JP2004132105A - Driving device for jacking method - Google Patents

Driving device for jacking method Download PDF

Info

Publication number
JP2004132105A
JP2004132105A JP2002299384A JP2002299384A JP2004132105A JP 2004132105 A JP2004132105 A JP 2004132105A JP 2002299384 A JP2002299384 A JP 2002299384A JP 2002299384 A JP2002299384 A JP 2002299384A JP 2004132105 A JP2004132105 A JP 2004132105A
Authority
JP
Japan
Prior art keywords
spherical
divided bodies
axis
divided body
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002299384A
Other languages
Japanese (ja)
Other versions
JP3773891B2 (en
Inventor
Keiji Iso
磯 圭伺
Shingo Tan
丹 信吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rasa Industries Ltd
Kidoh Construction Co Ltd
Original Assignee
Rasa Industries Ltd
Kidoh Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rasa Industries Ltd, Kidoh Construction Co Ltd filed Critical Rasa Industries Ltd
Priority to JP2002299384A priority Critical patent/JP3773891B2/en
Publication of JP2004132105A publication Critical patent/JP2004132105A/en
Application granted granted Critical
Publication of JP3773891B2 publication Critical patent/JP3773891B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique easily applicable to a driving device with a small caliber capable of facilitating the bending action of divided bodies constituting the driving device and, at the same time, surely preventing an undesirable twisting action. <P>SOLUTION: The driving device includes at least a pair of correcting jacks 50 expansible in the direction of the axis bilateral symmetrically arranged to a diametral line D extended in the direction of radiation from an intersection of the center axis C in a section at right angles to the center axis C at a connecting position of divided bodies 20 to 40 of the driving device 10 and connected to the divided bodies 20 to 40 in front and behind in a bendable manner and twisting prevention connectors 60 arranged on the diametral line D and fixedly connected in the circumferential direction of the divided bodies 20 to 40, although the divided bodies 20 to 40 in front and behind can be moved along the diametral line D and they can be also rotated in the spherical direction with the point on the diametral line D as the center. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、掘進装置に関し、詳しくは、推進工法において地盤にトンネルを形成しながら推進されていく掘進装置を対象にしている。
【0002】
【従来の技術】
推進工法の掘進装置として、推進方向を修正したり変更したりするために、掘進装置を前後に屈曲自在な複数の分割体で構成したものがある。
全体が筒状をなす掘進装置を、その中心軸に沿って前後に2体あるいは3体に分割しておく。前後の分割体の連結個所には、周方向の複数個所に配置された修正ジャッキを備える。複数個所の修正ジャッキにおける伸縮量に差を付けると、前後の分割体が屈曲する。分割体が屈曲したままで掘進装置の全体を推進させると、掘進装置の最前部の分割体が向いている方向に、推進方向が変化していく。
【0003】
推進工法の作業中に、地盤からの抵抗に偏りがあったり、掘進装置の後方に連結された埋設管列に加わる推力の向きがずれたりするなど、何らかの原因で推進方向が設計ラインから外れた場合には、前記した修正ジャッキを作動させて、推進方向を正しい設計ライン上に戻すことができる。また、曲線推進工法では、設計ラインの曲率に合わせて、前記修正ジャッキで掘進装置を屈曲させ曲線ラインに沿って推進させる。
掘進装置の屈曲は、水平面内で左右に屈曲させる場合だけでなく、垂直面内で上下方向に屈曲させる場合もある。例えば、埋設管の埋設深さを徐々に深くしたり浅くしたりする場合である。勿論、推進方向が上下方向にずれる場合の修正も必要である。当然、上下と左右を組み合わせた屈曲が必要になることが多い。
【0004】
掘進装置の分割体同士を、必要とされる上下左右斜めの何れの方向にも任意に屈曲できるようにするには、修正ジャッキと前後の分割体との連結を何れも、球面軸受などを利用して、任意の方向に屈曲できるようにしておくことが望ましい。
ところが、修正ジャッキと分割体との連結が、任意の方向に屈曲できる状態であると、前後の分割体が互いに屈曲できるだけでなく、相対的に周方向に回転する捻れ方向の運動を行ってしまうという問題がある。
分割体同士が捻れてしまうと、掘進装置の推進方向が正確に決められなくなる。例えば、最前部の分割体を、目的の推進方向に合わせて上下および左右に所定の角度だけ屈曲させようとして修正ジャッキの伸縮量を設定しても、分割体が捻れて上下左右の中心線が傾いてしまえば、設定した方向に屈曲できず、推進方向が変わってしまう。
【0005】
そこで、分割体同士が捻れないようにする捻れ防止手段が必要になる。各種のピンやリンク、ガイド部材による連結あるいは軸受機構などを利用して、捩れ防止を図ることが考えられる。
また、修正ジャッキの本数が増えると、前記捩れは起こり難くなる。例えば、分割体同士の連結個所に周方向に間隔をあけて多数の修正ジャッキを設置した場合には、修正ジャッキ同士が互いの捩れ方向への運動を規制することになるので、大きな捩れは生じない。
【0006】
【発明が解決しようとする課題】
従来における掘進装置の捻れ防止技術では、分割体同士の屈曲の自由度を損なわずに捩れだけを確実に防止することが困難であった。特に、小口径の掘進装置において、実用的な技術が見当たらなかった。
修正ジャッキの本数を増やして捩れを防ぐ方法は、多数の修正ジャッキが装着可能な大口径の掘進装置には適用できるが、数本あるいは2本の修正ジャッキしか装着できないような小口径の掘進装置には適用困難である。修正ジャッキの本数が増えれば、それだけ設備コストが嵩み、掘進装置の稼動に要するコストも増大する。
【0007】
本件特許出願人は、図6に示す技術を検討した。
分割体の一方110にはU字形の金具112を他方100にはピン102を取り付け、ピン102をU字金具112に挿入しておく。ピン102がU字金具112の左右の内面に当接することで分割体100、110の捩れ方向の運動を防止する。U字金具112に対してピン102は前後方向に傾いたり移動したり軸方向に移動したり回転したりすることはできるので、分割体100、110同士の屈曲が許容できる。
前記したピン102とU字金具112との組み合わせ構造では、分割体100、110同士の屈曲を自由にするため、U字金具112に対してピン102が傾いたりできる余裕あるいは遊びが必要であった。円柱状のピン102と平面状のU字金具112内面とは線接触するため、遊びがないと、局部的に過大な負荷が加わって、相対的な移動が困難になったり接触面が削られしまったり、ひどい場合には、ピン102やU字金具112が折れてしまったりする。
【0008】
前記図6において、ピン102の外周面とU字金具112の内周面との間には隙間があいている。しかし、ピン102とU字金具112との間の遊びは、分割体100、110の捩れを許容してしまう。図6(a)で、破線矢印方向への捩れ運動が十分に阻止できないのである。
また、上記構造では、分割体100、110の軸方向において、U字金具112からピン102が外れてしまう方向に移動できてしまう。これでは、分割体100、110が分離してしまう。そこで、U字金具112とピン102とによる連結に加えて、分割体100、110を軸方向に連結しておく手段あるいは機構が必要になる。例えば、棒状の支持部材を分割体100、110に球面軸受で支持することで、屈曲を許容しながら、分割体100、110の軸方向の移動を阻止している。支持部材の分だけ装置が複雑になり、掘進装置の内部スペースを狭くしてしまう。
【0009】
本発明の課題は、前記した分割構造を有する掘進装置において、分割体同士の屈曲動作が容易であるとともに、望ましくない捩れ運動を確実に阻止できるようにすることである。特に、小口径の掘進装置にも適用し易い技術を提供することである。
【0010】
【課題を解決するための手段】
本発明にかかる推進工法用の掘進装置は、推進工法に使用され、複数の分割体が互いに屈曲自在に軸方向に連結されてなる掘進装置であって、前記分割体の連結個所において、前記掘進装置の中心軸と直交する断面で中心軸との交点から放射方向に延びる直径軸に対して左右対称になる位置に配置され、前後の分割体に対して屈曲可能に連結され、軸方向に伸縮自在である、少なくとも一対の修正ジャッキと、前記左右の修正ジャッキの対称軸である前記直径軸上に配置され、前後の分割体を、直径軸に沿って移動可能であり直径軸上の点を中心に球面方向に回転可能であるが分割体の周方向には不動に連結する捻れ防止連結具とを備える。
【0011】
〔掘進装置〕
基本的には、通常の推進工法に使用されている掘進装置と同様の構造が採用される。
掘進装置の口径は、埋設する埋設管の口径に対応するが、通常、25〜300cmの範囲に設定される。特に、口径50〜300cmの掘進装置に有用である。掘進装置の全長は通常、1〜6mの範囲に設定される。
掘進装置は、複数の分割体が互いに屈曲自在に軸方向に連結されてなる。分割体の数は、少なくとも前後の2体からなり、前部、中間、後部の3体、あるいは、それ以上の数で構成される場合もある。掘進装置を構成する分割体は、全て同じ長さであってもよいし、それぞれの機能に合わせて長さが異なる場合もある。
【0012】
各分割体には、掘進装置の掘進装置の作動あるいは推進工法の実行に必要な各種の機器装置や部材が収容される。
例えば、掘進装置の最前部に配置される分割体には、地盤を掘削したり圧密したりするための機構を備えておく。掘進装置の前面などに掘削用の泥水や薬液を供給する機構も備えておくことができる。これらの装置機構は、最前部の分割体だけでなく、その後方の分割体の内部にわたって配置される場合もある。
掘進装置の最後部に配置される分割体には、掘進装置の後方に連結される埋設管の連結構造を備えておく。具体的には、ボルト結合構造や嵌合構造などが採用される。
【0013】
分割体同士の連結個所には、分割体の屈曲運動を許容する隙間や空間が設けられる。この隙間や空間から土砂などが浸入しないように、水密構造が設置される。具体的には、パッキンやOリング、水封装置などの通常の土木装置における水密構造が適用できる。
〔修正ジャッキ〕
分割体同士を屈曲させる機能を有する。また、分割体同士が分離しないように連結する機能も果たす。
基本的には、通常の掘進装置の修正ジャッキと同様の構造が採用できる。修正ジャッキは、本体構造に対して伸縮自在な作動構造を備えている。具体的には、本体構造であるシリンダ部と作動構造であるピストン部を備えている。シリンダ部に流体圧を加えることでピストン部を作動させることができる。流体圧とは、油圧、空圧、水圧が挙げられる。ピストンシリンダ機構として、中央に配置されたシリンダ部の前後からそれぞれピストン部が伸縮作動するものが使用できる。
【0014】
修正ジャッキとして、ピストンシリンダ機構のほか、トグル機構やリンク機構、歯車機構、ワイヤプーリ機構などの機械的な作動構造を備えたものも採用できる。流体機構と機械機構とを組み合わせたものも採用できる。電磁力による作動も可能である。
修正ジャッキの作動力は通常、50〜1000kNの範囲に設定される。修正ジャッキの伸縮長は通常、2〜30cmの範囲に設定される。
修正ジャッキと分割体との連結は、分割体に対して修正ジャッキの本体部分または作動部分を固定する場合と、屈曲自在に連結しておく場合がある。前後の分割体のうち少なくとも片側には屈曲自在に連結しておく。屈曲自在とは、左右や上下の一方向のみである場合と左右および上下方向の場合、さらには斜め方向を含む任意の方向である場合がある。
【0015】
通常は、修正ジャッキの両端をそれぞれ、分割体に対して任意の方向に屈曲可能に連結しておくことが望ましい。これによって、修正ジャッキの伸縮力をスムーズに分割体を屈曲させる力に転換できる。修正ジャッキと分割体とを任意方向に屈曲可能に連結する手段として、球面軸受機構が採用できる。
〔修正ジャッキの配置〕
修正ジャッキは、分割体同士の連結個所で、分割体同士を上下方向、左右方向、さらには任意の方向に屈曲させることができるように配置される。
具体的には、掘進装置の中心軸と直交する断面で中心軸との交点から放射方向に延びる直径軸に対して左右対称になる位置に配置することができる。直径軸の左右における修正ジャッキの伸縮量を変えれば、分割体同士を左右方向に屈曲できる。修正ジャッキを、前記直径軸に対して上下対称になる位置に配置すれば、分割体同士を上下方向に屈曲させることができる。左右対称あるいは上下対称に配置される修正ジャッキの一方を、伸縮しない単なる連結部材に置き換えたり、捩れ防止連結具に置き換えたりすることもできる。
【0016】
分割体同士の1個所の連結個所における中心軸と直交する断面で、修正ジャッキの設置個数は、少なくとも2個設置しておけば、分割体同士の任意方向への屈曲が可能になる。3個あるいはそれ以上に設置しておくことができる。前記断面の周方向で等角度に修正ジャッキを配置しておくこともできるし、不等間隔で配置される場合もある。1個所に複数個の修正ジャッキを並設しておくこともできる。
捩れ防止連結具あるいは連結部材を設置した個所には、修正ジャッキを設置しないでおくことができる。
【0017】
例えば、1対の修正ジャッキと1個の捩れ防止連結具とを、等角度すなわち120度の角度をあけて配置することができる。
〔捩れ防止連結具〕
分割体同士を屈曲可能に連結しておく機能を果たす。但し、特定の方向については分割体同士の相対運動を阻止する。
捩れ防止連結具は、左右に配置された修正ジャッキの対称軸になる直径軸上に配置される。捩れ防止連結具が配置された直径軸の左右に対称的に修正ジャッキが配置されることになる。
【0018】
捩れ防止連結具は、分割体同士を以下の条件で連結する。まず、前後の分割体を、直径軸に沿って移動可能に連結する。直径軸上の点を中心に球面方向に回転可能に連結する。球面方向とは、球面の中心周りに球面に沿う任意方向の回転運動が可能な状態である。回転の角度範囲は、任意方向に360度である必要はない。分割体に必要とされる屈曲角度を許容できるだけの回転が可能であればよい。通常は、3〜20度の範囲で回転できればよい。
捩れ防止連結具は、分割体同士を周方向には不動に連結する。周方向とは、一方の分割体に対して他方の分割体が捩れる方向である。不動とは、遊びや隙間による運動をも実質的に阻止できる状態を意味する。但し、本発明の効果を損なわない範囲で、工業的に不可避な程度の微小な運動までを阻止する必要はない。
【0019】
捩れ防止連結具は、通常、一方の分割体に固定される部材と、他方の分割体に固定される部材とが、互いの運動を許容あるいは阻止する状態で連結される。連結部分において、両側の部材は、面接触して摺動するようにしておけば、接触圧が低減され滑らかな摺動が可能になる。面接触であれば、部材同士間における遊びや余裕がなくても滑らかな摺動が容易になる。具体的な摺動構造は、通常の機械装置などにおける摺動機構や摺動部材の構造が採用できる。ボールベアリングや流体軸受などの軸受機構を採用することもできる。
<球面摺動を利用した捻れ防止連結具>
前記のような機能を良好に果たす捩れ防止連結具として、以下の構造を有するものが採用できる。
【0020】
前後の分割体のうち、一方の分割体に固定され、直径軸と同心の摺動軸を有する。摺動軸は、鋼棒材などの剛性強度を備えた材料であって、周面の摺動性が良好な材料からなるものが好ましい。摺動軸の表面に、メッキや溶射などの膜形成手段で低摩擦材料層を形成しておくこともできる。摺動軸は、一般的には断面円形であるが、円形以外の断面形状、例えば、長円形や楕円形、多角形も採用でき、歯車状やスプライン状の凹凸断面形状も採用できる。円形以外の断面であれば、摺動軸と球面摺動環との軸周り運動を阻止できる。
球面摺動環は、全体が環状をなし、前記摺動軸に挿通されて軸方向に摺動し、外周面が球面状をなす。球面摺動環は、軸受金属などの摺動性に優れた材料で構成できる。球面摺動環の内外周面のみを低摩擦材料層で形成することもできる。小さなチップ状の低摩擦材料片を、内外周面に埋め込んだり貼りつけたりして配置しておくこともできる。
【0021】
球面摺動環の内周面は摺動軸の外周面に対応する断面形状を有している。球面摺動環の外周面は球面の一部を切り取った構造をなしている。球面摺動環の周方向は360度の範囲で球面であるが、軸方向には球面を一定の幅で切り取った構造である。球面摺動環の内周面と摺動軸の外周面とは全面で面接触した状態で軸方向に滑らかに摺動することができる。
球面摺動受材は、摺動軸を設置した分割体に対応する反対側の分割体に固定設置される。球面摺動環が挿入されて球面摺動する。球面摺動受材は、球面摺動環と同様の軸受材料で形成されていたり内面に低摩擦材料層が配置されていたりする。球面摺動受材の内周面は、球面摺動環の外周面に対応する球面を構成している。実用的には、分割体の屈曲動作の範囲内で、少なくとも球面摺動環の外周面と摺動して、分割体の連結機能を果たすことができればよい。例えば、軸方向の厚みを球面摺動環の厚みよりも薄くしておくこともできる。軸周りにおいて、球面摺動環の複数個所に分割して当接摺動する球面摺動受材を採用することもできる。
【0022】
球面摺動受材は、分割体に直接に固定されていてもよいし、球面摺動受材を保持する保持部材や支持部材を介して分割体に固定しておくこともできる。この場合、保持部材や支持部材には安価で加工し易い構造鋼材などを使用できるので、実用性に優れている。
〔捩れ防止連結具の配置〕
捩れ防止連結具は、分割体の連結個所毎に1個づつ配置される。捩れ防止連結具の摺動軸の延長方向に前記直径軸が配置される。この直径軸を対象軸にして、左右に対称的に修正ジャッキが配置される。また、掘進装置の断面を等角度に分割して、複数個の修正ジャッキと捩れ防止連結具とを配置しておくこともできる。
【0023】
掘進装置を構成する分割体が3個以上ある場合、すなわち、連結個所が2個所以上ある場合には、全ての連結個所で、捩れ防止連結具と修正ジャッキとの配置構造を同一に設定しておくこともできるし、連結個所によって配置構造を違えておく場合もある。
例えば、前後に配置された連結個所で、捩れ防止連結具および修正ジャッキを、掘進装置の中心軸に対して前記直径軸の方向で対称位置に配置しておくことができる。前方の連結個所で上方に捩れ防止連結具が存在すれば、後方の連結個所では下方に捩れ防止連結具が配置される。前方の連結個所で下方に位置する修正ジャッキは、後方の連結個所では上方に配置される。一つの連結個所で、修正ジャッキが上下非対称に配置されている場合、前後の連結個所では、修正ジャッキの設置位置が上下に食い違う構造になる。これによって、長さ方向にスペースの少ない掘進装置であっても、前後の修正ジャッキを上下食い違い状態で余裕をもって設置しておくことが可能になる。前後の修正ジャッキおよびその付属設備が干渉することが防止できる。
【0024】
〔分割体の動作〕
掘進装置の推進方向を変更したり修正したりする際には、前後に配置された分割体同士を所定の角度および方向に屈曲させる。この屈曲動作は、修正ジャッキの伸縮によって果たされる。修正ジャッキの作動方法や作動制御については、通常の掘進装置と同様に行うことができる。
修正ジャッキを伸縮させると、各修正ジャッキの位置で、前後の分割体が接近したり離れたりすることになる。周方向において、修正ジャッキの位置によって、前後の分割体の軸方向位置が変わることで、前後の分割体が屈曲する。
【0025】
前後の分割体の屈曲角度は通常、3〜20度の範囲に設定される。
このとき、捩れ防止連結具の位置では、前後の分割体が相対的に、直径軸に沿って移動するか、直径軸上の点を中心に球面方向に回転する。これによって、前後の分割体は任意の方向に屈曲することが許容される。しかし、捩れ防止連結具の位置では、分割体の周方向には不動に連結されているので、前後の分割体が捩れることは阻止される。
一つの連結個所で、周方向の1個所に捩れ防止連結具が設置されていれば、前後の分割体を屈曲可能でかつ分離してしまわないように連結しておけるので、複数個所に連結構造を設けたり、大掛りな捩れ防止構造を備えておいたりすることが不要になる。分割体の連結個所には、1個所の捩れ防止連結具と必要個所の修正ジャッキとだけを備えておけばよいので、小口径の掘進装置にでも、何ら支障なく、容易に設置しておくことができる。
【0026】
最小限の構成では、1個所の捩れ防止連結具と、捩れ防止連結具を通る直径軸を対称軸として左右対称に配置された一対の修正ジャッキとで、分割体の屈曲を良好に果たせることになる。捩れ防止連結具と一つの修正ジャッキとを、周方向に等角度で配置しておけば、分割体の屈曲動作が効率的に行える。
捩れ防止連結具が、前記した球面摺動構造と軸摺動構造とを組み合わせたものであれば、摺動個所において十分な面積を有する面接触による摺動が行われ、余分な遊びや隙間を設けておかなくても、滑らかな摺動を果たすとともに、分割体の連結個所に加わる負荷や外力にも十分に耐えることが可能になる。しかも、全体の構造は比較的に簡単で製造も容易になる。
【0027】
【発明の実施の形態】
図1〜図4に示す実施形態は、前部、中間および後部の3体の分割体で構成された掘進装置を示している。
〔掘進装置の全体構造〕
図1および図2に示すように、掘進装置10は、全体が鋼材などで構築された円筒状の外郭構造の内部に必要な構造部材や機器装置が収容されている。掘進装置の具体的寸法として、例えば、口径150cm、全長4mに設定される。掘進装置10は、その中心軸Cに沿って、前部分割体20、中間分割体30および後部分割体40の3部分に分割構成されている。分割体20〜40の長さとして、例えば、前部分割体20を150cm、中間分割体30を100cm、後部分割体40を150cmに設定される。
【0028】
前部分割体20には、前面に掘削盤22を有し、前部分割体20から中間分割体30の内部空間に収容されたモータ24で掘削盤22が回転駆動される。掘削盤22で地盤を掘削しながら掘進装置10を推進させる。
後部分割体40の後端には、推進埋設する埋設管70が連結される。図示を省略したが、埋設管70は順次後方に継ぎ足されて埋設管列を構成する。
各分割体20〜40の内部には、掘進装置10の稼動に必要な装置機器として、モータの駆動電力などを供給する電力線や、地盤の掘削面に泥水を供給する泥水配管、掘削された土砂を泥水とともに排出する排土配管、推進位置の測量装置などが、必要に応じて収容設置されている。
【0029】
〔修正ジャッキと捩れ防止連結具の配置〕
分割体20〜40の連結個所にはそれぞれ、一対2基の修正ジャッキ50、50と捩れ防止連結具60とが配置されている。
図2(a)には、前部分割体20と中間分割体30との連結個所における、掘進装置10の中心軸Cと直交する断面での、修正ジャッキ50、50と捩れ防止連結具60の配置構造を示している。
修正ジャッキ50および捩れ防止連結具60は、分割体20、30の円筒状をなす外郭の内面に近い位置に配置されており、分割体20、30の中央空間に配置される各種配管や設備機器の設置の邪魔にならないようにしている。
【0030】
中心軸Cを中心にして、一対の修正ジャッキ50、50および捩れ防止連結具60が、互いに等角度θをなすように配置されている。角度θは360/3=120°である。また、捩れ防止連結具60の中心と中心軸Cとを結ぶ直径軸Dに対して、左右の対称位置にそれぞれ修正ジャッキ50、50が配置されている。図1に示すように、中間分割体30と後部分割体40との連結個所にも、前記同様に、一対の修正ジャッキ50、50と捩れ防止連結具60とが配置されている。
但し、修正ジャッキ50、50と捩れ防止連結具60との位置関係が違っている。図2(b)の断面構造において、修正ジャッキ50、50が上側、捩れ防止連結具60が下側に配置されている。図2(a)の連結個所とは丁度、対称になる配置である。このような配置構造を採用することで、前後方向に比較的に長さを要する修正ジャッキ50を、前後の連結個所で上下に食い違わせて配置することができる。その結果、内部空間が狭く多数の機器類を効率的に配置しなければならない掘進装置10において、修正ジャッキ50を効率良く配置しておくことが可能になる。
【0031】
〔修正ジャッキの構造〕
図3に示すように、修正ジャッキ50は、筒状をなすシリンダ部52の両端にピストン部54、54が取り付けられている。それぞれのピストン部54、54がシリンダ部52に対して進退し、ピストン部54、54の両端間の距離が伸縮する。修正ジャッキ50の具体的仕様として、例えば、油圧駆動で1000kNの作動力を発生し、伸縮長さが20cmであるものが採用できる。
ピストン部54の先端は、球状の端部56となっている。球状端部56を受ける球状軸受体58が、分割体20〜40の外郭構造の内面に固定されている。両端に配置された球状軸受体58は、前後に配置された分割体20と30または30と40とにそれぞれ別個に固定されている。
【0032】
球状端部56は球状軸受体58に対して滑らかに球面摺動を行う。その結果、球状軸受体58とそれが固定された分割体20…に対して、ピストン部52は任意の方向に屈曲できることになる。両側の球状軸受体58の何れに対しても、中央のピストン部52およびシリンダ部54すなわち修正ジャッキ50の全体が、任意の方向に屈曲できることになる。修正ジャッキ50を伸縮させて前後の分割体20〜40が任意の方向に屈曲することを許容することができる。
但し、このような修正ジャッキ50、50による連結では、前後の分割体20〜40が互いに捩れる方向に運動することを防止できない。
【0033】
〔連結構造〕
図4、5は、前部分割体20と中間分割体30との連結個所の詳細構造と、そこに設置された捩れ防止連結具60の構造を示している。
前部分割体20と中間分割体30との連結個所では、中間分割体30の先端32が、他の部分よりも少し外径が小さく狭められている。先端32のさらに先端には摺動環体34を有する。摺動環体34の外周面は、中間分割体30の中心軸Cに中心を有する球面状をなしている。この摺動環体34に対面する前部分割体20の内周面には複数個所にパッキン26が装着されている。パッキン26が中間分割体30の摺動環体34に当接することで水密性を発揮する。前部分割体20と中間分割体30とが屈曲したときにも、前記した球面状の外周面を有する摺動環体34とパッキン26とが良好に密着した状態の維持するので、水密性が損なわれることがない。
【0034】
さらに、前部分割体20の後端には、弾力的に変形可能なひれ片28が取り付けられている。ひれ片28の先端が摺動環体34の外周面に当接することで、土砂などの異物が、摺動環体34と前部分割体20との間に侵入することを阻止できる。
上記した連結構造は、中間分割体30と後部連結体40との連結個所にも設けられている。
〔捩れ防止連結具〕
図4、5に示すように、中間分割体30の摺動環体34の内面には、捩れ防止連結具60の一部を構成する摺動軸61が固定設置されている。摺動軸20の中心軸は、掘進装置10の中心軸Cと直交する断面において中心軸Cの位置から放射方向に延びる前記直径軸Dと同心になっている。摺動軸20の先端の延長上に中心軸Cが存在する。
【0035】
捩れ防止連結具60のうち、前部分割体20の側に設置された構造は、まず、前部分割体20の内面に固定され、掘進装置10の中心軸C方向に延びる支持部材62を有する。支持部材62には、支持部材62の側面から中間分割体30のほうに延びて、中央に孔を有する保持部材64を有する。
保持部材64の中央には、摺動性の良好な軸受金属などからなり、全体が環状をなし、内周面が球面状をなす球面摺動受材67が取り付けられている。球面摺動受材67の球面中心は、前記直径軸D上にある。
球面摺動受材67の内側には、球面摺動環68が収容されている。球面摺動環68も、摺動性の良好な軸受金属などからなる。球面摺動環68の外周面は、球面摺動受材67の内周面に対応する球面状をなし、互いにスムーズに摺動する。この摺動は、前記直径軸Dに中心を有する球面摺動である。
【0036】
球面摺動環68の内周面は、前記摺動軸61の内径に対応する円形孔になっており、摺動軸61に挿通されている。摺動軸61と球面摺動環68とは、互いの軸方向すなわち前記直径軸Dに沿って摺動する。
さらに、保持部材64の下端面には、円盤状の覆い蓋66が取り付けられている。覆い蓋66の上方で、球面摺動受材67、球面摺動環68および摺動軸61との間の空間にはグリスが充填され、各摺動部分における摺動性を向上させている。保持部材64の上端面側にも、円環状の覆い部材が取り付けられていて、摺動部分に異物が侵入し難くなっている。
【0037】
上記のような構造を有する捩れ防止連結具60は、前部分割体20と中間分割体30とに対して、前記直径軸D上の球面中心を中心とする球面摺動を許容する。また、直径軸Dに沿う直線運動も許容する。しかし、直径軸Dと直交する方向、すなわち中心軸Cに沿った前後運動および中心軸C周りの捩れ運動は阻止される。
捩れ防止連結具60の具体的仕様として、例えば、摺動軸61の径を20cm、球面摺動環68の球面半径を30cm、球面摺動環68に対する摺動軸61の最大摺動距離を5cm、球面摺動環68と球面摺動受材67との回転角度(上下方向)を15度にそれぞれ設定できる。
【0038】
なお、中間分割体30と後部分割体40との連結個所に配置された捩れ防止連結具60も同じ構造を備えている。
〔連結個所における運動〕
上記のような構造の捩れ防止連結具60と修正ジャッキ50とを備えた連結個所における前部分割体20と中間分割体30との運動を説明する。
図1において、左右一対の修正ジャッキ50を同時に伸ばすか縮めるかすると、捩れ防止連結具60の球面摺動の中心を支点にして、前部分割体20と中間分割体30とが屈曲する。上下方向への屈曲である。
【0039】
図2(a)において、左右一対の修正ジャッキ50の伸縮を逆にすると、捩れ防止連結具60の摺動軸61すなわち直径軸Dを回転軸にして、前部分割体20と中間分割体30とが水平方向に屈曲する。
左右一対の修正ジャッキ50の伸縮方向および伸縮量を調整すれば、前記した上下方向および水平方向の屈曲運動を組み合わせた任意の方向への屈曲が可能である。
なお、上記のような屈曲運動をさせると、中間分割体30の摺動環体34と前部分割体20のパッキン26との間隔が、拡がったり狭まったりする相対移動を行う。この相対移動が大きくなり過ぎると、水密性が低下する。前部分割体20の中心軸と中間分割体30の中心軸とがずれることになるため、掘進装置60の推進方向も大きくずれてしまう。これは、捩れ防止連結具60における球面摺動の中心が、中心軸Cからは離れた直径軸D上にあることによる。
【0040】
前部分割体20と中間分割体30とは、中心軸Cに屈曲の中心を置くような屈曲運動を行うことが望ましいのである。
そこで、捩れ防止連結具60において、摺動軸61と球面摺動環68とが直径軸Dに沿って摺動することが重要となる。この摺動が許容されていることによって、前部分割体20と中間分割体30とは自然に、中心軸Cに屈曲の中心を置くような屈曲運動を行い易くなり、中間分割体30の摺動環体34と前部分割体20のパッキン26との間隔も過大に変動することがなくなる。
次に、前部分割体20の掘削盤22を回転させて掘削作業を行い、掘進装置10を推進させたときには、地盤からの抵抗による反力で、前部分割体20を中心軸Cの周りに回転させる力が作用する。後方の埋設管70列などと一体連結された中間分割体30と前部分割体20との間には、中心軸C周りのズレ力すなわち捩れ力が作用することになる。
【0041】
しかし、捩れ防止連結具60では、摺動軸61と球面摺動環68および球面摺動受材67との、中心軸C周りへの相対移動は阻止されているので、前部分割体20が中間分割体30に対して捩れ運動を行うことはない。
以上の結果、前部分割体20と中間分割体30とは、任意の方向に自由でスムーズな屈曲運動ができながら、捩れ運動は確実に阻止された状態になる。
なお、中間分割体30と後部分割体40との連結個所においても、前記同様の屈曲運動が許容されながら、捩れ運動については確実に阻止されることになる。
【0042】
【発明の効果】
本発明にかかる推進工法用の掘進装置は、前記構造の捻れ防止連結具を備えていることで、修正ジャッキによる分割体同士の屈曲運動は任意の方向に自由に行えながら、分割体の周方向における捩れ運動は確実に阻止することができる。
その結果、掘進装置の推進方向を修正したり曲線推進をさせたりする動作が正確かつスムーズに行えることになり、推進工法の作業精度あるいは作業品質の向上を図り、推進工法の需要拡大にも大きく貢献できることになる。
【図面の簡単な説明】
【図1】本発明の実施形態を表す掘進装置の側面図
【図2】分割体の連結個所における断面図
【図3】修正ジャッキの取付構造図
【図4】捩れ防止連結具の一部断面側面図
【図5】一部断面底面図
【図6】捩れ防止機構の参考技術を示す正面図(a)、側面図(b)、平面図(c)
【符号の説明】
10  掘進装置
20  前部分割体
30  中間分割体
40  後部分割体
50  修正ジャッキ
60  捩れ防止連結具
67  球面摺動受材
68  球面摺動環
70  埋設管
61  摺動軸
C   中心軸
D   直径軸
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a digging device, and more particularly, to a digging device that is propelled while forming a tunnel in the ground in a propulsion method.
[0002]
[Prior art]
As a digging device of the propulsion method, there is a digging device formed of a plurality of divided bodies that can be bent back and forth in order to correct or change the propulsion direction.
The excavating device having a cylindrical shape as a whole is divided into two or three bodies before and after along its central axis. The connecting portions of the front and rear divided bodies are provided with correction jacks arranged at a plurality of positions in the circumferential direction. If a difference is made between the amount of expansion and contraction at the correction jacks at a plurality of locations, the front and rear divided bodies bend. When the entire excavation device is propelled while the divided body is bent, the propulsion direction changes in a direction in which the foremost divided body of the excavation device faces.
[0003]
During the propulsion work, the propulsion direction deviated from the design line for some reason, such as deviation of resistance from the ground or deviation of the direction of thrust applied to the buried pipe line connected behind the excavation device In this case, the correction jack can be operated to return the propulsion direction to the correct design line. In the curve propulsion method, the excavating device is bent by the correction jack and propelled along the curve line according to the curvature of the design line.
The excavation device may bend not only horizontally in a horizontal plane but also vertically in a vertical plane. For example, there is a case where the burial depth of the buried pipe is gradually increased or decreased. Of course, it is necessary to correct when the propulsion direction is shifted in the vertical direction. Naturally, it is often necessary to combine the upper and lower sides and the left and right.
[0004]
In order to be able to arbitrarily bend the divided bodies of the digging device in any of the required vertical, horizontal, and oblique directions, use a spherical bearing or the like to connect the modified jack and the front and rear divided bodies. Then, it is desirable to be able to bend in any direction.
However, if the connection between the correction jack and the divided body is in a state in which the divided body can be bent in an arbitrary direction, not only can the front and rear divided bodies bend each other but also perform a movement in a twisting direction that rotates relatively in the circumferential direction. There is a problem.
If the divided bodies are twisted, the propulsion direction of the excavation device cannot be determined accurately. For example, even if the amount of expansion and contraction of the correction jack is set to bend the foremost divided body up and down and left and right by a predetermined angle in accordance with the desired propulsion direction, the divided body is twisted and the vertical lines of the upper and lower sides are adjusted. Once tilted, it cannot be bent in the set direction, and the propulsion direction changes.
[0005]
Therefore, a twist preventing means for preventing the divided bodies from twisting is required. It is conceivable to prevent torsion by using various pins, links, connection by a guide member or a bearing mechanism.
In addition, when the number of the correction jacks increases, the twisting hardly occurs. For example, if a large number of correction jacks are installed at intervals in the circumferential direction at the connection point between the divided bodies, the correction jacks will regulate the movement in the twisting direction of each other, and a large twist will occur. Absent.
[0006]
[Problems to be solved by the invention]
In the conventional technology for preventing twisting of a digging device, it has been difficult to reliably prevent only twisting without impairing the degree of freedom of bending between the divided bodies. In particular, no practical technology was found for a small-diameter excavation device.
The method of increasing the number of correction jacks to prevent twisting can be applied to a large-diameter excavator to which a large number of correction jacks can be mounted, but a small-diameter excavation apparatus to which only a few or two correction jacks can be mounted. Is difficult to apply. As the number of correction jacks increases, the cost of equipment increases and the cost of operating the digging device also increases.
[0007]
The present applicant has studied the technology shown in FIG.
A U-shaped fitting 112 is attached to one of the divided bodies 110 and a pin 102 is attached to the other 100, and the pin 102 is inserted into the U-shaped fitting 112 in advance. The pins 102 abut against the left and right inner surfaces of the U-shaped bracket 112 to prevent the divided bodies 100 and 110 from moving in the twisting direction. Since the pin 102 can be tilted or moved in the front-rear direction or moved or rotated in the axial direction with respect to the U-shaped bracket 112, bending between the divided bodies 100 and 110 can be allowed.
In the above-described combination structure of the pin 102 and the U-shaped bracket 112, a margin or play is required to allow the pin 102 to be inclined with respect to the U-shaped bracket 112 in order to freely bend the divided bodies 100 and 110. . Since the cylindrical pin 102 and the inner surface of the planar U-shaped bracket 112 are in line contact with each other, if there is no play, an excessively large load is locally applied, making relative movement difficult or the contact surface being cut. If it is severe or severe, the pins 102 and the U-shaped bracket 112 may be broken.
[0008]
6, there is a gap between the outer peripheral surface of the pin 102 and the inner peripheral surface of the U-shaped bracket 112. However, the play between the pin 102 and the U-shaped fitting 112 allows the split bodies 100 and 110 to twist. In FIG. 6A, the torsional movement in the direction of the dashed arrow cannot be sufficiently prevented.
Further, in the above structure, the pins 102 can move in the axial direction of the divided bodies 100 and 110 in a direction in which the pin 102 comes off from the U-shaped bracket 112. In this case, the divided bodies 100 and 110 are separated. Therefore, in addition to the connection by the U-shaped bracket 112 and the pin 102, means or a mechanism for connecting the divided bodies 100 and 110 in the axial direction is required. For example, by supporting a rod-shaped support member on the divided bodies 100 and 110 with spherical bearings, the axial movement of the divided bodies 100 and 110 is prevented while allowing bending. The device is complicated by the amount of the support member, and the internal space of the excavating device is reduced.
[0009]
It is an object of the present invention to provide a digging device having the above-mentioned divided structure, in which the divided bodies can be easily bent and undesirably twisted. In particular, it is an object of the present invention to provide a technique that can be easily applied to a small-diameter excavation device.
[0010]
[Means for Solving the Problems]
A digging device for a propulsion method according to the present invention is a digging device used for a propulsion method, in which a plurality of divided bodies are connected to each other in an axial direction so as to be freely bendable. It is arranged at a position that is bilaterally symmetrical with respect to a diameter axis that extends radially from the intersection with the central axis in a cross section orthogonal to the central axis of the device, is flexibly connected to the front and rear divided bodies, and expands and contracts in the axial direction At least one pair of correction jacks, which are free, are arranged on the diameter axis, which is the axis of symmetry of the left and right correction jacks, and the front and rear divisions can be moved along the diameter axis, and points on the diameter axis can be moved. A torsion-preventing connector is provided at the center which is rotatable in the spherical direction but is immovably connected in the circumferential direction of the divided body.
[0011]
[Drilling device]
Basically, a structure similar to a digging device used in a normal propulsion method is employed.
The diameter of the excavating device corresponds to the diameter of the buried pipe to be buried, but is usually set in the range of 25 to 300 cm. Particularly, it is useful for a digging device having a diameter of 50 to 300 cm. The total length of the digging device is usually set in the range of 1 to 6 m.
The excavation device is formed by connecting a plurality of divided bodies in the axial direction so as to be freely bendable with each other. The number of divided bodies is at least two of the front and rear, and may be three or more of the front part, the middle part and the rear part, or may be more than that. The divided bodies constituting the excavating device may all have the same length, or may have different lengths according to their functions.
[0012]
Each of the divided bodies accommodates various devices and members necessary for operating the excavating device of the excavating device or executing the propulsion method.
For example, a split body arranged at the forefront of a digging device is provided with a mechanism for digging or consolidating the ground. A mechanism for supplying muddy water or chemicals for excavation may be provided on the front face of the excavating device or the like. These device mechanisms may be arranged not only at the forefront division but also inside the rear division.
The divided body arranged at the rearmost part of the excavation device is provided with a connection structure of a buried pipe connected to the rear of the excavation device. Specifically, a bolt connection structure, a fitting structure, or the like is employed.
[0013]
A gap or a space is provided at a connecting point between the divided bodies to allow a bending motion of the divided body. A watertight structure is installed to prevent earth and sand from entering through the gaps and spaces. Specifically, a watertight structure in a normal civil engineering device such as a packing, an O-ring, and a water sealing device can be applied.
(Correct jack)
It has a function of bending the divided bodies. In addition, it also functions to connect the divided bodies so as not to be separated.
Basically, a structure similar to the correction jack of a normal digging device can be adopted. The correction jack has an operation structure that can be extended and retracted with respect to the main body structure. Specifically, it includes a cylinder portion that is a main body structure and a piston portion that is an operation structure. The piston unit can be operated by applying fluid pressure to the cylinder unit. The fluid pressure includes hydraulic pressure, pneumatic pressure, and water pressure. As the piston-cylinder mechanism, a mechanism can be used in which the piston portion operates to expand and contract from the front and rear of the cylinder portion disposed at the center.
[0014]
As the correction jack, one having a mechanical operation structure such as a toggle mechanism, a link mechanism, a gear mechanism, and a wire pulley mechanism in addition to the piston cylinder mechanism can be adopted. A combination of a fluid mechanism and a mechanical mechanism can also be employed. Operation by electromagnetic force is also possible.
The operating force of the correction jack is usually set in the range of 50 to 1000 kN. The extension length of the correction jack is usually set in the range of 2 to 30 cm.
The connection between the correction jack and the divided body may be performed by fixing the main body portion or the operating portion of the correction jack to the divided body, or by connecting the modified jack so as to be freely bent. At least one of the front and rear divided bodies is connected to bend freely. The term "flexible" refers to only one direction, left and right, up and down, right and left and up and down, and further to an arbitrary direction including an oblique direction.
[0015]
Usually, it is desirable to connect both ends of the correction jack to the divided body so as to bend in an arbitrary direction. As a result, the expansion and contraction force of the correction jack can be converted into a force for smoothly bending the divided body. A spherical bearing mechanism can be adopted as a means for connecting the correction jack and the divided body so as to be bent in an arbitrary direction.
[Arrangement of modified jack]
The correction jack is arranged at a connecting point between the divided bodies so that the divided bodies can be bent in the up-down direction, the left-right direction, and further in any direction.
Specifically, it can be arranged at a position which is symmetrical with respect to a diameter axis extending radially from an intersection with the central axis in a cross section orthogonal to the central axis of the excavating device. If the amount of expansion and contraction of the correction jack on the left and right of the diameter axis is changed, the divided bodies can be bent in the left and right directions. If the correction jack is arranged at a position vertically symmetrical with respect to the diameter axis, the divided bodies can be bent in the vertical direction. One of the correction jacks arranged symmetrically or vertically may be replaced with a simple connecting member that does not expand or contract, or may be replaced with a torsion-preventing connecting device.
[0016]
If at least two correction jacks are installed in a cross section orthogonal to the central axis at one connection point between the divided bodies, the divided bodies can be bent in an arbitrary direction if at least two correction jacks are installed. It can be installed in three or more. The correction jacks may be arranged at equal angles in the circumferential direction of the cross section, or may be arranged at irregular intervals. A plurality of correction jacks can be provided side by side at one location.
A correction jack may not be installed at the place where the anti-twisting connector or the connecting member is installed.
[0017]
For example, a pair of correction jacks and an anti-twist connector may be arranged at equal angles, ie, 120 degrees.
(Twist prevention connector)
It has the function of connecting the divided bodies to bendable. However, relative movement between the divided bodies in a specific direction is prevented.
The anti-twist coupling is located on a diameter axis which is the axis of symmetry of the correction jacks arranged on the left and right. The correction jacks are arranged symmetrically on the left and right sides of the diameter axis on which the anti-twist connector is arranged.
[0018]
The torsion preventing connector connects the divided bodies under the following conditions. First, the front and rear divided bodies are connected so as to be movable along the diameter axis. It is connected so that it can rotate in the spherical direction about a point on the diameter axis. The term “spherical direction” refers to a state in which rotational movement in any direction along the spherical surface is possible around the center of the spherical surface. The angular range of rotation need not be 360 degrees in any direction. It is only necessary that the rotation be possible to allow the bending angle required for the divided body. Normally, it is sufficient if the rotation can be made within a range of 3 to 20 degrees.
The torsion-preventing coupler connects the divided bodies immovably in the circumferential direction. The circumferential direction is a direction in which one divided body is twisted with respect to the other divided body. The term “immobile” means a state in which movement due to play or clearance can be substantially prevented. However, it is not necessary to prevent a small movement that is unavoidable industrially as long as the effects of the present invention are not impaired.
[0019]
In the torsion prevention connector, a member fixed to one of the divided bodies and a member fixed to the other divided body are usually connected in a state of allowing or preventing the movement of each other. In the connecting portion, if the members on both sides are slid in surface contact, the contact pressure is reduced and smooth sliding becomes possible. In the case of surface contact, smooth sliding becomes easy even if there is no play or room between members. As a specific sliding structure, a structure of a sliding mechanism or a sliding member in an ordinary mechanical device or the like can be adopted. A bearing mechanism such as a ball bearing or a fluid bearing may be employed.
<Twist prevention connector using spherical sliding>
A connector having the following structure can be adopted as a torsion-preventing connector that effectively performs the above functions.
[0020]
It has a sliding shaft that is fixed to one of the front and rear divided bodies and concentric with the diameter axis. The sliding shaft is preferably made of a material having rigidity such as a steel bar, and is made of a material having good slidability on the peripheral surface. A low friction material layer may be formed on the surface of the sliding shaft by a film forming means such as plating or thermal spraying. The sliding shaft generally has a circular cross-section, but a cross-sectional shape other than a circle, for example, an elliptical shape, an elliptical shape, a polygonal shape, and a gear-shaped or spline-shaped uneven cross-sectional shape can also be used. With a cross section other than a circular cross-section, movement around the axis of the sliding shaft and the spherical sliding ring can be prevented.
The spherical sliding ring has a ring shape as a whole, is inserted through the sliding shaft, slides in the axial direction, and has a spherical outer peripheral surface. The spherical sliding ring can be made of a material having excellent slidability, such as a bearing metal. Only the inner and outer peripheral surfaces of the spherical sliding ring may be formed of a low friction material layer. A small chip-shaped piece of low friction material can also be embedded and attached to the inner and outer peripheral surfaces.
[0021]
The inner peripheral surface of the spherical sliding ring has a cross-sectional shape corresponding to the outer peripheral surface of the sliding shaft. The outer peripheral surface of the spherical sliding ring has a structure in which a part of the spherical surface is cut off. The circumferential direction of the spherical sliding ring is a spherical surface within a range of 360 degrees, but the spherical surface is cut in the axial direction with a constant width. The inner peripheral surface of the spherical sliding ring and the outer peripheral surface of the sliding shaft can smoothly slide in the axial direction in a state where the entire surface is in surface contact.
The spherical slide receiving member is fixedly installed on the opposite divided body corresponding to the divided body on which the sliding shaft is installed. The spherical sliding ring is inserted to perform spherical sliding. The spherical sliding receiving member is formed of the same bearing material as the spherical sliding ring, or has a low friction material layer disposed on the inner surface. The inner peripheral surface of the spherical sliding receiving member forms a spherical surface corresponding to the outer peripheral surface of the spherical sliding ring. Practically, it suffices to slide at least on the outer peripheral surface of the spherical sliding ring within the range of the bending operation of the divided body to perform the connecting function of the divided bodies. For example, the thickness in the axial direction may be smaller than the thickness of the spherical sliding ring. Around the axis, a spherical slide receiving member that divides into a plurality of portions of the spherical slide ring and slides in contact with each other may be employed.
[0022]
The spherical sliding receiving member may be directly fixed to the divided body, or may be fixed to the divided body via a holding member or a supporting member for holding the spherical sliding receiving member. In this case, the holding member and the supporting member can be made of a structural steel material that is inexpensive and easy to process, so that the practicability is excellent.
[Arrangement of twist prevention connector]
The torsion-preventing couplers are arranged one by one at each coupling point of the divided body. The diameter axis is arranged in the extension direction of the sliding axis of the torsion preventing connector. The correction jacks are arranged symmetrically left and right with the diameter axis as a target axis. Further, the cross section of the excavating device may be divided into equal angles, and a plurality of correction jacks and a twist preventing connector may be arranged.
[0023]
When there are three or more divided bodies constituting the excavation device, that is, when there are two or more connection points, the arrangement structure of the torsion prevention connection tool and the correction jack is set to be the same at all the connection points. It can also be placed, and the arrangement structure may be different depending on the connection location.
For example, the anti-twisting connection and the correction jack can be arranged symmetrically in the direction of the diameter axis with respect to the central axis of the digging device at connection points arranged in front and behind. If there is an anti-twist connector at the upper connection point, the anti-twist connector is located at the lower connection point. The correction jack located below at the front connection point is arranged above at the rear connection point. When the correction jacks are vertically asymmetrically arranged at one connection point, the installation positions of the correction jacks at the front and rear connection points are staggered vertically. As a result, even with a digging device having a small space in the length direction, the front and rear correction jacks can be stably installed in a vertically staggered state. Interference between the front and rear correction jacks and their attached equipment can be prevented.
[0024]
[Operation of divided body]
When changing or correcting the propulsion direction of the excavating device, the divided bodies disposed in front and behind are bent at a predetermined angle and direction. This bending operation is performed by the expansion and contraction of the correction jack. The operation method and operation control of the correction jack can be performed in the same manner as a normal excavation device.
When the correction jack is expanded and contracted, the front and rear divided bodies approach and separate at the position of each correction jack. In the circumferential direction, the axial position of the front and rear divided bodies changes depending on the position of the correction jack, so that the front and rear divided bodies bend.
[0025]
The bending angle of the front and rear divided bodies is usually set in a range of 3 to 20 degrees.
At this time, at the position of the torsion preventing connector, the front and rear divided bodies relatively move along the diameter axis or rotate in the spherical direction around a point on the diameter axis. This allows the front and rear splits to bend in any direction. However, at the position of the torsion preventing connector, the divided bodies are immovably connected in the circumferential direction of the divided body, so that the front and rear divided bodies are prevented from being twisted.
If a torsion-preventive connecting device is installed at one connecting point in the circumferential direction, the front and rear divided bodies can be connected so that they can be bent and do not separate, so the connecting structure at a plurality of positions It is not necessary to provide a large-sized twist prevention structure. It is sufficient to provide only one twist prevention connector and the necessary correction jack at the connection point of the divided body, so it should be easily installed even on a small diameter excavation device without any problem Can be.
[0026]
In the minimum configuration, the split body can be flexibly bent with one twist prevention connector and a pair of correction jacks arranged symmetrically with the diameter axis passing through the twist prevention connector as the symmetric axis. Become. If the twist preventing connector and one correction jack are arranged at equal angles in the circumferential direction, the bending operation of the divided body can be performed efficiently.
If the torsion-preventing coupler is a combination of the above-described spherical sliding structure and shaft sliding structure, sliding by surface contact having a sufficient area is performed at the sliding point, and extra play and clearance are reduced. Even if it is not provided, it is possible to achieve smooth sliding and to sufficiently withstand a load or an external force applied to the connecting portion of the divided body. Moreover, the overall structure is relatively simple and easy to manufacture.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
The embodiment shown in FIGS. 1 to 4 shows a digging device composed of three divided bodies: a front part, a middle part and a rear part.
[Overall structure of excavation device]
As shown in FIG. 1 and FIG. 2, the excavating device 10 accommodates necessary structural members and equipment devices inside a cylindrical outer structure constructed entirely of steel or the like. Specific dimensions of the excavation device are set to, for example, a diameter of 150 cm and a total length of 4 m. The excavating device 10 is divided along the central axis C into three parts: a front divided body 20, an intermediate divided body 30, and a rear divided body 40. The lengths of the divided bodies 20 to 40 are set to, for example, 150 cm for the front divided body 20, 100 cm for the intermediate divided body 30, and 150 cm for the rear divided body 40.
[0028]
The front divided body 20 has an excavator 22 on the front surface, and the excavator 22 is rotationally driven from the front divided body 20 by a motor 24 housed in the internal space of the intermediate divided body 30. The excavating device 10 is propelled while excavating the ground with the excavator 22.
A buried pipe 70 for propulsion burying is connected to the rear end of the rear divided body 40. Although not shown, the buried pipes 70 are sequentially added rearward to form a buried pipe row.
Inside each of the divided bodies 20 to 40, as equipment necessary for the operation of the excavating device 10, a power line for supplying a driving power of a motor, a muddy pipe for supplying muddy water to a ground excavation surface, and excavated earth and sand Pipes to discharge the wastewater together with muddy water, and a surveying device for the propulsion position are accommodated and installed as necessary.
[0029]
[Arrangement of modified jack and twist prevention connector]
A pair of two correction jacks 50, 50 and a twist preventing connector 60 are arranged at the connecting portions of the divided bodies 20 to 40, respectively.
FIG. 2 (a) shows the modified jacks 50, 50 and the anti-twist connector 60 in a cross section orthogonal to the center axis C of the excavating device 10 at the connection point between the front divided body 20 and the intermediate divided body 30. 3 shows an arrangement structure.
The correction jack 50 and the torsion prevention connector 60 are arranged at positions near the inner surfaces of the cylindrical outer shells of the divided bodies 20 and 30, and various pipes and equipment installed in the central space of the divided bodies 20 and 30 are provided. So as not to interfere with the installation of
[0030]
A pair of correction jacks 50, 50 and a twist prevention connector 60 are arranged so as to form an equal angle θ with respect to the center axis C. The angle θ is 360/3 = 120 °. In addition, correction jacks 50, 50 are arranged at symmetrical positions on the left and right sides with respect to the diameter axis D connecting the center of the torsion prevention connector 60 and the center axis C. As shown in FIG. 1, a pair of correction jacks 50, 50 and a twist preventing connector 60 are also arranged at the connecting portion between the intermediate split body 30 and the rear split body 40, as described above.
However, the positional relationship between the correction jacks 50, 50 and the twist prevention connector 60 is different. In the cross-sectional structure of FIG. 2B, the correction jacks 50 and 50 are arranged on the upper side, and the torsion preventing coupler 60 is arranged on the lower side. The connection point in FIG. 2A is exactly symmetrical. By employing such an arrangement structure, the correction jacks 50 that require a relatively long length in the front-rear direction can be arranged so as to be staggered up and down at the front and rear connection points. As a result, in the excavating device 10 in which the internal space is narrow and a large number of devices must be efficiently arranged, the modification jack 50 can be efficiently arranged.
[0031]
[Structure of modified jack]
As shown in FIG. 3, the correction jack 50 has piston portions 54, 54 attached to both ends of a cylindrical cylinder portion 52. The respective piston portions 54, 54 advance and retreat with respect to the cylinder portion 52, and the distance between both ends of the piston portions 54, 54 expands and contracts. As a specific specification of the modified jack 50, for example, a modified jack that can generate an operating force of 1000 kN by hydraulic drive and have an expansion and contraction length of 20 cm can be adopted.
The tip of the piston 54 is a spherical end 56. A spherical bearing body 58 that receives the spherical end portion 56 is fixed to the inner surface of the outer structure of the divided bodies 20 to 40. The spherical bearing bodies 58 arranged at both ends are separately fixed to the divided bodies 20 and 30 or 30 and 40 arranged before and after.
[0032]
The spherical end 56 smoothly slides on the spherical bearing body 58. As a result, the piston 52 can be bent in any direction with respect to the spherical bearing 58 and the divided bodies 20 to which the spherical bearing 58 is fixed. With respect to any of the spherical bearing bodies 58 on both sides, the central piston portion 52 and the cylinder portion 54, that is, the entire correction jack 50 can be bent in an arbitrary direction. It is possible to allow the front and rear divided bodies 20 to 40 to bend in any direction by expanding and contracting the correction jack 50.
However, such connection by the correction jacks 50 cannot prevent the front and rear divided bodies 20 to 40 from moving in the directions in which they are twisted with each other.
[0033]
(Connecting structure)
FIGS. 4 and 5 show a detailed structure of a connecting portion between the front divided body 20 and the intermediate divided body 30 and a structure of a torsion-preventing connecting device 60 installed there.
At the connecting point between the front divided body 20 and the intermediate divided body 30, the front end 32 of the intermediate divided body 30 has a slightly smaller outer diameter than other parts and is narrowed. A sliding ring 34 is provided at the tip of the tip 32. The outer peripheral surface of the sliding ring 34 has a spherical shape centered on the central axis C of the intermediate divided body 30. A plurality of packings 26 are mounted on the inner peripheral surface of the front divided body 20 facing the sliding ring 34. The packing 26 comes into contact with the sliding ring 34 of the intermediate divided body 30 to exhibit watertightness. Even when the front split body 20 and the intermediate split body 30 are bent, the sliding ring 34 having the spherical outer peripheral surface and the packing 26 are kept in good contact with each other. There is no loss.
[0034]
Further, a fin 28 that is elastically deformable is attached to the rear end of the front divided body 20. Since the tip of the fin 28 abuts on the outer peripheral surface of the sliding ring 34, foreign matter such as earth and sand can be prevented from entering between the sliding ring 34 and the front split body 20.
The connection structure described above is also provided at a connection point between the intermediate divided body 30 and the rear connection body 40.
(Twist prevention connector)
As shown in FIGS. 4 and 5, a sliding shaft 61 that constitutes a part of the torsion preventing connector 60 is fixedly installed on the inner surface of the sliding ring 34 of the intermediate divided body 30. The center axis of the sliding shaft 20 is concentric with the diameter axis D extending radially from the position of the center axis C in a cross section orthogonal to the center axis C of the excavating device 10. The center axis C exists on the extension of the tip of the sliding shaft 20.
[0035]
The structure installed on the side of the front divided body 20 of the torsion preventing coupler 60 first has a support member 62 fixed to the inner surface of the front divided body 20 and extending in the direction of the central axis C of the excavating device 10. . The support member 62 has a holding member 64 extending from the side surface of the support member 62 toward the intermediate divided body 30 and having a hole in the center.
At the center of the holding member 64, a spherical slide receiving member 67 made of a bearing metal or the like having good slidability and having an overall annular shape and a spherical inner peripheral surface is attached. The center of the spherical surface of the spherical slide receiving member 67 is on the diameter axis D.
A spherical sliding ring 68 is accommodated inside the spherical sliding receiving member 67. The spherical sliding ring 68 is also made of a bearing metal having good slidability. The outer peripheral surface of the spherical slide ring 68 has a spherical shape corresponding to the inner peripheral surface of the spherical slide receiving member 67 and slides smoothly with each other. This slide is a spherical slide centered on the diameter axis D.
[0036]
The inner peripheral surface of the spherical sliding ring 68 is a circular hole corresponding to the inner diameter of the sliding shaft 61, and is inserted through the sliding shaft 61. The sliding shaft 61 and the spherical sliding ring 68 slide in the axial direction of each other, that is, along the diameter axis D.
Further, a disc-shaped cover 66 is attached to the lower end surface of the holding member 64. Above the cover 66, the space between the spherical slide receiving member 67, the spherical slide ring 68, and the slide shaft 61 is filled with grease to improve the slidability of each sliding portion. An annular covering member is also attached to the upper end surface side of the holding member 64, so that foreign matter hardly enters the sliding portion.
[0037]
The torsion-preventing coupler 60 having the above-described structure allows the front divided body 20 and the intermediate divided body 30 to slide on a spherical surface about the center of the spherical surface on the diameter axis D. In addition, linear movement along the diameter axis D is also allowed. However, the back-and-forth movement along the direction orthogonal to the diameter axis D, that is, the center axis C and the torsional movement around the center axis C are prevented.
As specific specifications of the torsion prevention coupling 60, for example, the diameter of the sliding shaft 61 is 20 cm, the spherical radius of the spherical sliding ring 68 is 30 cm, and the maximum sliding distance of the sliding shaft 61 with respect to the spherical sliding ring 68 is 5 cm. The rotation angle (vertical direction) between the spherical sliding ring 68 and the spherical sliding receiving member 67 can be set to 15 degrees.
[0038]
In addition, the twist preventing connector 60 arranged at the connecting portion between the intermediate divided body 30 and the rear divided body 40 has the same structure.
[Exercise at connected locations]
The movement of the front split body 20 and the intermediate split body 30 at the connection point provided with the twist preventing connector 60 and the correction jack 50 having the above structure will be described.
In FIG. 1, when the pair of right and left correction jacks 50 are simultaneously extended or contracted, the front divided body 20 and the intermediate divided body 30 are bent around the center of the spherical sliding of the torsion preventing connector 60. This is bending in the vertical direction.
[0039]
In FIG. 2A, when the expansion and contraction of the pair of right and left correction jacks 50 is reversed, the front divided body 20 and the intermediate divided body 30 are set with the sliding shaft 61 of the torsion preventing connector 60, that is, the diameter axis D as the rotation axis. Are bent in the horizontal direction.
By adjusting the direction of expansion and contraction of the pair of right and left correction jacks 50 and the amount of expansion and contraction, it is possible to bend in any direction combining the above-described vertical and horizontal bending movements.
When the bending motion as described above is performed, a relative movement is performed in which the distance between the sliding ring body 34 of the intermediate divided body 30 and the packing 26 of the front divided body 20 is increased or decreased. If the relative movement is too large, the watertightness is reduced. Since the central axis of the front divided body 20 and the central axis of the intermediate divided body 30 are shifted, the propulsion direction of the excavating device 60 is also largely shifted. This is because the center of the spherical sliding in the anti-twist connector 60 is on the diametric axis D which is distant from the central axis C.
[0040]
It is desirable that the front divided body 20 and the intermediate divided body 30 perform a bending motion such that the center of the bending is located on the central axis C.
Therefore, it is important that the sliding shaft 61 and the spherical sliding ring 68 slide along the diametric axis D in the torsion-preventing coupler 60. By allowing the sliding, the front divided body 20 and the intermediate divided body 30 naturally easily perform a bending motion such that the center of the bending is placed on the center axis C, and the sliding of the intermediate divided body 30 is facilitated. The distance between the moving ring 34 and the packing 26 of the front split body 20 does not fluctuate excessively.
Next, when excavation work is performed by rotating the excavator 22 of the front divided body 20 and the excavating device 10 is propelled, the front divided body 20 is moved around the central axis C by a reaction force due to resistance from the ground. The force to rotate acts on. A displacement force around the central axis C, that is, a torsional force acts between the intermediate divided body 30 and the front divided body 20 which are integrally connected to the rear row of buried pipes 70 or the like.
[0041]
However, since the relative movement of the sliding shaft 61 and the spherical sliding ring 68 and the spherical sliding receiving member 67 around the central axis C is prevented in the torsion preventing connector 60, the front divided body 20 is No torsional motion is performed on the intermediate divided body 30.
As a result, the front divided body 20 and the intermediate divided body 30 can freely and smoothly bend in any direction, while being prevented from twisting.
In addition, at the connecting portion between the intermediate divided body 30 and the rear divided body 40, the torsional movement is surely prevented while the bending movement similar to the above is allowed.
[0042]
【The invention's effect】
The excavation device for a propulsion method according to the present invention is provided with the twist prevention connector having the above structure, so that the bending motion of the divided bodies by the correction jack can be freely performed in any direction, while the circumferential direction of the divided body is Can be reliably prevented from being twisted.
As a result, the operation of correcting the propulsion direction of the excavator and performing curve propulsion can be performed accurately and smoothly, improving the work accuracy or work quality of the propulsion method, and greatly increasing demand for the propulsion method. You can contribute.
[Brief description of the drawings]
FIG. 1 is a side view of a digging device showing an embodiment of the present invention.
FIG. 2 is a cross-sectional view of a connecting portion of a divided body.
FIG. 3 is a mounting structure diagram of a modified jack.
FIG. 4 is a partial cross-sectional side view of the anti-twist connector.
FIG. 5 is a partial cross-sectional bottom view.
FIG. 6 is a front view (a), a side view (b), and a plan view (c) showing a reference technique of a twist prevention mechanism.
[Explanation of symbols]
10 Drilling device
20 Front division
30 intermediate splits
40 Rear split
50 Modified jack
60 Torsion-preventing connector
67 Spherical slide receiving material
68 Spherical sliding ring
70 Buried pipe
61 Sliding shaft
C center axis
D Diameter axis

Claims (4)

推進工法に使用され、複数の分割体が互いに屈曲自在に軸方向に連結されてなる掘進装置であって、
前記分割体の連結個所において、前記掘進装置の中心軸と直交する断面で中心軸との交点から放射方向に延びる直径軸に対して左右対称になる位置に配置され、前後の分割体に対して屈曲可能に連結され、軸方向に伸縮自在である、少なくとも一対の修正ジャッキと、
前記左右の修正ジャッキの対称軸である前記直径軸上に配置され、前後の分割体を、直径軸に沿って移動可能であり直径軸上の点を中心に球面方向に回転可能であるが分割体の周方向には不動に連結する捻れ防止連結具と
を備える掘進装置。
A digging device used in a propulsion method, in which a plurality of divided bodies are flexibly connected to each other in an axial direction,
At a connection point of the divided bodies, the section is arranged at a position which is symmetrical with respect to a diameter axis extending radially from an intersection with the center axis in a cross section orthogonal to the center axis of the excavating device, and At least one pair of correction jacks that are connected to bendable and are extendable and contractible in the axial direction,
The front and rear divided bodies are arranged on the diameter axis, which is the axis of symmetry of the left and right correction jacks, and are movable along the diameter axis and rotatable around a point on the diameter axis in a spherical direction. An excavating device comprising: a torsion-preventing connector that is immovably connected in a circumferential direction of a body.
前記捻れ防止連結具が、
前記前後の分割体のうち、一方の分割体に固定され、前記直径軸と同心の摺動軸と、
全体が環状をなし、前記摺動軸に挿通されて軸方向に摺動し、外周面が球面状をなす球面摺動環と、
他方の分割体に固定され、前記球面摺動環が挿入されて球面摺動する球面摺動受材と
を備える
請求項1に記載の掘進装置。
The torsion prevention connector,
A sliding shaft fixed to one of the front and rear divided bodies and concentric with the diameter axis;
A spherical sliding ring having a whole annular shape, being inserted through the sliding shaft and sliding in the axial direction, and having a spherical outer peripheral surface,
The excavation device according to claim 1, further comprising: a spherical slide receiving member fixed to the other divided body, and into which the spherical slide ring is inserted to slide spherically.
前記捻れ防止連結具および修正ジャッキが、前記掘進装置の中心軸と直交する断面において、中心軸との交点に対して等角度位置に配置されている
請求項1または2に記載の掘進装置。
The excavating device according to claim 1 or 2, wherein the torsion preventing connector and the correction jack are arranged at an equiangular position with respect to an intersection with the central axis in a cross section orthogonal to the central axis of the excavating device.
少なくとも3個の前記分割体が連結されてなり、
前部の分割体と中間の分割体との連結個所と、中間の分割体と後部の分割体との連結個所とで、前記捻れ防止連結具および修正ジャッキが、前記掘進装置の中心軸に対して前記直径軸の方向で対称位置に配置されている
請求項1〜3のいずれかに記載の掘進装置。
At least three of the divided bodies are connected,
At the connecting point between the front divided body and the intermediate divided body, and at the connecting point between the intermediate divided body and the rear divided body, the torsion preventing coupling tool and the correction jack are arranged with respect to the center axis of the excavating device. The excavating device according to any one of claims 1 to 3, wherein the excavating device is disposed at a symmetric position in a direction of the diameter axis.
JP2002299384A 2002-10-11 2002-10-11 Digging equipment for propulsion method Expired - Lifetime JP3773891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002299384A JP3773891B2 (en) 2002-10-11 2002-10-11 Digging equipment for propulsion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002299384A JP3773891B2 (en) 2002-10-11 2002-10-11 Digging equipment for propulsion method

Publications (2)

Publication Number Publication Date
JP2004132105A true JP2004132105A (en) 2004-04-30
JP3773891B2 JP3773891B2 (en) 2006-05-10

Family

ID=32288536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002299384A Expired - Lifetime JP3773891B2 (en) 2002-10-11 2002-10-11 Digging equipment for propulsion method

Country Status (1)

Country Link
JP (1) JP3773891B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045385A (en) * 2006-08-21 2008-02-28 Sanwa Kizai Co Ltd Water-pressure feeder to water-pressure cylinder for compensation for buried-pipe propulsive-direction compensator
JP2019143320A (en) * 2018-02-19 2019-08-29 鹿島建設株式会社 Sealing structure of shield digging machine having broken mechanism, and sealing method thereof
WO2021241080A1 (en) * 2020-05-25 2021-12-02 株式会社小松製作所 Tunnel excavation device
JP2022060426A (en) * 2018-02-19 2022-04-14 鹿島建設株式会社 Shield machine and emergency sealing method for shield machine
CN116122835A (en) * 2023-04-14 2023-05-16 太原理工大学 Torque system suitable for compact full-face heading machine and heading machine
JP7556701B2 (en) 2020-05-25 2024-09-26 株式会社小松製作所 Tunnel Boring Equipment

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045385A (en) * 2006-08-21 2008-02-28 Sanwa Kizai Co Ltd Water-pressure feeder to water-pressure cylinder for compensation for buried-pipe propulsive-direction compensator
JP2019143320A (en) * 2018-02-19 2019-08-29 鹿島建設株式会社 Sealing structure of shield digging machine having broken mechanism, and sealing method thereof
JP7030554B2 (en) 2018-02-19 2022-03-07 鹿島建設株式会社 Seal structure and method of shield excavator with center folding mechanism
JP2022060426A (en) * 2018-02-19 2022-04-14 鹿島建設株式会社 Shield machine and emergency sealing method for shield machine
JP7177292B2 (en) 2018-02-19 2022-11-22 鹿島建設株式会社 Shield machine and emergency sealing method for shield machine
WO2021241080A1 (en) * 2020-05-25 2021-12-02 株式会社小松製作所 Tunnel excavation device
JP7556701B2 (en) 2020-05-25 2024-09-26 株式会社小松製作所 Tunnel Boring Equipment
CN116122835A (en) * 2023-04-14 2023-05-16 太原理工大学 Torque system suitable for compact full-face heading machine and heading machine
CN116122835B (en) * 2023-04-14 2023-06-20 太原理工大学 Torque system suitable for compact full-face heading machine and heading machine

Also Published As

Publication number Publication date
JP3773891B2 (en) 2006-05-10

Similar Documents

Publication Publication Date Title
US3526285A (en) Angularly adjustable auger head
JP2004132105A (en) Driving device for jacking method
JP2018123583A (en) Shield excavator
JP4684049B2 (en) Shield tunneling machine and method for measuring tail clearance and / or space dimension in segment tunnel
JP2791398B2 (en) Curved propulsion method and equipment and buried pipe for curved propulsion
JP5388523B2 (en) Drilling device and drilling method
US3587756A (en) Geodynamic wing
JPH0240838B2 (en)
JP2824228B2 (en) Ball type shield machine
JP3026951B2 (en) Erector device
JP2708142B2 (en) Hard rock tunnel excavator
JP4333545B2 (en) Tunnel excavator
JP4467829B2 (en) Segment gap adjusting device for shield machine
JP3940007B2 (en) Digging equipment
JPH07103780B2 (en) Curved propulsion method and propulsion support
JP2007262743A (en) Shield machine
JP3217710B2 (en) Shield construction method and shield excavator
JP4340568B2 (en) Curving machine
JP2008303579A (en) Propulsion method of tunnel excavator and reaction force support device of tunnel excavator
JPH053590Y2 (en)
JP5463049B2 (en) Synthetic pipe bending equipment
JPS594035B2 (en) Excavation direction setting device for underground drilling machine
JPH0160638B2 (en)
CN116378687A (en) Telescopic, swingable and turnable cutterhead shield machine
JPH10140972A (en) Shielding excavation machine bendable in middle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060215

R150 Certificate of patent or registration of utility model

Ref document number: 3773891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term