圧を発生させ、しかも、回路電流の変化を高電圧で取り出すことができる。即ち、回路電流の変化の検出感度が高く、動作異常を高精度に検出することができる。
【0053】
しかも、放電等の動作異常は電圧変化からも検出が可能であるが、磁束変化Δφを媒介にして回路電流の変化を検出するので、検出精度が高くなる。即ち、放電による波形変化は電圧波形より電流波形の変化が大きく、この電流変化により磁束変化Δφが生じるので、磁束変化Δφを媒介とした動作異常の検出は検出精度が高くなる。
【0054】
磁束変化Δφを媒介にして回路電流の変化を検出する場合、回路配線16に平行に電流検出線36を配置した極めて簡単な構成で容易に磁束変化Δφを捉えることができ、また、電流検出線36の設置はインバータ2側の回路条件に何らの変更を加える必要がなく、しかも、電流変化検出部32及びコンパレータ34はインバータ側回路と無関係に、検出端子40、42に発生する高電圧に応じて回路を構成でき、回路設計が容易である。
【0055】
また、電流変化検出部32には、検出端子40、42に得られた高電圧をダイオード44による整流、コンデンサ46による平滑等、簡単な回路構成及び処理で正常か、放電による動作異常かの判別に必要なレベルの直流電圧を得ることができる。即ち、正常か放電による動作異常かが明確にレベル差に現れる直流電圧を発生させることができる。従って、コンパレータ34では、正常か異常かを峻別する基準レベルの設定が容易であり、その結果、検出精度が高く、誤動作なく動作異常を検出することができる。
【0056】
そして、コンパレータ34から得られた検出信号Vsをインバータ制御部20のラッチ入力端子28に加えることにより、動作異常時、インバータ制御部20の動作を停止させるので、異常動作の継続からインバータ2、FL管4、LCD64等の負荷を防護することができる。
【0057】
ところで、電流検出線36に断線放電や絶縁破壊放電とは無関係な検出電圧の発生について、実験によれば、電流変化検出部32のダイオード44に例えば、逆回復時間が早いショットキーダイオードを使用し、抵抗48の抵抗値を例えば、0.1〔MΩ〕〜5〔MΩ〕の抵抗値、コンデンサ46に例えば、0.0015〔μF〕〜0.1 〔μF〕等の静電容量を用いる等の回路条件の設定により、微小放電による回路電流の変化による電圧変化を検出できることが確認されている。この結果、断線放電、絶縁破壊放電、地絡放電等の異常検出が可能であり、電源投入等による過渡電流による誤動作も容易に防止できる。この場合、ダイオード44、コンデンサ46及び抵抗48について、実験に用いた具体的な回路条件を示したが、これらの回路条件は任意に設定できるものであり、本発明は、係る回路条件に限定されるものではない。
【0058】
次に、回路電流の変化を検出する電流検出部位について、図5を参照して説明する。図5の(A)は電流検出部位をインバータトランスの一次側に設定した場合を示し、図5の(B)は電流検出部位をインバータトランスの二次側に設定した場合を示している。
【0059】
電流検出部位は、図1に示す回路配線16以外に、例えば、図5の(A)に示すように、インバータトランス22の一次巻線24に接続された回路配線70、72を電流検出部位として設定し、例えば、回路配線72に電流検出部30を設置し、電流検出線36を併設してもよく、また、図5の(B)に示すように、インバータトランス22の二次巻線50に接続された回路配線52、54を電流検出部位と設定し、例えば、回路配線54に電流検出部30を設置し、電流検出線36を併設してもよい。回路配線72に電流検出線36を併設した場合には、インバータトランス22の一次巻線24側の回路配線70、72に流れる一次電流、即ち、入力電流i1 の変化による磁束変化Δφを媒介にして動作異常を検出でき、インバータ動作を停止させることができる。
【0060】
また、回路配線54に電流検出線36を併設すれば、回路配線54に流れるインバータトランス22の二次電流である出力電流i2 の変化により生じる磁束変化Δφを媒介にし、出力電流i2 の変化を検出でき、動作異常時、インバータ動作を停止させ、放電等の動作異常の継続からインバータ2、FL管4等を防護できる。この場合、インバータトランス22の出力側では、入力側に比較して波形変化が大きく、放電波形の変化値も大幅に増加するので、検出する回路電流の変化及び磁束変化が大きく、検出精度が高くなる。
【0061】
次に、電流検出部30の他の実施形態について、図6を参照して説明する。図6の(A)はコアを用いて構成された電流検出部30、図6の(B)はコアに電流検出線を巻回して構成された電流検出部30、図6の(C)は回路配線16、54、72に電流検出線36を巻き付けて構成された電流検出部30を示している。
【0062】
電流検出部30の実施形態について、例えば、図6の(A)に示すように、電流検出部30にリング状のコア74を設置し、このコア74に回路配線16、54又は72及び電流検出線36を通すことにより、コア74を以て回路配線16、54又は72とともに電流検出線36に磁束φを通す共通の磁路を構成してもよい。このようなコア74を用いれば、コア74を形成する磁性材料が持つ透磁率μによって磁束変化Δφを増大させることができ、検出端子40、42の検出電圧を高め、検出感度を高めることができる。
【0063】
また、例えば、図6の(B)に示すように、電流検出線36をコア74に巻き付けてもよい。この場合、その巻数Nによって電流検出線36に作用する磁束変化Δφを増加させ、検出端子40、42に発生する検出電圧を昇圧させ、より高い検出電圧を取り出すことができる。この場合、回路配線16、54又は72側をコア74に巻き付けてもよい。また、コア74に棒状コアを用いてもよく、棒状コアでも同様に回路配線16、54又は72及び電流検出線36に共通の磁路を形成できる。
【0064】
また、例えば、図6の(C)に示すように、回路配線16、54又は72に電流検出線36を数回巻き付け、回路配線16、54又は72に生じる磁束変化Δφを電流検出線36に作用させるようにしてもよい。このように構成すれば、電流検出線36の巻回数に応じた検出電圧を検出端子40、42の間に取り出すことができる。このようにコア74を用いない構成とすれば、部品点数が少なく、電流検出部30を安価に構成できる。コア74を用いていない例えば、図1、図4、図5に示すインバータ2の異常検出回路6でも同様の効果が得られる。
【0065】
次に、電流検出部30の他の実施形態について、図7及び図8を参照して説明する。図7はインバータトランスに隣接して設置された電流検出部30を示し、図8は放電電流により生じた磁束変化の検出を示す。
【0066】
インバータ2に用いられているインバータトランス22は、コア23にギャップ25が形成されており、このギャップ25をプリント配線基板38側にして設置されている。そこで、このギャップ25間のプリント配線基板38上に配線パターンによって電流検出線36が設置されている。換言すれば、コア23の間隔wより狭い幅aで長さbの電流検出線36がプリント配線基板38上に形成され、このプリント配線基板38を跨がってインバータトランス22のコア23が設置され、そのギャップ25間に電流検出線36が配置されている。電流検出線36の長さbは、コア23の幅dより大きく設定しているが、同等の長さ(b=d)に設定してもよい。そして、インバータトランス22には、一次巻線24、二次巻線50が設置され、一次巻線24の端子24a、24bにはインバータ制御部20、二次巻線50の端子50aにバラストコンデンサ56(図1)、その端子50bに定電流検出抵抗60が接続される。
【0067】
係る構成とすれば、例えば、インバータトランス22の二次巻線50側の電流ルートに放電が生じると、その放電電流によりギャップ25には、図8に示すように、急激な磁束変化Δφが生じる。この磁束変化Δφはギャップ25及びその隣接部分の電流検出線36に作用して電流検出線36に検出され、回路電流(id )の変化を表すレベルの高い検出電圧が取り出される。この検出電圧は、電流変化検出部32(図1)に加えられ、インバータ制御等に用いられる。
【0068】
次に、本発明の表示装置の実施形態について、図9を参照して説明する。図9は、本発明に係るインバータの異常検出回路を用いた表示装置を示している。
【0069】
この表示装置において、インバータ2及び異常検出回路6の構成、作用及び効果については、図1〜図8を参照して説明した通りである。
【0070】
そして、この表示装置において、異常動作時、その異常を表示する表示部を構成するLCD64、インジケータ76が設置され、これらの表示制御部としてプロセッサ78が設置されている。プロセッサ78は、図示しない記憶部に格納された動作異常表示のための制御プログラムを実行する処理部を構成し、このプロセッサ78には、コンパレータ34に得られる検出信号Vsが加えられているとともに、キーボード80が接続されて動作異常確認の処理を実行するための指示入力が入力される。そして、プロセッサ78から表示制御出力を受けて所定の表示を行うため、LCD64には表示駆動部82、インジケータ76には表示駆動部84が設置されている。
【0071】
この表示装置の動作について、図10を参照して説明する。図10は、動作異常確認処理を示すフローチャートである。動作異常の確認処理では、その処理開始により、動作異常確認モードか否かを判定する(ステップS1)。この場合、キーボード80の特定のキー又は複数のキーに割り当てられた指令をキー操作することにより、動作異常確認モードが設定される。この場合、電源投入時に係る動作異常確認モードを自動設定し、インバータ2の異常を確認可能としてもよい。そして、動作異常確認モードが確立すると、コンパレータ34からの検出信号Vsを受け入れ、動作異常を検出したか否かが判定される(ステップS2)。
【0072】
正常時には、LCD64又はインジケータ76に動作異常がないこと、即ち、正常動作であることが表示される(ステップS3)。この正常動作の表示の開始から例えば、所定時間だけ経過し、又は管理者がキーボード80から動作表示解除を指令したとき、表示解除が行われ(ステップS4)、その後、ステップS1に戻る。
【0073】
また、ステップS2で動作異常を検出したとき、LCD64又はインジケータ76に動作異常の表示、インバータ2の動作停止を表示する(ステップS5)。管理者はこれらの表示を確認し、必要な処理を行う。この動作異常表示の開始から例えば、所定時間が経過し、又は管理者がキーボード80から動作表示解除を指令したとき、表示解除が行われ(ステップS6)、その後、ステップS1に戻る。この場合、動作異常を表示したとき、管理者が所定の改善処理を行わない限り、表示解除を行えないようにしてもよい。
【0074】
LCD64の光源であるFL管4が消灯すると、LCD64の表示内容が確認し難くなることが予想されるので、インジケータ76は、異常表示やインバータ2の動作停止時にその確認が容易になるが、LCD64を異常表示やインバータ2の動作停止の表示に用いることが可能であり、FL管4が消灯状態で、その表示が確認できる場合には、必ずしもインジケータ76は必要ではない。LCD64及びインジケータ76の双方を用いて係る表示を行えば、動作停止やその表示の信頼性を高めることができる。
【0075】
次に、本発明の情報処理装置及び電子装置の実施形態について、図11を参照して説明する。図11の(A)は実施形態に係る携帯電話機、図11の(B)は実施形態に係るノート型パーソナルコンピュータを示している。これら携帯電話機及びノート型パーソナルコンピュータは、本発明に係るインバータの異常検出回路又は表示装置を用いて構成された情報処理装置及び電子装置を構成する。
【0076】
この情報処理装置又は電子装置として、携帯電話機86やノート型パーソナルコンピュータ88の筐体90には表示装置としてのLCD64のバックライトとしてFL管4が設置され、その駆動装置として図1〜図4に示すインバータ2や本発明に係るインバータ2の異常検出回路6とともに、演算・制御部としてプロセッサ78、キーボード80等が内蔵されている。この場合、表示素子としてのインジケータ76は、携帯電話機86やノート型パーソナルコンピュータ88の筐体90内部にメインテナンス用として設置し、又はその筐体90の外面部に設置してもよい。
【0077】
このような構成とすれば、携帯電話機86やノート型パーソナルコンピュータ88等の情報処理装置において、インバータ2の回路配線14、16、回路配線52、54、回路配線70、72の断線放電や絶縁破壊放電等の動作異常を監視でき、その動作を停止することにより、動作異常の継続から情報処理装置を防護できる。また、動作異常や動作停止をLCD64やインジケータ76に表示するので、その表示から動作異常や動作停止を速やかに知ることができ、信頼性の高い情報処理装置を実現できる。しかも、その表示内容からインバータ2の回路配線14、16等の断線放電、絶縁破壊放電等の異常を容易に判別でき、必要な対策を即座に実行でき、安全性の高い情報処理装置又は電子装置を提供できる。
【0078】
次に、本発明の試験方法及び試験装置の実施形態について、図12及び図13を参照して説明する。図12は実施形態に係る試験装置を示す図を示し、図13は試験の手順を示すフローチャートである。
【0079】
試験対象として液晶表示ユニット92が用いられ、この場合、液晶表示ユニット92は、LCD64とFL管4とを備え、FL管4には接続コネクタ58、62、LCD64には接続コネクタ94が設けられている。
【0080】
そして、この液晶表示ユニット92の試験装置96には図1を参照して既述した異常検出回路6を備えたインバータ2を備えるとともに、この実施形態では、図9を参照して既述したプロセッサ78、表示駆動部82、84が備えられている。表示駆動部84の出力は表示器98に加えられ、表示器98には試験結果が表示される。その他の構成は、図1及び図9に示した構成と同様である。
【0081】
液晶表示ユニット92の試験に当たり、接続コネクタ58、62に試験装置96のインバータ2の交流出力部を接続し、接続コネクタ94に表示駆動部82の出力部を接続する。
【0082】
そして、図13に示すフローチャートを参照すると、試験開始により、FL管4が接続されたか否かが判定され(ステップS11)、FL管4が接続されている場合にはインバータ2よりFL管4に給電を開始する(ステップS12)。この給電の結果、回路電流の変化が所定レベル以上か否かが判定され(ステップS13)、負荷であるFL管4側の電流ルートに断線放電、地絡放電が生じていなければ、その放電電流による回路電流の変化はなく、回路電流の変化は所定レベル未満となる。この回路電流の変化の検出は、既述の通りである。この場合、異常検出回路6の検出出力は、コンパレータ34からプロセッサ78に加えられて正常と判定され、その判定結果が表示器98に試験結果として正常であることが表示される(ステップS14)。また、負荷であるFL管4側の電流ルートに断線放電又は地絡放電が生じている場合には、その放電電流により回路電流に大きな変化が生じ、その変化は所定レベル以上となる。この回路電流の変化の検出は、既述の通りである。この場合、異常検出回路6の検出出力は、インバータ制御部20に加えられ、インバータ出力が停止される。同時に、その検出出力がコンパレータ34からプロセッサ78に加えられて異常と判定され、その判定結果が表示器98に試験結果として異常であることが表示される(ステップS15)。
そして、給電停止(ステップS16)の後、試験装置96から試験済みの液晶表示ユニット92が外され、次の液晶表示ユニット92が試験装置96に接続され、同様の試験が実施される。
【0083】
このような試験装置及び試験方法によれば、液晶表示ユニット92について、試験工数を増加させることなく、また、特別な準備をすることなく、しかも、液晶表示ユニット92の点灯条件を使用時のそれと同一に設定して試験を行い、断線放電や地絡放電の有無、接続コネクタ58、62、94の異常の有無までも迅速かつ高精度に試験することができ、しかも、製造ライン上での試験を実施することができ、信頼性の高い製品の提供に寄与することができる。
【0084】
なお、この試験装置では、インバータ制御部20の入力側の回路配線16に電流検出部30を設置した場合について説明したが、インバータトランス22の二次側の回路配線52又は54に電流検出部30を設置し、回路電流の変化による磁束変化Δφを媒介にし、回路電流の変化を検出し、FL管4や電流ルートの放電等の異常を判定するようにしてもよい。インバータトランス22の二次側の回路電流の変化を検出することは、既述の通り、検出精度を高める上で有利である。
【0085】
そして、本発明は、以上説明したインバータの電流検出方法、その電流検出回路、その異常検出方法、その異常検出回路、表示装置、情報処理装置、試験方法及び試験装置の他、各種の電子装置を包含するものである。そこで、本発明の各実施形態から技術的な事項を抽出し、その技術的な意義、変形例、その他、技術的な拡張事項等を以下に列挙する。
【0086】
a 実施形態では、回路電流の変化が所定レベルを超えたとき、動作異常を表す検出信号を出力する検出信号出力部として、検出電圧と所定レベルとを比較して検出信号を出力するコンパレータ34を例示したが、検出信号のレベルを受けて導通又は遮断状態となるスイッチングトランジスタやスイッチ回路を用いて検出信号出力部としてもよい。
【0087】
b 検出端子40、42に得られる検出電圧を整流又は特定の周波数成分を取り出した後、ディジタル信号に変換し、そのディジタル信号を図9に示すプロセッサ78に加え、このプロセッサ78を検出信号出力部として構成し、インバータ2に動作異常が生じているか否かを判定させ、その判定出力を制御入力としてインバータ制御部20のラッチ入力端子28に加え、インバータ2の動作停止を行うようにしてもよい。この場合、動作停止を行う際、放電等の動作異常やその状況をLCD64やインジケータ76に表示させてもよい。
【0088】
c 図2に示す回路配線16及び電流検出線36はプリント配線基板の導体パターンで構成したが、導体パターン以外の線材によって構成してもよく、線材を用いた場合には、回路配線16及び電流検出線36を束ねて回路配線16側の磁束変化Δφを電流検出線36に作用させてもよい。
【0089】
d 電流変化検出部32の電流変化検出は、実施形態のように、検出端子40、42の検出電圧をダイオード44、コンデンサ46及び抵抗48で整流、平滑して取り出す形態以外に、断線放電や絶縁破壊放電によって生じる回路電流の変化に含まれる放電特有の成分を検波して取り出す検波回路を用いてもよい。
【0090】
e インバータ制御部20が動作停止部を備えていない場合には、インバータ制御部20の直流入力側にインバータ2の動作を解除する制御部として、動作異常時の検出信号Vsによりインバータ制御部20に対する給電解除をするスイッチ回路を備えてもよい。
【0091】
f 制御部としてインバータ制御部20を例に取って説明したが、プロセッサ78を制御部に用いてインバータ制御部20に対する給電制御をし、動作異常時、インバータ動作を停止させてもよい。
【0092】
g 本発明が解決しようとする課題に従来技術として定電流駆動や低電流出力のインバータ2を取り上げているが、本発明は、係るインバータに限定されるものではない。
【0093】
h 実施形態では、説明を容易化するため、インバータトランス22の一次巻線24を単一巻線としたが、インバータ制御部20に内蔵されるプッシュプル型インバータ回路の各トランジスタに付与すべき帰還信号を取り出す巻線を排除するものではなく、本発明のインバータの異常検出回路には各種のインバータを含むものである。
【0094】
次に、電流検出部30の実験結果について、図14を参照して説明する。検出導体である電流検出線36の配線パターンについて(図2)、幅a=10〔mm〕に設定し、長さbを変化させるとともに、回路配線16と電流検出線36との間隔D=0.1〔mm〕、0.2〔mm〕、0.3〔mm〕、0.5〔mm〕に設定した場合、図14に示す電圧が電流変化検出部32に得られた。この実験結果から明らかなように、幅a=10〔mm〕×長さb=10〔mm〕の電流検出線36を使用し、電流検出線36と回路配線16との間隔Dを0.5〔mm〕に設定すれば、放電電流で検出電圧2〔V〕が得られることが確認された。この検出電圧によれば、放電による回路電流の変化を高精度に検出することが可能であることが確認された。
【0095】
次に、以上述べた本発明の実施形態から抽出される技術的思想を請求項の記載形式に準じて付記として列挙する。本発明に係る技術的思想は上位概念から下位概念まで、様々なレベルやバリエーションにより把握できるものであり、以下の付記に本発明が限定されるものではない。
【0096】
(付記1) 直流入力を交流出力に変換し、該交流出力を負荷に供給するインバータの電流検出方法であって、
放電に起因して生ずる前記インバータの回路電流の変化による磁束変化を媒介にし、前記回路電流の変化を検出することを特徴とするインバータの電流検出方法。
【0097】
(付記2) 直流入力を交流出力に変換し、該交流出力を負荷に供給するインバータの電流検出回路であって、
放電に起因して生ずる前記インバータの回路電流の変化による磁束変化を媒介にし、前記回路電流の変化を検出する電流検出部を備えたことを特徴とするインバータの電流検出回路。
【0098】
(付記3) 前記電流検出部は、前記インバータの回路配線又はトランスのコアギャップ間に隣接して設置された検出導体により、前記回路配線又はトランスのコアギャップ間に生じる磁束変化を検出する構成としたことを特徴とする付記2記載のインバータの電流検出回路。
【0099】
(付記4) 直流入力を交流出力に変換し、該交流出力を負荷に供給するインバータの異常検出方法であって、
放電に起因して生ずる前記インバータの回路電流の変化による磁束変化を媒介にして前記回路電流の変化を検出し、その検出結果に基づき、前記負荷を含む電流ルートに異常があるか否かを検出することを特徴とするインバータの異常検出方法。
【0100】
(付記5) 直流入力を交流出力に変換し、該交流出力を負荷に供給するインバータの異常検出回路であって、
放電に起因して生ずる前記インバータの回路電流の変化による磁束変化を媒介にして前記回路電流の変化を検出する電流検出部と、
この電流検出部の検出結果により、前記負荷を含む電流ルートに異常があるか否かを表す検出信号を出力する検出信号出力部と、
を備えたことを特徴とするインバータの異常検出回路。
【0101】
(付記6) 前記インバータは、動作異常時、前記検出信号を受けてインバータ動作を停止させる制御部を備えることを特徴とする付記5記載のインバータの異常検出回路。
【0102】
(付記7) 付記2記載のインバータの電流検出回路、又は付記5記載のインバータの異常検出回路を備え、異常時、その異常又は前記インバータの動作停止を表示する構成としたことを特徴とする表示装置。
【0103】
(付記8) 付記2記載のインバータの電流検出回路、付記5記載のインバータの異常検出回路、又は付記7記載の表示装置を備えたことを特徴とする情報処理装置。
【0104】
(付記9) 直流入力を交流出力に変換し、該交流出力を負荷に供給するインバータを用いた試験方法であって、
放電に起因して生ずる前記インバータの回路電流の変化による磁束変化を媒介にし、前記回路電流の変化を検出し、その検出結果により前記負荷を含む電流ルートに異常があるか否かを判定することを特徴とする試験方法。
【0105】
(付記10) 直流入力を交流出力に変換し、該交流出力を負荷に供給するインバータと、
放電に起因して生ずる前記インバータの回路電流の変化による磁束変化を媒介にし、前記回路電流の変化を検出する電流検出部と、
を備え、前記電流検出部の検出結果により、前記負荷を含む電流ルートに異常があるか否かを判定する構成としたことを特徴とする試験装置。
【0106】
(付記11) 上記インバータの異常検出回路は電流変化検出部を備え、この電流変化検出部は、磁束変化によって得られる変動電圧を整流する整流部を備えるとともに、その整流電圧を平滑する平滑部を備えた構成としたことを特徴とするインバータの異常検出回路。このように構成すれば、検出導体には精度よく回路電流の変化に比例したレベルを持つ検出信号が得られるので、微小な放電による回路電流の変化等の検出も可能となり、検出精度を高めることができる。
【0107】
(付記12) 上記インバータの異常検出回路において、前記電流変化検出部は、磁束変化によって得られる変動電圧を整流する整流部を備え、該整流部をショットキーダイオードで構成したことを特徴とするインバータの異常検出回路。
ショットキーダイオードは、高速ダイオードに比較して逆回復時間が早いので、放電による回路電流の変化、放電によるノイズ成分を整流して直流成分として取り出すことができ、微小な放電による回路電流の変化を検出でき、検出精度を高め、誤動作を防止できる。
【0108】
(付記13) 上記インバータの異常検出回路において、前記電流変化検出部が断線放電や絶縁破壊放電等の放電に起因する電流変化を抽出するフィルタを備えることを特徴とするインバータの異常検出回路。このように構成すれば、電源投入等の過渡的な電流変化を除き、放電に起因する回路電流の変化を精度よく検出でき、誤動作を防止できる。
【0109】
(付記14) 上記インバータの電流検出回路において、前記電流検出部は回路配線14、16、52、54、70、72の一部分と検出導体(電流検出線36)とを独立したディスクリート素子として構成したことを特徴とするインバータの電流検出回路。このように構成すれば、インバータ2の回路配線、例えば、回路配線14、16、52、54、70、72の任意の箇所に設置して放電等の動作異常の継続からインバータ等を防護でき、信頼性を高めることができる。
【0110】
(付記15) 上記インバータの電流検出回路において、前記電流検出部は、直流入力から負荷に至る回路配線の任意の部位、直流入力側、インバータトランス22の一次側又はその二次側の何れか又は複数箇所に設置したことを特徴とするインバータの電流検出回路。即ち、回路配線14、16、52、54、70、72の任意の箇所で放電等の動作異常を検出できる。
【0111】
(付記16) 上記インバータの異常検出回路において、前記制御部に表示駆動部を内蔵し、その出力をインジケータに加えて動作異常を表示可能にしたことを特徴とするインバータの異常検出回路。即ち、インバータの動作異常や動作停止を表示することにより、容易に異常状態を把握できる。
【0112】
(付記17) 上記インバータの異常検出回路において、インバータ制御部20、電流変化検出部32及びコンパレータ34を単一のICで構成したことを特徴とするインバータの異常検出回路。このように構成すれば、単一のICによってインバータの異常検出回路の信頼性を高めることができるとともに、インバータの構成部品である制御ICの商品価値を向上させることができ、同時に部品点数の削減を図ることができる。
【0113】
(付記18) 上記インバータの異常検出回路において、回路配線14、16、52、54、70、72及び検出導体(電流検出線36)に共通の磁路を形成するコア74を備えたことを特徴とするインバータの異常検出回路。即ち、コア74を用いて例えば、回路配線16、54、72及び検出導体に共通の磁路を構成すれば、回路配線16、54、72側の磁束変化Δφを検出導体にコア74を通じて効率よく作用させることができ、この場合、コア74が持つ透磁率によって磁束を増強して検出導体(電流検出線36)に作用させることができるので、回路電流の変化の検出精度を高めることができ、異常時のインバータ2や負荷の防護機能をより高めることができる。磁束変化を共通の磁路であるコア74の磁性材料が持つ透磁率によって磁束を増大させることができ、電流変化の検出感度を高めることができる。
【0114】
(付記19) 上記情報処理装置において、インバータを電源装置又はFL管点灯装置に用いたことを特徴とする情報処理装置。このように構成すれば、信頼性の高い情報処理装置を提供できる。
【0115】
(付記20) 上記インバータの異常検出回路を備えたことを特徴とする照明装置。即ち、インバータ断線放電、絶縁破壊放電の検出、動作停止、それに伴う表示が行えるので、信頼性の高い照明装置を提供できる。
【0116】
以上説明したように、本発明の最も好ましい実施の形態等について説明したが、本発明は、上記記載に限定されるものではなく、特許請求の範囲に記載され、又は発明の詳細な説明に開示された発明の要旨に基づき、当業者において様々な変形や変更が可能であることは勿論であり、係る変形や変更が、本発明の範囲に含まれることは言うまでもない。
【0117】
【発明の効果】
以上説明したように、本発明によれば、次の効果が得られる。
(1) 本発明のインバータの電流検出方法又は電流検出回路によれば、インバータの負荷を含む電流ルートに生じる断線放電や地絡放電等、放電に起因して生ずる回路電流の変化によって生じる磁束変化を媒介にし、回路電流の変化を検出するので、断線放電や地絡放電等に起因する電流変化を回路配線に非接触で確実に検出でき、断線等の異常を発見することができる。
【0118】
(2) 本発明のインバータの電流検出方法又は電流検出回路において、電流検出部を、インバータの回路配線又はトランスのコアギャップ間に隣接して設置された検出導体により、回路配線又はトランスのコアギャップ間に生じる磁束変化を検出する構成とすれば、回路配線に近接して検出導体を配置して磁束変化を媒介として回路電流の変化を検出するので、回路配線に検出導体を併設したにすぎない簡単な構成で、しかも、回路配線に非接触であるため、インバータや負荷の回路条件に電流検出の影響を与えることがなく、断線放電や絶縁破壊放電等で生じるノイズ程度の回路電流の変化を高精度に検出できる。
【0119】
(3) 本発明に係るインバータの異常検出方法や異常検出回路によれば、複雑な回路を必要とすることなく簡単な構成で、回路配線の断線放電や絶縁破壊放電等の動作異常を誤動作なく検出できる。回路電流の変化を回路配線に生じる磁束変化を媒介として検出するので、回路配線の断線放電や高低圧部間の放電等によって生じる異常波形から動作異常を高精度に検出でき、しかも、検出精度が高く、動作異常の発生を速やかに発見できる。また、回路電流の変化を回路配線に非接触で間接的に検出するので、インバータや負荷の回路条件への影響やその回路条件の変更を来すことがなく、しかも、複雑な微分回路等、特別な部品や回路を要することもなく、インバータ側の回路構成と無関係に電流検出部、検出信号出力部を構成することができる。
【0120】
(4) 本発明のインバータの異常検出回路において、インバータは、動作異常時、検出信号を受けてインバータ動作を停止させる制御部を備える構成とすれば、動作異常時、動作を可及的速やかに停止させることができるので、動作異常の継続からインバータ及びその負荷を防護でき、インバータの安全性及び信頼性を高めることができる。
【0121】
(5) 本発明の表示装置によれば、動作異常時、動作異常又は動作停止を表示するので、その表示から動作異常又はインバータの動作停止を容易に知ることができ、防護機能の向上、インバータの動作の信頼性を高めることができる。
【0122】
(6) 本発明の情報処理装置によれば、上記インバータの異常検出回路や上記表示装置を用いることにより、断線放電や絶縁破壊放電等の異常を検出でき、その検出に基づいて動作を停止させるので、異常状態の継続を回避でき、又は、その異常表示や動作停止表示により動作状況の確認を容易に行うことができ、情報処理装置の信頼性をより高めることができる。
【0123】
(7) 本発明の試験方法又は試験装置によれば、インバータの交流出力が供給される負荷を含む電流ルートに通電して試験を行い、その電流ルートに生じる断線放電や地絡放電等の異常の有無を容易に検知でき、信頼性の高い試験結果を得ることができ、FL管や液晶表示ユニット等の各種製品の信頼性を高めることができる。
【図面の簡単な説明】
【図1】本発明のインバータの電流検出方法、その電流検出回路、その異常検出方法、その異常検出回路の実施形態に係るFL管点灯装置を示す回路図である。
【図2】FL管点灯装置の電流検出部の一例を示す図である。
【図3】FL管点灯装置の動作波形を示し、Aは正常動作時の波形を示す図、Bは動作異常時の波形を示す図である。
【図4】動作異常時のFL管点灯装置を示す回路図である。
【図5】電流検出部位について、他の部位を示し、(A)はインバータトランスの一次側を電流検出部位とした場合を示す回路図、(B)はインバータトランスの二次側を電流検出部位とした場合を示す回路図である。
【図6】電流検出部について、他の実施形態を示し、(A)はコアを用いた場合を示す斜視図、(B)はコアに電流検出線を巻き付けた場合を示す斜視図、(C)は回路配線に電流検出線を巻き付けた場合を示す図である。
【図7】他の実施形態に係る電流検出部を示す図である。
【図8】インバータトランスのコアギャップの漏れ磁束を検出する構成を示す図である。
【図9】本発明の表示装置の実施形態を示す回路図である。
【図10】動作異常確認処理を示すフローチャートである。
【図11】本発明の情報処理装置の実施形態を示し、(A)は本発明に係るインバータを用いた携帯電話機を示す斜視図、(B)は本発明に係るインバータを用いたノート型パーソナルコンピュータを示す斜視図である。
【図12】本発明の試験装置の実施形態を示す図である。
【図13】試験の手順を示すフローチャートである。
【図14】本発明に係る電流検出部の実験結果を示す図である。
【符号の説明】
1 FL管点灯装置
2 インバータ
4 FL管(負荷)
6 異常検出回路
14、16、52、54、70、72 回路配線
20 インバータ制御部(制御部)
22 インバータトランス
30 電流検出部
32 電流変化検出部
36 電流検出線(検出導体)
64 LCD
74 コア
78 プロセッサ
86 携帯電話機(情報処理装置)
88 ノート型パーソナルコンピュータ(情報処理装置)
Δφ 磁束変化
d  直流入力電流(回路電流)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an inverter that supplies an AC output to various loads, such as a fluorescent tube for a backlight of a liquid crystal display device.In particular, the present invention relates to a change in circuit current caused by disconnection discharge of circuit wiring or close discharge between high and low voltage parts. The present invention relates to an inverter current detection method, a current detection circuit, an abnormality detection method, an abnormality detection circuit, a display device, an information processing device, a test method, and a test device of the inverter that detect a change in magnetic flux.
[0002]
In a liquid crystal display (LCD), a fluorescent tube (FL tube) is used as a backlight light source, and an inverter is used in the lighting device. This inverter employs a constant current circuit for brightness adjustment and the like, and the FL tube is driven by a constant current drive at a high voltage of about 1.5 kV and a low current of about several mA, for example. The current route including the FL tube to which the AC output is supplied from the inverter is a wiring section from the high-voltage side winding of the inverter transformer to the FL tube, and includes a winding of the inverter transformer, a conductor pattern on the printed wiring board, and a connector. Since the wires pass through a number of members such as wires, the wires are long, and the circuit wires are thin and easily deformed by external pressure. In mobile phones and notebook personal computers, the installation space of the FL tube lighting device is particularly small, and thin wires from the inverter to the FL tube are easily deformed by external pressure.
[0003]
When a disconnection occurs in such a current route of the inverter, the current is interrupted by the disconnection. However, since the current is a high voltage constant current, a voltage rise occurs in the current route of the FL tube when the disconnection occurs, and the disconnection occurs. There is a possibility that the discharge generated at the location continues and the current route is maintained. When the current route is maintained, the tube current flows and the lighting of the FL tube continues. Since the operation abnormality cannot be known from the lighting state, the discovery of the operation abnormality is delayed. Continuation of such an abnormal state is undesirable.
[0004]
Therefore, regarding inverters that supply AC output to various loads, such as fluorescent tubes for backlights of liquid crystal display devices, abnormalities such as disconnection discharge of circuit wiring, destructive discharge between high and low voltage parts, and ground fault discharge are detected and continued. There is a demand for technology development for avoiding and displaying signs.
[0005]
[Prior art]
Conventionally, the following prior art documents exist regarding a technique for detecting such an abnormal operation of the inverter and continuously avoiding the abnormal operation.
[0006]
[Patent Document 1]
JP-A-6-140173
[0007]
[Patent Document 2]
JP-A-11-121190
[0008]
[Patent Document 3]
JP-A-9-113546
[0009]
Patent Document 1 discloses, as a protection device for a discharge lamp lighting system, which avoids the inconvenience that the operation of a transistor inverter is maintained even when the discharge lamp is turned off in the event of an abnormality, and extracts the output of the inverter. The oscillation state is monitored by a monitor circuit, and an abnormality such as a short circuit in the discharge lamp is detected from the monitor pulse voltage. When an abnormality occurs, the operation of the inverter is stopped by stopping the supply of the DC voltage, and the discharge lamp is turned off. However, such a protection device requires a monitor circuit that extracts and monitors the inverter output, a microcomputer that determines whether the monitor pulse voltage is normal or abnormal, and has a complicated configuration, and the output of the inverter is externally provided. Since it is taken out, it is necessary for the inverter to take measures such as coping with changes in operating conditions.
