JP2004134665A - Sealing material for semiconductor device and manufacturing method thereof - Google Patents

Sealing material for semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP2004134665A
JP2004134665A JP2002299389A JP2002299389A JP2004134665A JP 2004134665 A JP2004134665 A JP 2004134665A JP 2002299389 A JP2002299389 A JP 2002299389A JP 2002299389 A JP2002299389 A JP 2002299389A JP 2004134665 A JP2004134665 A JP 2004134665A
Authority
JP
Japan
Prior art keywords
vinylidene fluoride
sealing material
fluororubber
component
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002299389A
Other languages
Japanese (ja)
Inventor
Naoko Washimi
鷲見 直子
Hiroki Kamiya
神谷 浩樹
Masanori Okazaki
岡崎 雅則
Yukio Kobayashi
小林 幸雄
Yoshitaka Samura
左村 義隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Valqua Industries Ltd
Nihon Valqua Kogyo KK
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Nippon Valqua Industries Ltd
Nihon Valqua Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Nippon Valqua Industries Ltd, Nihon Valqua Kogyo KK filed Critical Asahi Glass Co Ltd
Priority to JP2002299389A priority Critical patent/JP2004134665A/en
Priority to AU2003272956A priority patent/AU2003272956A1/en
Priority to US10/528,476 priority patent/US20060041069A1/en
Priority to PCT/JP2003/012929 priority patent/WO2004033580A1/en
Priority to KR1020057006092A priority patent/KR20050049534A/en
Publication of JP2004134665A publication Critical patent/JP2004134665A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily provide a sealing material for semiconductor device with good operability, which is superior in plasma resisting property and has excellent surface smoothness and size precision. <P>SOLUTION: The sealing material for semiconductor device is obtained by bridging with ionizable radiation a fluororubber preform containing (a) a 100 mass pts. fluororubber component composed of a vinylidene fluoride/hexafluoropropylene elastic copolymer and/or a vinylidene fluoride/hexafluoropropylene/tetrafluoroetylene elastic copolymer, and (b)a 1 to 50 mass pts. non-elastic fluorinated carbon resin component composed of a vinylidene fluoride (co)polymer. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置用シール材およびその製造方法に関する。
【0002】
【従来の技術】
従来から、フッ素ゴムは、耐薬品性、耐候性、耐熱性等に優れ、半導体装置用シール材として適することが知られている。しかし、半導体装置内で発生するプラズマの照射を直接又は間接的に受ける部位のシール材としてフッ素ゴムが使用される場合、シール材からのパーティクルの発生やシール材の質量減少が問題となっていた。パーティクルの発生量やシール材の質量減少には、成形性を付与するために通常配合される架橋剤や充填剤等の添加物が大きく影響する。このため、耐プラズマ性の観点からは、架橋剤や充填剤等の添加物を含有しないことが望ましく、純粋性の高いシール材の開発が要望されていた。
【0003】
架橋剤や充填剤を配合することなくフッ素ゴムからなるシール材を得る方法としては、フッ素ゴムを電離性放射線照射により架橋する方法が知られている(例えば、特許文献1参照)。このようなフッ素ゴムを電離性放射線照射により架橋する方法においては、架橋前にフッ素ゴムを押し出し機やプレス等により予備成形することとなるのであるが、このようにして得られた予備成形体は附型性が悪いため寸法安定性や表面平滑性が不充分となりやすく、シール材としたときの寸法精度や表面の平滑性を損なうことがあった。さらに、架橋前の予備成形体は塑性変形を起こしやすく、電離性放射線照射までの間に自重や外的応力が加わると成形した形状を保持できずに寸法精度が変化してしまうため、架橋前の予備成形体は取扱いに慎重を期する必要があり、電離性放射線照射処理に供するまでの作業性に劣り、その結果、得られたシール材の寸法精度が不充分となる傾向があった。
【0004】
【特許文献1】
特開2002−167454号公報
【0005】
【発明が解決しようとする課題】
そこで、本発明は、耐プラズマ性に優れるとともに、良好な表面平滑性および寸法精度を備えた半導体装置用シール材と、該シール材を良好な作業性で容易に得ることができる製造方法とを提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者は、上記課題を解決するため鋭意検討を行った。その結果、電離性放射線で架橋する前の予備成形体に、特定のフッ素系弾性共重合体とともに、フッ化ビニリデン(共)重合体からなる非弾性のフッ素樹脂を特定の割合で均一に存在させることにより、前記課題を解決しうることを見出し、本発明を完成した。すなわち、本発明にかかる半導体装置用シール材は、フッ化ビニリデン/ヘキサフルオロプロピレン系弾性共重合体および/またはフッ化ビニリデン/ヘキサフルオロプロピレン/テトラフルオロエチレン系弾性共重合体からなるフッ素ゴム成分(a)と、フッ化ビニリデン(共)重合体からなる非弾性のフッ素樹脂成分(b)とを、前記フッ素ゴム成分(a)100質量部に対してフッ素樹脂成分(b)1〜50質量部の割合で含有するフッ素ゴム予備成形体が、電離性放射線で架橋されてなる。
【0007】
本発明にかかる半導体装置用シール材の製造方法は、フッ化ビニリデン/ヘキサフルオロプロピレン系弾性共重合体および/またはフッ化ビニリデン/ヘキサフルオロプロピレン/テトラフルオロエチレン系弾性共重合体からなるフッ素ゴム成分(a)100質量部とフッ化ビニリデン(共)重合体からなる非弾性のフッ素樹脂成分(b)1〜50質量部とを前記フッ素樹脂成分(b)の融点以上の温度で混合した後、予備成形し、得られた予備成形体に電離性放射線を照射するようにする。
【0008】
【発明の実施の形態】
