JP2004131969A - Anchorage structure and anchorage forming method of wire rod end, and mounting structure of anchored wire rod - Google Patents

Anchorage structure and anchorage forming method of wire rod end, and mounting structure of anchored wire rod Download PDF

Info

Publication number
JP2004131969A
JP2004131969A JP2002295273A JP2002295273A JP2004131969A JP 2004131969 A JP2004131969 A JP 2004131969A JP 2002295273 A JP2002295273 A JP 2002295273A JP 2002295273 A JP2002295273 A JP 2002295273A JP 2004131969 A JP2004131969 A JP 2004131969A
Authority
JP
Japan
Prior art keywords
wire
sleeve
fixing
wire rod
strength steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002295273A
Other languages
Japanese (ja)
Inventor
Masayuki Ikeda
池田 真之
Toshio Maehata
前畑 俊男
Atsuhiro Kajiura
梶浦 敦裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Wire Co Ltd
Original Assignee
Shinko Wire Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Wire Co Ltd filed Critical Shinko Wire Co Ltd
Priority to JP2002295273A priority Critical patent/JP2004131969A/en
Publication of JP2004131969A publication Critical patent/JP2004131969A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Reinforcement Elements For Buildings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a anchorage structure and an anchoring formation method of a wire rod end by which an anchorage efficiency the same as the conventional cases or higher than that can be obtained and which is constituted in lightweight and compact manner. <P>SOLUTION: In the anchorage structure of a wire rod end, high strength steel sleeves 2 are shrunk in diameter and press-fitted at the wire rod end and the outer diameter D of the high strength sleeve 2 after press-fit is anchored in 1.8 times or smaller the outer diameter d of the wire rod end 4. The structure has a filler in between the outer peripheral face of the wire rod ends and the inner peripheral face of the high strength sleeve 2. The high strength sleeve 2 is made of a steel material with 800 MPa or higher tensile strength. The sectional outer shape of the high strength sleeve 2 is polygonal. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、線材端部の定着構造及び定着形成方法並びに定着された線材の取付け構造に関し、詳細には鋼線、鋼より線などの金属線材や、炭素繊維、アラミド繊維、ガラス繊維等の高強度低伸度繊維を用いた複合ケーブルなどの線材端部の定着技術に関するものである。
【0002】
【従来の技術】
従来、プレストレストコンクリート構造物等に用いられるケーブルや、吊橋、斜張橋等の橋梁構造物に用いられるケーブルにはPC鋼より線、PC鋼線などのPC鋼材、あるいは近年、高強度低伸度繊維を用いた複合ケーブルなどの線材が使用されている。これらの線材を構造物に取付ける際には、線材の端部に圧着グリップなる金属製のスリーブを圧着して取付けるとともに、その1本あるいは2本以上の多数を定着板に取付けて施工される。そして、線材の端部に金属製のスリーブを圧着して取付ける技術の提案としては、特許文献1(特公昭58−53225号公報)、特許文献2(特開平8−82043号公報)、特許文献3(特開2000−345656号公報)などがあり、また、それを構造物へ取付ける技術の提案としては特許文献4(特許第3123644号公報)がある。
【0003】
特許文献1には、ダイス入口となる一側が大径で他側が小径であるほぼテーパ状の外周部を有するスリーブを小径側が鋼線端部側になるようにPC鋼線に嵌合し、押出し加工により前記スリーブの外周部をダイスで加圧変形し、前記スリーブを大径側より塑性変形させて前記鋼線に一体的に接合する、スリーブと鋼線との圧着接合方法が提案されている。
【0004】
そして、上記発明によれば、次の如き作用効果があるとされている。すなわち、テーパ状の外周部を有するスリーブを小径側を鋼線端部側になるように嵌合して圧着させるから、固定ダイスを用いて押出し加工によりスリーブを圧着させることができ、ローラダイスで圧延加工により圧着させる場合と比較して極めて強い圧着力を維持することができる。しかも、スリーブの大径側は鋼線への圧着時に強い加工変形を受けて加工効果を起し、その部分がPC鋼線に緊張力を導入した場合強い圧縮荷重を受ける支圧面となるので、スリーブの圧縮荷重に対する強度が従来のスリーブと比較して著しく向上し、緊張力による大きな圧縮荷重が作用しても変形することがなく、定着効率を一段と高めることができる。そして、圧縮加工により大径側から加工を行うので、スリーブのダイス入口となる一側において大きな加工度となるが、以後加工度が徐々に小さくなるため、ダイス詰まりやバリ発生等のトラブルも生じない。また、圧着加工後のスリーブ長さを従来方法のそれより約20%以上短縮化でき、スリーブ長さの支障により使用できなかったりコンクリート部材のカブリを大きくしなければならなかった個所にも使用できる。
【0005】
特許文献2には、クロムモリブデン鋼鋼材又はニッケルクロムモリブデン鋼鋼材で形成されたスリーブからなり、該スリーブの内周面に凹凸が形成され、且つ該凹凸を含む内周部のみに浸炭層が形成されて、該内周部の硬度がHv700以上である、PC鋼線定着用のコンプレッショングリップが提案されている。そして、このコンプレッショングリップによれば、スリーブのみで構成できてインサート方式の場合と同等又はそれ以上の高い圧着度及び定着荷重を得ることができ、且つ定着加工がダイス押出し加工により簡単にでき、製作コストの低減化を図ることができる、とされている。
【0006】
特許文献3には、スリーブの挿入孔にPC鋼材がインサートを介して嵌合された、PC鋼材の圧着グリップが提案されている。そして、この圧着グリップではスリーブが冷間引抜ダイスでPC鋼より線に引抜圧着され、スリーブの挿入孔には複数の楔片であるインサートが嵌入され、その内面及び外面に形成された断面鋸歯状の突条がPC鋼より線の外周面及び挿入孔内面に食い込んで、PC鋼より線がスリーブから引き抜けないようになっており、挿入孔の入口側は小径部がPC鋼材を押える程度に接しているため、挿入孔の入口側におけるPC鋼材には応力が集中せずに引張疲労強度を上昇させる、効果があるとされている。
【0007】
また、特許文献4には、PC鋼より線の終端部に圧着グリップを固定し、その圧着グリップの側端をアンカーソケット内部の定着板に係合する橋梁ケーブルの定着構造において、上記アンカーソケットを定着部とソケット部に分割し、その定着部に、一側にPC鋼より線が挿入される略同径の挿入孔を開設し、他側には前記挿入孔の軸心線上に圧着グリップの外周面が密着する圧着グリップ係合孔を連通開設した定着板を一体に構成し、この定着部にソケット部をネジ構造によって連結一体化し、圧着グリップの側端及び外周面を定着板に密着係合させた、橋梁ケーブルの定着構造が提案されている。