[0010]
Patent Literature 2 discloses a discharge lamp lighting device, which is connected to a discharge lamp by focusing on the fact that the value of the high-frequency voltage decreases when a high-frequency voltage applied to the discharge lamp is discharged between the ground and a low-voltage portion. The high-frequency voltage is detected by a high-frequency voltage detection resistor, and the high-frequency voltage is rectified and converted into a DC voltage. When the level is abnormal, the operation of the discharge lamp lighting device is stopped. However, this discharge lamp lighting device requires a high-frequency voltage detection resistor directly connected to the discharge lamp, and determines the difference between a normal state and an abnormal state (during discharge) by a resistance voltage dividing circuit constituted by the high-frequency voltage detection resistor. Since the determination is made based on the voltage ratio, the threshold level of the switching transistor, or the like, the accuracy of determining whether the operation is abnormal or normal is low, and the operation may be stopped due to the level change in the normal state. Also in this discharge lamp lighting device, since a high-frequency voltage detection resistor is connected to the high-voltage section to detect a high-frequency voltage, special measures are required for extracting the detected voltage, such as a change in circuit conditions.
[0011]
Patent Document 3 discloses that an overcurrent detection circuit uses a current transformer that detects a current supplied from a switching power supply unit to a load. This overcurrent detection circuit has a configuration in which a switching power supply is controlled by an overcurrent detection signal generated by detecting an overcurrent flowing through a load, and a DC output voltage is dropped from the switching power supply to the load. This does not detect a change in the circuit current due to a current route or a discharge generated on the load side.
[0012]
[Problems to be solved by the invention]
By the way, when a discharge is generated between a broken portion of a circuit wiring and a high / low voltage portion, it is possible to check an electrical change caused by the discharge. When a discharge occurs at the disconnection point, the voltage and current representing the discharge increase inside the inverter, but the amount of change is small, and even if the detected voltage is simply compared with the reference voltage, it is normal and abnormal. When the level difference from the time is small, a malfunction easily occurs, which is not practical. In order to enhance the detection accuracy of disconnection discharge and dielectric breakdown discharge between high and low voltage parts, a circuit combining a differentiating circuit and a timer circuit is necessary. However, such a circuit is complicated, and such a circuit is required for an inverter. The addition of is costly and is not practical. In addition, when the amount of waveform change between normal operation and discharge is small, as in the case of micro-discharge, even if a differentiating circuit is used, sufficient detection accuracy cannot be obtained, and malfunctions are liable to occur. Chip.
[0013]
When driving a load such as an FL tube using an inverter, disconnection discharges occurring in the current route and discharges between high and low voltage parts are found, and the continuation of abnormal conditions is prevented by the reliability of operation of the inverter and its load side. However, such a problem is not disclosed in Patent Literatures 1 to 3, and no solution is presented.
[0014]
Further, the failure due to the minute discharge of the LCD is a failure due to the assembling work of the LCD. The failure is detected by visual confirmation or the like, and the reliability and reliability of the detection are low.
Most of the ground fault discharges generated between the high voltage part and the surrounding ground are caused by scratches generated on the coating of the high voltage wiring, bites between the wiring members, breakage of the insulating tube of the soldered part, etc. In some cases, stress is applied to the semiconductor. For this reason, an additional test of the dielectric strength is required. In addition, the disconnection discharge of the high-voltage current route is caused by disconnection of a soldered portion, poor contact of a connector, disconnection of a wiring, and the like, and an electrical detection method of such a discharge is based on observation of a current waveform. Preparation of test equipment and test time are long. In the inspection, visual confirmation of the appearance is also performed. It is difficult to detect smoke disturbances that occur after a lapse of time even in products subjected to such tests. For this reason, there has been a demand for a test method and a test apparatus that can easily detect a fault such as a disconnection discharge or a ground fault discharge and obtain a highly reliable test result in an LCD.
[0015]
Therefore, the present invention relates to an inverter that converts a DC input into an AC output and supplies the AC output to a load such as an FL tube, and easily detects a change in circuit current due to an abnormality such as discharge in a current route without contact. The purpose is to:
[0016]
Another object of the present invention is to provide an inverter for converting a DC input into an AC output and supplying the AC output to a load such as an FL tube, in which the continuation of power supply in the event of an abnormality is stopped to prevent an unexpected situation. Is to do.
[0017]
It is another object of the present invention to provide an information processing device with improved display reliability.
[0018]
Another object of the present invention is to provide a test method and a test apparatus using an inverter that converts a DC input into an AC output and supplies the AC output to a load. Provide equipment.
[0019]
[Means for Solving the Problems]
In order to achieve the above object, a method for detecting current of an inverter according to the present invention is a method for detecting current of an inverter which converts a DC input into an AC output and supplies the AC output to a load, wherein the method includes the steps of: In this configuration, a change in the circuit current is detected through a change in magnetic flux due to a change in the circuit current of the inverter.
[0020]
When a disconnection discharge that occurs in a current route including a load of an inverter or an approach discharge between high and low voltage portions of a circuit wiring, that is, a ground fault discharge occurs, a change occurs in a circuit current of the inverter, and the change is caused by a change in the circuit wiring or the transformer. Causes a magnetic flux change between the core gaps. Therefore, if the change in the circuit current is detected by using the change in the magnetic flux as a medium, the change in the circuit current can be detected in a non-contact manner with the circuit wiring, the transformer, and the like, and the abnormality such as discharge occurring in the current route can be known from the change. be able to.
[0021]
In order to achieve the above object, a current detection circuit for an inverter according to the present invention is a current detection circuit for an inverter that converts a DC input into an AC output and supplies the AC output to a load, wherein the current detection circuit is generated due to discharge. The configuration includes a current detection unit 30 that detects a change in the circuit current through a change in magnetic flux due to a change in the circuit current of the inverter.
That is, a change in magnetic flux is detected by the current detector, and a change in circuit current is taken out of the circuit wiring in a non-contact manner by the change in magnetic flux. Therefore, it is possible to know an abnormality such as a disconnection discharge or a ground fault discharge that has occurred in the current route.
[0022]
In order to achieve the above object, in the current detection circuit for an inverter according to the present invention, the current detection unit is installed adjacent to a circuit gap of the inverter (16 or the like) or a core gap of a transformer (inverter transformer 22). The detection conductor (current detection line 36) may detect a change in magnetic flux generated between the circuit wiring or the core gap of the transformer. With this configuration, if the circuit current changes due to disconnection discharge or ground fault discharge in the current route, a corresponding magnetic flux change occurs between the circuit wiring and the core gap of the transformer, and this magnetic flux change is detected. Acts on conductors to generate high voltages. Since this high voltage depends on the change in the circuit current due to the change in magnetic flux, the change in the circuit current can be easily detected by this high voltage, and it is possible to know abnormalities such as disconnection discharge and ground fault discharge that have occurred in the current route. it can. In this case, since the change of the magnetic flux is detected, it does not affect the circuit on the inverter side, and regardless of the operation of the inverter, the change of the circuit current can be detected accurately without contacting the circuit wiring, etc. without malfunction. This eliminates the need for a differentiating circuit and the like, and does not complicate the circuit configuration.
[0023]
In order to achieve the above object, a method for detecting abnormality of an inverter according to the present invention is a method for detecting abnormality of an inverter which converts a DC input into an AC output and supplies the AC output to a load, wherein the method includes the steps of: In this configuration, a change in the circuit current is detected through a change in magnetic flux due to a change in the circuit current of the inverter, and based on the detection result, whether or not the current route including the load has an abnormality is detected.
[0024]
With this configuration, it is easy to determine whether or not the current route including the load has an abnormality based on whether or not the level of the change in the circuit current detected in a non-contact manner through the change in the magnetic flux has exceeded a predetermined level. be able to.
[0025]
In order to achieve the above object, an abnormality detection circuit for an inverter according to the present invention is an abnormality detection circuit for an inverter 2 that converts a DC input into an AC output and supplies the AC output to a load (FL tube 4). A detection unit 30 and a detection signal output unit (comparator 34) are provided. The current detector is configured to detect a change in the circuit current through a magnetic flux change caused by a change in the circuit current of the inverter caused by the discharge.The detection signal output unit is configured to detect a change in the circuit current based on a detection result of the current detector. , And outputs a detection signal indicating whether there is an abnormality in the current route including the load.
[0026]
In such a configuration, when a high voltage output is supplied from the inverter (2) to a load such as the FL pipe (4), an abnormality such as a disconnection discharge or a ground fault discharge occurs in a current route between the inverter and the load. Then, the circuit current of the inverter changes, and this change in the circuit current causes a magnetic flux change Δφ in the circuit wiring (14, 16, 52, 54, 70, 72). In an inverter that supplies a high-voltage output to a load, even if the current route is broken, a discharge occurs at the broken portion and the current route is maintained. In this case, the continuation of the discharge causes a change in the circuit current, causing a change in magnetic flux in the circuit wiring. Also, a sudden change in the circuit current is caused by a ground fault discharge due to insulation breakdown between the high voltage section and the low voltage section on the output side, and this causes a rapid magnetic flux change Δφ in the circuit wiring. A change in the circuit current is detected by the current detecting unit by the action of the magnetic flux change, and a high voltage representing the change is extracted. As a result, a detection signal indicating whether or not there is an abnormality such as a disconnection discharge or a ground fault discharge in the current route including the load such as the FL tube is obtained from the detection signal output unit. Therefore, it is possible to indirectly determine whether there is an abnormality in the current route without touching the circuit current or voltage on the inverter side.
[0027]
In this case, since the change in the circuit current is detected through the change in the magnetic flux, the change in the circuit current can be detected in a non-contact manner regardless of the circuit configuration on the inverter side without making any changes to the circuit conditions of the inverter. It is possible to detect, and to know whether or not there is an abnormality in the current route.
[0028]
In order to achieve the above object, in the inverter abnormality detection circuit according to the present invention, the inverter includes a control unit (an inverter control unit 20) that receives the detection signal and stops the inverter operation when the operation is abnormal. Is also good. When an abnormality such as a disconnection discharge or a ground fault discharge occurs in the current route, the operation of the inverter is stopped, so that the inverter and the load are protected from the continuation of the operation abnormality.
[0029]
In order to achieve the above object, a display device of the present invention includes a current detection circuit of the inverter or an abnormality detection circuit of the inverter, and is configured to display an abnormality or an operation stop of the inverter when an abnormality occurs.
[0030]
The display of this display device includes an image display, a buzzer sound, and other audio notifications. Therefore, the display device receives the detection signal from the detection signal output unit,
(1) Display indicating abnormalities such as disconnection discharge and ground fault discharge,
(2) Stop display of inverter operation,
(3) Indication of (1) or (2) or both indications
I do. From these displays, it is possible to easily know the operation abnormality and the inverter operation stop, and it is possible to take necessary measures as quickly as possible.
[0031]
In order to achieve the above object, an information processing apparatus according to the present invention has a configuration including the inverter current detection circuit, the inverter abnormality detection circuit, or the display device. According to such an information processing apparatus, a power supply system such as a power supply circuit can be configured in addition to a lighting device that drives an illumination load such as a discharge tube using the inverter according to the present invention. If an information processing device is configured using the current detection circuit and the abnormality detection circuit of such an inverter, an operation abnormality such as discharge can be found immediately, or the continuation of the operation abnormality can be avoided. The display or the operation stop can be displayed, so that the display device can be protected. Further, the reliability of the power supply device of various circuits can be improved, the information processing device can be protected from the continuation of abnormal operation of the power supply system, and the reliability of operation can be improved.
[0032]
In order to achieve the above object, a test method of the present invention is a test method using an inverter that converts a DC input into an AC output and supplies the AC output to a load. The configuration is such that the change in the circuit current is detected by using the change in magnetic flux due to the change in the circuit current as a medium, and whether or not the current route including the load has an abnormality is determined based on the detection result.
[0033]
In order to achieve the above object, a test apparatus of the present invention converts a DC input into an AC output and supplies the AC output to a load, and an inverter that supplies the AC output to a load. A current detection unit that detects a change in the circuit current by using a change in magnetic flux as a medium, and determines whether there is an abnormality in a current route including the load based on a detection result of the current detection unit.
[0034]
With such a configuration, a change in circuit current due to a disconnection discharge or a ground fault discharge in the current route is detected through a change in magnetic flux, and abnormalities such as a disconnection discharge or a ground fault discharge in the current route are easily detected from the detection result. Detected with high accuracy. In addition, this test can determine whether or not there is an abnormality without any electrical influence on the current route on the load side using the inverter as a power supply.
[0035]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the inverter current detection method, the current detection circuit, the abnormality detection method, and the abnormality detection circuit of the present invention will be described with reference to FIG. FIG. 1 shows an FL tube lighting device according to an embodiment of the present invention. The FL tube lighting device 1 constitutes a backlight FL tube lighting device for a liquid crystal display (LCD).
[0036]
The FL tube lighting device 1 includes an inverter 2 for converting a DC input into an AC output, and an FL tube 4 as a load to which the AC output is supplied. The inverter 2 has a disconnection discharge or insulation generated in circuit wiring. An abnormality detection circuit 6 for detecting a destructive discharge is connected.
[0037]
In the inverter 2, a DC power supply 12 is connected to DC input terminals 8 and 10 that receive DC input, and a DC input to be converted to AC is applied. The DC power supply 12 includes various DC power supplies such as an AC-DC converter in addition to a battery.
