JP2004135466A - Split core and stator core - Google Patents

Split core and stator core Download PDF

Info

Publication number
JP2004135466A
JP2004135466A JP2002299345A JP2002299345A JP2004135466A JP 2004135466 A JP2004135466 A JP 2004135466A JP 2002299345 A JP2002299345 A JP 2002299345A JP 2002299345 A JP2002299345 A JP 2002299345A JP 2004135466 A JP2004135466 A JP 2004135466A
Authority
JP
Japan
Prior art keywords
winding
wound
split core
insulating member
windings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002299345A
Other languages
Japanese (ja)
Inventor
Masaru Owada
大和田 優
Hisashi Sakata
坂田 尚志
Mitsuo Uchiyama
内山 光夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002299345A priority Critical patent/JP2004135466A/en
Publication of JP2004135466A publication Critical patent/JP2004135466A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Windings For Motors And Generators (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a split core wherein row transfer between adjacent windings can be carried out, not on an insulating member on the core surface. <P>SOLUTION: The split core 1 is obtained by splitting an annular stator core provided with a plurality of salient poles on a pole-by-pone basis. The split core 1 comprises a wound portion 11 which is formed on the salient pole and on which flat wires 2a and 2b are wound, an insulating member 12 which covers the surface of the wound portion 11, windings 20a and 20b obtained by winding the flat wires 2a and 2b on the rim of the wound portion 11 in a plurality of rows with the insulating member 12 between, and a lead wire 3a connected with the winding start portions of the windings. The lead wire 3a is connected with the winding end portions 22b of the next windings 20b. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、分割コアおよび該分割コアを複数組み合わせたステータコアに関し、特に、突極部に複数の巻線が複数列に分けて巻き回されている分割コアおよびステータコアに関する。
【0002】
【従来の技術】
従来から、電動機のステータ(固定子ともいう)として、平角線が積層巻き回しされてなる巻線を用いたものが知られている。
【0003】
このような巻線としては、たとえば、平角線が複数列に巻き回しされており、隣り合う2列の巻線を機械的に接続することなく、一筆書きの要領で無接続状態に連続させて、各巻線を電気的に接続しているものがある(例えば、特許文献1参照。)。
【0004】
また他にも、隣り合う2列の巻線が逆方向に巻き回しされており、これらが各巻線の巻き回し始端部において渡線でロウ付けされて、電気的に接続されているものもある(例えば、特許文献2参照。)。
【0005】
【特許文献1】
特開平5−243036(第1図)
【特許文献2】
特開平8−317610(従来の技術、第3図)
【0006】
【発明が解決しようとする課題】
しかし、上記巻線には、以下の問題がある。
【0007】
特許文献1に記載されている巻線では、2列の巻線間に結線部を設けずに一筆書きで巻き回しするので、平角線の断面積が小さければ、一の巻線から隣接する巻線への列替えは容易であるが、1mm×2mmなど平角線の断面積が比較的大きくなると、列替え時の成形に要する力が大きくなり、その成形による反力でコア表面に取り付けた絶縁部材が破損する可能性も高くなってしまう。また、平角線の成形により成形シワが生じて、シワ上に巻き回される平角線が安定せず、巻崩れを生じる可能性もある。
【0008】
特許文献2に記載されている巻線では、巻き回し始端部を渡線でロウ付けしているので、1列目の平角線をその始端で渡線とロウ付けしてから巻き回し、次に2列目の平角線を巻き回しする前に、コア表面の絶縁部材上でのロウ付け作業が必要となって、ロウ付けの熱で絶縁部材を劣化させることが問題となる。耐熱性の高い絶縁部材であれば耐えられる可能性も高いが、PPS(ポリフェニレンサルファイド)樹脂などでコアをモールディングして絶縁した場合には、樹脂が軟化して形状を崩し、その後の巻き回しを安定して出来ない可能性がある。
【0009】
本発明は、上記事情に鑑みてなされたものであり、隣接する巻線間の列替えを、コア表面の絶縁部材上で行うことなく実行することができる分割コアおよび該分割コアを組み合わせたステータコアを提供することである。
【0010】
【課題を解決するための手段】
本発明の上記目的は、下記の手段によって達成される。
【0011】
本発明の分割コアは、複数の突極部を備える円環状のステータコアを各極毎に分割した分割コアであって、前記突極部に形成され、導線が巻き回される巻き回し部と、前記巻き回し部表面を覆う絶縁部材と、前記絶縁部材を介して複数の前記導線が前記巻き回し部の外周に複数列に巻き回されてなる複数の巻線と、前記巻線の巻き回し始端部と接続される口出し線とを有する。
【0012】
【発明の効果】