【0008】
そして、この発明によれば、定着板における挿入孔が開設された側面の周縁がアンカーソケットで支持され、ケーブルに引張荷重が作用すると、該定着板の厚さの中心(中立軸)を境として、挿入孔側は引張側、反対側の圧着グリップ係合孔が開設された側面は圧縮側となる。そして、その圧縮側に形成した圧着グリップ係合孔に挿入された圧着グリップは該圧着グリップ係合孔の孔周壁面で押えられ、該圧着グリップがPC鋼より線から抜けようとして拡径(膨らむ)するのを押える。これにより、圧着グリップは定着板と一体化される。従って、定着板の圧縮側に配置取り付けられる圧着グリップを有効断面積と考えることができ、それにより圧着グリップ係合孔の開設による断面欠損量を最小限に押えることが可能となり、因って定着板の厚さを従来構造に比べて薄くすることができる。更に、上記の構成によって圧着グリップを定着板と一体化でき、しかも各挿入孔が定着板の中心と平行に開設されていることで、該定着板の直径を従来構造に比べて小さくすることが可能となる。とされている。
【0009】
【特許文献1】
特公昭58−53225号公報(特許請求の範囲、第2頁第4欄第30〜34行、平成4年6月26日付特許法第64条の規定による補正公報)
【特許文献2】
特開平8−82043号公報(特許請求の範囲、段落[0023])
【特許文献3】
特開2000−345656号公報(特許請求の範囲、段落[0024])
【特許文献4】
特許第3123644号公報(特許請求の範囲、段落[0007]、[0008])
【0010】
【発明が解決しようとする課題】
特許文献1に記載の圧着接合方法により圧着された圧着加工後のスリーブでは上記の効果が期待されるものの、スリーブの材質は軟鋼であり、実施例からも明らかなように、スリーブと19本より直径17.8mmPC鋼線との圧着接合を、直径35mmのダイスを用いて押出し加工法で行っており(特許文献1の第2頁4欄第6〜9行)、PC鋼より線の外径(d=17.8mm)に比して押出し後のスリーブの外径(D)はD=35mmで従来スリーブと同径であり、径が太く、近年望まれているような定着部のコンパクト化には不向きである。
【0011】
特許文献2に記載のPC鋼線定着用のコンプレッショングリップでは、上記の効果が期待されるとともに、スリーブとしてクロムモリブデン鋼鋼材又はニッケルクロムモリブデン鋼鋼材を用いていることから材質強度が高く近年望まれているような定着部のコンパクト化が期待できるものの、段落番号[0019]の表3から明らかなように、PCより線径dに対する圧着後のスリーブ外径Dはその比率(D/d)からも明らかなように、上記特許文献1の比率(D/d)の2.0前後で殆ど同じであり細径化が殆どなされていない。その上、スリーブの内周面に凹凸加工を施しているため応力集中が懸念されスリーブの肉厚を薄くするにも限界があり、引いてはスリーブの外径を細く形成し難い。またその上に、前記内周面のみに浸炭層を形成しており、製造工数がかかりコスト高が懸念される。
【0012】
特許文献3に記載のPC鋼材の圧着グリップでは、上記の効果が期待されるものの、段落番号[0023]以降の実施形態の説明及び図面からは、7本より15.2mm径のPC鋼より線よりもかなり大径のスリーブが定着されており、図面でのスリーブの外径DとPC鋼より線の外径dの比率(D/d)は約2.0程度である。
【0013】
特許文献4に記載の橋梁ケーブルの定着構造では、上記の効果が期待されるものの、PC鋼より線の端部に取付け固定される圧着グリップとしてスリーブの内周面にねじを加工した圧着グリップが例示されており、このような圧着グリップではねじの谷底に応力集中が懸念されスリーブの肉厚を薄くするにも限界があり、引いてはスリーブの外径を細く形成し難い。このため、橋梁等の定着部のコンパクト化にも限界がある。
【0014】
一方、近年、プレストレストコンクリート構造物等や吊橋、斜張橋等の橋梁構造物などにおいては、鋼線、鋼より線などの金属線材よりなるケーブルあるいは高強度低伸度繊維を用いた複合ケーブルなどを取付ける定着部の構造を、定着作業性の改善などを目的として軽量でコンパクトな構造にすることが望まれているが、定着効率を従来通りに維持して軽量でコンパクトな構造で、且つ実用性を有する構造のものは、上述したように該当するものが見当たらない。
【0015】
そこで、本発明は、上記の問題点を改善するためになしたものであって、その第一の目的は、従来と同等あるいはそれ以上の定着効率が得られ、かつ、軽量でコンパクトに構成された線材端部の定着構造及び定着形成方法を提供するものであり、第二の目的は、そのような線材端部の定着構造を採用することで、軽量でコンパクトに定着された線材の取付け構造を提供するものである。
【0016】
【課題を解決するための手段】
本発明者等は、上記の第一及び第二の目的を達成するために、従来技術の項にも述べたように、従来技術について種種調査、検討を行ってきた。その結果、線材端部の定着構造を形成するスリーブの材質として、特許文献2に記載されているような、従来汎用されている機械構造用炭素鋼鋼材以外の比較的強度のある材質を用いることに着目した。そして、スリーブの材質を800MPa、1000MPaの高強度鋼を用い、PC鋼より線及びPC鋼線のそれぞれの端部に従来通りに押出し圧着を行い、定着効率等を調査した。
【0017】
上記調査により、高強度鋼のスリーブを用いることで、スリーブの線材端部の挿入孔の内径を同じままで外径を小径にして薄肉化、軽量化が図れ、また定着板など定着部もコンパクトにできることが判明した。しかし、上記調査の過程で、高強度鋼のスリーブを用いると、線材との定着のための押出し加工の際の押出圧が高くなる上に、スリーブの外径を小径とし肉厚を薄くするため、スリーブの長さとも相まって、ダイスを円滑に通過させないと、スリーブが途中で曲がったり、膨出するなどのトラブルが起こり易くなることが判明した。また、高強度鋼のスリーブの外径をより小径に形成し押出し加工率を高めることで、圧着力を高めることができるが、今度は定着板への定着の際に高強度鋼スリーブの定着板側が膨出するなどしてスリーブの定着強度が不足し、必ずしも安定した定着とはならないことが判明した。本発明は、このような問題点を改善して完成したもので、以下の構成を要旨とするものである。
【0018】
すなわち、本発明(請求項1)は、線材端部に高強度鋼スリーブが縮径して圧着されてなる線材端部の定着構造において、圧着後の高強度スリーブの外径Dが、線材の外径dの1.8倍以下で定着されてなることを特徴とする線材端部の定着構造である。このように、圧着後の高強度スリーブの外径Dと線材の外径dとの比率(D/d)を1.8倍以下で定着することで、従来と同等あるいはそれ以上の定着効率が得られるとともに、軽量でコンパクトに構成された線材端部の定着構造が得られる。この場合、比率(D/d)の下限は、1.5倍以上とすることが望ましく、D/dが1.5倍未満では、定着効率が期待できない上に、押出し加工で曲がりや膨出などのトラブルが生じることが懸念され、更に定着板に取付け後にも膨出など座屈が懸念されるためである。
【0019】
また、上記請求項1記載の線材端部の定着構造においては、線材端部の外周面と高強度鋼スリーブの内周面との間に、従来採用されているような増摩材やインサート材などの充填材を有する構成としてもよく(請求項2)。このような線材端部の定着構造とすることで、スリーブからの線材の抜け止め、あるいは緩衝効果が期待できる。
【0020】
また、高強度鋼スリーブは、その引張強度が800MPa以上あればよい(請求項3)。引張強度が800MPa以上あれば、従来の機械構造用炭素鋼スリーブに比較して外径で約10%小さくできる。より安定してコンパクトにするためには引張強度が1000MPa以上であることが望ましい。また、スリーブの断面外形形状は円形が一般的であるが、本発明では円形であってもよいが、特に複数本を定着板に取付ける場合にはスリーブ同士の間隔が狭い方がよりコンパクトに定着できるため、高強度鋼スリーブの断面外形形状は多角形であってもよい(請求項4)。
【0021】
本発明(請求項5)は、外周面の先端がダイスのアプローチ面に沿う形状に形成され、且つ、外周面に軸方向のテーパが形成された高強度鋼スリーブの挿入孔に線材端部を挿入した後、ダイスを通して押出し、高強度鋼スリーブを縮径加工して線材端部に圧着することを特徴とする線材端部の定着形成方法である。
【0022】
このような定着形成方法によれば、高強度鋼スリーブを押出し加工しても円滑な押出し加工ができる上に、高強度鋼スリーブの外周面の軸方向のテーパにより押出し後は当該最大径部が線材の外周面を十分に圧着加圧するので、線材のスリーブからの抜けが効果的に防止できる。そして、このような作用効果をより効果的に得るためには、テーパの最大径部がスリーブの長さの押出し方向の後方に位置するように形成することが好ましく、このように後方に行くに伴い漸増するテーパとすることで、スリーブ入口部での疲労強度の向上が期待できる。また、高強度鋼スリーブと線材との間に充填材として増摩材を挿入することで、更に効果的な抜け防止が図れる。
【0023】