Further, the DC input terminals 8 and 10 are connected to circuit wirings 14 and 16 to form a current route of the DC input current, and are connected to an input smoothing capacitor 18. The circuit wirings 14 and 16 are formed of, for example, a conductor pattern on a printed wiring board, and the input smoothing capacitor 18 forms a filter that removes a fluctuation component such as a voltage ripple included in the DC input. DC input is smoothed and stabilized. The DC input is supplied to the inverter control unit 20 through the DC input terminals 8 and 10 and the circuit wirings 14 and 16. The inverter control unit 20 includes, for example, a push-pull type inverter circuit unit including a plurality of transistors as a switching element, a drive circuit unit, a switching control unit, and the like. An oscillation circuit included in the feedback circuit is configured. In this embodiment, a switch 26 is built in as a means for switching power supply to the circuit wiring 14. The operation of the switch 26 can be externally switched by a control input applied to a latch input terminal 28 as a control input unit of the inverter control unit 20. The inverter control unit 20 may be a known one such as a general-purpose control IC (for example, TI, TL5001, etc.) that is already on the market, and the details of the circuit configuration will be omitted.
[0038]
In the inverter 2, the abnormality detection circuit 6 for detecting an operation abnormality includes a current detection unit 30 for detecting a circuit current, a current change detection unit 32 for detecting a change in the circuit current caused by the discharge, A comparator 34 is provided as a determination unit for determining whether the change level of the circuit current is abnormal.
[0039]
The current detection unit 30 is a circuit unit that detects a change in circuit current by using a change in magnetic flux generated by a change in circuit current from the circuit wiring 16 or the like of the inverter 2 as a medium. The 16th side is set as a current detection site. In the current detection unit 30, a current detection line 36 is provided as a detection conductor for detecting a change in circuit current through a change in magnetic flux Δφ generated in the circuit wiring 16. In this case, the DC input current i d Is a detection target. The current detection line 36 is a wiring conductor provided along with the circuit wiring 16 at an interval capable of capturing a magnetic flux change Δφ generated in the circuit wiring 16.
[0040]
Next, the current detection unit 30 will be described with reference to FIG. FIG. 2 shows an example of the current detection unit 30. The current detection unit 30 includes a current detection line 36 having the same wiring pattern as the circuit wiring 16 installed on the printed wiring board 38. In the present embodiment, the wiring pattern of the circuit wiring 16 and the wiring of the current detection line 36 are used. The pattern forms a parallel pattern. That is, the current detection line 36 having a linear portion parallel to the linear circuit wiring 16 is provided, and the DC input current i d Causes the magnetic flux change Δφ generated in the circuit wiring 16 to act on the current detection line 36. In this case, a is the width of the current detection line 36, b is its length, and a predetermined insulation interval D is set between the current detection line 36 and the circuit wiring 16. If the insulation interval D is reduced, the detection sensitivity of the magnetic flux change Δφ can be increased.
[0041]
The current detection line 36 is provided with detection terminals 40 and 42 for extracting a voltage generated by the action of the magnetic flux change Δφ, and the detection voltages obtained at the detection terminals 40 and 42 are currents for detecting a change in circuit current. It is added to the change detection unit 32. In the case of this embodiment, the current change detection unit 32 includes a diode 44 as a conversion unit that rectifies the detection voltage and converts the voltage into a DC level. The diode 44 is connected to the detection terminal 40 side. Between the cathode side and the detection terminal 42, a capacitor 46 is provided as a filter circuit, and a resistor 48 constituting a detection level adjustment unit is connected. As the diode 44, for example, a Schottky diode having a short reverse recovery time is used in order to respond to the detection of a current change due to disconnection discharge or the like. With such a configuration, the current change detection unit 32 is configured as a current / voltage conversion unit that converts a change in circuit current into a change in DC voltage, and a DC voltage corresponding to the change in circuit current is obtained in the capacitor 46 and the resistor 48. This voltage level is the change in the circuit current, in this case the DC input current i d Represents the change of
[0042]
The detection signal of the current change detection section 32 is applied to a comparator 34 constituting a detection signal output section. The comparator 34 constitutes an amplifying unit for the detection signal, and is a determination unit that determines whether or not the operation is abnormal based on the change level of the circuit current, and compares the detection signal with a predetermined level indicating the operation abnormality. In this case, the predetermined level is, for example, a reference level at which an operation abnormality such as a disconnection discharge of a circuit wiring or an approach discharge (dielectric breakdown discharge) between a high voltage portion and a low voltage portion of the circuit wiring can be determined. Any level setting may be used as long as it can be determined whether it is abnormal or normal, such as a level during operation or a level slightly higher than the level. Therefore, the comparator 34 compares the detection voltage with a predetermined level. For example, when the level of the detection voltage is equal to or lower than the predetermined level, the low (L) level indicating normal, and when the level of the detection voltage exceeds the predetermined level, A detection signal Vs having a high (H) level indicating an abnormal operation is output. The detection signal Vs is applied to the latch input terminal 28 of the inverter control unit 20 and is used to maintain the operation of the inverter control unit 20 in a normal state and to stop the operation of the inverter control unit 20 in an abnormal operation. In this embodiment, when the operation is abnormal, the switch 26 is opened by the detection signal Vs applied to the latch input terminal 28, the power supply to the inverter control unit 20 is released, and the operation of the inverter 2 is controlled to a stopped state.
[0043]
Further, circuit wirings 52 and 54 are connected to the secondary winding 50 of the inverter transformer 22 to form a current route of the output current. A ballast capacitor 56 is inserted in one circuit wiring 52 and a connection connector 58 as an AC output terminal is inserted. A constant current detection resistor 60 is inserted in the other circuit wiring 54 and a connection connector 62 as an AC output terminal is inserted. The FL tube 4 as a load is connected to the connection connectors 58 and 62, and the FL tube 4 constitutes a backlight of the LCD 64. The ballast capacitor 56 constitutes a stabilizer for stabilizing the tube current flowing through the FL tube 4, and the tube current detected by the constant current detection resistor 60 is applied to the inverter control unit 20 side, thereby making the tube current constant. Used for Therefore, as a switching operation of the inverter control unit 20, an alternating current is generated by an orthogonal transformation operation, and a high-frequency high-voltage output is obtained in the secondary winding 50 of the inverter transformer 22 by boosting the inverter transformer 22. This high voltage output is applied to the FL tube 4 through the circuit wirings 52 and 54 and the connection connectors 58 and 62. In this embodiment, a case where a single FL tube 4 is connected to a single secondary winding 50 is shown. However, a plurality of FL tubes may be installed, in which case the ballast capacitor 56 is connected to each FL tube. Installed for each pipe.
[0044]
Next, the operation of the FL tube lighting device 1 will be described with reference to FIGS. 3A shows an operation waveform in a normal state, FIG. 3B shows an operation waveform in an abnormal state, and FIG. 4 shows a case where a disconnection discharge or a ground fault discharge occurs in a current route.
[0045]
When the FL tube 4 is driven at a constant current using such an inverter 2, the FL tube 4 is turned on by a constant drive current. When the operation is normal, the operation waveform of the AC output is a sine wave waveform nw shown in FIG. 3A. For example, as shown in FIG. A discharge occurs at 66, which maintains the current route. As shown in FIG. 3B, the operation waveform at the time of such an abnormal operation is an abnormal waveform in which the discharge waveform dw is superimposed on the normal sine wave waveform nw. The discharge waveform dw changes more rapidly than the gradual AC output fundamental wave and is a noise (high frequency) having a high frequency component. Such a waveform component does not increase the current value of the circuit current. It only increases the amount of change. Then, the discharge waveform dw is periodically generated with respect to a level change of the sine wave waveform nw in a normal state. Such a phenomenon can be applied not only to the current waveform but also to the voltage waveform, but it has been experimentally confirmed that the change of the current waveform is larger than that of the voltage waveform.
[0046]
When the current route is maintained by such discharge, the output current i of the inverter transformer 22 2 , The input current i of the inverter transformer 22 1 , DC input current i d The circuit current such as the drive current in the inverter control unit 20 changes suddenly, and a violent magnetic flux change Δφ indicating a sudden change in the circuit current occurs around the circuit wirings 14 and 16 constituting the current route. At this time, an abrupt change in magnetic flux Δφ is detected in the current detection line 36, and a high voltage representing a change in circuit current is generated at both ends. This high voltage is rectified by the diode 44 and smoothed by the capacitor 46, so that a DC voltage having a level representing a rapid current change is obtained at the time of discharging. This DC voltage is applied to a comparator 34 and compared with a predetermined level, and the comparator 34 obtains a detection signal Vs indicating whether the operation is normal or abnormal.
[0047]
When the detection signal Vs is applied to the latch input terminal 28 of the inverter control unit 20 as an operation stop output, the inverter control unit 20 turns off the switch 26, stops the inverter operation, and cancels the AC output. The FL tube 4 is turned off and the continuation of the discharge is interrupted. As a result, the inverter 2 and the FL tube 4 are released from the continuation of the operation abnormality.
[0048]
Also, as shown by a broken line in FIG. 4, when a discharge 68 occurs due to dielectric breakdown or the like due to an approach between a high-voltage section on the AC output side and a low-voltage section such as a chassis, the operation waveform is shown in FIG. As shown, similar to the disconnection discharge, an abnormal waveform is obtained in which the discharge waveform dw is superimposed on the normal sine wave waveform nw.
[0049]
Also in this case, a sudden change in the circuit current of the circuit wiring 16 causes a magnetic flux change Δφ, which is detected by the current detection line 36 of the current detection unit 30. Is obtained. As a result, the inverter operation by the inverter control unit 20 is stopped, and the release of the AC output turns off the FL tube 4 and interrupts the continuation of the discharge. Similarly, the inverter 2 and the FL tube 4 are released from the continuation of the operation abnormality.
[0050]
The operation and effect of this embodiment are as follows.
[0051]
In this embodiment, since the current detection unit 30 is provided on the input current side of the inverter control unit 20, a sudden change of the input current caused by an operation abnormality such as disconnection discharge or dielectric breakdown discharge of the output side current route is detected by a magnetic flux change Δφ. Thus, a high voltage indicating an abnormal operation can be generated at the detection terminals 40 and 42. That is, as compared with the detection of an operation abnormality on the high voltage side, insulation measures are easier and safety is excellent.
[0052]
Since the change in the circuit current is detected through the magnetic flux change Δφ, a voltage representing a sudden change in the circuit current is generated by an extremely simple configuration in which the current detection line 36 is arranged in parallel with the circuit wiring 16. Can be extracted at a high voltage. That is, the detection sensitivity of the change in the circuit current is high, and the abnormal operation can be detected with high accuracy.
[0053]
In addition, an operation abnormality such as discharge can be detected from a voltage change, but since a change in circuit current is detected through a change in magnetic flux Δφ, detection accuracy is increased. That is, the waveform change due to the discharge has a larger change in the current waveform than the voltage waveform, and the change in the current causes a change in the magnetic flux Δφ, so that the detection of the operation abnormality through the change in the magnetic flux Δφ increases the detection accuracy.
[0054]
When detecting a change in the circuit current through the magnetic flux change Δφ, the magnetic flux change Δφ can be easily detected with a very simple configuration in which the current detection line 36 is arranged in parallel with the circuit wiring 16. The installation of 36 does not require any change to the circuit conditions on the inverter 2 side, and the current change detection unit 32 and the comparator 34 respond to the high voltage generated at the detection terminals 40 and 42 irrespective of the inverter side circuit. The circuit can be configured by means of a simple circuit design.
[0055]
The current change detection unit 32 determines whether the high voltage obtained at the detection terminals 40 and 42 is normal by a simple circuit configuration and processing such as rectification by a diode 44 and smoothing by a capacitor 46, and whether the operation is abnormal due to discharge. And a DC voltage at a level required for the above. That is, it is possible to generate a DC voltage in which the level difference clearly indicates whether the operation is normal or abnormal due to discharge. Therefore, in the comparator 34, it is easy to set a reference level for distinguishing between normal and abnormal, and as a result, it is possible to detect an operational abnormality with high detection accuracy and without malfunction.
[0056]
Then, by applying the detection signal Vs obtained from the comparator 34 to the latch input terminal 28 of the inverter control unit 20, the operation of the inverter control unit 20 is stopped when the operation is abnormal. The load on the tube 4, the LCD 64, and the like can be protected.
[0057]
By the way, according to an experiment, a Schottky diode having a fast reverse recovery time is used as the diode 44 of the current change detection unit 32 for generation of a detection voltage irrelevant to disconnection discharge or dielectric breakdown discharge in the current detection line 36. The resistance of the resistor 48 is, for example, 0.1 [MΩ] to 5 [MΩ], and the capacitor 46 is, for example, a capacitance of 0.0015 [μF] to 0.1 [μF]. It has been confirmed that by setting the circuit conditions described above, it is possible to detect a voltage change due to a change in the circuit current due to the minute discharge. As a result, abnormalities such as disconnection discharge, dielectric breakdown discharge, and ground fault discharge can be detected, and malfunction due to a transient current due to power-on can be easily prevented. In this case, specific circuit conditions used in the experiment are shown for the diode 44, the capacitor 46, and the resistor 48, but these circuit conditions can be arbitrarily set, and the present invention is limited to such circuit conditions. Not something.
[0058]
Next, a current detection portion for detecting a change in circuit current will be described with reference to FIG. FIG. 5A shows a case where the current detection part is set on the primary side of the inverter transformer, and FIG. 5B shows a case where the current detection part is set on the secondary side of the inverter transformer.
[0059]
For example, as shown in FIG. 5A, the current detection parts include circuit wirings 70 and 72 connected to the primary winding 24 of the inverter transformer 22, as shown in FIG. For example, the current detection unit 30 may be provided on the circuit wiring 72 and the current detection line 36 may be provided along with the secondary winding 50 of the inverter transformer 22 as shown in FIG. May be set as current detection sites. For example, the current detection unit 30 may be installed on the circuit wiring 54 and the current detection line 36 may be provided. When the current detection line 36 is provided along with the circuit wiring 72, the primary current flowing through the circuit wirings 70 and 72 on the primary winding 24 side of the inverter transformer 22, that is, the input current i 1 Can be detected through the magnetic flux change Δφ due to the change of the inverter, and the inverter operation can be stopped.
[0060]
In addition, if the current detection line 36 is provided in parallel with the circuit wiring 54, the output current i which is the secondary current of the inverter transformer 22 flowing through the circuit wiring 54 2 And the output current i 2 , The inverter operation is stopped when the operation is abnormal, and the inverter 2, the FL tube 4, etc. can be protected from the continuation of the operation abnormality such as discharge. In this case, the output side of the inverter transformer 22 has a large waveform change and a large change value of the discharge waveform as compared with the input side, so that the change in the detected circuit current and the change in the magnetic flux are large, and the detection accuracy is high. Become.
[0061]
Next, another embodiment of the current detection unit 30 will be described with reference to FIG. 6A is a current detection unit 30 configured using a core, FIG. 6B is a current detection unit 30 configured by winding a current detection wire around a core, and FIG. The current detection unit 30 is configured by winding the current detection line 36 around the circuit wirings 16, 54, and 72.
