JP2004132280A - Air-fuel ratio control device of internal combustion engine - Google Patents

Air-fuel ratio control device of internal combustion engine Download PDF

Info

Publication number
JP2004132280A
JP2004132280A JP2002298240A JP2002298240A JP2004132280A JP 2004132280 A JP2004132280 A JP 2004132280A JP 2002298240 A JP2002298240 A JP 2002298240A JP 2002298240 A JP2002298240 A JP 2002298240A JP 2004132280 A JP2004132280 A JP 2004132280A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
modulation
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002298240A
Other languages
Japanese (ja)
Inventor
Yasuki Tamura
田村 保樹
Kazuhito Kawashima
川島  一仁
Kazuhide Iwasa
岩佐 和英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2002298240A priority Critical patent/JP2004132280A/en
Publication of JP2004132280A publication Critical patent/JP2004132280A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air-fuel ratio control device of an internal combustion engine for enhancing the total performance by combining different advantages with each other. <P>SOLUTION: The air-fuel ratio control device of the internal combustion engine comprises an exhaust emission purifying catalytic converter 11 mounted on an exhaust pipe 3 of an engine 1, and an air-fuel ratio modulating means to forcibly modulate the air-fuel ratio of exhaust gas led to the catalyst converter 11 between lean and rich. The air-fuel ratio modulating means controls modulation characteristics at a plurality of different air-fuel ratios in a successively switching manner for each predetermined time by combining the modulation characteristics at the plurality of different air-fuel ratios with each other. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、エンジン等の内燃機関において、空気と燃料との比を制御する空燃比制御装置に関する。
【0002】
【従来の技術】
エンジン等の内燃機関の排気浄化システムとして、空気及び燃料を所定の空燃比の燃焼ガスに制御し、その燃焼ガスの燃焼後の排気を触媒に流入させる技術が開示されている。又、空燃比を理論空燃比(ストイキとも呼ぶ)の近傍に制御すると、THC(全炭化水素化合物)、CO(一酸化炭素)、NOx(窒素酸化物)の3成分を同時に高い効率で浄化できる三元触媒が知られている。
【0003】
又、空燃比を制御するにあたり、Oセンサ等からのフィードバック信号により空燃比を制御するのではなく、理論空燃比を境に、空燃比をリッチとリーンに交互に周期的に強制変調させて、触媒の浄化性能を向上させる技術が開示されている。更に、複数の変調特性の空燃比制御を重畳させて浄化性能を向上させようとする技術も開示されている(特許文献1参照)。
【0004】
【特許文献1】
特許第2561532号公報(第3頁−7頁、図1)
【0005】
【発明が解決しようとする課題】
ところが、試験の結果、触媒によって、THCの浄化に有利な空燃比の変調特性(周期、振幅、デューティ(パルス間隔に対するパルス振幅時間の比)、波形等)と、NOxに有利な空燃比の変調特性が存在することが判明した。例えば、Ce(セリウム)を含まない触媒において、変調周期を0.1秒とすると、より広い空燃比の範囲においてNOxを高い効率で浄化できるが、THCを高い効率で浄化できる範囲は広くない。一方、変調周期を0.5秒にすると、より広い範囲でTHCを高い浄化効率で浄化できるが、NOxを高い浄化効率で浄化できる範囲は狭い。
【0006】
又、触媒の劣化検出を行なう場合、変調周期を長くすると触媒下流の劣化検出信号の変動が大きくなり、触媒の劣化判定を容易に行なえるが、触媒の浄化性能が低下する場合がある。一方、変調周期を短くすると触媒の浄化性能が向上するが、触媒下流の劣化検出信号の変動が小さくなり、触媒の劣化判定が困難になる場合がある。
【0007】
つまり、同一の空燃比の変調特性下では、THCあるいはNOxの一方しか高い浄化性能を確保することができず、又、触媒の劣化判定と浄化性能の維持を両立させることが困難であることが判明した。又、上述した複数の変調特性が重畳された空燃比制御装置でも、複数の変調特性の制御成分が同時に混在することになり、相互に干渉して十分な浄化性能が得られなくなるおそれがある。又、変調特性の高周波成分の影響を受けるため、触媒の劣化検出が十分に機能しないおそれも有り、逆に、触媒の劣化検出性能を確保しようとすると、変調の高周波化にも限界があり、大きな浄化性能の向上は期待できない。
【0008】
本発明は上記課題に鑑みなされたもので、異なる利益を複合させて、全体的な性能を向上させる内燃機関の空燃比制御装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記課題を解決する本発明の請求項1に係る内燃機関の空燃比制御装置は、触媒に導かれる燃焼ガスの空燃比をリーンとリッチとの間で強制的に変調させる空燃比変調手段が、複数の異なる空燃比の変調特性を順次切り替えて制御することで、複数の異なる空燃比の変調特性を複合させて、内燃機関の排気通路に設けられた排気浄化用の触媒にて、その排気ガスを浄化する。
【0010】
上記課題を解決する本発明の請求項2に係る内燃機関の空燃比制御装置は、複数の異なる空燃比の変調特性として、HC等のTHC(全炭化水素化合物)浄化に有利な変調特性と、NO等のNOx(窒素酸化物)浄化に有利な変調特性とを含む。
【0011】
上記課題を解決する本発明の請求項3に係る内燃機関の空燃比制御装置は、複数の異なる空燃比の変調特性として、触媒の劣化検出に有利な変調特性と、排気浄化に有利な変調特性とを含む。
【0012】
上記課題を解決する本発明の請求項4に係る内燃機関の空燃比制御装置は、前記複数の異なる空燃比の変調特性に各々の所定時間が設定され、前記空燃比変調手段が、各々の所定時間ずつ、前記複数の異なる空燃比の変調特性を順次制御する。
【0013】
上記課題を解決する本発明の請求項5に係る内燃機関の空燃比制御装置は、触媒がセリア、ジルコニアなどの酸素吸蔵材を実質的に含まない。つまり、酸素吸蔵能力がない、あるいは少ない触媒を用いている。
【0014】
【発明の実施の形態】
図1は、本発明に係る空燃比制御装置が制御する内燃機関の概略図である。
【0015】
図1に示すように、内燃機関であるエンジン1は、複数の燃焼室(気筒)2を有しており、各燃焼室2と連通するように、その上流側には吸気通路となる吸気管3が設けられている。同様に、各燃焼室2と連通するように、その下流側には排気通路となる排気管4が設けられている。
【0016】
吸気管3の最上流部にはエアクリーナ5が設けられおり、ここで外部からの吸気を清浄にしている。エアクリーナ5の下流には、エアフローセンサ6、スロットル7及びスロットル開度センサ8が設けられており、アクセルペダルの踏込み量に応じて、スロットル7の開度が制御され、その開度に応じた吸気流量をエアフローセンサ6で検出する。なお、図1には図示していないが、吸気の温度センサや圧力センサ等も設けられており、空燃比はこれらの検出値も用いて、より正確に算出される。
【0017】
各燃焼室2の直前の吸気管3側には燃料を噴射する電磁式のインジェクタ9が設けられており、各燃焼室2の直前で空気と混合され、各燃焼室2と吸気管4との間に設けられた吸気弁10を開けることで、各燃焼室2に燃料及び空気の燃焼ガスが導入される。なお、図1では、インジェクタ9を吸気管3側に設けているが、各燃焼室2に直接設け、直接噴射して燃料を供給してもよい(直噴式)。図示していないが、インジェクタ9には、燃料タンクを擁した燃圧制御手段が燃料パイプを介して接続されている。燃料タンクからインジェクタ9への燃料の圧力は、フューエルポンプやレギュレータ等を用いた燃圧制御手段により制御されており、これにより、噴射圧を制御し、燃焼室2への噴射量を制御することができる。
【0018】
各燃焼室2には、点火プラグ(図示せず)が設けられており、吸気管3側から導入された吸入空気と燃料を点火、燃焼させることでピストンを動作させ、クランクシャフトを回転させて、エンジントルクを発生させている。なお、クランクシャフトには、クランクの角度を検出するクランク角センサ12が設けられている。
【0019】
各燃焼室2と排気管4との間には排気弁11が設けられており、各燃焼室2で燃焼された燃焼ガスが、排気弁11を開けることで、排気管4側へ排気ガスとして排出される。排気管4の下流側には、排気浄化用の触媒装置として触媒コンバータ13が設けられており、更に、排気ガスの消音器となるマフラ(図示せず)が設けられている。排気ガスは触媒コンバータ13にて浄化され、マフラを経由して外部へ放出される。
【0020】
触媒コンバータ13の上流側には、排気ガス中のOの濃度を検出するOセンサ14が設けられ、触媒コンバータ13の下流側にも、触媒の劣化状態を検出する触媒劣化検出手段となるOセンサ15が設けられている。触媒の劣化判定は、空燃比の変調波形とOセンサ15による検出波形とを比較して、波形が同等であれば、劣化していると判定する。逆に、触媒が劣化していなければ、Oセンサ15による検出波形は異なるものとなる。
【0021】
触媒コンバータ13は、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)等の貴金属が担体に担持されたものであるが、酸素吸蔵機能を有する酸素吸蔵(OSC:Oxygen Storage Component)材を、実質的には有していない。例えば、セリア(CeO)や、ジルコニア(ZrO)、あるいはこれらの複合酸化物等を含まない、あるいは少量しか含まないものであり、酸素吸蔵能力が低い触媒である。酸素吸蔵能力が低い触媒は、貴金属雰囲気が変動しやすく、空燃比の変調特性に対する触媒性能の差がより拡大されるため、複合化による性能向上がより大きなものとなる。
【0022】
本発明に係る空燃比制御装置は、上記構成のエンジン1を制御することで実現される。なお、上記構成のエンジン1と同等であれば、どのようなエンジンでもよい。
【0023】
図2は、本発明に係る実施形態の一例を示す空燃比制御装置のブロック図である。
【0024】
本発明に係る空燃比制御装置では、エンジンECU(Electronic Control Unit)16により、主に、燃料を噴射するインジェクタ9を制御することで、本発明に係る空燃比の変調特性を実現している。具体的には、スロットル7のスロットル開度に応じて吸入された空気量に対して、燃料の噴射量及びその噴射のタイミングを制御することで、本発明に係る空燃比の変調特性を制御する。この時、インジェクタ9の開度やインジェクタ9への燃圧を制御する燃圧制御手段17により、燃料の噴射量を制御し、本発明に係る変調特性の空燃比の制御が可能となる。なお、ECU16は、空燃比制御を含め、エンジンの総合的な制御を行う。
【0025】