また、上記の線材端部の定着形成方法においては、高強度鋼スリーブの外周に、高強度鋼スリーブの断面外形形状に沿う内径形状を備える補強用筒体を設けて押出すことが好ましい(請求項6)。このようにして押出すことで、高強度鋼スリーブの押出し方向が定まり、また万一押出し荷重が偏っても円滑に押出すことができる。
【0024】
本発明(請求項7)は、上記請求項1乃至4のいずれかに記載の線材端部の定着構造を備える線材を定着板に取付ける取付け構造であって、前記定着板が、線材を挿通する貫通孔とこの貫通孔の定着板背面側にスリーブを収容する収容孔とを同心に備えるものであることを特徴とする、定着された線材の取付け構造である。この取付け構造であれば、高強度鋼スリーブの外径を可能な限り小径に形成して線材の端末定着を形成したものであっても、スリーブを膨出(座屈)させることなく定着板に取付けることができ、定着部のコンパクト化が図れる。特に、定着部が橋梁等の構造物の場合にはアンカーヘッド(定着板)を備えるアンカー部がコンパクトに形成でき(請求項8)、構造物の定着部もコンパクトにできる。また、定着板が、コンクリート型枠における支圧板である場合(請求項9)にも定着具をコンパクトに形成できる。
【0025】
而して、本発明によれば、鋼線、鋼より線などの金属線材はもとより炭素繊維、アラミド繊維、ガラス繊維等の高強度低伸度繊維を用いた複合ケーブルなどの線材を対象として、コンパクトな線材端部の定着構造とすることができるとともに、その線材端部を定着する構造物の定着板(定着部)をコンパクトにできる。
【0026】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。図1は、本発明に係る線材端部の定着構造の説明図であって、aは一部を断面で示す正断面図、bはaのA−A断面図である。
【0027】
線材端部の定着構造1は、強度が1000MPaを有する高強度鋼スリーブ2と、その挿入孔3内部のPC鋼より線4とを備えて構成されるとともに、高強度鋼スリーブ2の外径Dは、PC鋼より線4の外径dの1.8倍以下に形成されている。
【0028】
上記線材端部の定着構造1は、次のように押出し圧着加工して製作される。すなわち、図2に示すように、押出ダイス5の加工孔6に反押出し側よりPC鋼より線4の線材端部を挿通させ、その線材端部を高強度鋼スリーブ2の挿入孔3に挿入した後、図3に示すように、高強度鋼スリーブ2の端面を押出ダイス5の加工孔6の前面に押し当てるとともに、背面より押出し装置7を作動して高強度鋼スリーブ2を押出ダイス5の加工孔6より押出す。このように押出すことで、高強度鋼スリーブ2が縮径して挿入孔3内に挿入されているPC鋼より線4に圧着加工される。
【0029】
上記の構成の線材端部の定着構造1によれば、圧着後の高強度スリーブの外径Dと線材の外径dとの比率(D/d)を1.8倍以下で定着されているので、従来と同等あるいはそれ以上の定着効率が得られるとともに、軽量でコンパクトに構成された線材端部の定着構造が得られる。
【0030】
因みに、挿入孔径16mmで外径を変化させた高強度鋼スリーブ(重量:約0.18kg)を準備し、このスリーブに7本より直径15.2mmのPC鋼より線を押出孔径24mmの押出ダイスを用いて押出し加工によって圧着させた。また比較のため、同じく挿入孔径16mmで外径を変化させた従来の機械構造用炭素鋼スリーブ(重量:約0.34kg)を準備し、このスリーブに7本より直径15.2mmのPC鋼より線を圧着させた。このようにして圧着させた、本発明に係る定着構造1と従来の定着構造の定着効率を比較した。その結果を図4に示す。図4より明らかなように、本発明では圧着後の高強度鋼スリーブの外径(D=24mm)とPC鋼より線の外径(d=15.2mm)との比率(D/d=1.58)が、従来のスリーブの比率(D/d=2.0)よりも小さいにも関わらず定着効率が同じであり、圧着後の外径が小さくコンパクトに形成できると同時に軽量化(約50%)が図れることが分かる。
【0031】
なお、高強度鋼スリーブの強度については、強度800MPaと1000MPaについて比較検討した結果、800MPaのスリーブでは、押出し加工後は押出しによる加工硬化で1000MPa近くまで強度が増加するが、強度にばらつきを生じる。これに対して、1000MPaのスリーブの場合には、押出し加工してもあまり強度が増加せずばらつきも少ない。その上、スリーブ外径を小さくしても定着効率のばらつきを小さくして、線材を定着することが可能である。また更に、比率D/dが1.5倍程度でも、良好な定着効率が確保できる。従って、高強度鋼スリーブの強度は、800MPa以上であってもよいが、好ましくは1000MPa以上が良い。
【0032】
図5は、本発明に係る別の形態の線材端部の定着構造の正断面図である。この例の線材端部の定着構造8は、上記例の線材端部の定着構造1とは、高強度鋼スリーブ2の挿入孔3とPC鋼より線4との間に充填材9が充填されている他は、同じ構成のものである。このように充填材9を挿入する構成とすることで、上述の線材端部の定着構造1と同様の作用効果を有するとともに、スリーブからの線材の抜け止め、あるいは緩衝効果が期待できる。また更に、本例の場合には、高強度鋼スリーブの挿入孔3の内周面を予め低強度化しておくことで、充填材9を増摩材とした場合に、その増摩材の内周面へのくい込みがよくなり、定着効率をより高めることが期待できる。また、線材が本例のようにPC鋼より線の場合には、PC鋼より線の芯線と側線の間にも増摩材を挿入することができ、芯線の側線からの抜け止めが期待できる。
【0033】
因みに、挿入孔径17mmで外径を変化させた高強度鋼スリーブ(重量:約0.17kg)を準備し、このスリーブに7本より直径15.2mmのPC鋼より線を、その表面に充填材9として増摩材を設け押出孔径24mmの押出ダイスを用いて押出し加工によって圧着させた。このように増摩材を設けて圧着させた場合は、上記充填材9を設けていない本発明に係る定着構造1よりも、更にスリーブをわずかに軽量化できるとともに、定着効率も比率(D/d)によるが0.1〜1.5%向上が認められた。なお、本例では充填材9としての増摩材として断面三角形の異形ねじり線をコイル状に巻き付けて用いた。
【0034】
次に、上記構成の線材端部の定着構造1に定着された線材の取付け構造について図6に基づいて説明する。図6は、線材端部の定着構造1を備えるPC鋼より線4の複数本をアンカーヘッド(定着板)に取付けた取付け構造を示す正断面図、図7は、図6のアンカーヘッドの拡大断面図、図8は、図7のB−B矢視図である。
【0035】
アンカーヘッド11は、外周面におねじが形成されており、そのおねじに定着ナット12が螺合されている。アンカーヘッド11には、上述した線材端部の定着構造1を備えるPC鋼より線4が本例では19本取付けられており、その取付け後に高強度鋼スリーブ2の末端群に押え板13を取付けて固定した後、アンカーヘッド11の外周面のおねじに螺合させてキャップ14が取付けられている。また、アンカーヘッド11のPC鋼より線4群側の外周には、オーバーラップ管15及び本管16が取付けられてアンカーヘッド11に取付けたPC鋼より線4群を密閉している。そして、このような構造に形成して図示省略する構造物(橋梁等のアンカー部など)の定着部に定着ナット12を介して取付け使用される。
【0036】
また、アンカーヘッド11の内部には、図7、8に示すように、PC鋼より線4を挿通して取付けるための貫通孔17が本例では19本開けられている。その貫通孔17のアンカーヘッド11の背面側は、高強度鋼スリーブ2を収容し得る内径を有する収容孔18が同心に開けられており、その収容孔18に膨出しやすい高強度鋼スリーブ2の先端側を収容、繋止する。
【0037】
上記収容孔18の深さhは、高強度鋼スリーブ2の約半分の長さが埋まる程度が望ましく、深さhが1/10未満であると、高強度鋼スリーブ2の最も荷重を受ける部分が収容孔18の外に出るため当該部分の膨出を抑制する効果が期待できなくなる。一方、収容孔18の深さhを高強度鋼スリーブ2の全長が埋まる深さとしてもよいが、アンカーヘッド11に取付けるPC鋼より線4の本数によっては(特に少ない場合)アンカーヘッド11の厚みが不必要に厚くなり軽量化が図れなくなる。また、このような構造に形成して取付ける、図示省略する構造物の定着部のコンパクト化も期待できなくなる。
【0038】
なお、上記例では、アンカーヘッド11を用いる場合を例に説明したが、アンカーヘッドに代えてコンクリート型枠などの支圧板に直接貫通孔17、収容孔18を形成して取付けてもよい。
【0039】
【発明の効果】
以上説明したように、本発明に係る線材端部の定着構造によれば、線材を高強度鋼スリーブ内に、圧着後の高強度スリーブの外径D、線材の外径dとした場合に、比率D/d=1.8倍以下で固定して、従来と同等あるいはそれ以上の定着効率が得られるとともに、軽量でコンパクトな線材端部の定着構造が得られる。
【0040】
また、本発明に係る線材端部の定着形成方法によれば、高強度鋼スリーブを円滑に押出し加工することができる上に、高強度鋼スリーブの外周面の軸方向のテーパにより押出し後は当該最大径部が線材の外周面を十分に圧着加圧するので、比率D/d=1.8倍以下で圧着しても、線材の高強度スリーブからの抜けを効果的に防止できる。
【0041】
また、本発明に係る定着された線材の取付け構造によれば、高強度鋼スリーブの外径を可能な限り小径に形成して線材の端末定着を形成したものであっても、スリーブを膨出(座屈)させることなく定着板に取付けることができ、定着部のコンパクト化が図れる。