[0062]
For example, as shown in FIG. 6A, a ring-shaped core 74 is installed in the current detection unit 30, and the circuit wiring 16, 54 or 72 and the current detection By passing the wire 36, a common magnetic path for passing the magnetic flux φ to the current detection line 36 may be formed together with the circuit wiring 16, 54 or 72 with the core 74. When such a core 74 is used, the magnetic flux change Δφ can be increased by the magnetic permeability μ of the magnetic material forming the core 74, the detection voltage of the detection terminals 40 and 42 can be increased, and the detection sensitivity can be increased. .
[0063]
Further, for example, as shown in FIG. 6B, the current detection line 36 may be wound around the core 74. In this case, the magnetic flux change Δφ acting on the current detection line 36 is increased by the number of turns N, the detection voltage generated at the detection terminals 40 and 42 is boosted, and a higher detection voltage can be taken out. In this case, the circuit wiring 16, 54 or 72 may be wound around the core 74. Further, a rod-shaped core may be used as the core 74, and a common magnetic path can be similarly formed in the circuit wiring 16, 54 or 72 and the current detection line 36 with the rod-shaped core.
[0064]
For example, as shown in FIG. 6C, the current detection line 36 is wound around the circuit wiring 16, 54, or 72 several times, and the magnetic flux change Δφ generated in the circuit wiring 16, 54, or 72 is applied to the current detection line 36. You may make it act. With such a configuration, a detection voltage corresponding to the number of turns of the current detection line 36 can be extracted between the detection terminals 40 and 42. If the configuration is such that the core 74 is not used, the number of components is small and the current detection unit 30 can be configured at low cost. For example, the same effect can be obtained in the abnormality detection circuit 6 of the inverter 2 shown in FIGS. 1, 4, and 5 in which the core 74 is not used.
[0065]
Next, another embodiment of the current detection unit 30 will be described with reference to FIGS. FIG. 7 shows a current detection unit 30 installed adjacent to the inverter transformer, and FIG. 8 shows detection of a change in magnetic flux caused by a discharge current.
[0066]
The inverter transformer 22 used in the inverter 2 has a gap 25 formed in the core 23, and the gap 25 is installed with the gap 25 facing the printed wiring board 38. Therefore, a current detection line 36 is provided on the printed wiring board 38 between the gaps 25 by a wiring pattern. In other words, a current detection line 36 having a width a and a length b smaller than the interval w between the cores 23 is formed on the printed wiring board 38, and the core 23 of the inverter transformer 22 is installed across the printed wiring board 38. The current detection line 36 is arranged between the gaps 25. The length b of the current detection line 36 is set larger than the width d of the core 23, but may be set to the same length (b = d). The primary winding 24 and the secondary winding 50 are installed in the inverter transformer 22. The terminals 24 a and 24 b of the primary winding 24 are connected to the inverter control unit 20, and the terminal 50 a of the secondary winding 50 is connected to a ballast capacitor 56. (FIG. 1), a constant current detection resistor 60 is connected to the terminal 50b.
[0067]
With such a configuration, for example, when a discharge occurs in the current route on the secondary winding 50 side of the inverter transformer 22, the discharge current causes a rapid magnetic flux change Δφ in the gap 25 as shown in FIG. . This magnetic flux change Δφ acts on the gap 25 and the current detection line 36 adjacent thereto and is detected by the current detection line 36, and the circuit current (i d ), A detection voltage having a high level indicating the change of the detection voltage is obtained. This detection voltage is applied to the current change detection unit 32 (FIG. 1) and used for inverter control and the like.
[0068]
Next, an embodiment of the display device of the present invention will be described with reference to FIG. FIG. 9 shows a display device using the inverter abnormality detection circuit according to the present invention.
[0069]
In this display device, the configurations, operations, and effects of the inverter 2 and the abnormality detection circuit 6 are as described with reference to FIGS.
[0070]
In this display device, an LCD 64 and an indicator 76 which constitute a display unit for displaying the abnormality at the time of abnormal operation are installed, and a processor 78 is installed as a display control unit for these. The processor 78 constitutes a processing unit that executes a control program for displaying an operation abnormality stored in a storage unit (not shown). The processor 78 receives the detection signal Vs obtained by the comparator 34, The keyboard 80 is connected, and an instruction input for executing a process for confirming an operation abnormality is input. The LCD 64 is provided with a display drive unit 82 and the indicator 76 is provided with a display drive unit 84 in order to perform a predetermined display upon receiving a display control output from the processor 78.
[0071]
The operation of this display device will be described with reference to FIG. FIG. 10 is a flowchart showing the operation abnormality confirmation processing. In the operation abnormality confirmation process, it is determined whether or not the operation is in the operation abnormality confirmation mode by starting the process (step S1). In this case, by operating a key assigned to a specific key or a plurality of keys on the keyboard 80, the operation abnormality confirmation mode is set. In this case, the operation abnormality check mode at the time of turning on the power may be automatically set so that the abnormality of the inverter 2 can be confirmed. When the operation abnormality check mode is established, the detection signal Vs from the comparator 34 is accepted, and it is determined whether an operation abnormality has been detected (step S2).
[0072]
During normal operation, the LCD 64 or the indicator 76 displays no operation abnormality, that is, a normal operation is displayed (step S3). For example, when a predetermined time has elapsed from the start of the display of the normal operation, or when the administrator instructs the operation display cancellation from the keyboard 80, the display cancellation is performed (step S4), and thereafter, the process returns to the step S1.
[0073]
When an operation abnormality is detected in step S2, the display of the operation abnormality and the stop of the operation of the inverter 2 are displayed on the LCD 64 or the indicator 76 (step S5). The administrator checks these displays and performs necessary processing. For example, when a predetermined time elapses from the start of the operation abnormality display, or when the administrator instructs the operation display cancellation from the keyboard 80, the display cancellation is performed (step S6), and thereafter, the process returns to step S1. In this case, when the operation abnormality is displayed, the display may not be released unless the administrator performs a predetermined improvement process.
[0074]
When the FL tube 4, which is the light source of the LCD 64, is turned off, it is expected that the display contents of the LCD 64 will be difficult to confirm. Therefore, the indicator 76 is easy to confirm when an abnormality is displayed or when the operation of the inverter 2 is stopped. Can be used for an abnormality display or a display indicating that the operation of the inverter 2 has stopped. If the display can be confirmed with the FL tube 4 turned off, the indicator 76 is not necessarily required. If such display is performed using both the LCD 64 and the indicator 76, the operation can be stopped and the reliability of the display can be improved.
[0075]
Next, an embodiment of an information processing apparatus and an electronic apparatus according to the present invention will be described with reference to FIG. FIG. 11A shows a mobile phone according to the embodiment, and FIG. 11B shows a notebook personal computer according to the embodiment. The mobile phone and the notebook personal computer constitute an information processing device and an electronic device configured using the inverter abnormality detection circuit or the display device according to the present invention.
[0076]
As this information processing device or electronic device, a FL tube 4 is installed as a backlight of an LCD 64 as a display device in a housing 90 of a mobile phone 86 or a notebook personal computer 88, and a driving device thereof is shown in FIGS. A processor 78, a keyboard 80, and the like are incorporated as an arithmetic and control unit together with the inverter 2 shown and the abnormality detection circuit 6 of the inverter 2 according to the present invention. In this case, the indicator 76 as a display element may be installed for maintenance in the housing 90 of the mobile phone 86 or the notebook personal computer 88, or may be installed on the outer surface of the housing 90.
[0077]
With such a configuration, in information processing apparatuses such as the mobile phone 86 and the notebook personal computer 88, disconnection discharge and insulation breakdown of the circuit wirings 14 and 16, the circuit wirings 52 and 54, and the circuit wirings 70 and 72 of the inverter 2 are provided. An operation abnormality such as discharge can be monitored, and by stopping the operation, the information processing apparatus can be protected from the continuation of the operation abnormality. Further, since the operation abnormality and the operation stop are displayed on the LCD 64 and the indicator 76, the operation abnormality and the operation stop can be quickly known from the display, and a highly reliable information processing apparatus can be realized. Moreover, abnormalities such as disconnection discharges and dielectric breakdown discharges of the circuit wirings 14 and 16 of the inverter 2 can be easily determined from the displayed contents, and necessary countermeasures can be immediately executed, and a highly safe information processing device or electronic device. Can be provided.
[0078]
Next, an embodiment of a test method and a test apparatus of the present invention will be described with reference to FIGS. FIG. 12 is a view showing a test apparatus according to the embodiment, and FIG. 13 is a flowchart showing a test procedure.
[0079]
A liquid crystal display unit 92 is used as a test object. In this case, the liquid crystal display unit 92 includes an LCD 64 and an FL tube 4, and the FL tube 4 has connection connectors 58 and 62, and the LCD 64 has a connection connector 94. I have.
[0080]
The test device 96 of the liquid crystal display unit 92 includes the inverter 2 including the abnormality detection circuit 6 described above with reference to FIG. 1, and in the present embodiment, the processor described above with reference to FIG. 78, and display drive units 82 and 84 are provided. The output of the display driver 84 is applied to a display 98, and the display 98 displays the test result. Other configurations are the same as those shown in FIGS. 1 and 9.
[0081]
In testing the liquid crystal display unit 92, the AC output unit of the inverter 2 of the test device 96 is connected to the connection connectors 58 and 62, and the output unit of the display drive unit 82 is connected to the connection connector 94.
[0082]
Then, referring to the flowchart shown in FIG. 13, it is determined whether or not the FL tube 4 has been connected by starting the test (step S11). If the FL tube 4 is connected, the inverter 2 connects the FL tube 4 to the FL tube 4. Power supply is started (step S12). As a result of this power supply, it is determined whether or not the change in circuit current is equal to or higher than a predetermined level (step S13). If disconnection discharge and ground fault discharge have not occurred in the current route on the side of the FL tube 4 as a load, the discharge current is determined. And the change in circuit current is less than a predetermined level. The detection of the change in the circuit current is as described above. In this case, the detection output of the abnormality detection circuit 6 is applied from the comparator 34 to the processor 78 and determined to be normal, and the determination result is displayed on the display 98 as a test result indicating normal (step S14). Further, when a disconnection discharge or a ground fault discharge occurs in the current route on the side of the FL tube 4 as a load, the discharge current causes a large change in the circuit current, and the change becomes a predetermined level or more. The detection of the change in the circuit current is as described above. In this case, the detection output of the abnormality detection circuit 6 is applied to the inverter control unit 20, and the output of the inverter is stopped. At the same time, the detection output is applied from the comparator 34 to the processor 78 and determined to be abnormal, and the result of the determination is displayed on the display 98 as an abnormal test result (step S15).
After stopping the power supply (step S16), the tested liquid crystal display unit 92 is removed from the test device 96, the next liquid crystal display unit 92 is connected to the test device 96, and the same test is performed.
[0083]
According to such a test apparatus and test method, the liquid crystal display unit 92 does not increase the number of test steps, does not require special preparation, and furthermore, the lighting conditions of the liquid crystal display unit 92 are different from those at the time of use. Tests can be performed with the same settings, and it is possible to quickly and accurately test whether or not there is a disconnection discharge or a ground fault discharge, and whether or not there is an abnormality in the connectors 58, 62, and 94. And can contribute to providing a highly reliable product.
[0084]
In this test apparatus, the case where the current detection unit 30 is installed on the circuit wiring 16 on the input side of the inverter control unit 20 has been described, but the current detection unit 30 is installed on the circuit wiring 52 or 54 on the secondary side of the inverter transformer 22. May be installed to detect a change in the circuit current through a change in the magnetic flux Δφ due to a change in the circuit current to determine an abnormality such as discharge of the FL tube 4 or the current route. As described above, detecting a change in the circuit current on the secondary side of the inverter transformer 22 is advantageous in increasing the detection accuracy.
[0085]
In addition, the present invention provides various electronic devices in addition to the inverter current detection method described above, the current detection circuit thereof, the abnormality detection method thereof, the abnormality detection circuit, the display device, the information processing device, the test method and the test device, and the like. Includes Therefore, technical matters are extracted from each embodiment of the present invention, and their technical significance, modified examples, and other technical expansion matters are listed below.
[0086]
a In the embodiment, when a change in the circuit current exceeds a predetermined level, a comparator 34 that compares a detection voltage with a predetermined level and outputs a detection signal as a detection signal output unit that outputs a detection signal indicating an operation abnormality is provided. Although illustrated, the detection signal output unit may be formed using a switching transistor or a switch circuit that is turned on or off in response to the level of the detection signal.
[0087]
b After rectifying the detection voltage obtained at the detection terminals 40 and 42 or extracting a specific frequency component, the digital signal is converted into a digital signal, and the digital signal is added to a processor 78 shown in FIG. The inverter 2 may be configured to determine whether an abnormal operation has occurred in the inverter 2, apply the determination output as a control input to the latch input terminal 28 of the inverter control unit 20, and stop the operation of the inverter 2. . In this case, when the operation is stopped, an operation abnormality such as discharge or the state thereof may be displayed on the LCD 64 or the indicator 76.
[0088]
c Although the circuit wiring 16 and the current detection line 36 shown in FIG. 2 are configured by the conductor pattern of the printed wiring board, the circuit wiring 16 and the current detection line 36 may be configured by wires other than the conductor pattern. The detection lines 36 may be bundled to cause the magnetic flux change Δφ on the circuit wiring 16 side to act on the current detection lines 36.
[0089]
d The current change detection of the current change detection unit 32 is performed by detecting the voltage detected at the detection terminals 40 and 42 by rectifying and smoothing the detected voltage at the detection terminals 40 and 42 with the diode 44, the capacitor 46, and the resistor 48, as well as disconnection discharge and insulation. A detection circuit that detects and extracts a component specific to discharge included in a change in circuit current caused by destructive discharge may be used.
[0090]
e When the inverter control unit 20 does not include the operation stop unit, the control unit that cancels the operation of the inverter 2 is provided to the DC input side of the inverter control unit 20 based on the detection signal Vs at the time of abnormal operation. A switch circuit for canceling power supply may be provided.
[0091]
Although the inverter control unit 20 has been described as an example of the control unit, the power supply control to the inverter control unit 20 may be performed by using the processor 78 as the control unit, and the inverter operation may be stopped when the operation is abnormal.
[0092]
g. The problem to be solved by the present invention addresses the inverter 2 having a constant current drive and a low current output as a conventional technique, but the present invention is not limited to such an inverter.
[0093]
h In the embodiment, the primary winding 24 of the inverter transformer 22 is a single winding for the sake of simplicity, but the feedback to be applied to each transistor of the push-pull type inverter circuit built in the inverter control unit 20. This does not exclude a winding for extracting a signal, and the inverter abnormality detection circuit of the present invention includes various inverters.