本発明の半導体装置用シール材は、フッ素ゴム予備成形体が電離性放射線で架橋されてなるものであって、前記フッ素ゴム予備成形体が、弾性共重合体からなるフッ素ゴム成分(a)と、非弾性のフッ素樹脂成分(b)とを含むことを特徴とするものである。これにより、本発明の半導体装置用シール材は、耐プラズマ性に優れるとともに、表面平滑性と寸法精度をも備えたものとなるのである。なお、弾性とは、小さい応力で大きな変形を起こし、その変形から急速にほぼ元の形に戻ろうとするとともに、高温において加圧されても流動しない性質のことであり、弾性共重合体とは、分子構造的に分子内に架橋可能な構造を有し、架橋することにより3次元の網目構造を形成して、前記弾性を示しうるものを意味する。一方、非弾性とは、小さい応力で殆ど変形を起こさず、一度変形すると元の形に戻らないとともに、高温において加圧すると流動する性質のことであり、非弾性の樹脂とは、分子構造的に分子内に架橋可能な構造を有さない樹脂を意味する。本発明の半導体装置用シール材は、後述する本発明の製造方法によって得ることができる。
【0009】
本発明におけるフッ素ゴム成分(a)は、フッ化ビニリデン/ヘキサフルオロプロピレン系弾性共重合体および/またはフッ化ビニリデン/ヘキサフルオロプロピレン/テトラフルオロエチレン系弾性共重合体である。
前記フッ化ビニリデン/ヘキサフルオロプロピレン系弾性共重合体における各モノマーの共重合比は、フッ化ビニリデン/ヘキサフルオロプロピレン=50〜95/5〜50(モル%)であることが好ましく、70〜85/15〜30(モル%)であることがより好ましい。また、前記フッ化ビニリデン/ヘキサフルオロプロピレン/テトラフルオロエチレン系弾性共重合体における各モノマーの共重合比は、フッ化ビニリデン/ヘキサフルオロプロピレン/テトラフルオロエチレン=20〜80/10〜70/10〜70(モル%)であることが好ましく、25〜70/15〜60/15〜60(モル%)であることがより好ましい。
【0010】
また、前記フッ化ビニリデン/ヘキサフルオロプロピレン系弾性共重合体およびフッ化ビニリデン/ヘキサフルオロプロピレン/テトラフルオロエチレン系弾性共重合体は、その特性を損なわない範囲で、フッ化ビニリデン、ヘキサフルオロプロピレン、テトラフルオロエチレン以外のその他のモノマーが共重合されたものであってもよい。その他のモノマーとしては、例えば、三フッ化塩化エチレン、フッ化ビニル、ペンタフルオロプロピレン等のフッ素化オレフィン;ペルフルオロ(メチルビニルエーテル)、ペルフルオロ(プロピルビニルエーテル)、ペルフルオロ(3,6−ジオキサ−5−メチル−1−デセン)等のペルフルオロ(アルキルビニルエーテル);エチレン、プロピレン、ブテン等の炭化水素系オレフィン;エチルビニルエーテル、ブチルビニルエーテル等のアルキルビニルエーテル;等が挙げられる。その他のモノマーは1種単独でもよく、2種以上であってもよい。なお、その他のモノマーをも共重合させる場合には、その合計の共重合比が、フッ化ビニリデン、ヘキサフルオロプロピレンおよびテトラフルオロエチレンの合計に対して、0.1〜30モル%であることが好ましく、0.2〜15モル%であることがより好ましい。
【0011】
前記フッ素ゴム成分(a)におけるフッ素含有量は、特に限定されないが、65〜75質量%であるのが好ましく、71〜75質量%であるのがより好ましい。フッ素含有量が前記範囲であると、プラズマの照射を受けた際の質量減少が少なく、耐プラズマ性に優れるからである。フッ素含有量が65質量%未満であると、耐プラズマ性が不充分となる恐れがあり、一方、75質量%を超えると、ゴム弾性を失う傾向があり、製造も容易でない。
前記フッ素ゴム成分(a)は、分子中に、架橋部位として、臭素原子、ヨウ素原子または二重結合を有するものであってもよい。臭素原子、ヨウ素原子または二重結合は、前記各モノマーを重合してフッ素ゴムを製造する際に、臭素原子、ヨウ素原子または二重結合を有する連鎖移動剤や架橋部位モノマーを少量添加したり、得られたフッ素ゴムに熱処理やアルカリ処理等の後処理を施したりすることによって導入できる。前記連鎖移動剤としては、具体的には、例えば、ペルフルオロ(1,4−ジヨードブタン)、ペルフルオロ(1−ブロモ−4−ヨードブタン)、ペルフルオロ(1,6−ジヨードヘキサン)、ペルフルオロ(1,8−ジヨードオクタン)等が挙げられる。前記架橋部位モノマーとしては、具体的には、例えば、ペルフルオロ(3−ヨード−1−プロペン)、ペルフルオロ(4−ヨード−1−ブテン)、ペルフルオロ(4−ブロモ−1−ブテン)、ペルフルオロ(5−ブロモ−3−オキサ−1−ペンテン)、ペルフルオロ(6−ヨード−1−ヘキセン)等が挙げられる。
【0012】
前記フッ素ゴム成分(a)の製造方法としては、特に制限はなく、塊状重合、懸濁重合、乳化重合、溶液重合等の公知の方法を採用することができるが、好ましくは、乳化重合、懸濁重合がよい。また、重合開始反応としては、例えば、有機過酸化物開始剤やアゾ系開始剤等を用いるラジカル重合法、レドックス系触媒を用いるレドックス重合法、電離性放射線を用いる放射線重合法、熱や光を用いる重合法等が挙げられるが、好ましくは、ラジカル重合法、レドックス重合法がよい。
前記フッ素ゴム成分(a)の分子量は特に限定されないが、物性や成形性の観点からは、2,000〜500,000の範囲が好ましい。
【0013】
前記フッ素ゴム成分(a)のガラス転移温度は、特に限定されないが、10℃以下であるのが好ましい。10℃を超えると、低温での柔軟性に劣り、シール性が低下する傾向がある。
本発明におけるフッ素樹脂成分(b)は、非弾性のフッ化ビニリデン(共)重合体である。
前記フッ化ビニリデン(共)重合体の具体例としては、例えば、ポリフッ化ビニリデン、フッ化ビニリデンとこれと共重合可能なモノマーとの共重合体が挙げられる。フッ化ビニリデンと共重合可能なモノマーとしては、具体的には、ヘキサフルオロプロピレン、テトラフルオロエチレンが好ましく、この他に、例えば、三フッ化塩化エチレン、フッ化ビニル、ペンタフルオロプロピレン等のフッ素化オレフィン;ペルフルオロ(メチルビニルエーテル)、ペルフルオロ(プロピルビニルエーテル)、ペルフルオロ(3,6−ジオキサ−5−メチル−1−デセン)等のペルフルオロ(アルキルビニルエーテル);エチレン、プロピレン、ブテン等の炭化水素系オレフィン;エチルビニルエーテル、ブチルビニルエーテル等のアルキルビニルエーテル;等が挙げられる。これらフッ化ビニリデンと共重合可能なモノマーは1種単独でもよく、2種以上であってもよい。また、前記フッ化ビニリデン(共)重合体は、これらのフッ化ビニリデン(共)重合体成分をハードセグメントとする熱可塑性ゴムであってもよい。
【0014】
前記フッ化ビニリデン(共)重合体が共重合体である場合、フッ化ビニリデンの共重合比は、25モル%以上であることが好ましい。
前記フッ素樹脂成分(b)の製造方法としては、特に制限はなく、塊状重合、懸濁重合、乳化重合、溶液重合等の公知の方法を採用することができるが、好ましくは、乳化重合、懸濁重合がよい。また、重合開始反応としては、例えば、有機過酸化物開始剤やアゾ系開始剤等を用いるラジカル重合法、レドックス系触媒を用いるレドックス重合法、電離性放射線を用いる放射線重合法、熱や光を用いる重合法等が挙げられるが、好ましくは、ラジカル重合法、レドックス重合法がよい。
【0015】
前記フッ素樹脂成分(b)の融点は、特に制限されないが、100〜200℃が好ましい。また、その融解熱量は、DSC測定で3〜30J/gであることが好ましい。
前記フッ素樹脂成分(b)の重量平均分子量は、特に制限されないが、2,000〜500,000の範囲が好ましく、20,000〜300,000の範囲がより好ましい。
本発明においては、前記フッ素ゴム予備成形体における前記フッ素ゴム成分(a)と前記フッ素樹脂成分(b)との割合が、前記フッ素ゴム成分(a)100質量部に対してフッ素樹脂成分(b)1〜50質量部であることが重要である。好ましくは、前記フッ素ゴム成分(a)100質量部に対してフッ素樹脂成分(b)5〜20質量部であるのがよい。フッ素樹脂成分(b)の割合が前記範囲よりも少ないと、シール材の寸法精度や表面平滑性が損なわれることとなり、一方、フッ素樹脂成分(b)の割合が前記範囲より多いと、シール材のゴム弾性が不充分となる。
【0016】