本発明の分割コアによれば、口出し線が巻線の巻き回し始端部と接続されているので、この接続は、巻線の巻き回し前に口出し線を巻き回し始端部に接合しておけばよく、分割コア表面の絶縁部材上で結線作業を行う必要がない。また、口出し線を隣接する巻線の終端部と接合して隣接する巻線間を電気的に接続する際にも絶縁部材上で結線することなく、巻線の終端部と口出し線とを接合することができる。したがって、結線作業時に絶縁部材が破損することがなく、巻線の絶縁信頼性を高くすることができる。
【0013】
【発明の実施の形態】
以下、図面を参照して、本発明の実施の形態を説明する。なお、この説明に使用される図面における層の厚さは明細書の明確性のため誇張されて示されている。
【0014】
本実施形態に係る分割コアは、複数の突極部を備える円環状のステータコアを各極毎に分割した分割コアであって、突極部に形成され、導線が巻き回される巻き回し部と、巻き回し部表面を覆う絶縁部材と、絶縁部材を介して複数の導線が巻き回し部の外周に複数列に巻き回されてなる複数の巻線と、前記巻線の巻き回し始端部と接続される口出し線とを有するものである。
【0015】
ここで、導線とは、たとえば、絶縁被覆された帯状の平角線であり、以下、これを巻き回した巻線を平角線巻線という。また、口出し線とは、最終的に、隣接する巻線同士を電気的に接続するための渡し線である。なお、本実施形態では、平角線巻線を2列に巻き回す例について説明する。
【0016】
図1〜図6を順に参照して、分割コアに複数列に平角線を巻き回し、隣接する列の平角線を接続する様子を説明する。
【0017】
図1は、分割コア1と該分割コア1に巻き回される平角線2を示す斜視図である。
【0018】
最初に、分割コア1、平角線2aおよび口出し線3aを用意する。
【0019】
分割コア1は、所定の形状に打ち抜かれた電磁鋼板が積層され、カシメやレーザ溶接等により結合させられたものである。また、分割コア1は、電動機のステータのステータコアを突極部毎に分割したものであるので、それぞれが突極部を有し、複数個を結合することにより一つのステータコアとなる。突極部には平角線2が巻き回される巻き回し部11が設けられており、巻き回し部11の表面に絶縁部材12がモールドされている。
【0020】
絶縁部材12には、後述する口出し線3aが嵌る大きさに巻き回し部11を露出する露出部が形成されている。本実施の形態では、巻き回し部11に後述する2列の平角線巻線20aおよび20bを巻き回すために、絶縁部材12に2つの露出部が形成されている。2つの露出部について、分割コア1を組み合わせてステータコアとした際に外周側となる方を外周側露出部13a、内周側となる方を内周側露出部13bとする。
【0021】
なお、絶縁部材12には平角線巻線20aおよび20bの側面まで覆うようにフランジが設けられているが、フランジを図示すると平角線巻線の状態が表現できなくなるので、フランジの図示を省略している。
【0022】
平角線2aは、予めグラインダー等によって巻き回しの始端となる巻き回し始端部21aの絶縁被覆が除去されている。口出し線3aは、予め別の平角線を所定の長さに切断してL字型に曲げ加工されたものである。L字の底面は、幅が平角線2aの幅と略同等であり、両面の絶縁皮膜がグラインダー等により除去されている。
【0023】
平角線2aと口出し線3aは、図示するように、平角線2aの絶縁皮膜を除去した巻き回し始端部21aと口出し線3aのL字の底面とが当接され、超音波溶接ホーン8と金敷9との間に挟み込まれて超音波溶接ホーン8により溶接される。
【0024】
図2は、口出し線3aに接合された平角線2aを分割コア1に取り付けた様子を示す斜視図である。
【0025】
一体にされた平角線2aおよび口出し線3aは、移送され、図2に示すように口出し線3aが外周側露出部13aに組み込まれる。これにより、平角線2aの巻き回し始端部21aが位置決めされる。この状態で分割コア1を矢印の方向に回転させて、平角線2aを巻き回す。
【0026】
図3は、分割コア1に2列に平角線2aおよび2bを巻き回した様子を示す斜視図である。
【0027】
平角線2aを巻き回すと、図3に示すように、分割コア1の外周側に平角線巻線(以下、外周側巻線と称する)20aが形成される。そして、図1を参照して説明したようなL字型の口出し線3bに平角線2bを溶接したものをもう一組作り、絶縁部材12の内周側露出部13bに組み込み、内周側でも平角線2bの巻き回しを行う。
【0028】
図4は、口出し線3aを折り曲げた状態を示す斜視図である。
【0029】
分割コア1の内周側でも巻き回しを行うと、図4に示すように、内周側にも平角線巻線(以下、内周側巻線と称する)20bが形成される。結果として、外周側および内周側に2つの平角線巻線20aおよび20bが形成される。その後、外周側露出部13aに組み込まれた口出し線3aが内周側に折り曲げられる。このとき、内周側巻線20bについては、図示するように、平角線2の巻き回しが終了される終端部(以下、巻き回し終端部という)22bまでは巻き回しされない。
【0030】
図5は、口出し線3aを介して外周側巻線20aを内周側巻線20bと接続する様子を示す斜視図である。
【0031】
口出し線3aは、内周側巻線20bに向かう面の反対面の絶縁皮膜が予めグラインダー等により除去されている。また、内周側巻線20bの巻き回し終端部22bについても、巻き回しの内側の絶縁皮膜が予めグラインダー等により除去されている。
【0032】
ここで、図5に示すように、口出し線3aと巻き回し終端部22bとがそれぞれ絶縁皮膜が除去された面で当接されて、超音波溶接ホーン8と金敷9との間に挟み込まれて超音波溶接ホーン8により溶接される。
【0033】
図6は、平角線2の接続部に絶縁処理を施した状態を示す斜視図である。
【0034】
図5に示すように口出し線3aと内周側巻線20bとは溶接されて結線される。結線された部分については、絶縁皮膜の除去により絶縁されていない部分が一部露出することになるので、図6に示すように、樹脂キャップ4をかぶせて接着剤等で固着して絶縁処理を施す。
【0035】
以上のように、本実施形態の分割コア1によれば、口出し線3aによって、外周側巻線20aの巻き回し始端部21aを、隣接する内周側巻線20bの巻き回し終端部22bと接続する。したがって、口出し線3aは、外周側巻線20aの巻き回し始端部21aと、内周側巻線20bの巻き回し終端部22bと接合しなくてはならないが、巻き回し始端部21aは巻き回し前なので自由であり、また、巻き回し終端部22bも、完全に巻き回されておらず自由なので、どちらと接合する際にも、分割コア1表面の絶縁部材12上で結線作業を行う必要がない。そして、上述の通り、金敷9上で安全に結線作業を行うことができる。したがって、結線作業時に絶縁部材12が破損することがなく、巻線の絶縁信頼性を高くすることができる。
【0036】
また、本実施形態の分割コア1によれば、口出し線3aが外周側巻線20aと内周側巻線20bとの間に配置されるので、巻線間の隙間を確実に確保することができ、結果として、分割コア1を製品に用いて巻線間の隙間を冷媒の通路とする場合には、冷媒の通路を確保することができる。
【0037】
さらなる本実施形態の効果について図7を参照して説明する。
【0038】
図7は、分割コア1に巻き回された巻線の電流の流れを示す図である。
【0039】
従来の分割コア100に巻き回された巻線では、図7左側に示すように、外周側巻線100aと内周側巻線100bが巻き回し始端部101aおよび101bで接続されるので、結果として、積層された平角線2の最下層で接続されることになる。
【0040】