[0094]
Next, experimental results of the current detection unit 30 will be described with reference to FIG. Regarding the wiring pattern of the current detection line 36 as a detection conductor (FIG. 2), the width a is set to 10 [mm], the length b is changed, and the distance D = 0 between the circuit wiring 16 and the current detection line 36 is set. When the values were set to 0.1 mm, 0.2 mm, 0.3 mm, and 0.5 mm, the voltage shown in FIG. As is apparent from the experimental results, the current detection line 36 having a width a = 10 [mm] × length b = 10 [mm] is used, and the distance D between the current detection line 36 and the circuit wiring 16 is set to 0.5. When it was set to [mm], it was confirmed that a detection voltage of 2 [V] was obtained by the discharge current. According to this detection voltage, it was confirmed that a change in circuit current due to discharge can be detected with high accuracy.
[0095]
Next, the technical ideas extracted from the above-described embodiments of the present invention will be listed as supplementary notes according to the description form of the claims. The technical idea according to the present invention can be grasped at various levels and variations from a high-level concept to a low-level concept, and the present invention is not limited to the following supplementary notes.
[0096]
(Supplementary Note 1) A current detection method of an inverter that converts a DC input into an AC output and supplies the AC output to a load,
An inverter current detection method, wherein a change in the circuit current is detected through a change in magnetic flux due to a change in the circuit current of the inverter caused by discharging.
[0097]
(Supplementary Note 2) A current detection circuit of an inverter that converts a DC input into an AC output and supplies the AC output to a load,
An inverter current detection circuit, comprising: a current detection unit that detects a change in the circuit current by using a change in magnetic flux due to a change in the circuit current of the inverter caused by the discharge as a medium.
[0098]
(Supplementary Note 3) The current detection unit detects a magnetic flux change occurring between the circuit wiring or the core gap of the transformer by using a detection conductor provided adjacent to the circuit wiring of the inverter or the core gap of the transformer. 2. The current detection circuit for an inverter according to claim 2, wherein
[0099]
(Supplementary Note 4) An abnormality detection method for an inverter that converts a DC input into an AC output and supplies the AC output to a load,
A change in the circuit current is detected through a magnetic flux change caused by a change in the circuit current of the inverter caused by the discharge, and based on the detection result, whether or not the current route including the load is abnormal is detected. A method for detecting abnormality of an inverter.
[0100]
(Supplementary Note 5) An abnormality detection circuit for an inverter that converts a DC input into an AC output and supplies the AC output to a load,
A current detection unit that detects a change in the circuit current through a change in magnetic flux due to a change in the circuit current of the inverter caused by the discharge;
A detection signal output unit that outputs a detection signal indicating whether there is an abnormality in the current route including the load, based on a detection result of the current detection unit;
An abnormality detection circuit for an inverter, comprising:
[0101]
(Supplementary note 6) The inverter abnormality detection circuit according to supplementary note 5, wherein the inverter includes a control unit that receives the detection signal and stops the inverter operation when the operation is abnormal.
[0102]
(Supplementary Note 7) A display characterized by comprising a current detection circuit of the inverter according to Supplementary Note 2 or an abnormality detection circuit of the inverter according to Supplementary Note 5, and configured to display, when an abnormality occurs, the abnormality or the operation stop of the inverter. apparatus.
[0103]
(Supplementary Note 8) An information processing apparatus comprising the inverter current detection circuit according to Supplementary Note 2, the inverter abnormality detection circuit according to Supplementary Note 5, or the display device according to Supplementary Note 7.
[0104]
(Supplementary Note 9) A test method using an inverter that converts a DC input into an AC output and supplies the AC output to a load,
Detecting a change in the circuit current through a change in a magnetic flux due to a change in the circuit current of the inverter caused by the discharge, and determining whether there is an abnormality in a current route including the load based on the detection result. A test method characterized by the following.
[0105]
(Supplementary Note 10) An inverter that converts a DC input into an AC output and supplies the AC output to a load;
A current detection unit that detects a change in the circuit current, through a change in magnetic flux due to a change in the circuit current of the inverter caused by the discharge,
A test apparatus configured to determine whether a current route including the load has an abnormality based on a detection result of the current detection unit.
[0106]
(Supplementary Note 11) The abnormality detection circuit of the inverter includes a current change detection unit. The current change detection unit includes a rectification unit that rectifies a fluctuating voltage obtained by a magnetic flux change, and includes a smoothing unit that smoothes the rectified voltage. An inverter abnormality detection circuit having a configuration provided with the inverter. With this configuration, a detection signal having a level proportional to a change in the circuit current can be accurately obtained on the detection conductor, so that a change in the circuit current due to a minute discharge can be detected, and the detection accuracy can be improved. Can be.
[0107]
(Supplementary Note 12) In the abnormality detection circuit for an inverter, the current change detection unit includes a rectification unit that rectifies a fluctuating voltage obtained by a change in magnetic flux, and the rectification unit includes a Schottky diode. Abnormality detection circuit.
Since a Schottky diode has a faster reverse recovery time than a high-speed diode, it can rectify the change in circuit current due to discharge and the noise component due to discharge and extract it as a DC component. Detection can be performed, detection accuracy can be improved, and malfunction can be prevented.
[0108]
(Supplementary Note 13) In the inverter abnormality detection circuit, the current change detection unit includes a filter that extracts a current change caused by a discharge such as a disconnection discharge or a dielectric breakdown discharge. With this configuration, a change in circuit current due to discharge can be accurately detected except for a transient current change such as when the power is turned on, and malfunction can be prevented.
[0109]
(Supplementary Note 14) In the current detection circuit of the inverter, the current detection unit includes a part of the circuit wirings 14, 16, 52, 54, 70, and 72 and the detection conductor (current detection line 36) as independent discrete elements. A current detection circuit for an inverter. According to this configuration, the inverter 2 can be installed at an arbitrary position of the circuit wiring of the inverter 2, for example, the circuit wiring 14, 16, 52, 54, 70, 72 to protect the inverter or the like from continuation of abnormal operation such as discharge. Reliability can be improved.
[0110]
(Supplementary Note 15) In the current detection circuit of the inverter, the current detection unit may be any part of circuit wiring from a DC input to a load, a DC input side, a primary side of the inverter transformer 22 or a secondary side thereof, or An inverter current detection circuit, which is installed at a plurality of locations. That is, an operation abnormality such as discharge can be detected at an arbitrary position of the circuit wirings 14, 16, 52, 54, 70, 72.
[0111]
(Supplementary Note 16) The abnormality detection circuit for an inverter according to the above-mentioned inverter, wherein a display drive unit is incorporated in the control unit, and an output of the display drive unit is added to an indicator so that an operation abnormality can be displayed. That is, by displaying the operation abnormality or the operation stop of the inverter, the abnormal state can be easily grasped.
[0112]
(Supplementary Note 17) In the inverter abnormality detection circuit, the inverter control unit 20, the current change detection unit 32, and the comparator 34 are configured by a single IC. With this configuration, the reliability of the abnormality detection circuit of the inverter can be enhanced by a single IC, and the commercial value of the control IC, which is a component of the inverter, can be improved, and at the same time, the number of components can be reduced. Can be achieved.
[0113]
(Supplementary Note 18) The abnormality detection circuit of the inverter includes a core 74 that forms a common magnetic path with the circuit wirings 14, 16, 52, 54, 70, 72 and the detection conductor (current detection line 36). Inverter abnormality detection circuit. That is, for example, if a common magnetic path is configured to the circuit wirings 16, 54, 72 and the detection conductor using the core 74, the magnetic flux change Δφ on the circuit wirings 16, 54, 72 side can be efficiently transmitted to the detection conductor through the core 74. In this case, the magnetic flux can be enhanced by the magnetic permeability of the core 74 and applied to the detection conductor (current detection line 36), so that the detection accuracy of the change in the circuit current can be improved. The protection function of the inverter 2 and the load at the time of abnormality can be further enhanced. The change in magnetic flux can be increased by the magnetic permeability of the magnetic material of the core 74 which is a common magnetic path, and the detection sensitivity of the current change can be increased.
[0114]
(Supplementary Note 19) In the information processing device described above, the inverter is used for a power supply device or a FL tube lighting device. With this configuration, a highly reliable information processing device can be provided.
[0115]
(Supplementary Note 20) A lighting device comprising the inverter abnormality detection circuit. That is, the detection of the inverter disconnection discharge and the dielectric breakdown discharge, the operation stop, and the display accompanying the operation can be performed, so that a highly reliable lighting device can be provided.
[0116]
As described above, the most preferred embodiment of the present invention has been described, but the present invention is not limited to the above description, but is described in the claims or disclosed in the detailed description of the invention. Of course, various modifications and changes can be made by those skilled in the art based on the gist of the invention made, and it goes without saying that such modifications and changes are included in the scope of the present invention.
[0117]
【The invention's effect】
As described above, according to the present invention, the following effects can be obtained.
(1) According to the current detection method or current detection circuit for an inverter of the present invention, a magnetic flux change caused by a change in circuit current caused by a discharge such as a disconnection discharge or a ground fault discharge occurring in a current route including a load of the inverter. , The change in the circuit current is detected, so that a change in current caused by a disconnection discharge, a ground fault discharge, or the like can be reliably detected without contacting the circuit wiring, and an abnormality such as a disconnection can be found.
[0118]
(2) In the current detection method or the current detection circuit of the inverter according to the present invention, the current detection unit is formed by a detection conductor disposed adjacent to between the circuit gap of the inverter or the core gap of the transformer. If a configuration for detecting a magnetic flux change occurring between them is used, a detection conductor is arranged close to the circuit wiring to detect a change in circuit current through the magnetic flux change, so that only a detection conductor is provided in the circuit wiring. With a simple configuration and non-contact with the circuit wiring, it does not affect the circuit conditions of the inverter or load, and does not affect the current detection. Can be detected with high accuracy.
[0119]
(3) According to the inverter abnormality detection method and the abnormality detection circuit according to the present invention, it is possible to eliminate malfunctions such as disconnection discharge of circuit wiring and dielectric breakdown discharge with a simple configuration without requiring a complicated circuit. Can be detected. Since the change in circuit current is detected by using the change in magnetic flux generated in the circuit wiring as a medium, abnormal operation can be detected with high accuracy from abnormal waveforms caused by disconnection discharge of circuit wiring or discharge between high and low voltage parts, etc. It is high, and the occurrence of operation abnormality can be found quickly. In addition, since the change in circuit current is detected indirectly in a non-contact manner with the circuit wiring, it does not affect the circuit conditions of the inverter or load or change the circuit conditions. The current detection unit and the detection signal output unit can be configured without requiring any special components or circuits, regardless of the circuit configuration on the inverter side.
[0120]
(4) In the inverter abnormality detection circuit of the present invention, if the inverter is provided with a control unit that receives a detection signal and stops the inverter operation when the operation is abnormal, the operation can be performed as quickly as possible when the operation is abnormal. Since the inverter can be stopped, the inverter and its load can be protected from the continuation of the abnormal operation, and the safety and reliability of the inverter can be improved.
[0121]
(5) According to the display device of the present invention, when the operation is abnormal, the operation abnormality or the operation stop is displayed, so that the operation abnormality or the inverter operation stop can be easily known from the display, and the protection function is improved and the inverter is improved. Operation reliability can be improved.
[0122]
(6) According to the information processing apparatus of the present invention, by using the abnormality detection circuit of the inverter and the display device, an abnormality such as a disconnection discharge or a dielectric breakdown discharge can be detected, and the operation is stopped based on the detection. Therefore, the continuation of the abnormal state can be avoided, or the operation state can be easily confirmed by the abnormal display or the operation stop display, and the reliability of the information processing apparatus can be further improved.
[0123]
(7) According to the test method or the test apparatus of the present invention, a test is performed by supplying current to a current route including a load to which the AC output of the inverter is supplied, and an abnormality such as a disconnection discharge or a ground fault discharge occurring in the current route is performed. Can be easily detected, a highly reliable test result can be obtained, and the reliability of various products such as an FL tube and a liquid crystal display unit can be improved.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing an FL tube lighting device according to an embodiment of a current detection method for an inverter, a current detection circuit thereof, an abnormality detection method thereof, and the abnormality detection circuit of the present invention.
FIG. 2 is a diagram illustrating an example of a current detection unit of the FL tube lighting device.
3A and 3B show operation waveforms of the FL tube lighting device, in which A shows a waveform in a normal operation, and B shows a waveform in an abnormal operation.
FIG. 4 is a circuit diagram showing the FL tube lighting device when the operation is abnormal.
5A and 5B are circuit diagrams showing other parts of the current detection part, wherein FIG. 5A is a circuit diagram showing a case where the primary side of the inverter transformer is used as a current detection part, and FIG. FIG. 9 is a circuit diagram showing the case where the above is set.
6A and 6B show another embodiment of the current detection unit, wherein FIG. 6A is a perspective view showing a case where a core is used, FIG. 6B is a perspective view showing a case where a current detection wire is wound around the core, and FIG. () Is a diagram showing a case where a current detection line is wound around circuit wiring.
FIG. 7 is a diagram illustrating a current detection unit according to another embodiment.
FIG. 8 is a diagram showing a configuration for detecting leakage magnetic flux in a core gap of an inverter transformer.
FIG. 9 is a circuit diagram showing an embodiment of the display device of the present invention.
FIG. 10 is a flowchart illustrating an operation abnormality confirmation process.
11A and 11B show an embodiment of an information processing apparatus according to the present invention, in which FIG. 11A is a perspective view showing a mobile phone using the inverter according to the present invention, and FIG. 11B is a notebook personal computer using the inverter according to the present invention; FIG. 4 is a perspective view showing a computer.
FIG. 12 is a diagram showing an embodiment of the test apparatus of the present invention.
FIG. 13 is a flowchart showing a test procedure.
FIG. 14 is a diagram showing experimental results of the current detection unit according to the present invention.
[Explanation of symbols]
1 FL tube lighting device
2 Inverter
4 FL tube (load)
6. Abnormality detection circuit
14, 16, 52, 54, 70, 72 circuit wiring
20 Inverter control unit (control unit)
22 Inverter transformer
30 Current detector
32 Current change detector
36 Current detection line (detection conductor)
64 LCD
74 core
78 processor
86 Mobile phone (information processing device)
88 Notebook type personal computer (information processing device)
Δφ magnetic flux change
i d DC input current (circuit current)