【図面の簡単な説明】
【図1】本発明に係る線材端部の定着構造の説明図であって、aは一部を断面で示す正断面図、bはaのA−A断面図である。
【図2】本発明に係る線材端部の定着形成方法を説明するための説明図である。
【図3】本発明に係る線材端部の定着形成方法を説明するための説明図である。
【図4】本発明に係る高強度鋼スリーブを用いた場合の線材端部の定着構造と従来の機械構造用炭素鋼スリーブを用いた線材端部の定着構造との比率D/dと定着効率の関係を比較して示すグラフ図である。
【図5】本発明に係る別の形態の線材端部の定着構造の正断面図である。
【図6】本発明に係る線材端部の定着構造を備えるPC鋼より線の複数本をアンカーヘッドに取付けた取付け構造を示す正断面図である。
【図7】図6のアンカーヘッドの拡大断面図である。
【図8】図7のB−B矢視図である。
【符号の説明】
1:線材端部の定着構造 2:高強度鋼スリーブ  3:挿入孔
4:PC鋼より線    5:押出ダイス     6:加工孔
7:押出し装置     8:線材端部の定着構造 9:充填材
11:アンカーヘッド  12:定着ナット    13:押え板
14:キャップ     15:オーバーラップ管 16:本管
17:貫通孔      18:収容孔
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fixing structure and a fixing forming method of a wire end portion, and a fixing structure of a fixed wire, and in particular, a metal wire such as a steel wire or a steel stranded wire, or a high-quality material such as carbon fiber, aramid fiber, or glass fiber. The present invention relates to a fixing technique for an end portion of a wire rod such as a composite cable using a low-strength fiber.
[0002]
[Prior art]
Conventionally, cables used for prestressed concrete structures and the like, and cables used for bridge structures such as suspension bridges and cable-stayed bridges include PC steel materials such as PC steel strands and PC steel wires, or, in recent years, high strength and low elongation. Wires such as composite cables using fibers are used. When these wires are attached to a structure, a metal sleeve serving as a crimp grip is attached to the end of the wires by crimping, and one or more of them are attached to a fixing plate. As a technique for attaching a metal sleeve by crimping to an end of a wire rod, Patent Literature 1 (JP-B-58-53225), Patent Literature 2 (JP-A-8-82043), Patent Literature 2 3 (Japanese Patent Application Laid-Open No. 2000-345656), and Patent Document 4 (Japanese Patent No. 3123644) is a proposal of a technique for attaching it to a structure.
[0003]
Patent Document 1 discloses that a sleeve having a substantially tapered outer peripheral portion in which one side serving as a die inlet has a large diameter and the other side has a small diameter is fitted to a PC steel wire such that the small diameter side is a steel wire end side, and is extruded. A crimping joining method of a sleeve and a steel wire has been proposed, in which the outer peripheral portion of the sleeve is deformed by pressing with a die by processing, and the sleeve is plastically deformed from a large diameter side and integrally joined to the steel wire. .
[0004]
According to the above-described invention, the following operation and effect are provided. That is, since the sleeve having the tapered outer peripheral portion is fitted and crimped so that the small-diameter side is the steel wire end side, the sleeve can be crimped by extrusion using a fixed die, and the roller die can be used. An extremely strong crimping force can be maintained as compared with the case of crimping by rolling. Moreover, the large-diameter side of the sleeve undergoes strong working deformation during crimping to the steel wire to produce a working effect, and that portion becomes a bearing surface that receives a strong compressive load when tension is introduced into the PC steel wire. The strength of the sleeve against the compressive load is significantly improved as compared with the conventional sleeve, and the sleeve is not deformed even when a large compressive load is applied due to the tension, so that the fixing efficiency can be further increased. Since processing is performed from the large diameter side by compression processing, the processing degree becomes large on one side which is the die entrance of the sleeve, but since the processing degree gradually decreases, troubles such as clogging of the die and generation of burrs also occur Absent. In addition, the length of the sleeve after the crimping process can be reduced by about 20% or more than that of the conventional method, and it can be used in places where the sleeve length cannot be used or where the fog of the concrete member has to be increased. .
[0005]
Patent Document 2 discloses that a sleeve made of chromium molybdenum steel or nickel chromium molybdenum steel is formed with irregularities on an inner peripheral surface of the sleeve, and a carburized layer is formed only on an inner peripheral portion including the irregularities. In addition, a compression grip for fixing a PC steel wire having a hardness of the inner peripheral portion of Hv700 or more has been proposed. According to this compression grip, it can be composed of only the sleeve, and can obtain a high degree of crimping and fixing load equal to or higher than that of the insert method, and the fixing process can be easily performed by die extrusion, and the production can be simplified. It is said that cost can be reduced.
[0006]
Patent Literature 3 proposes a PC steel crimping grip in which a PC steel is fitted into an insertion hole of a sleeve via an insert. In this crimping grip, the sleeve is drawn and crimped to a PC steel wire with a cold drawing die, and a plurality of inserts, which are wedge pieces, are inserted into the insertion holes of the sleeve, and a sawtooth cross section formed on the inner and outer surfaces thereof. The ridge of the hole cuts into the outer peripheral surface of the PC steel wire and the inner surface of the insertion hole so that the PC steel wire does not come out of the sleeve. Because of the contact, the stress is not concentrated on the PC steel material on the inlet side of the insertion hole, and the effect is that the tensile fatigue strength is increased.
[0007]
Patent Document 4 discloses a fixing structure of a bridge cable in which a crimping grip is fixed to an end of a PC steel stranded wire and a side end of the crimping grip is engaged with a fixing plate inside the anchor socket. It is divided into a fixing part and a socket part, and in the fixing part, an insertion hole of approximately the same diameter into which a PC steel strand is inserted is opened on one side, and a crimping grip is provided on the other side on the axis of the insertion hole. The fixing plate is connected to the fixing plate with a screwing structure, and the socket is connected to the fixing part with a screw structure. A combined anchoring structure for bridge cables has been proposed.
[0008]
According to this invention, the peripheral edge of the side of the fixing plate where the insertion hole is opened is supported by the anchor socket, and when a tensile load acts on the cable, the center of the thickness of the fixing plate (neutral axis) is used as a boundary. The insertion hole side is on the tension side, and the side surface on which the opposite crimp grip engagement hole is opened is on the compression side. Then, the crimping grip inserted into the crimping grip engaging hole formed on the compression side is pressed by the peripheral wall surface of the crimping grip engaging hole, and the crimping grip expands (expands) as it tries to slip out of the PC steel wire. ). Thereby, the pressure grip is integrated with the fixing plate. Therefore, the crimping grip mounted and mounted on the compression side of the fixing plate can be considered as an effective cross-sectional area, thereby making it possible to minimize the amount of cross-sectional loss due to the opening of the crimping grip engaging hole. The thickness of the plate can be reduced as compared with the conventional structure. Furthermore, the above configuration allows the pressure grip to be integrated with the fixing plate, and the insertion holes are opened in parallel with the center of the fixing plate, so that the diameter of the fixing plate can be reduced as compared with the conventional structure. It becomes possible. It has been.
[0009]
[Patent Document 1]
JP-B-58-53225 (claims, page 2, column 4, lines 30 to 34, amended gazette under the provisions of Article 64 of the Patent Law dated June 26, 1992)
[Patent Document 2]
JP-A-8-82043 (Claims, paragraph [0023])
[Patent Document 3]
JP-A-2000-345656 (claims, paragraph [0024])
[Patent Document 4]
Japanese Patent No. 3123644 (Claims, paragraphs [0007] and [0008])
[0010]
[Problems to be solved by the invention]
Although the above effect is expected in the sleeve after the crimping process performed by the crimping joining method described in Patent Document 1, the material of the sleeve is mild steel, and as is clear from the examples, the sleeve and the 19 sleeves are used. Compression bonding with a 17.8 mm diameter PC steel wire is performed by an extrusion method using a 35 mm diameter die (Patent Document 1, page 2, column 4, lines 6 to 9), and the outer diameter of the PC steel wire is used. As compared with (d = 17.8 mm), the outer diameter (D) of the extruded sleeve is D = 35 mm, which is the same as that of the conventional sleeve. Not suitable for
[0011]
In the compression grip for fixing a PC steel wire described in Patent Literature 2, the above-described effects are expected, and the use of a chromium molybdenum steel material or a nickel chromium molybdenum steel material as a sleeve has high material strength and is desired in recent years. Although it is expected that the fixing portion can be made more compact as described above, as apparent from Table 3 of paragraph [0019], the outer diameter D of the sleeve after pressure bonding with respect to the wire diameter d from the PC is determined by the ratio (D / d). As is clear, the ratio (D / d) of Patent Document 1 is almost the same at about 2.0, and the diameter is hardly reduced. In addition, since the inner peripheral surface of the sleeve is subjected to unevenness processing, stress concentration is a concern, and there is a limit in reducing the thickness of the sleeve, and it is difficult to make the outer diameter of the sleeve thinner. Further, a carburized layer is formed only on the inner peripheral surface, which increases the number of manufacturing steps and raises the cost.
[0012]
Although the above-mentioned effects are expected in the crimp grip made of PC steel described in Patent Document 3, from the description and drawings of the embodiment after paragraph [0023], the PC steel stranded wire having a diameter of 15.2 mm from seven is used. A sleeve having a diameter much larger than that of the sleeve is fixed, and the ratio (D / d) of the outer diameter D of the sleeve to the outer diameter d of the PC stranded wire in the drawing is about 2.0.
[0013]
In the bridge cable anchoring structure described in Patent Literature 4, although the above effects are expected, a crimping grip in which a thread is machined on the inner peripheral surface of the sleeve is used as a crimping grip attached and fixed to the end of the PC steel stranded wire. For example, in such a crimping grip, there is a concern that stress concentration occurs at the root of the screw, and there is a limit in reducing the thickness of the sleeve, and it is difficult to make the outer diameter of the sleeve thinner. For this reason, there is a limit in making the fixing portion such as a bridge compact.
[0014]
On the other hand, in recent years, for prestressed concrete structures, bridge structures such as suspension bridges, cable-stayed bridges, and the like, cables made of metal wires such as steel wires and stranded wires or composite cables using high-strength low-elongation fibers are used. It is desired that the fixing unit to be installed be lightweight and compact for the purpose of improving the fixing workability. However, the fixing efficiency is maintained as usual and the lightweight and compact structure is used. No applicable structure is found as described above.
[0015]
Therefore, the present invention has been made to solve the above-mentioned problems, and the first object of the present invention is to achieve a fixing efficiency equal to or higher than that of the conventional one, and to be configured to be lightweight and compact. A second object of the present invention is to provide a fixing structure for a wire rod which is lightweight and compactly fixed by employing such a fixing structure for a wire rod end. Is provided.
[0016]
[Means for Solving the Problems]
The present inventors have conducted various investigations and studies on the prior art as described in the section of the prior art in order to achieve the first and second objects. As a result, as the material of the sleeve forming the fixing structure of the end portion of the wire, a relatively strong material other than the carbon steel material for mechanical structure which is conventionally widely used, as described in Patent Document 2, is used. We paid attention to. Then, using a high-strength steel of 800 MPa and 1000 MPa as the material of the sleeve, the end portions of the PC steel stranded wire and the PC steel wire were extruded and pressed in the conventional manner, and the fixing efficiency and the like were investigated.
[0017]
According to the above investigation, by using a high-strength steel sleeve, it is possible to reduce the thickness and weight by reducing the outer diameter while keeping the inner diameter of the insertion hole at the wire end of the sleeve the same, and the fixing part such as the fixing plate is also compact. It turns out that you can do it. However, in the course of the above investigation, if a high-strength steel sleeve is used, the extrusion pressure at the time of extrusion processing for fixing to a wire is increased, and the outer diameter of the sleeve is reduced and the wall thickness is reduced. In combination with the length of the sleeve, it has been found that if the die is not passed smoothly, troubles such as bending or bulging of the sleeve may occur easily. Also, by forming the outer diameter of the high-strength steel sleeve to a smaller diameter and increasing the extruding rate, the pressure can be increased, but this time the fixing plate of the high-strength steel sleeve is used for fixing to the fixing plate. It was found that the fixing strength of the sleeve was insufficient due to swelling of the side and the fixing was not always stable. The present invention has been completed by solving such problems, and has the following structure.
[0018]
That is, according to the present invention (claim 1), in an anchoring structure of a wire end portion in which a high-strength steel sleeve is reduced in diameter and crimped to the wire end portion, the outer diameter D of the crimped high-strength sleeve is equal to the wire diameter. The fixing structure at the end of the wire is characterized in that the fixing is performed at 1.8 times or less the outer diameter d. In this way, by fixing the ratio (D / d) of the outer diameter D of the high-strength sleeve after compression and the outer diameter d of the wire rod to 1.8 times or less, a fixing efficiency equal to or higher than the conventional one can be obtained. As a result, a lightweight and compact fixing structure at the end of the wire is obtained. In this case, the lower limit of the ratio (D / d) is desirably 1.5 times or more. If D / d is less than 1.5 times, fixing efficiency cannot be expected, and bends or swells due to extrusion. This is because there is a concern that such troubles may occur, and furthermore, buckling such as swelling may be caused even after the fixing plate is attached.
[0019]
In the wire end fixing structure according to the first aspect of the present invention, an abrasion material or an insert material as conventionally employed is provided between the outer peripheral surface of the wire end and the inner peripheral surface of the high-strength steel sleeve. It may be configured to have a filler such as (Claim 2). By adopting such a fixing structure of the end portion of the wire, the wire can be expected to be prevented from falling out of the sleeve or to have a buffering effect.
[0020]
The high-strength steel sleeve may have a tensile strength of 800 MPa or more (claim 3). If the tensile strength is 800 MPa or more, the outer diameter can be reduced by about 10% as compared with the conventional carbon steel sleeve for machine structure. For more stable and compact, the tensile strength is desirably 1000 MPa or more. The cross-sectional outer shape of the sleeve is generally circular, but may be circular in the present invention. In particular, when a plurality of sleeves are mounted on the fixing plate, the smaller the spacing between the sleeves, the more compact the fixing. Therefore, the cross-sectional outer shape of the high-strength steel sleeve may be polygonal.
[0021]
According to the present invention (claim 5), the end of the wire rod is inserted into the insertion hole of a high-strength steel sleeve whose outer peripheral surface is formed in a shape along the approach surface of the die and whose outer peripheral surface is tapered in the axial direction. After the insertion, the extruded material is extruded through a die, the diameter of the high-strength steel sleeve is reduced, and the wire is crimped to the end of the wire.
[0022]
According to such a fixing forming method, smooth extrusion can be performed even when the high-strength steel sleeve is extruded, and the maximum diameter portion is extruded due to the axial taper of the outer peripheral surface of the high-strength steel sleeve. Since the outer peripheral surface of the wire is sufficiently pressed and pressed, the wire can be effectively prevented from coming off the sleeve. Then, in order to obtain such an operation and effect more effectively, it is preferable to form the tapered maximum diameter portion so as to be located rearward in the pushing direction of the length of the sleeve. With the taper gradually increasing, improvement in fatigue strength at the sleeve entrance can be expected. In addition, by inserting an abrasion material as a filler between the high-strength steel sleeve and the wire, more effective prevention of detachment can be achieved.
[0023]
Further, in the above-described method for fixing the end portion of the wire rod, it is preferable that a reinforcing tubular body having an inner diameter shape along the cross-sectional outer shape of the high-strength steel sleeve is provided on the outer periphery of the high-strength steel sleeve and extruded. Item 6). By extruding in this way, the extrusion direction of the high-strength steel sleeve is determined, and even if the extrusion load is biased, it can be smoothly extruded.
[0024]
The present invention (claim 7) is a mounting structure for mounting a wire having the wire end fixing structure according to any one of claims 1 to 4 to a fixing plate, wherein the fixing plate penetrates the wire. A fixing structure for a fixed wire, wherein a through-hole and a receiving hole for receiving a sleeve on the fixing plate rear side of the through-hole are provided concentrically. With this mounting structure, even if the outer diameter of the high-strength steel sleeve is formed as small as possible to form the terminal fixing of the wire, the sleeve can be formed on the fixing plate without bulging (buckling). It can be mounted, and the fixing unit can be made compact. In particular, when the anchoring portion is a structure such as a bridge, the anchor portion including the anchor head (fixing plate) can be formed compact (claim 8), and the anchoring portion of the structure can also be made compact. Further, even when the fixing plate is a support plate in a concrete form (claim 9), the fixing device can be formed compactly.
[0025]
Thus, according to the present invention, steel wires, metal wires such as steel strands, as well as carbon fibers, aramid fibers, wire wires such as composite cables using high-strength low-elongation fibers such as glass fibers, A compact fixing structure at the end of the wire can be provided, and the fixing plate (fixing section) of the structure for fixing the end of the wire can be made compact.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view of a fixing structure of an end portion of a wire rod according to the present invention. FIG. 1A is a front sectional view partially showing a cross section, and FIG. 1B is an AA sectional view of a.
[0027]
The fixing structure 1 at the end of the wire rod includes a high-strength steel sleeve 2 having a strength of 1000 MPa and a PC stranded wire 4 in an insertion hole 3 thereof, and has an outer diameter D of the high-strength steel sleeve 2. Is formed to be 1.8 times or less the outer diameter d of the PC stranded wire 4.
[0028]
The fixing structure 1 at the end of the wire is manufactured by extrusion and compression as follows. That is, as shown in FIG. 2, the end of the wire rod of the PC stranded wire 4 is inserted into the processing hole 6 of the extrusion die 5 from the counter extrusion side, and the end of the wire rod is inserted into the insertion hole 3 of the high-strength steel sleeve 2. After that, as shown in FIG. 3, the end face of the high-strength steel sleeve 2 is pressed against the front surface of the processing hole 6 of the extrusion die 5, and the extruding device 7 is operated from the rear surface to move the high-strength steel sleeve 2 to the extrusion die 5. Extruded through the processing hole 6 of FIG. By extruding in this manner, the high-strength steel sleeve 2 is reduced in diameter and pressure-bonded to the PC steel strand 4 inserted into the insertion hole 3.
[0029]
According to the wire end fixing structure 1 having the above-described configuration, the ratio (D / d) of the outer diameter D of the high-strength sleeve after compression and the outer diameter d of the wire is fixed at 1.8 times or less. As a result, a fixing efficiency equal to or higher than that of the related art can be obtained, and a lightweight and compact fixing structure at the end of the wire can be obtained.
[0030]
Incidentally, a high-strength steel sleeve (weight: about 0.18 kg) with an insertion hole diameter of 16 mm and an outer diameter changed was prepared, and a PC steel stranded wire having a diameter of 15.2 mm was extruded from seven of these sleeves into an extrusion die having an extrusion hole diameter of 24 mm. And pressed by extrusion. For comparison, a conventional carbon steel sleeve for machine structural use (weight: about 0.34 kg) having an insertion hole diameter of 16 mm and a changed outer diameter was prepared, and seven of these sleeves were made of PC steel having a diameter of 15.2 mm. The wire was crimped. The fixing efficiencies of the fixing structure 1 according to the present invention and the conventional fixing structure thus pressed were compared. The result is shown in FIG. As is clear from FIG. 4, in the present invention, the ratio (D / d = 1) of the outer diameter (D = 24 mm) of the high-strength steel sleeve after crimping and the outer diameter (d = 15.2 mm) of the PC steel stranded wire. .58) is smaller than the ratio of the conventional sleeve (D / d = 2.0), the fixing efficiency is the same, the outer diameter after crimping is small, the compact size can be achieved, and the weight is reduced (about 50%).
[0031]
As for the strength of the high-strength steel sleeve, as a result of a comparative study of the strengths of 800 MPa and 1000 MPa, after the extrusion processing, the strength of the 800 MPa sleeve increases to nearly 1000 MPa due to work hardening by extrusion, but the strength varies. On the other hand, in the case of the sleeve of 1000 MPa, the strength does not increase so much even when extruded, and there is little variation. In addition, even if the outer diameter of the sleeve is reduced, it is possible to reduce the variation in the fixing efficiency and fix the wire. Further, even when the ratio D / d is about 1.5 times, good fixing efficiency can be secured. Accordingly, the strength of the high-strength steel sleeve may be 800 MPa or more, but is preferably 1000 MPa or more.
[0032]
FIG. 5 is a front sectional view of another embodiment of a fixing structure of an end portion of a wire rod according to the present invention. The wire end fixing structure 8 of this example is different from the wire end fixing structure 1 of the above example in that a filler 9 is filled between the insertion hole 3 of the high-strength steel sleeve 2 and the PC steel strand 4. Otherwise, they have the same configuration. With the configuration in which the filler 9 is inserted as described above, the same effect as that of the above-described fixing structure 1 at the end of the wire can be obtained, and the effect of preventing the wire from slipping out of the sleeve or a buffering effect can be expected. Furthermore, in the case of the present example, when the inner peripheral surface of the insertion hole 3 of the high-strength steel sleeve is reduced in strength in advance, when the filler 9 is used as an abrasive material, The penetration into the peripheral surface is improved, and it can be expected that the fixing efficiency is further increased. In addition, when the wire is a PC steel stranded wire as in this example, an abrasion material can be inserted between the core wire and the side wire of the PC steel stranded wire, and it can be expected that the core wire will not come off from the side wire. .
[0033]
By the way, a high-strength steel sleeve (weight: about 0.17 kg) having an insertion hole diameter of 17 mm and an outer diameter changed was prepared, and a PC steel stranded wire having a diameter of 15.2 mm was prepared from these seven sleeves, and a filler material was provided on the surface. As No. 9, a lubricant was provided, and compression-bonded by extrusion using an extrusion die having an extrusion hole diameter of 24 mm. When the lubricating material is provided and pressure-bonded as described above, the sleeve can be slightly lighter than the fixing structure 1 according to the present invention in which the filler 9 is not provided, and the fixing efficiency can be reduced by a ratio (D / D). According to d), an improvement of 0.1 to 1.5% was observed. In this example, a torsion wire having a triangular cross section was wound in a coil shape and used as an abrasion material as the filler 9.
[0034]
Next, a mounting structure of the wire fixed to the fixing structure 1 at the end portion of the wire having the above configuration will be described with reference to FIG. FIG. 6 is a front sectional view showing a mounting structure in which a plurality of PC steel strands 4 having a wire end fixing structure 1 are mounted on an anchor head (fixing plate). FIG. 7 is an enlarged view of the anchor head of FIG. FIG. 8 is a sectional view taken along the line BB of FIG. 7.
[0035]
The anchor head 11 has a screw formed on the outer peripheral surface, and a fixing nut 12 is screwed to the male screw. In this example, 19 PC steel strands 4 having the above-described wire end fixing structure 1 are attached to the anchor head 11, and after that, the holding plate 13 is attached to the end group of the high-strength steel sleeve 2. After fixing, the cap 14 is attached by screwing to the external thread of the outer peripheral surface of the anchor head 11. An overlap pipe 15 and a main pipe 16 are attached to the outer periphery of the anchor head 11 on the side of the group of PC steel strands 4 to seal the group of PC steel strands 4 attached to the anchor head 11. Then, it is formed into such a structure, and is attached and used via a fixing nut 12 to a fixing portion of a structure (anchor portion of a bridge or the like, etc.) not shown.
[0036]
As shown in FIGS. 7 and 8, 19 through holes 17 for inserting and attaching the PC steel strand 4 are formed in the anchor head 11 in this example. On the back side of the anchor head 11 of the through hole 17, a housing hole 18 having an inner diameter capable of housing the high-strength steel sleeve 2 is formed concentrically, and the high-strength steel sleeve 2 is easily swelled into the housing hole 18. The tip side is accommodated and locked.
[0037]
The depth h of the receiving hole 18 is preferably such that about half the length of the high-strength steel sleeve 2 is buried, and if the depth h is less than 1/10, the portion of the high-strength steel sleeve 2 that receives the most load Comes out of the accommodation hole 18, so that the effect of suppressing the swelling of the portion cannot be expected. On the other hand, the depth h of the accommodation hole 18 may be set to a depth at which the entire length of the high-strength steel sleeve 2 is buried, but depending on the number of PC steel strands 4 attached to the anchor head 11, the thickness of the anchor head 11 is particularly small. Is unnecessarily thick, and the weight cannot be reduced. Further, it is not possible to expect a compact fixing section of a structure not shown, which is formed and attached to such a structure.
[0038]
In the above example, the case where the anchor head 11 is used has been described as an example. However, instead of the anchor head, the through hole 17 and the accommodation hole 18 may be directly formed and attached to a supporting plate such as a concrete formwork.
[0039]
【The invention's effect】
As described above, according to the wire end fixing structure according to the present invention, when the wire is placed in a high-strength steel sleeve, the outer diameter D of the high-strength sleeve after crimping, and the outer diameter d of the wire, By fixing at a ratio D / d = 1.8 or less, fixing efficiency equal to or higher than that of the related art can be obtained, and a lightweight and compact fixing structure at the end of the wire can be obtained.
[0040]
Further, according to the fixing method of the end portion of the wire rod according to the present invention, the high-strength steel sleeve can be smoothly extruded, and furthermore, the high-strength steel sleeve is extruded due to the taper in the axial direction on the outer peripheral surface thereof. Since the maximum diameter portion sufficiently presses and presses the outer peripheral surface of the wire, the wire can be effectively prevented from coming off from the high-strength sleeve even when the wire is crimped at a ratio D / d = 1.8 or less.
[0041]
Further, according to the fixing structure of the fixed wire according to the present invention, even if the outer diameter of the high-strength steel sleeve is formed as small as possible to form the terminal fixing of the wire, the sleeve is expanded. It can be mounted on the fixing plate without causing (buckling), and the fixing unit can be made compact.
[Brief description of the drawings]
FIG. 1 is an explanatory view of a fixing structure of an end portion of a wire rod according to the present invention, wherein a is a front sectional view partially showing a cross section, and b is an AA sectional view of a.
FIG. 2 is an explanatory diagram for explaining a method of fixing and forming a wire end according to the present invention.
FIG. 3 is an explanatory view for explaining a method of forming and fixing a wire end portion according to the present invention.
FIG. 4 shows the ratio D / d and the fixing efficiency between the fixing structure at the end of the wire rod using the high-strength steel sleeve according to the present invention and the fixing structure at the end of the wire rod using a conventional carbon steel sleeve for mechanical structures. FIG. 4 is a graph showing a comparison of the relationship.
FIG. 5 is a front sectional view of another embodiment of a fixing structure of an end portion of a wire rod according to the present invention.
FIG. 6 is a front cross-sectional view showing a mounting structure in which a plurality of PC steel strands having a wire end fixing structure according to the present invention are mounted on an anchor head.
FIG. 7 is an enlarged sectional view of the anchor head of FIG. 6;
8 is a view taken in the direction of arrows BB in FIG. 7;
[Explanation of symbols]
1: Fixing structure of wire rod end 2: High strength steel sleeve 3: Insertion hole 4: PC steel strand 5: Extrusion die 6: Working hole 7: Extruder 8: Fixing structure of wire rod end 9: Filler 11: Anchor head 12: Fixing nut 13: Holding plate 14: Cap 15: Overlap tube 16: Main tube 17: Through hole 18: Housing hole

Claims (9)

線材端部に高強度鋼スリーブが縮径して圧着されてなる線材端部の定着構造において、圧着後の高強度スリーブの外径Dが、線材の外径dの1.8倍以下で定着されてなることを特徴とする線材端部の定着構造。In the fixing structure of the end portion of the wire in which the high-strength steel sleeve is reduced in diameter and crimped to the end portion of the wire, the outer diameter D of the high-strength sleeve after crimping is fixed at 1.8 times or less the outer diameter d of the wire. A fixing structure for an end portion of a wire rod characterized by being formed. 線材端部の外周面と高強度鋼スリーブの内周面との間に充填材を有する請求項1記載の線材端部の定着構造。2. The fixing structure according to claim 1, further comprising a filler between an outer peripheral surface of the end portion of the wire and an inner peripheral surface of the high-strength steel sleeve. 高強度鋼スリーブが引張強度800MPa以上の鋼材で形成されてなる請求項1又は2に記載の線材端部の定着構造。3. The fixing structure according to claim 1, wherein the high-strength steel sleeve is formed of a steel material having a tensile strength of 800 MPa or more. 高強度鋼スリーブの断面外形形状が多角形である請求項1乃至3のいずれかに記載の線材端部の定着構造。4. The fixing structure according to claim 1, wherein the cross-sectional outer shape of the high-strength steel sleeve is polygonal. 外周面の先端がダイスのアプローチ面に沿う形状に形成され、且つ、外周面に軸方向のテーパが形成された高強度鋼スリーブの挿入孔に線材端部を挿入した後、ダイスを通して押出し、高強度鋼スリーブを縮径加工して線材端部に圧着することを特徴とする線材端部の定着形成方法。After inserting the end of the wire into the insertion hole of the high-strength steel sleeve whose outer peripheral surface is formed along the approach surface of the die along the approach surface of the die, and whose outer peripheral surface is tapered in the axial direction, the wire is extruded through the die. A method for forming a fixing at an end of a wire rod, the method comprising reducing the diameter of a high-strength steel sleeve and crimping it to the end of the wire rod. 高強度鋼スリーブの外周に、高強度鋼スリーブの断面外形形状に沿う内径形状を備える補強用筒体を設けて押出す請求項5記載の線材端部の定着形成方法。6. The method for fixing the end of a wire rod according to claim 5, wherein a reinforcing cylindrical body having an inner diameter conforming to the cross-sectional outer shape of the high-strength steel sleeve is provided on the outer periphery of the high-strength steel sleeve and extruded. 請求項1乃至4のいずれかに記載の線材端部の定着構造を備える線材を受け材に取付ける取付け構造であって、前記受け材が、線材を挿通する貫通孔とこの貫通孔の受け材背面側にスリーブを収容する収容孔とを同心に備えるものであることを特徴とする、定着された線材の取付け構造。A mounting structure for mounting a wire having a wire end fixing structure according to any one of claims 1 to 4 on a receiving material, wherein the receiving material has a through hole through which the wire is inserted and a back surface of the receiving material of the through hole. A mounting structure for a fixed wire, wherein a mounting hole for receiving a sleeve is provided concentrically on the side. 受け材が、定着具のアンカースリーブである請求項7に記載の定着された線材の取付け構造。The fixing structure of a fixed wire according to claim 7, wherein the receiving material is an anchor sleeve of a fixing device. 受け材が、コンクリート型枠における支圧板である請求項7に記載の定着された線材の取付け構造。8. The fixing structure of a fixed wire according to claim 7, wherein the receiving member is a support plate in a concrete formwork.
JP2002295273A 2002-10-08 2002-10-08 Anchorage structure and anchorage forming method of wire rod end, and mounting structure of anchored wire rod Pending JP2004131969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002295273A JP2004131969A (en) 2002-10-08 2002-10-08 Anchorage structure and anchorage forming method of wire rod end, and mounting structure of anchored wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002295273A JP2004131969A (en) 2002-10-08 2002-10-08 Anchorage structure and anchorage forming method of wire rod end, and mounting structure of anchored wire rod

Publications (1)

Publication Number Publication Date
JP2004131969A true JP2004131969A (en) 2004-04-30

Family

ID=32285582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002295273A Pending JP2004131969A (en) 2002-10-08 2002-10-08 Anchorage structure and anchorage forming method of wire rod end, and mounting structure of anchored wire rod

Country Status (1)

Country Link
JP (1) JP2004131969A (en)

Similar Documents

Publication Publication Date Title
JP6235041B2 (en) Rope terminal fixing method, rope with terminal fixing tool, and end fitting for use in rope terminal fixing method
US3861811A (en) Ferrules on rope or strand
JP5294775B2 (en) Rope terminal fixing method
JP2004131969A (en) Anchorage structure and anchorage forming method of wire rod end, and mounting structure of anchored wire rod
JP2010095842A (en) Method for fixing end of fiber rope
JP4068982B2 (en) Fixing structure and fixing forming method of fiber composite wire end, and fixing structure of fixed fiber composite wire
JP5477792B2 (en) Fixing tool
JP3768074B2 (en) Tension fixing device
JP2004277922A (en) Terminal fixture for cable and method for producing the terminal fixture
JPH11210163A (en) Anchor of frp tensioner
JP2003278314A (en) Strand fixer
KR100558595B1 (en) Dies and Sleeve for Manufacturing Tie Cable Bolt
JP2805270B2 (en) Terminal fixing method of composite cable made of high strength low elongation material
JP2787286B2 (en) Steel tensile member end fixing device and method of assembling the same
JP3510356B2 (en) Method for forming terminal fixing part of high strength fiber composite tension material
JP2838507B2 (en) Steel tensile material fixing device
JP3936573B2 (en) Intermediate compression friction type anchor construction method and anchor construction method
JPH1030304A (en) Joint of concrete reinforced member
JP2787288B2 (en) Method for manufacturing steel tensile material fixing device
KR102545893B1 (en) Prestressed concrete panel manufacturing method using non-attached steel bar and prestressed concrete panel according to the method
JP2852218B2 (en) Tension material
CN209975744U (en) Prefabricated component coupling assembling and precast concrete component
KR100360906B1 (en) Dies and Sleeve for Manufacturing Tie Cable Bolt
JP3102366U (en) Load-bearing body in peripheral friction tip compression type anchor method
KR200206794Y1 (en) Dies for Manufacturing Tie Cable Bolt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070109