この従来の分割コアを複数組み合わせてステータコアとして電動機に組み込んだ場合、電流は図7左側に矢印で示すように流れる。ここで、外周側巻線100aと内周側巻線100bとの列間の電位差を比較すると、電位差は大きいところで巻線部分での電圧降下相当になる。
【0041】
一方、本実施形態の分割コア1では、図7右側に示すように、外周側巻線20aの巻き回し始端部21aと内周側巻線20bの巻き回し終端部22bで接続されるので、結果として、外周側巻線20aの平角線2の最下層と外周側巻線20aの平角線2の最上層とで接続されることになる。
【0042】
この本実施形態の分割コア1を複数組み合わせてステータコアとして電動機に組み込んだ場合、電流は図7右側に矢印で示すように流れるので、列間の経路が従来よりも近くなり、外周側巻線20aと内周側巻線20bとの列間の電位差を比較すると、大きいところでも巻線での電圧降下分の約50%しかない。
【0043】
以上のように、本実施形態の分割コア1では、全体的に見て、巻線間の電位差が大きくなるところがないので、巻線部分での絶縁性能が高く、より効率の良い電動機のステータを構成することができる。
【0044】
以上、上記実施形態により、本願発明について説明してきたが、これに限定されず、当業者により様々改変することができる。
【0045】
図8および図9を参照して、改変例を説明する。
【0046】
図8は2列の巻線の平角線2を同一の巻数で巻き回した様子を示す断面図、図9は平角線2を同時に巻き回しし始める様子を示す図である。
【0047】
改変例としては、たとえば、図8に示すように、外周側巻線20aと内周側巻線20bの巻数を同一にすることができる。巻数を同一にする場合、内周側巻線20bと外周側巻線20aの断面積を異ならせて、内周側および外周側の平角線2を同時に巻き回しすることが可能となる。
【0048】
この場合、図9に示すように、最初に、口出し線3aおよび3bに平角線2aおよび2bを取り付けて導通させたものを2つ用意して、それぞれ、絶縁部材12の内周側露出部13bおよび外周側露出部13aに組み込む。そして、それぞれの巻き回し始端部21aおよび21bを治具で固定して巻き回しを行う。
【0049】
以上のように、外周側巻線20aと内周側巻線20bとの断面積を異ならせ、たとえば、外周側巻線20aの断面積を内周側巻線20bの断面積よりも大きくすることで、両巻線の巻数を同一としている。この構造とすることによって、同一の巻数となるので、平角線2の巻き回しを同時に開始および終了でき、終端の切断なども同時に行うことができるので、作業効率を向上することができる。
【0050】
他の改変例を、図10を参照して説明する。図10は、分割コア1の巻き回し部11上の絶縁部材12の断面図である。
【0051】
他の改変例としては、たとえば、図10に示すように、分割コア1の巻き回し部11を覆う絶縁部材12の厚さを異ならせることができる。平角線2aを白抜き矢印で示す方向に引っ張りながら、分割コア1を黒塗り矢印の方向に回転させて、平角線2aを分割コア1に巻き回す場合、絶縁部材12の露出部近傍で、特に、平角線2aの張力が作用する方向と反対方向の角部14に応力が集中する。
【0052】
本実施形態では、平角線2aまたは2bを巻き回す方向を一定方向としているので、巻き回しの開始時に平角線2aまたは2bに張力を与えるたびに、角部14に応力が集中して、多大な力が作用する。この応力に耐えられるように、絶縁部材12の厚さを、角部14がある方、すなわち、平角線2aまたは2bの巻き回しに張力が作用する方向と反対方向(図中12a)で厚くしておく。逆に、張力が作用する方向(図中12b)では、応力があまりかからないので、絶縁部材12の厚さを薄くすることができる。
【0053】
このように応力がかからない方12bで厚さを薄くして、絶縁部材12の厚さを必要最低限とすることによって、電動機に適用時に、突極部間の有効面積を増大させ、巻線の占積率を向上させることで出力性能を向上させることができる。また、厚さが必要最低限とすることにより、巻き回しに必要な平角線2の長さも短くすることができ、電動機適用時の銅損低減にも貢献することができ、結果として、出力性能の向上を達成することができる。
【0054】
なお、上記実施形態では、外周側から先に平角線2aを巻き回し、次に内周側に平角線2bを巻き回していたが、これに限定されず、内周側から平角線2bを巻き回しても良い。この場合、内周側の平角線2bに接合される口出し線3bは、L字の側面が外周側にくるように、内周側露出部13bに組み込まれる。
【0055】
また、分割巻線に2列に巻線を巻き回す場合について説明したが、これに限定されず、3列以上に巻線を巻き回しても良い。この場合、上述の外周側および内周側の巻線の関係と同様に、順に巻線を口出し線3aにより接続していくことができる。
【0056】
本発明の分割コア1を複数組み合わせて円環状とすることによって、上記分割コアの有利な特徴を生かしたステータコアを製造することができる。
【図面の簡単な説明】
【図1】分割コアと該分割コアに巻き回される平角線を示す斜視図である。
【図2】口出し線に接合された平角線を分割コアに取り付けた様子を示す斜視図である。
【図3】分割コアに2列に平角線を巻き回した様子を示す斜視図である。
【図4】口出し線を折り曲げた状態を示す斜視図である。
【図5】口出し線を介して外周側巻線を内周側巻線と接続する様子を示す斜視図である。
【図6】平角線の接続部に絶縁処理を施した状態を示す斜視図である。
【図7】の分割コアに巻き回された巻線の電流の流れを示す図である。
【図8】2列の巻線の平角線を同一の巻数で巻き回した様子を示す断面図である。
【図9】平角線を同時に巻き回しし始める様子を示す図である。
【図10】分割コアの巻き回し部上の絶縁部材の断面図である。
【符号の説明】
1…分割コア、
2a、2b…平角線、
3a、3b…口出し線、
4…樹脂キャップ、
8…超音波溶接ホーン、
9…金敷、
11…巻き回し部、
12…絶縁部材、
13a…外周側露出部、
13b…内周側露出部、
14…角部、
20a、20b…巻線、
21a…巻き回し始端部、
22b…巻き回し終端部。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a split core and a stator core obtained by combining a plurality of split cores, and more particularly to a split core and a stator core in which a plurality of windings are wound around a salient pole portion in a plurality of rows.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, as a stator (also referred to as a stator) of an electric motor, a motor using a winding formed by laminating a rectangular wire in a stacked manner has been known.
[0003]