Claims (10)

直流入力を交流出力に変換し、該交流出力を負荷に供給するインバータの電流検出方法であって、
放電に起因して生ずる前記インバータの回路電流の変化による磁束変化を媒介にし、前記回路電流の変化を検出することを特徴とするインバータの電流検出方法。
A current detection method for an inverter that converts a DC input to an AC output and supplies the AC output to a load,
An inverter current detection method, wherein a change in the circuit current is detected through a change in magnetic flux due to a change in the circuit current of the inverter caused by discharging.
直流入力を交流出力に変換し、該交流出力を負荷に供給するインバータの電流検出回路であって、
放電に起因して生ずる前記インバータの回路電流の変化による磁束変化を媒介にし、前記回路電流の変化を検出する電流検出部を備えたことを特徴とするインバータの電流検出回路。
A current detection circuit of an inverter that converts a DC input into an AC output and supplies the AC output to a load,
An inverter current detection circuit, comprising: a current detection unit that detects a change in the circuit current by using a change in magnetic flux due to a change in the circuit current of the inverter caused by the discharge as a medium.
前記電流検出部は、前記インバータの回路配線又はトランスのコアギャップ間に隣接して設置された検出導体により、前記回路配線又はトランスのコアギャップ間に生じる磁束変化を検出する構成としたことを特徴とする請求項2記載のインバータの電流検出回路。The current detector may be configured to detect a change in magnetic flux generated between the circuit wiring or the core gap of the transformer by a detection conductor provided adjacent to a circuit gap of the inverter or a core gap of the transformer. The inverter current detection circuit according to claim 2, wherein 直流入力を交流出力に変換し、該交流出力を負荷に供給するインバータの異常検出方法であって、
放電に起因して生ずる前記インバータの回路電流の変化による磁束変化を媒介にして前記回路電流の変化を検出し、その検出結果に基づき、前記負荷を含む電流ルートに異常があるか否かを検出することを特徴とするインバータの異常検出方法。
A method for detecting an abnormality of an inverter that converts a DC input into an AC output and supplies the AC output to a load,
A change in the circuit current is detected through a magnetic flux change caused by a change in the circuit current of the inverter caused by the discharge, and based on the detection result, whether or not the current route including the load is abnormal is detected. A method for detecting abnormality of an inverter.
直流入力を交流出力に変換し、該交流出力を負荷に供給するインバータの異常検出回路であって、
放電に起因して生ずる前記インバータの回路電流の変化による磁束変化を媒介にして前記回路電流の変化を検出する電流検出部と、
この電流検出部の検出結果により、前記負荷を含む電流ルートに異常があるか否かを表す検出信号を出力する検出信号出力部と、
を備えたことを特徴とするインバータの異常検出回路。
An abnormality detection circuit for an inverter that converts a DC input into an AC output and supplies the AC output to a load,
A current detection unit that detects a change in the circuit current through a change in magnetic flux due to a change in the circuit current of the inverter caused by the discharge;
A detection signal output unit that outputs a detection signal indicating whether there is an abnormality in the current route including the load, based on a detection result of the current detection unit;
An abnormality detection circuit for an inverter, comprising:
前記インバータは、動作異常時、前記検出信号を受けてインバータ動作を停止させる制御部を備えることを特徴とする請求項5記載のインバータの異常検出回路。The inverter abnormality detection circuit according to claim 5, wherein the inverter includes a control unit that receives the detection signal and stops the inverter operation when the operation is abnormal. 請求項2記載のインバータの電流検出回路、又は請求項5記載のインバータの異常検出回路を備え、異常時、その異常又は前記インバータの動作停止を表示する構成としたことを特徴とする表示装置。A display device, comprising: the inverter current detection circuit according to claim 2 or the inverter abnormality detection circuit according to claim 5, wherein an abnormality or an operation stop of the inverter is displayed when an abnormality occurs. 請求項2記載のインバータの電流検出回路、請求項5記載のインバータの異常検出回路、又は請求項7記載の表示装置を備えたことを特徴とする情報処理装置。An information processing apparatus comprising the inverter current detection circuit according to claim 2, the inverter abnormality detection circuit according to claim 5, or the display device according to claim 7. 直流入力を交流出力に変換し、該交流出力を負荷に供給するインバータを用いた試験方法であって、
放電に起因して生ずる前記インバータの回路電流の変化による磁束変化を媒介にし、前記回路電流の変化を検出し、その検出結果により前記負荷を含む電流ルートに異常があるか否かを判定することを特徴とする試験方法。
A test method using an inverter that converts a DC input into an AC output and supplies the AC output to a load,
Detecting a change in the circuit current through a change in a magnetic flux due to a change in the circuit current of the inverter caused by the discharge, and determining whether there is an abnormality in a current route including the load based on the detection result. A test method characterized by the following.
直流入力を交流出力に変換し、該交流出力を負荷に供給するインバータと、
放電に起因して生ずる前記インバータの回路電流の変化による磁束変化を媒介にし、前記回路電流の変化を検出する電流検出部と、
を備え、前記電流検出部の検出結果により、前記負荷を含む電流ルートに異常があるか否かを判定する構成としたことを特徴とする試験装置。
An inverter that converts a DC input into an AC output and supplies the AC output to a load;
A current detection unit that detects a change in the circuit current, through a change in magnetic flux due to a change in the circuit current of the inverter caused by the discharge,
A test apparatus configured to determine whether a current route including the load has an abnormality based on a detection result of the current detection unit.
JP2003183034A 2002-07-22 2003-06-26 Inverter current detection method, current detection circuit thereof, abnormality detection method thereof, abnormality detection circuit thereof, display device and information processing device Expired - Fee Related JP3655295B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2003183034A JP3655295B2 (en) 2002-07-22 2003-06-26 Inverter current detection method, current detection circuit thereof, abnormality detection method thereof, abnormality detection circuit thereof, display device and information processing device
TW092119315A TWI226210B (en) 2002-07-22 2003-07-15 Inverter system
US10/620,597 US7598748B2 (en) 2002-07-22 2003-07-17 Inverter system
DE60334053T DE60334053D1 (en) 2002-07-22 2003-07-18 Current detector circuit for an inverter
EP03015677A EP1385360B1 (en) 2002-07-22 2003-07-18 Current detection circuit for an inverter
KR1020030049678A KR100953250B1 (en) 2002-07-22 2003-07-21 Inverter system
CNB03150194XA CN1245634C (en) 2002-07-22 2003-07-21 Current transfermer system
US11/616,631 US7486082B2 (en) 2002-07-22 2006-12-27 Anomaly detection in inverter system
US11/616,623 US7492162B2 (en) 2002-07-22 2006-12-27 Inverter system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002212666 2002-07-22
JP2003183034A JP3655295B2 (en) 2002-07-22 2003-06-26 Inverter current detection method, current detection circuit thereof, abnormality detection method thereof, abnormality detection circuit thereof, display device and information processing device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005024090A Division JP3820262B2 (en) 2002-07-22 2005-01-31 Test method and test apparatus