前記フッ素ゴム予備成形体には、前記フッ素ゴム成分(a)および前記フッ素樹脂成分(b)のほかに、本発明の効果を損なわない範囲で、例えば、カーボンブラック、シリカ、クレイ、タルク、ガラス繊維等の充填剤;酸化チタン、ベンガラ等の顔料;脂肪酸、脂肪酸塩、脂肪酸エステル等の脂肪酸誘導体;パラフィンワックス、ポリエチレンワックス等の等内部離型剤;前記フッ素ゴム成分(a)およびフッ素樹脂成分(b)以外のその他の樹脂やゴム等の配合剤;等の成分を含有させてもよい。なお、これら前記フッ素ゴム成分(a)および前記フッ素樹脂成分(b)以外の成分をも含有する場合には、前記フッ素ゴム予備成形体に占める前記フッ素ゴム成分(a)と前記フッ素樹脂成分(b)との合計量が50質量%以上となるような範囲であることが好ましい。
【0017】
本発明の半導体装置用シール材の製造方法は、前記フッ素ゴム成分(a)および前記フッ素樹脂成分(b)と必要に応じて前記その他の成分とを前述した割合で混合した後、予備成形し、得られた予備成形体に電離性放射線を照射するものである。
前記フッ素ゴム成分(a)と前記フッ素樹脂成分(b)との混合は、前記フッ素樹脂成分(b)の融点以上の温度で行うことが重要である。前記フッ素ゴム成分(a)と前記フッ素樹脂成分(b)とを、フッ素樹脂成分(b)の融点以上の温度で混合することにより、フッ素ゴム成分(a)とフッ素樹脂成分(b)とを相互に分散性よく相溶させて、フッ素樹脂成分(b)の性質をフッ素ゴム成分(a)に均一に付与することができる。そして、これにより、電離性放射線照射前の予備成形体は、附型性が向上し、寸法安定性や表面の平滑性に優れたものとなるので、電離性放射線照射前の予備成形体の取扱いに慎重を期する必要がなく良好な作業性で電離性放射線照射処理に供することができ、その結果、寸法精度に優れたシール材を得ることができるようになる。さらに、成形性を付与するための架橋剤や充填剤等を要することがないので、純粋性が高くプラズマの照射を受けた際のパーティクルの発生やシール材の質量減少が少ない耐プラズマ性に優れたシール材を得ることができるのである。
【0018】
前記フッ素ゴム成分(a)と前記フッ素樹脂成分(b)とを混合する際の手段としては、特に制限はないが、例えば、ロール、ニーダー、押し出し機等の混合装置を用いることが好ましい。
前記予備成形を行うに際しては、押し出し成形機や熱プレス成形機等を用いることが好ましい。なお、予備成形の際の具体的な手法や条件などは、特に制限されるものではなく、適宜設定すればよい。
前記フッ素ゴム予備成形体に電離性放射線を照射する際に、用いることのできる電離性放射線としては、特に制限はないが、例えば、電子線、γ線が好ましい。放射線の照射量としては、好ましくは10〜500kGy、より好ましくは30〜200kGyの範囲とするのがよい。照射量が10kGy未満であると、架橋が不充分となる傾向があり、一方、500kGyを超えると、得られるシール材に劣化が生じる恐れがある。
【0019】
【実施例】
以下に、実施例により、本発明をさらに具体的に説明するが、本発明はこれらにより何ら限定されるものではない。
なお、得られたシール材の評価は下記のようにして行った。
<寸法精度(O−リングの真円度)>
寸法測定用顕微鏡を用いて、シール材のO−リング円周上で等間隔にある4箇所における線径および高さを測定し、得られた値から測定箇所毎に下記式により真円度を算出し、4箇所の平均値をO−リングの真円度とした。該値が1に近いほど真円に近い形状であり、寸法精度に優れると言える。なお、各測定箇所の真円度は表1中<>に示す。
【0020】
真円度=線径/高さ
なお、JIS−B2401に記載のO−リング寸法規格によると、線径5.7mmのO−リングの許容寸法範囲は±0.13mmであることから、線径、高さについて最大にばらついたとすると、最大値は5.83mm、最小値は5.57mmとなり、この値にて真円度を算出すると1.047となる。このことから、実質的には、真円度が1.047以上であるとO−リングとして実用性に欠ける製品となる。
<耐プラズマ性> 平行平板型低温プラズマ照射装置(電極径φ300mm、電極間距離50mm)を用い、アース側電極上にシール材を載置して、出力RF500W、プラズマ照射時間3時間、ガス混合比O/CF=9/1(流量比(容積比))、ガス総流量150sccm、真空度80Paの条件で、プラズマ照射試験を行ったときの試験前後のシール材の重量(質量)を測定し、試験前の質量(g)をx、試験後の質量をy(g)として下記式により質量減少率を算出した。該質量減少率(%)が少ないほど耐プラズマ性に優れると言える。
【0021】
質量減少率(%)=[(x−y)/x]×100
[実施例1]
フッ素ゴム成分(a)としてのフッ化ビニリデン/ヘキサフルオロプロピレン/テトラフルオロエチレン弾性共重合体(フッ化ビニリデン/ヘキサフルオロプロピレン/テトラフルオロエチレン(モル比)=35/25/40、分子量150,000)100質量部と、フッ素樹脂成分(b)としてのポリフッ化ビニリデン(融点172℃、DSCによる融解熱量15.5J/g)10質量部とを、押し出し機を用いて、240℃で均一に混合した後、得られた混合物を240℃で直径5mmの口から押し出して、ひも状に予備成形した。次いで、得られたひも状の予備成形体を26.7cmに切断し、その両端を250℃に加熱して融着させて、内径80mmのO−リング予備成形体を得た。得られたO−リング予備成形体について、O−リング円周上で等間隔にある4箇所における太さ(線径)を寸法測定用顕微鏡を用いて測定したところ、その最大値と最小値との差(太さのばらつき)は、0.07mmであり、得られたO−リング予備成形体の表面は、目視で観察したところ、平滑であった。なお、各測定箇所の太さは表1中の<>に示す。
【0022】
次に、得られたO−リング予備成形体を常温(約23℃)で8時間放置した後、50kGyのγ線を照射して架橋させ、O−リング状シール材を得た。得られたO−リング状シール材の寸法精度および耐プラズマ性の評価結果を表1に示す。
[実施例2]
実施例1で用いたフッ素ゴム成分(a)100質量部と、フッ素樹脂成分(b)としてのフッ化ビニリデン/ヘキサフルオロプロピレン共重合体(フッ化ビニリデン/ヘキサフルオロプロピレン(モル比)=93/7、融点145℃、DSCによる融解熱量13.9J/g)15質量部とを、押し出し機を用いて、200℃で均一に混合した後、得られた混合物を200℃で直径5mmの口から押し出して、ひも状に予備成形した。次いで、得られたひも状の予備成形体を26.7cmに切断し、その両端を200℃に加熱して融着させて、内径80mmのO−リング予備成形体を得た。得られたO−リング予備成形体について、O−リング円周上で等間隔にある4箇所における太さ(線径)を寸法測定用顕微鏡を用いて測定したところ、その最大値と最小値との差(太さのばらつき)は、0.06mmであり、得られたO−リング予備成形体の表面は、目視で観察したところ、平滑であった。なお、各測定箇所の太さは表1中の<>に示す。
【0023】
次に、得られたO−リング予備成形体を常温(約23℃)で8時間放置した後、50kGyのγ線を照射して架橋させ、O−リング状シール材を得た。得られたO−リング状シール材の寸法精度および耐プラズマ性の評価結果を表1に示す。
[比較例1]
実施例1で用いたフッ素ゴム成分(a)100質量部のみを、押し出し機を用いて、200℃で直径5mmの口から押し出して、ひも状に予備成形した。次いで、得られたひも状の予備成形体を26.7cmに切断し、その両端を100℃に加熱して融着させて、内径80mmのO−リング予備成形体を得た。得られたO−リング予備成形体について、O−リング円周上で等間隔にある4箇所における太さ(線径)を寸法測定用顕微鏡を用いて測定したところ、その最大値と最小値との差(太さのばらつき)は、0.55mmであり、得られたO−リング予備成形体の表面は、目視で観察したところ、平滑ではなかった。なお、各測定箇所の太さは表1中の<>に示す。
【0024】
次に、得られたO−リング予備成形体を常温(約23℃)で8時間放置した後、50kGyのγ線を照射して架橋させ、O−リング状シール材を得た。得られたO−リング状シール材の寸法精度および耐プラズマ性の評価結果を表1に示す。
【0025】
【表1】

Figure 2004134665
【0026】
以上の結果から、実施例1、2において得られた電離放射線照射前のO−リング予備成形体は、寸法のばらつきが小さく、表面の平滑性も充分であるのに対して、比較例1において得られた電離放射線照射前のO−リング予備成形体は、寸法のばらつきが大きく、表面も平滑でなかった。また、実施例1、2で得られたシール材は、比較例1で得られたシール材と同レベルの耐プラズマ性を備えると同時に、真円度が極めて1に近く寸法精度に優れるものであるのに対して、比較例1で得られたシール材は、真円度が1.047をはるかに超えるものであり、実質的にO−リングとしての実用性に欠けるものであった。
【0027】
【発明の効果】
本発明によれば、耐プラズマ性に優れるとともに、良好な表面平滑性および寸法精度を備えた半導体装置用シール材を、良好な作業性で容易に得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sealing material for a semiconductor device and a manufacturing method thereof.
[0002]
[Prior art]
Conventionally, it is known that fluororubber is excellent in chemical resistance, weather resistance, heat resistance and the like and is suitable as a sealing material for semiconductor devices. However, when fluororubber is used as a sealing material for a part that is directly or indirectly exposed to plasma generated in a semiconductor device, generation of particles from the sealing material and a decrease in the mass of the sealing material have been problems. . Additives such as cross-linking agents and fillers that are usually blended to impart moldability greatly affect the amount of particles generated and the mass reduction of the sealing material. For this reason, from the viewpoint of plasma resistance, it is desirable not to contain additives such as crosslinking agents and fillers, and there has been a demand for the development of a highly pure sealing material.
[0003]
As a method of obtaining a sealing material made of fluororubber without blending a crosslinking agent or filler, a method of crosslinking fluororubber by ionizing radiation irradiation is known (for example, see Patent Document 1). In the method of crosslinking such fluororubber by ionizing radiation irradiation, the fluororubber is preformed by an extruder, a press or the like before crosslinking, but the preform thus obtained is Since the moldability is poor, dimensional stability and surface smoothness tend to be insufficient, and the dimensional accuracy and surface smoothness when used as a sealing material may be impaired. Furthermore, the preform before cross-linking is prone to plastic deformation, and if its own weight or external stress is applied before irradiation with ionizing radiation, the molded shape cannot be maintained and the dimensional accuracy will change. The pre-molded body needs to be handled with care and is inferior in workability until it is subjected to ionizing radiation irradiation treatment. As a result, the dimensional accuracy of the obtained sealing material tends to be insufficient.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-167454
[Problems to be solved by the invention]
Therefore, the present invention provides a sealing material for semiconductor devices that has excellent plasma resistance and good surface smoothness and dimensional accuracy, and a manufacturing method that can easily obtain the sealing material with good workability. The purpose is to provide.
[0006]
[Means for Solving the Problems]
The present inventor has intensively studied to solve the above problems. As a result, a non-elastic fluororesin composed of a vinylidene fluoride (co) polymer is uniformly present at a specific ratio together with a specific fluorine-based elastic copolymer in the preform before cross-linking with ionizing radiation. As a result, the present inventors have found that the above-mentioned problems can be solved and completed the present invention. That is, the sealing material for a semiconductor device according to the present invention comprises a fluororubber component comprising a vinylidene fluoride / hexafluoropropylene-based elastic copolymer and / or vinylidene fluoride / hexafluoropropylene / tetrafluoroethylene-based elastic copolymer ( a) and an inelastic fluororesin component (b) made of a vinylidene fluoride (co) polymer, 1 to 50 parts by mass of the fluororesin component (b) with respect to 100 parts by mass of the fluororubber component (a) The fluororubber preform containing at a ratio of is crosslinked with ionizing radiation.
[0007]
The method for producing a sealing material for a semiconductor device according to the present invention comprises a fluororubber component comprising a vinylidene fluoride / hexafluoropropylene-based elastic copolymer and / or a vinylidene fluoride / hexafluoropropylene / tetrafluoroethylene-based elastic copolymer. (A) After mixing 100 parts by mass and 1 to 50 parts by mass of an inelastic fluororesin component (b) composed of a vinylidene fluoride (co) polymer at a temperature equal to or higher than the melting point of the fluororesin component (b), Preliminary molding is performed, and the resulting preform is irradiated with ionizing radiation.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The sealing material for a semiconductor device of the present invention is obtained by crosslinking a fluororubber preform with ionizing radiation, and the fluororubber preform has a fluororubber component (a) composed of an elastic copolymer. And an inelastic fluororesin component (b). Thereby, the sealing material for a semiconductor device of the present invention is excellent in plasma resistance, and also has surface smoothness and dimensional accuracy. Elasticity is a property that causes a large deformation with a small stress, rapidly tries to return to its original shape from the deformation, and does not flow even when pressurized at a high temperature. It means that it has a structure capable of cross-linking in the molecule in terms of molecular structure and can form the above-mentioned elasticity by forming a three-dimensional network structure by cross-linking. Inelasticity, on the other hand, is a property that hardly deforms with a small stress, does not return to its original shape once deformed, and flows when pressurized at high temperatures. Means a resin having no crosslinkable structure in the molecule. The sealing material for a semiconductor device of the present invention can be obtained by the production method of the present invention described later.
[0009]
The fluororubber component (a) in the present invention is a vinylidene fluoride / hexafluoropropylene-based elastic copolymer and / or vinylidene fluoride / hexafluoropropylene / tetrafluoroethylene-based elastic copolymer.
The copolymerization ratio of each monomer in the vinylidene fluoride / hexafluoropropylene-based elastic copolymer is preferably vinylidene fluoride / hexafluoropropylene = 50 to 95/5 to 50 (mol%), and 70 to 85. / 15-30 (mol%) is more preferable. The copolymerization ratio of each monomer in the vinylidene fluoride / hexafluoropropylene / tetrafluoroethylene-based elastic copolymer is as follows: vinylidene fluoride / hexafluoropropylene / tetrafluoroethylene = 20 to 80/10 to 70/10 It is preferable that it is 70 (mol%), and it is more preferable that it is 25-70 / 15-60 / 15-60 (mol%).
[0010]
In addition, the vinylidene fluoride / hexafluoropropylene-based elastic copolymer and the vinylidene fluoride / hexafluoropropylene / tetrafluoroethylene-based elastic copolymer are vinylidene fluoride, hexafluoropropylene, Copolymers of other monomers other than tetrafluoroethylene may be used. Examples of other monomers include fluorinated olefins such as ethylene trifluoride chloride, vinyl fluoride, and pentafluoropropylene; perfluoro (methyl vinyl ether), perfluoro (propyl vinyl ether), perfluoro (3,6-dioxa-5-methyl Perfluoro (alkyl vinyl ethers) such as -1-decene); hydrocarbon olefins such as ethylene, propylene and butene; alkyl vinyl ethers such as ethyl vinyl ether and butyl vinyl ether; and the like. Other monomers may be used alone or in combination of two or more. When other monomers are also copolymerized, the total copolymerization ratio is 0.1 to 30 mol% with respect to the total of vinylidene fluoride, hexafluoropropylene and tetrafluoroethylene. Preferably, it is 0.2 to 15 mol%.
[0011]
Although the fluorine content in the said fluororubber component (a) is not specifically limited, It is preferable that it is 65-75 mass%, and it is more preferable that it is 71-75 mass%. This is because when the fluorine content is within the above range, there is little decrease in mass when irradiated with plasma, and the plasma resistance is excellent. If the fluorine content is less than 65% by mass, the plasma resistance may be insufficient. On the other hand, if it exceeds 75% by mass, the rubber elasticity tends to be lost and the production is not easy.
The fluororubber component (a) may have a bromine atom, an iodine atom or a double bond as a crosslinking site in the molecule. Bromine atom, iodine atom or double bond is a small amount of a chain transfer agent or a crosslinking site monomer having a bromine atom, iodine atom or double bond when polymerizing the respective monomers to produce a fluororubber, The obtained fluororubber can be introduced by post-treatment such as heat treatment or alkali treatment. Specific examples of the chain transfer agent include perfluoro (1,4-diiodobutane), perfluoro (1-bromo-4-iodobutane), perfluoro (1,6-diiodohexane), and perfluoro (1,8 -Diiodooctane) and the like. Specific examples of the crosslinking site monomer include perfluoro (3-iodo-1-propene), perfluoro (4-iodo-1-butene), perfluoro (4-bromo-1-butene), and perfluoro (5 -Bromo-3-oxa-1-pentene), perfluoro (6-iodo-1-hexene) and the like.
[0012]
The method for producing the fluororubber component (a) is not particularly limited, and known methods such as bulk polymerization, suspension polymerization, emulsion polymerization, solution polymerization and the like can be employed. Suspension polymerization is good. Examples of the polymerization initiation reaction include a radical polymerization method using an organic peroxide initiator and an azo initiator, a redox polymerization method using a redox catalyst, a radiation polymerization method using ionizing radiation, heat and light. Examples of the polymerization method used include radical polymerization method and redox polymerization method.
The molecular weight of the fluororubber component (a) is not particularly limited, but is preferably in the range of 2,000 to 500,000 from the viewpoints of physical properties and moldability.
[0013]
The glass transition temperature of the fluororubber component (a) is not particularly limited, but is preferably 10 ° C. or lower. When it exceeds 10 ° C., the flexibility at low temperature is inferior and the sealing property tends to be lowered.
The fluororesin component (b) in the present invention is an inelastic vinylidene fluoride (co) polymer.
Specific examples of the vinylidene fluoride (co) polymer include, for example, polyvinylidene fluoride and a copolymer of vinylidene fluoride and a monomer copolymerizable therewith. As the monomer copolymerizable with vinylidene fluoride, specifically, hexafluoropropylene and tetrafluoroethylene are preferable. In addition, for example, fluorination such as ethylene trifluoride chloride, vinyl fluoride, pentafluoropropylene, etc. Olefins; perfluoro (alkyl vinyl ethers) such as perfluoro (methyl vinyl ether), perfluoro (propyl vinyl ether), perfluoro (3,6-dioxa-5-methyl-1-decene); hydrocarbon-based olefins such as ethylene, propylene, butene; And alkyl vinyl ethers such as ethyl vinyl ether and butyl vinyl ether. These monomers copolymerizable with vinylidene fluoride may be used alone or in combination of two or more. Further, the vinylidene fluoride (co) polymer may be a thermoplastic rubber having these vinylidene fluoride (co) polymer components as hard segments.
[0014]
When the vinylidene fluoride (co) polymer is a copolymer, the copolymerization ratio of vinylidene fluoride is preferably 25 mol% or more.
The production method of the fluororesin component (b) is not particularly limited, and known methods such as bulk polymerization, suspension polymerization, emulsion polymerization, solution polymerization and the like can be adopted. Suspension polymerization is good. Examples of the polymerization initiation reaction include a radical polymerization method using an organic peroxide initiator and an azo initiator, a redox polymerization method using a redox catalyst, a radiation polymerization method using ionizing radiation, heat and light. Examples of the polymerization method used include radical polymerization method and redox polymerization method.
[0015]
The melting point of the fluororesin component (b) is not particularly limited, but is preferably 100 to 200 ° C. Moreover, it is preferable that the heat of fusion is 3-30 J / g by DSC measurement.
The weight average molecular weight of the fluororesin component (b) is not particularly limited, but is preferably in the range of 2,000 to 500,000, and more preferably in the range of 20,000 to 300,000.
In the present invention, the proportion of the fluororubber component (a) and the fluororesin component (b) in the fluororubber preform is such that the fluororesin component (b) is 100 parts by mass of the fluororubber component (a). ) It is important to be 1-50 parts by mass. Preferably, the amount of the fluororesin component (b) is 5 to 20 parts by mass with respect to 100 parts by mass of the fluororubber component (a). If the proportion of the fluororesin component (b) is less than the above range, the dimensional accuracy and surface smoothness of the sealing material will be impaired. On the other hand, if the proportion of the fluororesin component (b) is greater than the above range, the sealing material. Insufficient rubber elasticity.
[0016]
In addition to the fluororubber component (a) and the fluororesin component (b), the fluororubber preform has, for example, carbon black, silica, clay, talc, glass, as long as the effects of the present invention are not impaired. Fillers such as fibers; pigments such as titanium oxide and bengara; fatty acid derivatives such as fatty acids, fatty acid salts and fatty acid esters; internal mold release agents such as paraffin wax and polyethylene wax; the fluororubber component (a) and the fluororesin component Components other than (b) other compounding agents such as resin and rubber may be included. In addition, when the components other than the fluororubber component (a) and the fluororesin component (b) are also contained, the fluororubber component (a) and the fluororesin component ( It is preferable that the total amount with b) is in a range such that it is 50% by mass or more.
[0017]
The method for producing a sealing material for a semiconductor device according to the present invention comprises the steps of mixing the fluororubber component (a) and the fluororesin component (b) with the other components as necessary, and then preforming the mixture. The obtained preform is irradiated with ionizing radiation.
It is important that the fluororubber component (a) and the fluororesin component (b) are mixed at a temperature equal to or higher than the melting point of the fluororesin component (b). By mixing the fluororubber component (a) and the fluororesin component (b) at a temperature not lower than the melting point of the fluororesin component (b), the fluororubber component (a) and the fluororesin component (b) are mixed. The properties of the fluororesin component (b) can be uniformly imparted to the fluororubber component (a) by being compatible with each other with good dispersibility. As a result, the preformed body before irradiation with ionizing radiation has improved moldability and excellent dimensional stability and surface smoothness, so that the preformed body before irradiation with ionizing radiation is handled. Therefore, it is possible to use the ionizing radiation irradiation process with good workability, and as a result, it is possible to obtain a sealing material with excellent dimensional accuracy. In addition, since there is no need for a crosslinking agent or filler for imparting moldability, it is highly pure and has excellent plasma resistance with less generation of particles and less mass loss of the sealing material when exposed to plasma. A sealing material can be obtained.
[0018]
The means for mixing the fluororubber component (a) and the fluororesin component (b) is not particularly limited, but it is preferable to use a mixing device such as a roll, a kneader, or an extruder.
When performing the preliminary molding, it is preferable to use an extrusion molding machine, a hot press molding machine, or the like. In addition, the specific method, conditions, etc. at the time of preforming are not particularly limited, and may be set as appropriate.
There are no particular limitations on the ionizing radiation that can be used when the fluororubber preform is irradiated with ionizing radiation, but for example, electron beams and γ rays are preferred. The irradiation dose is preferably 10 to 500 kGy, more preferably 30 to 200 kGy. If the irradiation amount is less than 10 kGy, crosslinking tends to be insufficient. On the other hand, if it exceeds 500 kGy, the resulting sealing material may be deteriorated.
[0019]
【Example】
Hereinafter, the present invention will be described more specifically by way of examples. However, the present invention is not limited to these examples.
In addition, evaluation of the obtained sealing material was performed as follows.
<Dimensional accuracy (O-ring roundness)>
Using a dimension measuring microscope, measure the wire diameter and height at four equally spaced locations on the O-ring circumference of the sealing material, and calculate the roundness from the obtained value according to the following formula for each measured location. The average value of 4 places was made into the roundness of an O-ring. It can be said that the closer the value is to 1, the closer to a perfect circle, and the better the dimensional accuracy. In addition, the roundness of each measurement location is shown in <> in Table 1.
[0020]
Roundness = wire diameter / height According to the O-ring dimension standard described in JIS-B2401, the allowable dimension range of an O-ring with a wire diameter of 5.7 mm is ± 0.13 mm. If the height varies to the maximum, the maximum value is 5.83 mm and the minimum value is 5.57 mm. If the roundness is calculated with this value, 1.047 is obtained. From this fact, if the roundness is substantially 1.047 or more, it becomes a product lacking practicality as an O-ring.
<Plasma resistance> Using a parallel plate type low-temperature plasma irradiation apparatus (electrode diameter φ300 mm, distance between electrodes 50 mm), a sealing material was placed on the ground side electrode, output RF 500 W, plasma irradiation time 3 hours, gas mixing ratio Measure the weight (mass) of the sealing material before and after the test when the plasma irradiation test was performed under the conditions of O 2 / CF 4 = 9/1 (flow rate ratio (volume ratio)), total gas flow rate 150 sccm, and vacuum degree 80 Pa. Then, the mass reduction rate was calculated by the following formula, where x was the mass (g) before the test and y (g) was the mass after the test. It can be said that the smaller the mass reduction rate (%), the better the plasma resistance.
[0021]
Mass reduction rate (%) = [(xy) / x] × 100
[Example 1]
Vinylidene fluoride / hexafluoropropylene / tetrafluoroethylene elastic copolymer as the fluororubber component (a) (vinylidene fluoride / hexafluoropropylene / tetrafluoroethylene (molar ratio) = 35/25/40, molecular weight 150,000 ) 100 parts by mass and 10 parts by mass of polyvinylidene fluoride (melting point: 172 ° C., heat of fusion by DSC: 15.5 J / g) as the fluororesin component (b) are uniformly mixed at 240 ° C. using an extruder. After that, the obtained mixture was extruded from a mouth having a diameter of 5 mm at 240 ° C. and preformed into a string shape. Next, the obtained string-like preform was cut to 26.7 cm, and both ends thereof were heated to 250 ° C. and fused to obtain an O-ring preform with an inner diameter of 80 mm. About the obtained O-ring preform, when the thickness (wire diameter) in four places at equal intervals on the O-ring circumference was measured using a dimension measuring microscope, the maximum value and the minimum value were Difference (thickness variation) was 0.07 mm, and the surface of the obtained O-ring preform was visually observed and smooth. In addition, the thickness of each measurement location is shown in <> in Table 1.
[0022]
Next, the obtained O-ring preform was allowed to stand at room temperature (about 23 ° C.) for 8 hours and then cross-linked by irradiation with 50 kGy γ-rays to obtain an O-ring sealing material. Table 1 shows the evaluation results of the dimensional accuracy and plasma resistance of the obtained O-ring sealing material.
[Example 2]
100 parts by mass of the fluororubber component (a) used in Example 1, and a vinylidene fluoride / hexafluoropropylene copolymer (vinylidene fluoride / hexafluoropropylene (molar ratio)) = 93 / as the fluororesin component (b) 7. Melting point: 145 ° C., DSC heat of fusion: 13.9 J / g) 15 parts by mass using an extruder at 200 ° C., and then the resulting mixture was introduced at 200 ° C. from a 5 mm diameter mouth. Extruded and preformed into a string. Next, the obtained string-like preform was cut to 26.7 cm, and both ends thereof were heated to 200 ° C. and fused to obtain an O-ring preform with an inner diameter of 80 mm. About the obtained O-ring preform, when the thickness (wire diameter) in four places at equal intervals on the O-ring circumference was measured using a dimension measuring microscope, the maximum value and the minimum value were The difference (thickness variation) was 0.06 mm, and the surface of the obtained O-ring preform was smooth when visually observed. In addition, the thickness of each measurement location is shown in <> in Table 1.
[0023]
Next, the obtained O-ring preform was allowed to stand at room temperature (about 23 ° C.) for 8 hours and then cross-linked by irradiation with 50 kGy γ-rays to obtain an O-ring sealing material. Table 1 shows the evaluation results of the dimensional accuracy and plasma resistance of the obtained O-ring sealing material.
[Comparative Example 1]
Only 100 parts by mass of the fluororubber component (a) used in Example 1 was extruded from a mouth having a diameter of 5 mm at 200 ° C. using an extruder, and preformed into a string shape. Next, the obtained string-like preform was cut to 26.7 cm, and both ends thereof were heated to 100 ° C. and fused to obtain an O-ring preform with an inner diameter of 80 mm. About the obtained O-ring preform, when the thickness (wire diameter) in four places at equal intervals on the O-ring circumference was measured using a dimension measuring microscope, the maximum value and the minimum value were Difference (thickness variation) was 0.55 mm, and the surface of the obtained O-ring preform was not smooth when visually observed. In addition, the thickness of each measurement location is shown in <> in Table 1.
[0024]
Next, the obtained O-ring preform was allowed to stand at room temperature (about 23 ° C.) for 8 hours and then cross-linked by irradiation with 50 kGy γ-rays to obtain an O-ring sealing material. Table 1 shows the evaluation results of the dimensional accuracy and plasma resistance of the obtained O-ring sealing material.
[0025]
[Table 1]
Figure 2004134665
[0026]
From the above results, the O-ring preform before ionizing radiation irradiation obtained in Examples 1 and 2 has small dimensional variations and sufficient surface smoothness, whereas in Comparative Example 1 The obtained O-ring preform before irradiation with ionizing radiation had large dimensional variations and the surface was not smooth. In addition, the sealing materials obtained in Examples 1 and 2 have the same level of plasma resistance as the sealing material obtained in Comparative Example 1, and at the same time, the roundness is extremely close to 1 and excellent in dimensional accuracy. On the other hand, the sealing material obtained in Comparative Example 1 has a roundness far exceeding 1.047, and practically lacks practicality as an O-ring.
[0027]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, while being excellent in plasma resistance, the sealing material for semiconductor devices provided with favorable surface smoothness and dimensional accuracy can be obtained easily by favorable workability | operativity.

Claims (2)

フッ化ビニリデン/ヘキサフルオロプロピレン系弾性共重合体および/またはフッ化ビニリデン/ヘキサフルオロプロピレン/テトラフルオロエチレン系弾性共重合体からなるフッ素ゴム成分(a)と、フッ化ビニリデン(共)重合体からなる非弾性のフッ素樹脂成分(b)とを、前記フッ素ゴム成分(a)100質量部に対してフッ素樹脂成分(b)1〜50質量部の割合で含有するフッ素ゴム予備成形体が、電離性放射線で架橋されてなる、半導体装置用シール材。A fluororubber component (a) comprising a vinylidene fluoride / hexafluoropropylene-based elastic copolymer and / or a vinylidene fluoride / hexafluoropropylene / tetrafluoroethylene-based elastic copolymer; and a vinylidene fluoride (co) polymer. An inelastic fluororesin component (b) and a fluororubber preform which contains 1 to 50 parts by mass of the fluororesin component (b) with respect to 100 parts by mass of the fluororubber component (a) are ionized. A sealing material for a semiconductor device, which is crosslinked with actinic radiation. フッ化ビニリデン/ヘキサフルオロプロピレン系弾性共重合体および/またはフッ化ビニリデン/ヘキサフルオロプロピレン/テトラフルオロエチレン系弾性共重合体からなるフッ素ゴム成分(a)100質量部とフッ化ビニリデン(共)重合体からなる非弾性のフッ素樹脂成分(b)1〜50質量部とを前記フッ素樹脂成分(b)の融点以上の温度で混合した後、予備成形し、得られた予備成形体に電離性放射線を照射するようにする、半導体装置用シール材の製造方法。100 parts by mass of a fluororubber component (a) comprising vinylidene fluoride / hexafluoropropylene-based elastic copolymer and / or vinylidene fluoride / hexafluoropropylene / tetrafluoroethylene-based elastic copolymer and vinylidene fluoride (co) heavy After mixing 1 to 50 parts by mass of the inelastic fluororesin component (b) composed of the coal at a temperature equal to or higher than the melting point of the fluororesin component (b), the preform is molded, and the resulting preform is subjected to ionizing radiation. The manufacturing method of the sealing material for semiconductor devices which makes it irradiate.
JP2002299389A 2002-10-11 2002-10-11 Sealing material for semiconductor device and manufacturing method thereof Pending JP2004134665A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002299389A JP2004134665A (en) 2002-10-11 2002-10-11 Sealing material for semiconductor device and manufacturing method thereof
AU2003272956A AU2003272956A1 (en) 2002-10-11 2003-10-09 Sealing material for semiconductor device and method for production thereof
US10/528,476 US20060041069A1 (en) 2002-10-11 2003-10-09 Sealing material for semiconductor device and method for production thereof
PCT/JP2003/012929 WO2004033580A1 (en) 2002-10-11 2003-10-09 Sealing material for semiconductor device and method for production thereof
KR1020057006092A KR20050049534A (en) 2002-10-11 2003-10-09 Sealing material for semiconductor device and method for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002299389A JP2004134665A (en) 2002-10-11 2002-10-11 Sealing material for semiconductor device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2004134665A true JP2004134665A (en) 2004-04-30

Family

ID=32288540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002299389A Pending JP2004134665A (en) 2002-10-11 2002-10-11 Sealing material for semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2004134665A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006087942A1 (en) * 2005-02-15 2006-08-24 Nippon Valqua Industries, Ltd. Seal material for semiconductor production apparatus
WO2013141253A1 (en) * 2012-03-19 2013-09-26 ダイキン工業株式会社 Fluorine rubber composition
WO2014112156A1 (en) * 2013-01-17 2014-07-24 住友電気工業株式会社 Heat-resistant flame-retardant rubber composition, insulated wire and rubber tube
WO2015098338A1 (en) * 2013-12-27 2015-07-02 日本バルカー工業株式会社 Fluorine rubber composition, crosslinked rubber molded body and method for producing same
JP2019172897A (en) * 2018-03-29 2019-10-10 三菱電線工業株式会社 Uncrosslinked rubber composition and rubber product produced using the same and method for producing the same
CN113811429A (en) * 2019-05-16 2021-12-17 住友化学株式会社 Method for manufacturing electronic component and electronic component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09268245A (en) * 1996-03-29 1997-10-14 Nichias Corp Fluororesin composition, its production and molded product therefrom
WO2001023470A1 (en) * 1999-09-30 2001-04-05 Daikin Industries, Ltd. Transparent elastomer composition
JP2002293831A (en) * 2001-03-28 2002-10-09 Daikin Ind Ltd Fluorine-containing olefin polymer particle
JP2003206379A (en) * 2002-01-15 2003-07-22 Nichias Corp Fluororubber crosslinked molded product and its production method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09268245A (en) * 1996-03-29 1997-10-14 Nichias Corp Fluororesin composition, its production and molded product therefrom
WO2001023470A1 (en) * 1999-09-30 2001-04-05 Daikin Industries, Ltd. Transparent elastomer composition
JP2002293831A (en) * 2001-03-28 2002-10-09 Daikin Ind Ltd Fluorine-containing olefin polymer particle
JP2003206379A (en) * 2002-01-15 2003-07-22 Nichias Corp Fluororubber crosslinked molded product and its production method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006087942A1 (en) * 2005-02-15 2006-08-24 Nippon Valqua Industries, Ltd. Seal material for semiconductor production apparatus
JP2006228805A (en) * 2005-02-15 2006-08-31 Nippon Valqua Ind Ltd Seal material for semiconductor fabrication apparatus
KR100918351B1 (en) 2005-02-15 2009-09-22 닛폰 바루카 고교 가부시키가이샤 Sealing material for semiconductor manufacturing apparatus
JP4628814B2 (en) * 2005-02-15 2011-02-09 日本バルカー工業株式会社 Sealant for semiconductor manufacturing equipment
WO2013141253A1 (en) * 2012-03-19 2013-09-26 ダイキン工業株式会社 Fluorine rubber composition
WO2014112156A1 (en) * 2013-01-17 2014-07-24 住友電気工業株式会社 Heat-resistant flame-retardant rubber composition, insulated wire and rubber tube
JP2014136756A (en) * 2013-01-17 2014-07-28 Sumitomo Electric Ind Ltd Heat-resistant, flame-retardant rubber composition, insulated electric cable, and rubber tube
WO2015098338A1 (en) * 2013-12-27 2015-07-02 日本バルカー工業株式会社 Fluorine rubber composition, crosslinked rubber molded body and method for producing same
JPWO2015098338A1 (en) * 2013-12-27 2017-03-23 日本バルカー工業株式会社 Seal material and manufacturing method thereof
US9908980B2 (en) 2013-12-27 2018-03-06 Nippon Valqua Industries, Ltd. Fluorine rubber composition, crosslinked rubber molded body and method for producing same
JP2019172897A (en) * 2018-03-29 2019-10-10 三菱電線工業株式会社 Uncrosslinked rubber composition and rubber product produced using the same and method for producing the same
CN113811429A (en) * 2019-05-16 2021-12-17 住友化学株式会社 Method for manufacturing electronic component and electronic component

Similar Documents

Publication Publication Date Title
JP4358336B2 (en) Fluorinated thermoplastic elastomer
TWI291965B (en) Peroxide curable fluoroelastomers
JP5598579B2 (en) Modified fluororesin mixture, fluororesin molded product, and method for producing fluororesin molded product
JP5295786B2 (en) Composition comprising melt-processable thermoplastic fluoropolymer and method of making the same
JP5465175B2 (en) (Per) fluoroelastomer composition
JP2020504226A (en) Fluorinated block copolymer
JP6539425B1 (en) Crosslinkable elastomer composition, molded article, sealing material, plasma processing apparatus and semiconductor manufacturing apparatus including the sealing material, hardness reducing agent for molded article, method for producing molded article
CN1764678A (en) Melt-processible thermoplastic fluoropolymers having improved processing characteristics and method of producing the same
JP2020504225A (en) Fluorinated block copolymers derived from nitrile cure site monomers
JP6371295B2 (en) Peroxide curable fluoropolymer compositions containing solvents and methods of use thereof
JPH01221443A (en) Co-support additive for releasing rubber vulcanizable by peroxide from mold
TW486503B (en) Fluorine-containing rubber composition
JP2004134665A (en) Sealing material for semiconductor device and manufacturing method thereof
JP5051517B2 (en) Ethylene / tetrafluoroethylene copolymer composition
KR20050049534A (en) Sealing material for semiconductor device and method for production thereof
JP2008231331A (en) Radiation-crosslinked fluorine-containing copolymer
WO2015038498A1 (en) Fluoroelastomers having secondary cyano group cure sites
JP3791223B2 (en) Ethylene / tetrafluoroethylene copolymer composition
JP3783443B2 (en) Ethylene / tetrafluoroethylene copolymer composition with improved moldability
JP4341125B2 (en) Chemical liquid permeation inhibitor, chemical liquid permeation inhibiting fluorine-containing resin composition comprising the inhibitor
JP6308059B2 (en) Method for producing molding composition and method for producing molded product
CN105555843A (en) Methods of making a fluoroelastomer composition and composite article
JP6708290B2 (en) Composition and molded article containing fluoropolymer
CN110869440B (en) Composition comprising a fluorinated thermoplastic elastomer and a vulcanized product
TW202309157A (en) Branched silsesquioxane polymer and compositions and articles including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081021