As such a winding, for example, a flat wire is wound in a plurality of rows, and two adjacent rows of windings are continuously connected in a one-stroke manner in a non-connected state without mechanical connection. There is a type in which each winding is electrically connected (for example, see Patent Document 1).
[0004]
In addition, there is another type in which adjacent two rows of windings are wound in the opposite direction, and these are brazed by a crossover at a winding start end of each winding and are electrically connected. (For example, see Patent Document 2).
[0005]
[Patent Document 1]
JP-A-5-243036 (FIG. 1)
[Patent Document 2]
JP-A-8-317610 (prior art, FIG. 3)
[0006]
[Problems to be solved by the invention]
However, the winding has the following problems.
[0007]
In the winding described in Patent Literature 1, the winding is wound with one stroke without providing a connection portion between the two windings. Therefore, if the cross-sectional area of the rectangular wire is small, the winding from one winding to the adjacent winding is not used. It is easy to change the line into a line, but if the cross-sectional area of a flat wire such as 1 mm x 2 mm becomes relatively large, the force required for forming during the line change increases, and the insulation force attached to the core surface by the reaction force due to the forming There is also a high possibility that the member will be damaged. Also, forming the flat wire may cause forming wrinkles, the flat wire wound on the wrinkles may not be stable, and the winding may be broken.
[0008]
In the winding described in Patent Literature 2, the winding start end is brazed with a crossover. Therefore, the flat wire in the first row is brazed with the crossover at the start end, and then the winding is performed. Before winding the rectangular wire in the second row, it is necessary to perform a brazing operation on the insulating member on the core surface, and there is a problem that the insulating member is deteriorated by the heat of brazing. Although it is highly possible that the insulation member can withstand high heat resistance, if the core is molded and insulated with PPS (polyphenylene sulfide) resin or the like, the resin softens and loses its shape. It may not be stable.
[0009]
The present invention has been made in view of the above circumstances, and has a split core and a stator core in which the split cores can be combined without performing row switching between adjacent windings on an insulating member on the core surface. It is to provide.
[0010]
[Means for Solving the Problems]
The above object of the present invention is achieved by the following means.
[0011]
The split core of the present invention is a split core obtained by splitting an annular stator core having a plurality of salient pole portions for each pole, formed on the salient pole portion, and a winding portion around which a conductive wire is wound, An insulating member that covers the surface of the winding portion, a plurality of windings in which the plurality of conductors are wound around the winding portion in a plurality of rows via the insulating member, and a winding start end of the winding; And a lead wire connected to the section.
[0012]
【The invention's effect】
According to the split core of the present invention, since the lead wire is connected to the winding start end of the winding, this connection can be made by winding the lead wire and joining it to the starting end before winding the winding. Often, it is not necessary to perform a connection work on the insulating member on the surface of the split core. Also, when connecting the lead wire to the terminal end of the adjacent winding and electrically connecting the adjacent windings, the terminal end of the winding and the lead wire are joined without being connected on the insulating member. can do. Therefore, the insulation member is not damaged during the connection work, and the insulation reliability of the winding can be increased.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the layer thickness in the drawings used in this description is exaggerated for clarity of the specification.
[0014]
The split core according to the present embodiment is a split core obtained by splitting an annular stator core including a plurality of salient pole portions for each pole, formed on the salient pole portions, and a winding portion around which a conductive wire is wound. An insulating member covering the surface of the winding portion, a plurality of windings formed by winding a plurality of conductors around the winding portion in a plurality of rows via the insulating member, and connecting to a winding start end of the winding. And a lead wire to be used.
[0015]
Here, the conductive wire is, for example, a strip-shaped rectangular wire coated with an insulating material, and a winding obtained by winding the wire is hereinafter referred to as a rectangular wire winding. Further, the lead wire is a crossover wire for electrically connecting adjacent windings finally. In the present embodiment, an example in which the rectangular wire winding is wound in two rows will be described.
[0016]
Referring to FIG. 1 to FIG. 6, the manner in which a rectangular wire is wound around a divided core in a plurality of rows, and the rectangular wires in adjacent rows are connected to each other will be described.
[0017]
FIG. 1 is a perspective view showing a split core 1 and a flat wire 2 wound around the split core 1.
[0018]
First, the divided core 1, the flat wire 2a and the lead wire 3a are prepared.
[0019]
The split core 1 is formed by laminating electromagnetic steel sheets punched into a predetermined shape and joining them by caulking, laser welding, or the like. Further, since the split core 1 is obtained by dividing the stator core of the stator of the electric motor for each salient pole portion, each has a salient pole portion, and one stator core is formed by combining a plurality of salient pole portions. A winding portion 11 around which the rectangular wire 2 is wound is provided in the salient pole portion, and an insulating member 12 is molded on the surface of the winding portion 11.
[0020]
The insulating member 12 has an exposed portion that exposes the wound portion 11 to a size that fits a lead wire 3a described later. In the present embodiment, two exposed portions are formed in the insulating member 12 in order to wind two rows of flat wire windings 20a and 20b described later around the winding portion 11. Regarding the two exposed portions, when the split cores 1 are combined to form a stator core, the one on the outer peripheral side is referred to as an outer exposed portion 13a, and the one on the inner peripheral side is referred to as an inner exposed portion 13b.
[0021]
The insulating member 12 is provided with a flange so as to cover the side surfaces of the rectangular wire windings 20a and 20b. However, if the flange is illustrated, the state of the rectangular wire winding cannot be expressed, so that the illustration of the flange is omitted. ing.
[0022]
For the rectangular wire 2a, the insulating coating of the winding start end 21a, which is the winding start end, is removed in advance by a grinder or the like. The lead wire 3a is obtained by cutting another rectangular wire into a predetermined length and bending the wire into an L shape. The width of the L-shaped bottom surface is substantially equal to the width of the flat wire 2a, and the insulating films on both surfaces are removed by a grinder or the like.
[0023]
As shown in the figure, the flat wire 2a and the lead wire 3a are brought into contact with the winding start end 21a of the flat wire 2a from which the insulating film has been removed and the L-shaped bottom surface of the wire 3a, and the ultrasonic welding horn 8 and the anvil 9 and is welded by the ultrasonic welding horn 8.
[0024]
FIG. 2 is a perspective view showing a state where the flat wire 2a joined to the lead wire 3a is attached to the split core 1. FIG.
[0025]
The integrated rectangular wire 2a and lead wire 3a are transferred, and the lead wire 3a is incorporated into the outer peripheral side exposed portion 13a as shown in FIG. Thereby, the winding start end 21a of the flat wire 2a is positioned. In this state, the split core 1 is rotated in the direction of the arrow to wind the flat wire 2a.
[0026]
FIG. 3 is a perspective view showing a state in which the rectangular wires 2a and 2b are wound around the split core 1 in two rows.
[0027]
When the rectangular wire 2a is wound, a rectangular wire winding (hereinafter, referred to as an outer peripheral winding) 20a is formed on the outer peripheral side of the split core 1 as shown in FIG. Then, another set in which the rectangular wire 2b is welded to the L-shaped lead wire 3b described with reference to FIG. 1 is made and incorporated into the inner peripheral side exposed portion 13b of the insulating member 12, and the inner peripheral side is also formed. The flat wire 2b is wound.
[0028]
FIG. 4 is a perspective view showing a state where the lead wire 3a is bent.
[0029]
When winding is performed also on the inner peripheral side of the split core 1, as shown in FIG. 4, a flat wire winding (hereinafter referred to as an inner peripheral side winding) 20b is also formed on the inner peripheral side. As a result, two rectangular wire windings 20a and 20b are formed on the outer peripheral side and the inner peripheral side. Thereafter, the lead wire 3a incorporated in the outer peripheral side exposed portion 13a is bent toward the inner peripheral side. At this time, as shown in the drawing, the inner peripheral side winding 20b is not wound up to the end portion (hereinafter referred to as the winding end portion) 22b where the winding of the flat wire 2 is completed.
[0030]
FIG. 5 is a perspective view showing a state in which the outer winding 20a is connected to the inner winding 20b via the lead wire 3a.
[0031]
In the lead wire 3a, the insulating film on the surface opposite to the surface facing the inner peripheral winding 20b is removed in advance by a grinder or the like. In addition, the insulating coating on the inside of the wound end portion 22b of the inner winding 20b is also removed in advance by a grinder or the like.
[0032]
Here, as shown in FIG. 5, the lead wire 3 a and the winding end portion 22 b abut on the surfaces from which the insulating film has been removed, and are sandwiched between the ultrasonic welding horn 8 and the anvil 9. It is welded by the ultrasonic welding horn 8.
[0033]
FIG. 6 is a perspective view showing a state where the connection portion of the flat wire 2 is subjected to insulation treatment.
[0034]
As shown in FIG. 5, the lead wire 3a and the inner winding 20b are welded and connected. As for the connected portion, a portion that is not insulated is partially exposed by removing the insulating film. Therefore, as shown in FIG. 6, the insulating process is performed by covering with a resin cap 4 and fixing with an adhesive or the like. Apply.
[0035]
As described above, according to the split core 1 of the present embodiment, the winding start end 21a of the outer winding 20a is connected to the winding end 22b of the adjacent inner winding 20b by the lead wire 3a. I do. Accordingly, the lead wire 3a must be joined to the winding start end 21a of the outer winding 20a and the winding end 22b of the inner winding 20b. Therefore, it is free, and the wound end portion 22b is not completely wound and is free, so that there is no need to perform a connection work on the insulating member 12 on the surface of the split core 1 when joining with either of them. . As described above, the connection work can be safely performed on the anvil 9. Therefore, the insulation member 12 is not damaged during the connection work, and the insulation reliability of the winding can be increased.
[0036]
Further, according to the split core 1 of the present embodiment, since the lead wire 3a is arranged between the outer peripheral winding 20a and the inner peripheral winding 20b, a gap between the windings can be reliably ensured. As a result, when the divided core 1 is used as a product and the gap between the windings is used as a coolant passage, a coolant passage can be secured.
[0037]
Further effects of the present embodiment will be described with reference to FIG.
[0038]
FIG. 7 is a diagram showing a current flow of the winding wound around the split core 1.
[0039]
In the winding wound around the conventional split core 100, as shown on the left side of FIG. 7, the outer winding 100a and the inner winding 100b are wound and connected at the start ends 101a and 101b. Are connected at the lowermost layer of the stacked rectangular wires 2.
[0040]
When a plurality of the conventional split cores are combined and incorporated into a motor as a stator core, a current flows as indicated by an arrow on the left side of FIG. Here, comparing the potential difference between the columns of the outer winding 100a and the inner winding 100b, the potential difference is equivalent to the voltage drop at the winding portion where the potential difference is large.
[0041]
On the other hand, in the split core 1 of the present embodiment, as shown on the right side of FIG. 7, the winding start end 21a of the outer winding 20a and the winding end 22b of the inner winding 20b are connected to each other. As a result, the lowermost layer of the flat wire 2 of the outer winding 20a is connected to the uppermost layer of the flat wire 2 of the outer winding 20a.
[0042]
When a plurality of split cores 1 according to the present embodiment are combined in a motor as a stator core, a current flows as shown by an arrow on the right side of FIG. Comparing the potential difference between the column and the inner peripheral side winding 20b, there is only about 50% of the voltage drop in the winding even at a large place.
[0043]
As described above, in the split core 1 of the present embodiment, since there is no place where the potential difference between the windings becomes large as a whole, the insulation performance at the winding portions is high, and a more efficient motor stator is provided. Can be configured.
[0044]
As described above, the present invention has been described with the above embodiment, but the present invention is not limited to this, and various modifications can be made by those skilled in the art.
[0045]
A modified example will be described with reference to FIGS.
[0046]
FIG. 8 is a cross-sectional view showing a state where the rectangular wire 2 of two rows of windings is wound with the same number of turns, and FIG. 9 is a view showing a state where the rectangular wire 2 starts to be wound simultaneously.
[0047]
As a modification, for example, as shown in FIG. 8, the outer winding 20a and the inner winding 20b can have the same number of turns. When the number of turns is the same, it is possible to make the inner peripheral side winding 20b and the outer peripheral side winding 20a different in cross-sectional area, and to wind the inner peripheral side and outer peripheral side flat wires 2 at the same time.
[0048]
In this case, as shown in FIG. 9, first, two rectangular wires 2a and 2b attached to the lead wires 3a and 3b and made conductive are prepared, and the inner peripheral side exposed portions 13b of the insulating member 12 are respectively provided. And the outer peripheral side exposed portion 13a. Then, each of the winding start ends 21a and 21b is fixed with a jig and wound.
[0049]
As described above, the cross-sectional areas of the outer winding 20a and the inner winding 20b are made different, for example, the cross-sectional area of the outer winding 20a is made larger than the cross-sectional area of the inner winding 20b. And the number of turns of both windings is the same. With this structure, since the number of turns is the same, the winding of the flat wire 2 can be started and ended at the same time, and the end can be cut at the same time, so that the working efficiency can be improved.
[0050]
Another modification will be described with reference to FIG. FIG. 10 is a cross-sectional view of the insulating member 12 on the winding portion 11 of the split core 1.
[0051]
As another modification, for example, as shown in FIG. 10, the thickness of the insulating member 12 covering the winding portion 11 of the split core 1 can be made different. When winding the flat wire 2a around the split core 1 by rotating the split core 1 in the direction indicated by the black arrow while pulling the flat wire 2a in the direction indicated by the white arrow, particularly in the vicinity of the exposed portion of the insulating member 12, The stress concentrates on the corner 14 in the direction opposite to the direction in which the tension of the flat wire 2a acts.
[0052]
In the present embodiment, the direction in which the flat wire 2a or 2b is wound is a fixed direction. Therefore, each time tension is applied to the flat wire 2a or 2b at the start of winding, stress is concentrated on the corner portion 14 and a large amount of stress is applied. Force acts. In order to withstand this stress, the thickness of the insulating member 12 is increased in the direction where the corners 14 are present, that is, in the direction opposite to the direction in which tension acts on the winding of the flat wire 2a or 2b (12a in the figure). Keep it. Conversely, in the direction in which the tension acts (12b in the figure), a small amount of stress is not applied, so that the thickness of the insulating member 12 can be reduced.
[0053]
In this way, the thickness of the insulating member 12 is reduced to a necessary minimum by reducing the thickness of the non-stressed side 12b, thereby increasing the effective area between the salient pole portions when applied to a motor, and Output performance can be improved by improving the space factor. In addition, by setting the thickness to the minimum necessary, the length of the flat wire 2 required for winding can be shortened, which can contribute to a reduction in copper loss when an electric motor is applied. Can be improved.
[0054]
In the above-described embodiment, the flat wire 2a is wound first from the outer circumference side, and then the flat wire 2b is wound next to the inner circumference side. However, the present invention is not limited to this, and the flat wire 2b is wound from the inner circumference side. You can turn it. In this case, the lead wire 3b joined to the flat wire 2b on the inner peripheral side is incorporated into the inner peripheral side exposed portion 13b such that the L-shaped side surface is on the outer peripheral side.
[0055]
Also, a case has been described in which the windings are wound in two rows around the split windings, but the invention is not limited to this, and the windings may be wound in three or more rows. In this case, the windings can be sequentially connected by the lead wire 3a in the same manner as the relationship between the windings on the outer circumferential side and the inner circumferential side described above.
[0056]
By combining a plurality of split cores 1 of the present invention into an annular shape, a stator core utilizing the advantageous characteristics of the split cores can be manufactured.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a split core and a flat wire wound around the split core.
FIG. 2 is a perspective view showing a state in which a flat wire joined to a lead wire is attached to a split core.
FIG. 3 is a perspective view showing a state where a rectangular wire is wound around a split core in two rows.
FIG. 4 is a perspective view showing a state where a lead wire is bent.
FIG. 5 is a perspective view showing a state in which an outer winding is connected to an inner winding via a lead wire;
FIG. 6 is a perspective view showing a state where a connection portion of a flat wire is subjected to insulation treatment.
FIG. 7 is a diagram showing a current flow of a winding wound around the split core of FIG.
FIG. 8 is a cross-sectional view showing a state where a rectangular wire of two rows of windings is wound with the same number of turns.
FIG. 9 is a diagram showing a state in which a rectangular wire starts to be wound simultaneously.
FIG. 10 is a cross-sectional view of an insulating member on a winding portion of a split core.
[Explanation of symbols]
1. Split core,
2a, 2b ... rectangular wire,
3a, 3b ... lead wire,
4 ... resin cap,
8 ... Ultrasonic welding horn,
9… Kinashiki,
11 ... winding part,
12 ... insulating members,
13a: outer peripheral side exposed portion,
13b ... inner peripheral side exposed part,
14 ... corner,
20a, 20b ... winding,
21a ... winding start end,
22b: wound end portion.

Claims (8)

複数の突極部を備える円環状のステータコアを各極毎に分割した分割コアであって、
前記突極部に形成され、導線が巻き回される巻き回し部と、
前記巻き回し部表面を覆う絶縁部材と、
前記絶縁部材を介して複数の前記導線が前記巻き回し部の外周に複数列に巻き回されてなる複数の巻線と、
前記巻線の巻き回し始端部と接続される口出し線と、
を有する分割コア。
A divided core obtained by dividing an annular stator core having a plurality of salient pole portions for each pole,
A winding portion formed on the salient pole portion and around which a conductive wire is wound,
An insulating member that covers the surface of the winding portion,
A plurality of windings formed by winding a plurality of the conductive wires through the insulating member in a plurality of rows around an outer periphery of the winding portion,
A lead wire connected to the winding start end of the winding;
Having a split core.
前記口出し線は、接続される巻線と隣接する巻線の巻き回し終端部にも接続され、隣接する巻線同士を電気的に接続する請求項1に記載の分割コア。The split core according to claim 1, wherein the lead wire is also connected to a winding end portion of a winding adjacent to the winding to be connected, and electrically connects adjacent windings. 前記絶縁部材は、一部に前記巻き回し部を露出する露出部が形成されており、
前記口出し線は、一の導線の巻き回し始端部と接合された状態で前記露出部に嵌められた後に、前記一の巻線および前記隣接する巻線が巻き回され、該隣接する巻線の前記巻き回し終端部と接合される請求項1または請求項2に記載の分割コア。
The insulating member has an exposed portion that partially exposes the wound portion,
The lead wire is fitted to the exposed portion in a state where the lead wire is joined to the winding start end of one conductor, and then the one winding and the adjacent winding are wound, and the adjacent winding is wound. The split core according to claim 1, wherein the split core is joined to the wound end portion.
前記絶縁部材は、前記一の導線の始端部および前記隣接する導線の終端部と接合される際、外部の支持部材上において支持されている請求項1〜請求項3のいずれか一項に記載の分割コア。4. The insulating member according to claim 1, wherein the insulating member is supported on an external supporting member when the insulating member is joined to a start end of the one conductor and an end of the adjacent conductor. 5. Split core. 前記複数の巻線は同一方向に巻き回されている請求項1〜請求項4のいずれか一項に記載の分割コア。The split core according to any one of claims 1 to 4, wherein the plurality of windings are wound in the same direction. 前記複数の巻線の巻数は同一である請求項1〜請求項5のいずれか一項に記載の分割コア。The split core according to any one of claims 1 to 5, wherein the plurality of windings have the same number of turns. 前記絶縁部材の厚さは、前記導線の巻き回し開始時に該導線の張力が作用する方向と反対方向で厚く、張力が作用する方向で薄い請求項1〜請求項6のいずれか一項に記載の分割コア。The thickness of the insulating member is thick in a direction opposite to a direction in which the tension of the conductor is applied when winding of the conductor is started, and is thin in a direction in which the tension is applied. Split core. 請求項1〜7のいずれかの分割コアを複数個結合してなるステータコア。A stator core obtained by combining a plurality of the split cores according to any one of claims 1 to 7.
JP2002299345A 2002-10-11 2002-10-11 Split core and stator core Withdrawn JP2004135466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002299345A JP2004135466A (en) 2002-10-11 2002-10-11 Split core and stator core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002299345A JP2004135466A (en) 2002-10-11 2002-10-11 Split core and stator core

Publications (1)

Publication Number Publication Date
JP2004135466A true JP2004135466A (en) 2004-04-30

Family

ID=32288510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002299345A Withdrawn JP2004135466A (en) 2002-10-11 2002-10-11 Split core and stator core

Country Status (1)

Country Link
JP (1) JP2004135466A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008278681A (en) * 2007-05-01 2008-11-13 Sumitomo Electric Ind Ltd Stator, and manufacturing method thereof
JP2009284624A (en) * 2008-05-21 2009-12-03 Daihatsu Motor Co Ltd Coil of stator and stator core of rotating machine
JP2010178520A (en) * 2009-01-30 2010-08-12 Toyota Motor Corp Stator and motor
JP2011019310A (en) * 2009-07-07 2011-01-27 Yaskawa Electric Corp Coil, and rotary electric machine with the same
JP2013165566A (en) * 2012-02-10 2013-08-22 Mitsubishi Electric Corp Rotary electric machine and method of manufacturing stator used therefor
WO2020054467A1 (en) * 2018-09-14 2020-03-19 パナソニックIpマネジメント株式会社 Motor, and coil used for same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008278681A (en) * 2007-05-01 2008-11-13 Sumitomo Electric Ind Ltd Stator, and manufacturing method thereof
JP2009284624A (en) * 2008-05-21 2009-12-03 Daihatsu Motor Co Ltd Coil of stator and stator core of rotating machine
JP2010178520A (en) * 2009-01-30 2010-08-12 Toyota Motor Corp Stator and motor
JP2011019310A (en) * 2009-07-07 2011-01-27 Yaskawa Electric Corp Coil, and rotary electric machine with the same
JP2013165566A (en) * 2012-02-10 2013-08-22 Mitsubishi Electric Corp Rotary electric machine and method of manufacturing stator used therefor
WO2020054467A1 (en) * 2018-09-14 2020-03-19 パナソニックIpマネジメント株式会社 Motor, and coil used for same
CN112272913A (en) * 2018-09-14 2021-01-26 松下知识产权经营株式会社 Motor and coil for the same

Similar Documents

Publication Publication Date Title
JP5704394B2 (en) Rotating electric machine stator
JP5586969B2 (en) Rotating electric machine stator
JP5493906B2 (en) Rotating electric machine stator
JP3681366B2 (en) Distribution parts and manufacturing method thereof
JP2002153002A (en) Stator for dynamo-electric machine
JP5304058B2 (en) Concentrated winding stator manufacturing method and concentrated winding stator
JP2003061286A (en) Method of manufacturing stator, and motor using its stator
KR20130108272A (en) Conductor insulation arrangement for an electric machine
JP4502041B2 (en) Stator for rotating electric machine and method for manufacturing the same
JP3310971B2 (en) AC generator manufacturing method
JP2004135466A (en) Split core and stator core
JP5309674B2 (en) Stator coil manufacturing method
JP2004153874A (en) Stator for motor
JP2000333388A (en) Stator
JP2006187164A (en) Rotary electric machine
JP3903849B2 (en) Stator structure of electric motor and manufacturing method thereof
JP3586201B2 (en) Rotating machine stator
JP3361438B2 (en) Core, laminated core and method of manufacturing the same
JP2019140796A (en) Split conductor for segment coil
JP2004208464A (en) Coil structure for electric motor
US20150372551A1 (en) Structure of stator
JP2010154619A (en) Manufacturing method of armature and armature
JP4910742B2 (en) Rotating electric machine and field coil manufacturing method
WO2015040692A1 (en) Rotating electrical machine stator
JP2003274594A (en) Stator for rotating electric machine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110