Publications (2)

Publication Number Publication Date
JP2004135489A true JP2004135489A (en) 2004-04-30
JP3655295B2 JP3655295B2 (en) 2005-06-02

Family

ID=30002375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003183034A Expired - Fee Related JP3655295B2 (en) 2002-07-22 2003-06-26 Inverter current detection method, current detection circuit thereof, abnormality detection method thereof, abnormality detection circuit thereof, display device and information processing device

Country Status (7)

Country Link
US (3) US7598748B2 (en)
EP (1) EP1385360B1 (en)
JP (1) JP3655295B2 (en)
KR (1) KR100953250B1 (en)
CN (1) CN1245634C (en)
DE (1) DE60334053D1 (en)
TW (1) TWI226210B (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340023A (en) * 2004-05-27 2005-12-08 Mitsumi Electric Co Ltd Cold cathode fluorescent tube driving circuit
JP2006059751A (en) * 2004-08-23 2006-03-02 Mitsumi Electric Co Ltd Charging/discharging circuit and charging/discharging method
JP2006141146A (en) * 2004-11-12 2006-06-01 Tamura Seisakusho Co Ltd Abnormal-voltage detection method and detection circuit for piezoelectric inverter
WO2007069394A1 (en) * 2005-12-16 2007-06-21 Minebea Co., Ltd. Discharge lamp operating device
JP2007325325A (en) * 2006-05-30 2007-12-13 Matsushita Electric Ind Co Ltd Brushless motor drive circuit
JP2008236993A (en) * 2007-03-23 2008-10-02 Toshiba Mitsubishi-Electric Industrial System Corp Semiconductor power conversion system
US7439689B2 (en) 2005-09-16 2008-10-21 Taiyo Yuden Co., Ltd. Lamp driving device having impedance component detecting abnormal discharge
JP2009064568A (en) * 2007-09-04 2009-03-26 Nec Lcd Technologies Ltd Dc/ac inverter base board provided with voltage abnormality detecting circuit
WO2011099472A1 (en) * 2010-02-09 2011-08-18 株式会社 日立メディコ Power conversion device, x-ray ct device, and x-ray image taking device
KR101262180B1 (en) 2006-07-14 2013-05-14 삼성디스플레이 주식회사 Device for detecting lamp current of transformer in invertor and method for detecting lamp current of transformer in invertor
US9160225B2 (en) 2011-03-14 2015-10-13 Ricoh Company, Ltd. High voltage inverter device
KR20210052175A (en) * 2019-10-29 2021-05-10 (주)화인파워엑스 power supply device of current transformer for wireless online monitoring system