空燃比変調手段となるエンジンECU16には、ハードウェアとして、演算を行うCPU(Central Processing Unit)と、制御プログラムの格納領域となるROM(Read Only Memory)や制御プログラムの作動領域となるRAM(RandomAccess Memory)等の記憶装置と、種々の信号の入出力を行うインターフェイス等から構成されており、ソフトウェアとして、制御プログラムを有している。エンジンECU16の制御プログラムは、インターフェイスから入力される種々の入力信号に基づき、その制御を決定し、制御される機器のドライバを経由して制御信号が出力される。
【0026】
エンジンECU16には、種々の入出力装置が接続されている。主な入力装置としては、吸入流量を検出するエアフローセンサ6と、スロットル開度を検出するスロットル開度センサ8と、クランク角を検出するクランク角検出センサ12と、O濃度を検出するOセンサ14とを有しており、これらセンサ類からの検出情報が入力される。
【0027】
主な、出力制御機器としては、スロットル開度を制御するスロットル7と、燃料の噴射量、タイミングを制御するインジェクタ9と、インジェクタへの燃圧を制御する燃圧制御手段17等が接続されている。これらの制御機器には、各センサからの検出情報に基づき演算された燃料噴射量、燃料噴射時期等がそれぞれ出力され、これにより、インジェクタ9から適正量の燃料が適正なタイミングで噴射される。
【0028】
図3は、本発明に係る実施形態の一例を示す空燃比制御のフローチャートである。
【0029】
図3に示すように、本発明に係る内燃機関の空燃比制御装置では、触媒による排気ガスの浄化が要求される時、あるいは触媒劣化判定が必要とされる時に、その制御が開始する(ステップS1)。この時、初期条件として、第1タイマに所定時間1が設定され、第2タイマに0が設定される。
【0030】
ステップS2では、第2タイマのカウント時間が判断され、初期状態においては、第2タイマ=0であるため、ステップS3へ進む。
【0031】
ステップS3では、予め設定された第1変調の空燃比制御の波形が出力されて、その出力波形に基づいて、空燃比が制御される。
【0032】
第1タイマが0でない場合、ステップS5をスキップし(ステップS4)、第1タイマの所定時間1からカウントダウンを行い(ステップS6)、第1タイマが0になるまで第1変調の制御を繰り返す。つまり、所定時間1の間、第1変調の空燃比制御の波形を出力し続けることとなる。例えば、後述の図4(a)中の所定時間1の部分の波形が第1変調の波形となる。
【0033】
第1タイマのカウント時間が0になると、第2タイマに所定時間2を設定し(ステップS5)、第1変調の制御を終了する。第2タイマに所定時間2が設定されると、ステップS2で第2タイマのカウント時間が0ではないと判断され、ステップS8、つまり第2変調の制御へ進む。
【0034】
ステップS8では、予め設定された第2変調の空燃比制御の波形が出力されて、その出力波形に基づいて、空燃比が制御される。
【0035】
第2タイマの所定時間2からカウントダウンを行い(ステップS10)、第2タイマが0になるまで、第2変調の制御を繰り返す。つまり、所定時間2の間、第2変調の空燃比制御の波形を出力し続けることとなる。例えば、後述の図4(a)中の所定時間2の部分の波形が第2変調の波形となる。
【0036】
第2タイマのカウント時間が0になると、第1タイマに所定時間1を設定し(ステップS9)、第2変調の制御を終了する。この場合、ステップS2で第2タイマのカウント時間が0と判断されるので、ステップS3、つまり第1変調の制御へ進むこととなる。
【0037】
このように、本発明に係る空燃比制御装置では、上記手順の制御を行なうことで、各々の変調特性に設定された所定時間ずつ、複数の異なる空燃比の変調特性を順次切り換えて制御することとなる。
【0038】
図4(a)は、本発明の実施形態の一例を示す空燃比変調の制御波形である。なお、比較のため、図4(b)に従来の強制的な空燃比変調の制御波形を示した。
又、図5は、本発明の実施形態の他の例を示す空燃比変調の制御波形である。
【0039】
図4(a)は、互いに異なる周期を有する第1変調、第2変調を複合させて、それぞれ所定時間1と所定時間2の運転時間で順次切り換えた周期複合変調の制御波形である。第1変調は第2変調に比べて周期が短く設定されており、周期の短い第1変調での制御では、第2変調での制御に比べてNOxの浄化効率が向上するが、THCの浄化効率が低下する。一方、周期の長い第2変調での制御では、第1変調での制御に比べてTHCの浄化効率が向上するが、NOxの浄化効率が低下する。このため、第1変調がNOx浄化に有利な変調特性として設定されており、第2変調がTHC浄化に有利な変調特性として設定されている。同時に、周期が長い第2変調は、触媒劣化検出に有利な変調特性でもあり、この場合、周期が短い第1変調は、排気浄化に有利な変調特性を成している。
【0040】
図5では、他の複合変調例を示しており、図5(a)は、互いに異なる振幅を有する第1変調、第2変調を複合させて、それぞれ所定時間1と所定時間2の運転時間で順次切り換えた振幅複合変調の制御波形であり、図5(b)は、互いに異なるデューティを有する第1変調、第2変調を複合させて、それぞれ所定時間1と所定時間2の運転時間で順次切り換えたデューティ複合変調の制御波形であり、図5(c)は、互いに異なる波形を有する第1変調、第2変調を複合させて、それぞれ所定時間1と所定時間2の運転時間で順次切り換えた波形複合変調の制御波形であり、図5(d)は、互いに異なる振幅、周期、デューティと、更に互いに異なる中心空燃比とを有する第1変調、第2変調を複合させて、それぞれ所定時間1と所定変調サイクル2の運転時間で順次切り換えた複合変調の制御波形である。又、互いに異なる中心空燃比を有する空燃比変調を複合させる中心空燃比の複合変調としてもよい。
【0041】
図4、図5に示すように、変調特性を複合させることにより、THCに有利な変調特性(周期、振幅、デューティ、波形)とNOxに有利な変調特性とを複合させて、THC、NOx共に浄化性能を改善することができる。更に、COに有利な変調特性を複合させて、更に浄化性能を改善することができる。同様に、触媒劣化検出に有利な変調特性と触媒浄化性能に有利な変調特性とを複合させて、浄化性能を確保しつつ触媒劣化判定を容易にすることもできる。
【0042】
なお、図4、図5に示すように、第1変調、第2変調は、少なくとも周期、振幅、デューティ、波形等の変調特性の内、少なくとも1以上が異なるものとする。例えば、第1変調、第2変調の周期を、それぞれ0.1秒と0.5秒として、触媒に応じた最適値を設定する。又、所定時間1、2は、同一値としてもよいし、異なる値としてもよく、触媒に応じた最適値が設定される。例えば、所定時間1=1秒、所定時間2=1秒とする。又、所定時間1、2の代わりに、所定変調サイクル1、2としてもよく、更に、所定時間と所定変調サイクルを複合させたものでもよい。例えば、所定時間1=15秒、所定変調サイクル2=1サイクルとする。波形は、方形波(矩形波、台形波等)、三角波でもよく、それ以外に多角形波としてもよく、又、正弦波等としてもよい。更に、強制的な変調波形ではなく、従来のOセンサの出力値トリガにして、リッチ・リーン方向を反転させる変調波形としてもよい。
【0043】
又、本実施例では、第1変調、第2変調の2つの変調特性を複合しているが、これに限らず第3変調を追加してもよいし、更に異なる変調を追加するようにしてもよい。又、運転条件(例えば、スロットル開度、エンジン回転速度、体積効率、車速、マニホールド圧、排気流量、排温、触媒温度、吸入空気流量、あるいはこれらと相関のある条件)に応じて、変調特性を変更するようにしてもよいし、特定条件においては、変調特性を変更しないようにしてもよい。更に、異なる変調特性をステップ的に変更しているが、例えば、周期を0.1秒、0.2秒、0.3秒と設定して、徐々に変更するようにしてもよい。又、中心空燃比はストイキに限らず、その他の空燃比でもよい。
【0044】
【発明の効果】
請求項1に係る発明によれば、異なる変調特性の制御を順次切り替えて実行するので、各変調特性による浄化特性を複合化することができ、排気浄化性能を効率良く向上できる。
【0045】
請求項2に係る発明によれば、浄化性能を高次元でバランスさせることができる。
【0046】
請求項3に係る発明によれば、排気浄化性能の向上と触媒劣化検出性能を高次元でバランスさせることができる。
【0047】
請求項4に係る発明によれば、各変調特性毎に最適な運転継続時間を設定できるため、複合化による性能向上効果を効果的に発生させることができる。
【0048】
請求項5に係る発明によれば、変調特性の違いによる浄化特性の差が発生し易くなり、複合化による性能向上効果を効果的に発生させることができる。
【図面の簡単な説明】
【図1】本発明に係る実施形態の一例を示すエンジンの概略構成図である。
【図2】本発明に係る実施形態の一例を示す空燃比制御のブロック図である。
【図3】本発明に係る実施形態例を示す空燃比制御のフローチャートである。
【図4】本発明に係る実施形態の一例を示す空燃比変調の制御波形及び従来の強制的な空燃比変調の制御波形である。
【図5】本発明に係る実施形態の他の一例を示す空燃比変調の制御波形である。
【符号の説明】
6  エアフローセンサ
7  スロットル
8  スロットル開度センサ
9  インジェクタ
12 クランク角センサ
14 O2センサ
16 エンジンECU
17 燃圧制御手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an air-fuel ratio control device for controlling the ratio of air to fuel in an internal combustion engine such as an engine.
[0002]
[Prior art]
2. Description of the Related Art As an exhaust purification system for an internal combustion engine such as an engine, a technique is disclosed in which air and fuel are controlled to combustion gas having a predetermined air-fuel ratio, and exhaust gas after combustion of the combustion gas flows into a catalyst. Further, when the air-fuel ratio is controlled near the stoichiometric air-fuel ratio (also referred to as stoichiometric ratio), three components of THC (all hydrocarbon compounds), CO (carbon monoxide), and NOx (nitrogen oxide) can be simultaneously purified with high efficiency. Three-way catalysts are known.
[0003]
Also, in controlling the air-fuel ratio, instead of controlling the air-fuel ratio by a feedback signal from an O 2 sensor or the like, the air-fuel ratio is periodically and forcibly modulated to rich and lean alternately at a stoichiometric air-fuel ratio. A technique for improving the purification performance of a catalyst is disclosed. Further, there is disclosed a technique for improving purification performance by superimposing air-fuel ratio control of a plurality of modulation characteristics (see Patent Document 1).
[0004]
[Patent Document 1]
Japanese Patent No. 25651532 (pages 3-7, FIG. 1)
[0005]
[Problems to be solved by the invention]
However, as a result of the test, the catalyst shows that the air-fuel ratio modulation characteristics (period, amplitude, duty (ratio of pulse amplitude time to pulse interval), waveform, etc.) that are advantageous for the purification of THC, and the air-fuel ratio modulation that is advantageous for NOx The property was found to be present. For example, if the modulation period is set to 0.1 second in a catalyst not containing Ce (cerium), NOx can be purified with high efficiency in a wider range of air-fuel ratio, but the range in which THC can be purified with high efficiency is not wide. On the other hand, if the modulation period is set to 0.5 seconds, THC can be purified with a high purification efficiency over a wider range, but the range over which NOx can be purified with a high purification efficiency is narrow.
[0006]
Further, when detecting the deterioration of the catalyst, if the modulation period is lengthened, the fluctuation of the deterioration detection signal downstream of the catalyst becomes large, and the deterioration of the catalyst can be easily determined, but the purification performance of the catalyst may be reduced. On the other hand, if the modulation cycle is shortened, the purification performance of the catalyst is improved, but the fluctuation of the deterioration detection signal downstream of the catalyst is reduced, and it may be difficult to determine the deterioration of the catalyst.
[0007]
In other words, under the same air-fuel ratio modulation characteristic, only one of THC and NOx can secure high purification performance, and it is difficult to achieve both determination of catalyst deterioration and maintenance of purification performance. found. Further, even in the air-fuel ratio control device on which a plurality of modulation characteristics are superimposed, control components having a plurality of modulation characteristics are simultaneously mixed, and there is a possibility that sufficient purification performance may not be obtained due to mutual interference. In addition, since it is affected by the high-frequency component of the modulation characteristics, there is a possibility that the detection of catalyst deterioration does not function sufficiently. Conversely, if the performance of detecting the deterioration of the catalyst is to be ensured, there is a limit in increasing the frequency of modulation. No significant improvement in purification performance can be expected.
[0008]
The present invention has been made in view of the above problems, and an object of the present invention is to provide an air-fuel ratio control device for an internal combustion engine that improves overall performance by combining different benefits.
[0009]
[Means for Solving the Problems]
The air-fuel ratio control device for an internal combustion engine according to claim 1 of the present invention that solves the above-mentioned problem is characterized in that an air-fuel ratio modulation unit that forcibly modulates an air-fuel ratio of combustion gas guided to a catalyst between lean and rich, By sequentially switching and controlling the modulation characteristics of a plurality of different air-fuel ratios, the modulation characteristics of the plurality of different air-fuel ratios are combined, and the exhaust gas is exhausted by an exhaust purification catalyst provided in an exhaust passage of the internal combustion engine. To purify.
[0010]
An air-fuel ratio control device for an internal combustion engine according to claim 2 of the present invention that solves the above-mentioned problems has a modulation characteristic that is advantageous for purifying THC (total hydrocarbon compounds) such as HC as a modulation characteristic of a plurality of different air-fuel ratios; And modulation characteristics advantageous for purifying NOx (nitrogen oxides) such as NO.
[0011]
According to a third aspect of the present invention, there is provided an air-fuel ratio control apparatus for an internal combustion engine, comprising: a modulation characteristic advantageous for detecting deterioration of a catalyst; and a modulation characteristic advantageous for exhaust purification. And
[0012]
According to a fourth aspect of the present invention, there is provided an air-fuel ratio control apparatus for an internal combustion engine, wherein each predetermined time is set in the modulation characteristics of the plurality of different air-fuel ratios, and The modulation characteristics of the plurality of different air-fuel ratios are sequentially controlled for each time.
[0013]
In the air-fuel ratio control apparatus for an internal combustion engine according to claim 5 of the present invention which solves the above-mentioned problem, the catalyst does not substantially contain an oxygen storage material such as ceria and zirconia. That is, a catalyst having no or little oxygen storage capacity is used.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a schematic diagram of an internal combustion engine controlled by an air-fuel ratio control device according to the present invention.
[0015]
As shown in FIG. 1, an engine 1 that is an internal combustion engine has a plurality of combustion chambers (cylinders) 2, and an intake pipe serving as an intake passage upstream thereof so as to communicate with each combustion chamber 2. 3 are provided. Similarly, an exhaust pipe 4 serving as an exhaust passage is provided downstream thereof so as to communicate with each combustion chamber 2.
[0016]
An air cleaner 5 is provided at the most upstream portion of the intake pipe 3, and cleans external intake air here. An air flow sensor 6, a throttle 7, and a throttle opening sensor 8 are provided downstream of the air cleaner 5, and the opening of the throttle 7 is controlled in accordance with the amount of depression of an accelerator pedal. The flow rate is detected by the air flow sensor 6. Although not shown in FIG. 1, an intake temperature sensor, a pressure sensor, and the like are also provided, and the air-fuel ratio is calculated more accurately using these detected values.
[0017]
An electromagnetic injector 9 for injecting fuel is provided on the intake pipe 3 side immediately before each combustion chamber 2, and is mixed with air immediately before each combustion chamber 2. By opening the intake valve 10 provided therebetween, fuel and air combustion gas are introduced into each combustion chamber 2. In FIG. 1, the injector 9 is provided on the intake pipe 3 side. However, the injector 9 may be provided directly in each combustion chamber 2 to supply fuel by direct injection (direct injection type). Although not shown, fuel pressure control means having a fuel tank is connected to the injector 9 via a fuel pipe. The pressure of the fuel from the fuel tank to the injector 9 is controlled by fuel pressure control means using a fuel pump, a regulator, or the like, whereby the injection pressure is controlled and the injection amount to the combustion chamber 2 can be controlled. it can.
[0018]
Each combustion chamber 2 is provided with a spark plug (not shown), which ignites and burns intake air and fuel introduced from the intake pipe 3 to operate a piston and rotate a crankshaft. , Generating engine torque. The crankshaft is provided with a crank angle sensor 12 for detecting a crank angle.
[0019]
An exhaust valve 11 is provided between each combustion chamber 2 and the exhaust pipe 4, and the combustion gas burned in each combustion chamber 2 is opened as an exhaust gas by opening the exhaust valve 11. Is discharged. On the downstream side of the exhaust pipe 4, a catalytic converter 13 is provided as a catalytic device for purifying exhaust gas, and further, a muffler (not shown) serving as a muffler for exhaust gas is provided. The exhaust gas is purified by the catalytic converter 13 and discharged to the outside via the muffler.
[0020]
An O 2 sensor 14 for detecting the concentration of O 2 in the exhaust gas is provided on the upstream side of the catalytic converter 13, and a catalyst deterioration detecting unit for detecting the state of deterioration of the catalyst also on the downstream side of the catalytic converter 13. O 2 sensor 15 is provided. Deterioration determination of the catalyst is checked by comparing the detected waveform by the modulation waveform and O 2 sensor 15 of the air-fuel ratio, if the waveform is equal, to be degraded. Conversely, if the catalyst has not deteriorated, the detected waveform by the O 2 sensor 15 becomes different.
[0021]
The catalytic converter 13 is a carrier in which a noble metal such as platinum (Pt), palladium (Pd), and rhodium (Rh) is supported on a carrier. We do not have it. For example, the catalyst does not contain ceria (CeO 2 ), zirconia (ZrO 2 ), or a complex oxide thereof, or contains only a small amount thereof, and has a low oxygen storage capacity. In a catalyst having a low oxygen storage capacity, the noble metal atmosphere tends to fluctuate, and the difference in catalyst performance with respect to the air-fuel ratio modulation characteristics is further increased.
[0022]
The air-fuel ratio control device according to the present invention is realized by controlling the engine 1 having the above configuration. Note that any engine may be used as long as it is equivalent to the engine 1 having the above configuration.
[0023]
FIG. 2 is a block diagram of an air-fuel ratio control device showing an example of an embodiment according to the present invention.
[0024]
In the air-fuel ratio control device according to the present invention, the engine ECU (Electronic Control Unit) 16 mainly controls the injector 9 that injects fuel, thereby realizing the air-fuel ratio modulation characteristics according to the present invention. Specifically, the modulation characteristic of the air-fuel ratio according to the present invention is controlled by controlling the fuel injection amount and the timing of the injection with respect to the amount of air taken in according to the throttle opening of the throttle 7. . At this time, the fuel injection amount is controlled by the fuel pressure control means 17 for controlling the opening degree of the injector 9 and the fuel pressure applied to the injector 9, and the air-fuel ratio of the modulation characteristic according to the present invention can be controlled. Note that the ECU 16 performs comprehensive control of the engine, including air-fuel ratio control.
[0025]
The engine ECU 16 serving as an air-fuel ratio modulation unit includes, as hardware, a CPU (Central Processing Unit) for performing calculations, a ROM (Read Only Memory) as a storage area for a control program, and a RAM (Random Access) as an operation area for a control program. Memory) and an interface for inputting and outputting various signals, and has a control program as software. The control program of the engine ECU 16 determines its control based on various input signals input from the interface, and outputs a control signal via a driver of a device to be controlled.
[0026]
Various input / output devices are connected to the engine ECU 16. The main input device, an air flow sensor 6 for detecting an intake flow rate, a throttle opening sensor 8 for detecting a throttle opening, a crank angle sensor 12 for detecting the crank angle, O 2 for detecting the O 2 concentration And detection information from these sensors.
[0027]
As main output control devices, a throttle 7 for controlling a throttle opening, an injector 9 for controlling a fuel injection amount and a timing, a fuel pressure control means 17 for controlling a fuel pressure to the injector, and the like are connected. A fuel injection amount, a fuel injection timing, and the like calculated based on the detection information from each sensor are output to these control devices, whereby an appropriate amount of fuel is injected from the injector 9 at an appropriate timing.
[0028]
FIG. 3 is a flowchart of the air-fuel ratio control showing an example of the embodiment according to the present invention.
[0029]
As shown in FIG. 3, in the air-fuel ratio control apparatus for an internal combustion engine according to the present invention, the control is started when the purification of the exhaust gas by the catalyst is required or when the catalyst deterioration determination is required (step S1). S1). At this time, the first timer is set to a predetermined time of 1 and the second timer is set to 0 as an initial condition.
[0030]
In step S2, the count time of the second timer is determined. Since the second timer is 0 in the initial state, the process proceeds to step S3.
[0031]
In step S3, a preset first modulation air-fuel ratio control waveform is output, and the air-fuel ratio is controlled based on the output waveform.
[0032]
If the first timer is not 0, step S5 is skipped (step S4), the countdown is performed from a predetermined time 1 of the first timer (step S6), and the control of the first modulation is repeated until the first timer becomes 0. That is, during the predetermined time 1, the waveform of the air-fuel ratio control of the first modulation is continuously output. For example, a waveform of a portion at a predetermined time 1 in FIG. 4A described later is a waveform of the first modulation.
[0033]
When the count time of the first timer becomes 0, a predetermined time 2 is set in the second timer (step S5), and the control of the first modulation is ended. When the predetermined time 2 is set in the second timer, it is determined in step S2 that the count time of the second timer is not 0, and the process proceeds to step S8, that is, the control of the second modulation.
[0034]
In step S8, a preset waveform of the air-fuel ratio control of the second modulation is output, and the air-fuel ratio is controlled based on the output waveform.
[0035]
The countdown is performed from a predetermined time 2 of the second timer (step S10), and the control of the second modulation is repeated until the second timer becomes zero. That is, during the predetermined time 2, the waveform of the air-fuel ratio control of the second modulation is continuously output. For example, the waveform of the portion of the predetermined time 2 in FIG. 4A described later is the waveform of the second modulation.
[0036]
When the count time of the second timer becomes 0, a predetermined time 1 is set in the first timer (step S9), and the control of the second modulation is ended. In this case, since the count time of the second timer is determined to be 0 in step S2, the process proceeds to step S3, that is, the control of the first modulation.
[0037]
As described above, in the air-fuel ratio control device according to the present invention, by performing the control of the above-described procedure, the control is performed by sequentially switching the modulation characteristics of a plurality of different air-fuel ratios by a predetermined time set for each modulation characteristic. It becomes.
[0038]
FIG. 4A is a control waveform of air-fuel ratio modulation showing an example of the embodiment of the present invention. For comparison, FIG. 4B shows a control waveform of the conventional forced air-fuel ratio modulation.
FIG. 5 is a control waveform of air-fuel ratio modulation showing another example of the embodiment of the present invention.
[0039]
FIG. 4A is a control waveform of the periodic composite modulation in which the first modulation and the second modulation having different periods are combined and sequentially switched at the operation times of the predetermined time 1 and the predetermined time 2, respectively. The cycle of the first modulation is set shorter than that of the second modulation. In the control of the first modulation having a shorter cycle, the purification efficiency of NOx is improved as compared with the control of the second modulation. Efficiency decreases. On the other hand, in the control by the second modulation having a long cycle, the purification efficiency of the THC is improved as compared with the control by the first modulation, but the purification efficiency of the NOx is reduced. Therefore, the first modulation is set as a modulation characteristic advantageous for NOx purification, and the second modulation is set as a modulation characteristic advantageous for THC purification. At the same time, the second modulation having a long cycle is also a modulation property advantageous for detecting catalyst deterioration, and in this case, the first modulation having a short cycle has a modulation property advantageous for exhaust gas purification.
[0040]
FIG. 5 shows another example of composite modulation. FIG. 5A shows a composite of the first modulation and the second modulation having different amplitudes from each other in the operation time of the predetermined time 1 and the predetermined time 2 respectively. FIG. 5B shows a control waveform of the amplitude composite modulation which is sequentially switched. FIG. 5B shows a composite waveform of the first modulation and the second modulation having different duties, and sequentially switches the operation times of the predetermined time 1 and the predetermined time 2 respectively. FIG. 5 (c) is a control waveform of duty composite modulation, in which the first modulation and the second modulation having different waveforms are combined and sequentially switched at predetermined time 1 and predetermined time 2 operation time, respectively. FIG. 5D shows control waveforms of the composite modulation. FIG. 5D shows a composite waveform of the first modulation and the second modulation having different amplitudes, periods, and duties, and different center air-fuel ratios. Predetermined modulation It is a control waveform of sequentially switching composite modulated at the operating time of the cycle 2. Further, a composite modulation of the center air-fuel ratio which combines air-fuel ratio modulations having different center air-fuel ratios may be used.
[0041]
As shown in FIGS. 4 and 5, by combining the modulation characteristics, the modulation characteristics (period, amplitude, duty, and waveform) that are advantageous for THC and the modulation characteristics that are advantageous for NOx are combined, and both THC and NOx are combined. Purification performance can be improved. Furthermore, the purification performance can be further improved by combining a modulation characteristic advantageous to CO. Similarly, by combining the modulation characteristic advantageous for catalyst deterioration detection and the modulation characteristic advantageous for catalyst purification performance, it is also possible to easily determine catalyst deterioration while ensuring purification performance.
[0042]
As shown in FIGS. 4 and 5, the first modulation and the second modulation are different from each other in at least one or more of modulation characteristics such as a period, an amplitude, a duty, and a waveform. For example, the period of the first modulation and the period of the second modulation are set to 0.1 seconds and 0.5 seconds, respectively, and an optimum value corresponding to the catalyst is set. Further, the predetermined times 1 and 2 may be the same value or different values, and an optimal value according to the catalyst is set. For example, the predetermined time 1 = 1 second and the predetermined time 2 = 1 second. Also, instead of the predetermined times 1 and 2, the predetermined modulation cycles 1 and 2 may be used, or a combination of the predetermined time and the predetermined modulation cycle may be used. For example, the predetermined time 1 = 15 seconds and the predetermined modulation cycle 2 = 1 cycle. The waveform may be a square wave (rectangular wave, trapezoidal wave, or the like), a triangular wave, a polygonal wave, a sine wave, or the like. Furthermore, rather than a forced modulation waveform, and the output value triggers a conventional O 2 sensor may be a modulated waveform that inverts rich lean direction.
[0043]
Further, in the present embodiment, the two modulation characteristics of the first modulation and the second modulation are combined, but the present invention is not limited to this, and a third modulation may be added, or a different modulation may be added. Is also good. In addition, modulation characteristics according to operating conditions (eg, throttle opening, engine speed, volumetric efficiency, vehicle speed, manifold pressure, exhaust flow rate, exhaust temperature, catalyst temperature, intake air flow rate, or conditions correlated therewith). May be changed, or under specific conditions, the modulation characteristics may not be changed. Further, the different modulation characteristics are changed in a stepwise manner. For example, the period may be set to 0.1 second, 0.2 second, and 0.3 second, and may be gradually changed. The center air-fuel ratio is not limited to stoichiometric, but may be another air-fuel ratio.
[0044]
【The invention's effect】
According to the first aspect of the invention, since the control of the different modulation characteristics is sequentially switched and executed, the purification characteristics of each modulation characteristic can be combined, and the exhaust gas purification performance can be efficiently improved.
[0045]
According to the second aspect of the invention, the purification performance can be balanced at a high level.
[0046]
According to the third aspect of the invention, it is possible to balance the improvement of the exhaust gas purification performance and the performance of detecting the deterioration of the catalyst at a high level.
[0047]
According to the fourth aspect of the present invention, the optimum operation duration can be set for each modulation characteristic, so that the effect of improving the performance by combining can be effectively generated.
[0048]
According to the fifth aspect of the present invention, a difference in purification characteristics due to a difference in modulation characteristics is likely to occur, and an effect of improving performance by compounding can be effectively generated.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an engine showing an example of an embodiment according to the present invention.
FIG. 2 is a block diagram of air-fuel ratio control showing an example of an embodiment according to the present invention.
FIG. 3 is a flowchart of air-fuel ratio control showing an embodiment of the present invention.
FIG. 4 shows a control waveform of air-fuel ratio modulation and a control waveform of conventional forced air-fuel ratio modulation showing an example of an embodiment according to the present invention.
FIG. 5 is a control waveform of air-fuel ratio modulation showing another example of the embodiment according to the present invention.
[Explanation of symbols]
6 Air flow sensor 7 Throttle 8 Throttle opening sensor 9 Injector 12 Crank angle sensor 14 O2 sensor 16 Engine ECU
17 Fuel pressure control means

Claims (5)

内燃機関の排気通路に設けられた排気浄化用の触媒と、
前記触媒に導かれる排気ガスの空燃比をリーンとリッチとの間で強制的に変調させる空燃比変調手段とを備え、
前記空燃比変調手段が複数の異なる空燃比の変調特性を順次切り替えて制御することを特徴とする内燃機関の空燃比制御装置。
An exhaust gas purification catalyst provided in an exhaust passage of the internal combustion engine;
Air-fuel ratio modulation means for forcibly modulating the air-fuel ratio of the exhaust gas guided to the catalyst between lean and rich,
An air-fuel ratio control device for an internal combustion engine, wherein the air-fuel ratio modulation means controls by sequentially switching modulation characteristics of a plurality of different air-fuel ratios.
請求項1記載の内燃機関の空燃比制御装置において、
前記複数の異なる空燃比の変調特性はTHC浄化に有利な変調特性とNOx浄化に有利な変調特性とを含むことを特徴とする内燃機関の空燃比制御装置。
The air-fuel ratio control device for an internal combustion engine according to claim 1,
The air-fuel ratio control device for an internal combustion engine, wherein the modulation characteristics of the plurality of different air-fuel ratios include a modulation characteristic advantageous for THC purification and a modulation characteristic advantageous for NOx purification.
請求項1又は請求項2記載の内燃機関の空燃比制御装置において、
前記複数の異なる空燃比の変調特性は触媒の劣化検出に有利な変調特性と排気浄化に有利な変調特性とを含むことを特徴とする内燃機関の空燃比制御装置。
The air-fuel ratio control device for an internal combustion engine according to claim 1 or 2,
The air-fuel ratio control device for an internal combustion engine, wherein the modulation characteristics of the plurality of different air-fuel ratios include a modulation characteristic advantageous for detecting catalyst deterioration and a modulation characteristic advantageous for exhaust gas purification.
請求項1乃至請求項3のいずれかに記載の内燃機関の空燃比制御装置において、
前記空燃比変調手段が、前記複数の異なる空燃比の変調特性に設定された各々の所定時間ずつ、前記複数の異なる空燃比の変調特性を順次制御することを特徴とする内燃機関の空燃比制御装置。
An air-fuel ratio control device for an internal combustion engine according to any one of claims 1 to 3,
Wherein the air-fuel ratio modulation means sequentially controls the modulation characteristics of the plurality of different air-fuel ratios for each predetermined time set for the modulation characteristics of the plurality of different air-fuel ratios. apparatus.
請求項1乃至請求項4のいずれかに記載の内燃機関の空燃比制御装置において、
前記触媒が酸素吸蔵材を実質的に含まないことを特徴とする内燃機関の空燃比制御装置。
An air-fuel ratio control device for an internal combustion engine according to any one of claims 1 to 4,
An air-fuel ratio control device for an internal combustion engine, wherein the catalyst does not substantially include an oxygen storage material.
JP2002298240A 2002-10-11 2002-10-11 Air-fuel ratio control device of internal combustion engine Pending JP2004132280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002298240A JP2004132280A (en) 2002-10-11 2002-10-11 Air-fuel ratio control device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002298240A JP2004132280A (en) 2002-10-11 2002-10-11 Air-fuel ratio control device of internal combustion engine

Publications (1)

Publication Number Publication Date
JP2004132280A true JP2004132280A (en) 2004-04-30

Family

ID=32287716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002298240A Pending JP2004132280A (en) 2002-10-11 2002-10-11 Air-fuel ratio control device of internal combustion engine

Country Status (1)

Country Link
JP (1) JP2004132280A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7703278B2 (en) 2004-05-10 2010-04-27 Denso Corporation Exhaust emission control device of internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7703278B2 (en) 2004-05-10 2010-04-27 Denso Corporation Exhaust emission control device of internal combustion engine

Similar Documents

Publication Publication Date Title
US7818960B2 (en) SCR cold start heating system for a diesel exhaust
JP2004353552A (en) Catalyst early warming-up control device of internal combustion engine
US6334306B1 (en) Exhaust gas purification apparatus in combustion engine
JP4099272B2 (en) Method for regenerating nitrogen oxide trap in exhaust system of internal combustion engine
JP2008111352A (en) Exhaust control device of internal combustion engine
US6497846B1 (en) Exhaust gas purifying system for internal combustion engine
JPWO2004097200A1 (en) Control device for internal combustion engine
JP2004132280A (en) Air-fuel ratio control device of internal combustion engine
JP2009150367A (en) Catalyst degradation diagnostic apparatus for internal combustion engine
JP2008255972A (en) Air-fuel ratio control device
KR101836287B1 (en) Catalyst heating control apparatus and the method
KR100529751B1 (en) Exhaust purification system of internal comb u stion engine
JP2000054837A (en) Catalyst temperature raising device for internal combustion engine
JP2005307864A (en) Air-fuel ratio control device, air-fuel ratio control method, and exhaust emission control device for internal combustion engine
JP2008157244A (en) Engine system and regeneration method of exhaust gas treatment device in this system
JP3371707B2 (en) Fuel injection control device for in-cylinder direct injection internal combustion engine
CN110700955A (en) Method and device for controlling excess air coefficient of gasoline engine catalyst
JP4089507B2 (en) Catalyst deterioration detection device for internal combustion engine
JPH03217640A (en) Exhaust gas purifier of internal combustion engine
JP3341592B2 (en) Fuel injection control device for in-cylinder direct injection internal combustion engine
JP6593356B2 (en) Exhaust purification device
JP4134861B2 (en) Control device for premixed compression ignition type internal combustion engine
JP2002030922A (en) Diagnostic apparatus for deteriorated condition of exhaust purifying catalyst
JP2022100067A (en) Control device for internal combustion engine
JP2020153334A (en) Exhaust emission control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A02 Decision of refusal

Effective date: 20071127

Free format text: JAPANESE INTERMEDIATE CODE: A02