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100493312B1 (en) * 2003-02-21 2005-06-07 엘지전자 주식회사 Feedback System of The LCD Monitor
KR101046924B1 (en) * 2004-05-11 2011-07-06 삼성전자주식회사 Back light assembly and display device having same
US7439753B2 (en) * 2005-11-23 2008-10-21 Zippy Technology Corp. Inverter test device and a method thereof
KR101150202B1 (en) * 2005-12-29 2012-06-12 엘지디스플레이 주식회사 Liquid crystal display module
WO2007121186A2 (en) * 2006-04-10 2007-10-25 The Queen's Medical Center Crac modulators and use of same for drug discovery
JP4925872B2 (en) * 2007-03-14 2012-05-09 株式会社タムラ製作所 Current detector
US7719812B2 (en) * 2007-05-15 2010-05-18 Astec International Limited Power converters with rate of change monitoring for fault prediction and/or detection
US20080284449A1 (en) * 2007-05-15 2008-11-20 Vijay Phadke Power converters with component stress monitoring for fault prediction
US7719808B2 (en) * 2007-05-15 2010-05-18 Astec International Limited Power converters with operating efficiency monitoring for fault detection
JP2009037859A (en) * 2007-08-01 2009-02-19 Funai Electric Co Ltd Power source for fluorescent tube, back-light
US7830269B2 (en) * 2007-09-14 2010-11-09 Astec International Limited Health monitoring for power converter capacitors
US7804415B2 (en) 2007-09-14 2010-09-28 Astec International Limited Health monitoring for power converter components
US7817051B2 (en) * 2007-09-14 2010-10-19 Astec International Limited Power converter with degraded component alarm
CA2699108C (en) * 2007-09-21 2014-07-08 Mitsubishi Electric Corporation Power conversion apparatus for electric vehicle
KR100964071B1 (en) * 2007-12-13 2010-06-16 엘에스산전 주식회사 Metering out fit
DE102008029679B4 (en) * 2008-06-23 2016-01-21 Eaton Industries Gmbh System, method and electronic circuit for at least one electronic circuit unit
CN101344565B (en) * 2008-09-04 2010-05-12 铁道部运输局 Current transformer detection method and system
ATE547713T1 (en) * 2008-09-23 2012-03-15 Abb Oy CURRENT MEASUREMENT IN AN INVERTER AND IN A FREQUENCY CONVERTER
FR2942324B1 (en) 2009-02-16 2011-05-20 Valeo Systemes Thermiques METHOD FOR DETECTING A SHORT CIRCUIT AND POWER MODULE USING THE SAME
US8373406B2 (en) * 2009-07-30 2013-02-12 Rockwell Automation Technologies, Inc. Electrical power quality test circuitry and method
JP5603674B2 (en) * 2010-06-24 2014-10-08 株式会社アドバンテスト Switch device and test device
EP2477040A4 (en) * 2010-10-08 2014-08-13 Sanyo Electric Co Ground fault detection circuit, and ground fault detection device
US8410772B1 (en) * 2010-11-29 2013-04-02 Xilinx, Inc. Bias circuit generating bias from supply and threshold voltages
JP5716394B2 (en) * 2010-12-28 2015-05-13 株式会社リコー High voltage inverter device and leakage detecting device thereof
JP2013251187A (en) * 2012-06-01 2013-12-12 Panasonic Corp Discharge lamp lighting device, on-vehicle high-brightness discharge lamp lighting device using the same, on-vehicle head light device and vehicle
US9921243B2 (en) 2012-12-17 2018-03-20 Covidien Lp System and method for voltage and current sensing
US9523729B2 (en) * 2013-09-13 2016-12-20 Infineon Technologies Ag Apparatus and method for testing electric conductors
WO2015075821A1 (en) * 2013-11-22 2015-05-28 三菱電機株式会社 Insulation detector and electrical device
US10278764B2 (en) 2014-12-02 2019-05-07 Covidien Lp Electrosurgical generators and sensors
US10292753B2 (en) 2014-12-02 2019-05-21 Covidien Lp Electrosurgical generators and sensors
US10281496B2 (en) 2014-12-02 2019-05-07 Covidien Lp Electrosurgical generators and sensors
KR101673345B1 (en) * 2015-03-17 2016-11-07 현대자동차 주식회사 Method and device for measuring insulation resistance of fuel cell electric vehicle
CN105304047B (en) * 2015-11-19 2018-07-03 深圳市华星光电技术有限公司 Protect circuit and the liquid crystal display with the protection circuit
CN106383263B (en) * 2016-10-28 2020-11-10 阳光电源股份有限公司 Off-grid inverter load detection method and controller
JP6938911B2 (en) * 2016-12-28 2021-09-22 富士電機株式会社 Device
KR20180002154U (en) 2017-01-04 2018-07-12 김종희 spoon and chopsticks holder
CN107132387B (en) * 2017-07-07 2023-08-29 武汉彤科电力科技有限公司 Signal source device
US11018573B2 (en) 2017-12-12 2021-05-25 Johnson Controls Fire Protection LP Power supply ripple detector
TWI647670B (en) * 2017-12-27 2019-01-11 緯創資通股份有限公司 Signal detecting device and illuminating device using same
CN108802556A (en) * 2018-06-21 2018-11-13 中车青岛四方车辆研究所有限公司 Pulling test platform
CN109782129B (en) * 2019-01-24 2024-05-10 中国铁道科学研究院集团有限公司 Ground fault point positioning method and device for rail transit traction auxiliary converter
CN110850194B (en) * 2019-10-15 2020-10-30 上海交通大学 Working condition simulation test circuit and method for cascaded converter submodule
JP7357249B2 (en) * 2020-03-11 2023-10-06 パナソニックIpマネジメント株式会社 Abnormality detection device, abnormality detection method, program, indoor wiring system, power conditioner, breaker, solar panel, solar panel attached module and connection box
WO2023134887A1 (en) 2022-01-17 2023-07-20 Signify Holding B.V. Current disturbance detection system

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5482624A (en) 1977-12-15 1979-07-02 Toyoda Chuo Kenkyusho Kk Method of and apparatus for detecting disorder in rectifying circuit
US4985819A (en) 1989-10-18 1991-01-15 Mitsubishi Denki Kabushiki Kaisha AC-DC-AC apparatus having battery charging and discharging feature
JPH0620146Y2 (en) * 1989-12-08 1994-05-25 株式会社戸上電機製作所 Receiver for low-voltage wiring path exploration device
JPH03183965A (en) * 1989-12-13 1991-08-09 Mitsubishi Electric Corp Transient current detecting device
JP2791157B2 (en) 1990-01-08 1998-08-27 株式会社日立製作所 Inverter device abnormality detection device
JP2766407B2 (en) 1991-08-20 1998-06-18 株式会社東芝 Inverter control device for photovoltaic power generation
JPH06140173A (en) 1992-10-27 1994-05-20 Nippondenso Co Ltd Protecting device for discharge lamp lighting system
US5583402A (en) * 1994-01-31 1996-12-10 Magnetek, Inc. Symmetry control circuit and method
JP3382012B2 (en) * 1994-04-25 2003-03-04 松下電工株式会社 Self-excited inverter device
US5619105A (en) * 1995-08-17 1997-04-08 Valmont Industries, Inc. Arc detection and cut-out circuit
US5659252A (en) 1995-08-25 1997-08-19 Sony Corporation Apparatus and method for detecting arcing in a CRT
JPH09129382A (en) 1995-10-17 1997-05-16 Internatl Business Mach Corp <Ibm> Detector and information processing system for anomaly in discharge tube circuit
US5652521A (en) * 1995-12-19 1997-07-29 Square D Company Insulation monitoring system for insulated high voltage apparatus
JPH09182449A (en) 1995-12-27 1997-07-11 Toshiba Fa Syst Eng Kk Leakage detector
US5903159A (en) * 1996-04-10 1999-05-11 Mitsubishi Denki Kabushiki Kaisha Microwave sensor for sensing discharge faults
US5952832A (en) 1996-12-06 1999-09-14 General Electric Company Diagnostic circuit and method for predicting fluorescent lamp failure by monitoring filament currents
KR100237611B1 (en) * 1997-01-14 2000-01-15 이종수 Apparatus of preventing inverter disorder for elevator
US5892646A (en) * 1997-05-05 1999-04-06 Ventex Group, Llc Ground fault protection of gas lamp power supplies
JPH11121190A (en) 1997-10-14 1999-04-30 Hitachi Ltd Discharge lamp lighting device
JPH11122819A (en) 1997-10-20 1999-04-30 Fuji Electric Co Ltd Dc ground fault detector
JP3732003B2 (en) 1998-03-04 2006-01-05 三井化学株式会社 Cold cathode tube lighting inverter circuit
US6111732A (en) * 1998-04-23 2000-08-29 Transfotec International Ltee Apparatus and method for detecting ground fault
JPH11354285A (en) 1998-06-10 1999-12-24 Sharp Corp Cold cathode tube lighting device
JP3394202B2 (en) * 1999-01-13 2003-04-07 太陽誘電株式会社 Method and apparatus for measuring electromagnetic field intensity and method and apparatus for measuring current-voltage distribution
US6252409B1 (en) * 1999-02-08 2001-06-26 Akira Iijima Directional short circuit detection system and method
US6614211B1 (en) * 1999-04-01 2003-09-02 Santronics, Inc. Non-contact detector for sensing a periodically varying magnetic field
GB9918539D0 (en) * 1999-08-06 1999-10-06 Sentec Ltd Planar current transformer
GB2360146B (en) 2000-03-06 2004-04-28 Mitel Corp Switching power supply
CN1248403C (en) 2000-10-26 2006-03-29 鸿海精密工业股份有限公司 Voltage converter without electric spark
US6771029B2 (en) 2001-03-28 2004-08-03 International Rectifier Corporation Digital dimming fluorescent ballast
JP2002341775A (en) 2001-05-11 2002-11-29 Toshiba Corp Corona discharge protective device for flat display device
US20040012987A1 (en) 2002-07-22 2004-01-22 Fujitsu Limited Anomaly detection circuit of inverter and electronic apparatus comprising inverter incorporating the same
US6731105B1 (en) * 2002-09-03 2004-05-04 Lockheed Martin Corporation Current sensor with correction for transverse installation misalignment
US6781359B2 (en) * 2002-09-20 2004-08-24 Allegro Microsystems, Inc. Integrated current sensor
WO2005033718A1 (en) 2003-10-01 2005-04-14 Eaton Corporation Integrated anti-differential current sensing system

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340023A (en) * 2004-05-27 2005-12-08 Mitsumi Electric Co Ltd Cold cathode fluorescent tube driving circuit
JP2006059751A (en) * 2004-08-23 2006-03-02 Mitsumi Electric Co Ltd Charging/discharging circuit and charging/discharging method
JP4548044B2 (en) * 2004-08-23 2010-09-22 ミツミ電機株式会社 Charge / discharge circuit and charge / discharge method
JP2006141146A (en) * 2004-11-12 2006-06-01 Tamura Seisakusho Co Ltd Abnormal-voltage detection method and detection circuit for piezoelectric inverter
US7439689B2 (en) 2005-09-16 2008-10-21 Taiyo Yuden Co., Ltd. Lamp driving device having impedance component detecting abnormal discharge
US7919929B2 (en) 2005-09-16 2011-04-05 Taiyo Yuden Co., Ltd. Lamp driving device having impedance component detecting abnormal discharge
JP4683306B2 (en) * 2005-12-16 2011-05-18 ミネベア株式会社 Discharge lamp lighting device
WO2007069394A1 (en) * 2005-12-16 2007-06-21 Minebea Co., Ltd. Discharge lamp operating device
JPWO2007069394A1 (en) * 2005-12-16 2009-05-21 ミネベア株式会社 Discharge lamp lighting device
US7834562B2 (en) 2005-12-16 2010-11-16 Minebea Co., Ltd. Discharge lamp lighting device
JP2007325325A (en) * 2006-05-30 2007-12-13 Matsushita Electric Ind Co Ltd Brushless motor drive circuit
KR101262180B1 (en) 2006-07-14 2013-05-14 삼성디스플레이 주식회사 Device for detecting lamp current of transformer in invertor and method for detecting lamp current of transformer in invertor
JP2008236993A (en) * 2007-03-23 2008-10-02 Toshiba Mitsubishi-Electric Industrial System Corp Semiconductor power conversion system
JP2009064568A (en) * 2007-09-04 2009-03-26 Nec Lcd Technologies Ltd Dc/ac inverter base board provided with voltage abnormality detecting circuit
US8837094B2 (en) 2007-09-04 2014-09-16 Nlt Technologies, Ltd. DC/AC inverter substrate having voltage abnormality detector circuit
WO2011099472A1 (en) * 2010-02-09 2011-08-18 株式会社 日立メディコ Power conversion device, x-ray ct device, and x-ray image taking device
JP5666485B2 (en) * 2010-02-09 2015-02-12 株式会社日立メディコ Power converter, X-ray CT apparatus, and X-ray imaging apparatus
US9036784B2 (en) 2010-02-09 2015-05-19 Hitachi Medical Corporation Power converter, X-ray CT apparatus, and X-ray imaging apparatus
US9160225B2 (en) 2011-03-14 2015-10-13 Ricoh Company, Ltd. High voltage inverter device
KR20210052175A (en) * 2019-10-29 2021-05-10 (주)화인파워엑스 power supply device of current transformer for wireless online monitoring system
KR102270285B1 (en) 2019-10-29 2021-06-28 (주)화인파워엑스 power supply device of current transformer for wireless online monitoring system

Also Published As

Publication number Publication date
JP3655295B2 (en) 2005-06-02
US7486082B2 (en) 2009-02-03
EP1385360A1 (en) 2004-01-28
US20040012381A1 (en) 2004-01-22
CN1245634C (en) 2006-03-15
DE60334053D1 (en) 2010-10-21
KR20040010282A (en) 2004-01-31
US7492162B2 (en) 2009-02-17
TW200403011A (en) 2004-02-16
US7598748B2 (en) 2009-10-06
TWI226210B (en) 2005-01-01
US20070103094A1 (en) 2007-05-10
EP1385360B1 (en) 2010-09-08
KR100953250B1 (en) 2010-04-16
US20070103163A1 (en) 2007-05-10
CN1475809A (en) 2004-02-18

Similar Documents

Publication Publication Date Title
JP2004135489A (en) Current detecting method for inverter, its current detecting circuit, its abnormality detecting method, abnormality detecting circuit, display device, information processor, testing method, and testing device
US8373641B2 (en) Power control system for LCD monitor
US9030856B2 (en) High voltage inverter device and electrical leakage detector thereof
US5952791A (en) Apparatus for detecting abnormal states in a discharge tube circuit and information processing system
KR20060053245A (en) Methods and protection schemes for driving discharge lamps in large panel applications
JP4935455B2 (en) Earth leakage detector
CN100495848C (en) Device and method for the differential protection and electrical apparatus including such a device
JP3820262B2 (en) Test method and test apparatus
JP2006042573A (en) Power supply protection device
US20040012987A1 (en) Anomaly detection circuit of inverter and electronic apparatus comprising inverter incorporating the same
KR101110132B1 (en) Open lamp detecting circuit and display apparatus thereof
JP4950442B2 (en) Fluorescent lamp driving device, light emitting device and liquid crystal television
JPH11252937A (en) Inverter circuit for lighting cold-cathode tube
KR100614726B1 (en) Arc-Fault Detection Circuit in the High Voltage Inverter System
KR20070077253A (en) Power supply unit for lamp
KR100744907B1 (en) Power apparatus with standby power
JP2009048907A (en) Protection circuit, and lamp driving device
JP2005308734A (en) Electric monitor, and electric monitoring method
KR100882124B1 (en) Power supply having lamp protection function using external voltage
JP2010092823A (en) Device and method for detecting failure of inverter for backlight
JP2007141752A (en) Step-up transformer, discharge lamp lighting circuit, discharge lamp device, and discharge lamp lighting method
KR20070120679A (en) Inspection circuit of lamp voltage and inverter having thereof
JP2007109464A (en) Backlight control circuit
JP2009100604A (en) Piezoelectric transformer drive circuit
JP2011244543A (en) Digital protection relay

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040312

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20041022

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20041117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050302

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees