JP4068982B2 - Fixing structure and fixing forming method of fiber composite wire end, and fixing structure of fixed fiber composite wire - Google Patents

Fixing structure and fixing forming method of fiber composite wire end, and fixing structure of fixed fiber composite wire Download PDF

Info

Publication number
JP4068982B2
JP4068982B2 JP2003035381A JP2003035381A JP4068982B2 JP 4068982 B2 JP4068982 B2 JP 4068982B2 JP 2003035381 A JP2003035381 A JP 2003035381A JP 2003035381 A JP2003035381 A JP 2003035381A JP 4068982 B2 JP4068982 B2 JP 4068982B2
Authority
JP
Japan
Prior art keywords
fiber composite
composite wire
fixing
fixing structure
metal sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003035381A
Other languages
Japanese (ja)
Other versions
JP2004244750A (en
Inventor
睦 河村
真之 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Wire Co Ltd
Original Assignee
Shinko Wire Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Wire Co Ltd filed Critical Shinko Wire Co Ltd
Priority to JP2003035381A priority Critical patent/JP4068982B2/en
Publication of JP2004244750A publication Critical patent/JP2004244750A/en
Application granted granted Critical
Publication of JP4068982B2 publication Critical patent/JP4068982B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、繊維複合線材端部の定着構造及び定着形成方法並びに定着された繊維複合線材の取付け構造に関し、詳細には炭素繊維、アラミド繊維、ガラス繊維などの高強度低伸度繊維を用いた繊維複合線材端部の定着技術に関するものである。
【0002】
【従来の技術】
近年、プレストレストコンクリート構造物等に用いられるケーブルや、吊橋、斜張橋等の橋梁構造物に用いられるケーブルとして、PC鋼より線、PC鋼線などのPC鋼材に加えて高強度低伸度繊維を用いた繊維複合線材が使用されている。この繊維複合線材を構造物に取付ける際には、繊維複合線材の端部に定着部を形成するとともに、その1本あるいは2本以上の多数を定着板に取付けて施工される。そして、繊維複合線材の端部に定着部を形成する技術として、例えば特許文献1(特開平2−269886号公報)、特許文献2(特開平4−2893号公報)、特許文献3(特開平6−128886号公報)、特許文献4(特開平7−247630号公報)などに提案されたものがある。
【0003】
特許文献1には、高強力低伸度繊維に熱硬化性樹脂を含浸して硬化させてなる繊維複合材(棒状体、線状体、撚合体等)を、鋼線やワイヤロープにおいて適用されているクサビソケット方式や金属スリーブ方式によって端末部の定着処理を行った場合、引張り荷重がかかると繊維複合材が縮径してスリーブから抜けやすくなるといった問題があることを見出し、これを改善する発明として、高強力低伸度繊維に熱硬化性樹脂を含浸して硬化させてなる繊維複合材の端末部をダイカスト金型内に挿入し、このダイカスト金型内に低融点金属を注入し、この低融点金属により前記端末部の外周に筒状の定着部を形成し、この定着部を冷間プレス機でその外周から圧縮力を加えてプレスし、このプレスした定着部を介して繊維複合材の端末部を被定着部に定着する、繊維複合材の端末定着方法が提案されている。
【0004】
そして、上記発明によれば、定着部は、低融点金属のダイカスト圧入方式で形成され、更に冷間プレスによりその外周から圧縮力が加えられており、このため定着部の構成金属が繊維複合材の素線間にまで充分に侵入し、定着部と繊維複合材とが緊密かつ強固に結合し、したがって高い定着効率を得ることができる、などの作用効果があるとされている。
【0005】
特許文献2には、特許文献1と同じ出願人の提案のもので、上記特許文献1に提案の構成では定着部を形成する低融点金属に気泡が巻き込まれ易く、定着部の強度が不均一になるといった問題を新たに見出し、これを改善する発明として、ダイカスト後の定着部を金属パイプ内に嵌挿して、プレス機で前記金属パイプの外周面から圧縮力を加え前記定着部に圧着して金属パイプ付定着部とした後、この金属パイプ付定着部を介して繊維複合材の端末部を被定着部に定着する、繊維複合材の端末定着方法が提案されている。
【0006】
特許文献3には、高強度低伸度繊維を撚合してなるより線の端末部外周に、高強度低伸度繊維に熱硬化性樹脂を含浸したシート状のプリプレグ材を所定厚さ巻付けた後に加熱しながら加圧することにより、より線と一体の緩衝層を有する定着部を形成する、高強度低伸度繊維を用いた複合ケーブルの端末定着部形成方法が提案されている。
【0007】
そして、上記発明によれば、次の如き作用効果があるとされている。すなわち、高強度低伸度繊維を用いたケーブルの端末部に高強度低伸度繊維に熱硬化性樹脂を含浸したシート状のプリプレグ材を巻付け加圧しながら加熱することにより、ケーブル本体とプリプレグ材とが完全に一体となり、ケーブルの直径の8〜10倍未満の短尺で、且つ比較的厚さが薄く強靭な緩衝層が得られる。これによりケーブル本体に直接剪断力が作用するのを緩和し、ケーブルの早期破断を防ぎ確実な定着を施すことが可能となる。そして、従来の方式に比べ加熱加圧機構を有した専用機械で取り付けるため安定した形状や寸法が得られる。またPC鋼材と同様に多数のより線を狭隘な場所に配置するときにも有効であり、使用に便利である。
【0008】
特許文献4には、FRP製緊張材の端部外周に所定の厚さを持つシート状の接合材を囲繞させて、その周囲に鋼製のスリーブを嵌装しこのスリーブを圧着加工することにより、前記接合材を介してFRP製緊張材と鋼製のスリーブとを一体化する、非金属緊張材の端部定着方法が提案されている。そして、この発明では、鋼製のスリーブを圧着加工することによってFRP製緊張材と鋼製のスリーブとを接合材を介在した状態で一体化したものであるから、定着端部の構造が単純なものであってその費用も安価であり、また、圧着加工を施す装置も単純なもので、しかも小型、軽量のものを使用でき、緊張材が使用される現場での端末加工を容易に行うことが可能であるので、施工現場での条長誤差の吸収に柔軟に対応できる、などの作用効果があるとされている。
【0009】
【特許文献1】
特開平2−269886号公報(特許請求の範囲、第2頁左欄下第3〜12行、第3頁右欄下第1〜7行)
【特許文献2】
特開平4−2893号公報(特許請求の範囲、第2頁右欄上第3〜左欄下8行)
【特許文献3】
特開平6−128886号公報(特許請求の範囲、段落[0006])
【特許文献4】
特開平7−247630号公報(特許請求の範囲、段落[0008]
【0010】
【発明が解決しようとする課題】
特許文献1に記載の繊維複合材の端末定着方法では、上記の作用効果が期待されるものの、同じ出願人の特許文献2に記載されているように、定着部を形成する低融点金属に気泡が巻き込まれ易く、定着部の強度が不均一になるといった問題が懸念される。また、特許文献2に記載の繊維複合材の端末定着方法では、前記気泡の巻き込みの問題が軽減されることが期待されるものの、いずれの端末定着方法もダイカストを用いると共に、低融点金属とはいえ金属溶湯を用いる以上は溶解装置も必要であり、装置が大掛かりなものとなり、施工現場で簡便に行い得る方法とはいえない。
【0011】
特許文献3に記載の高強度低伸度繊維を用いた複合ケーブルの端末定着部形成方法では、上記の作用効果が期待されるものの、金属スリーブを用いて定着する構造に比較して製造コストが高くなることが懸念される。
【0012】
特許文献4に記載の非金属緊張材の端部定着方法では、上記の効果が期待されるものの、接合材は、特許文献4の段落番号[0009]に説明されているように、常温感圧性粘着材を用いており、定着作業性は良いが、高価でコスト高となる。
【0013】
一方、近年、プレストレストコンクリート構造物等や吊橋、斜張橋等の橋梁構造物などにおいては、高強度低伸度繊維を用いた繊維複合線材(複合ケーブル)を取付ける定着部の構造を、定着作業性の改善などを目的として軽量でコンパクトな構造にすることが望まれているが、定着効率が高く、軽量でコンパクトな構造で、且つ実用性を有する構造のものは、上述したように該当するものが見当たらない。
【0014】
そこで、本発明は、上記の問題点を改善するためになしたものであって、その第一の目的は、従来のPC鋼線と同様に金属スリーブを用いて高い定着効率を有する繊維複合線材端部の定着構造及び定着形成方法を提供するものであり、第二の目的は、そのような繊維複合線材端部の定着構造を採用することで、軽量でコンパクトに定着された繊維複合線材の取付け構造を提供するものである。
【0015】
【課題を解決するための手段】
本発明者等は、上記の第一及び第二の目的を達成するために、従来技術の項にも述べたように、従来技術について種種調査、検討を行ってきた。その一方で、従来より、PC鋼より線及びPC鋼線を対象にその端部に金属スリーブを定着効率を高めて押出し圧着し得る技術の研究開発を行ってきた(特願2002−295273号参照)。そして、今般、高強度低伸度繊維を用いた繊維複合線材を対象として、定着作業性の良い金属スリーブを用いた押出し圧着技術の適用を試み、金属スリーブからの繊維複合線材の抜けや金属スリーブ内で繊維複合線材が縮径することによる破断といった問題を改善することによって定着効率を高め、以下の構成を要旨とする本発明を完成したものである。
【0016】
すなわち、本発明(請求項1)は、繊維複合線材端部に金属スリーブが縮径して圧着されてなる繊維複合線材端部の定着構造において、金属スリーブと繊維複合線材との間に、肉厚0.7〜4mmの延性に優れる金属フィラー材を介在して定着してなることを特徴とする繊維複合線材端部の定着構造である。このように、金属スリーブと繊維複合線材との間に、肉厚0.7〜4mmの延性に優れる金属フィラー材を介在して定着することで、金属スリーブから抜け出ることのない、また定着効率(定着後の破断荷重と繊維複合線材の平均破断強度との比率)の高い繊維複合線材端部の定着構造が得られる。この場合、金属フィラー材は延性に優れる金属が好ましく、例えばアルミニウムやその合金(請求項2)、及び銅や銅合金などがある。また、金属フィラー材の肉厚は、押出し加工での加工率や金属スリーブの長さにもよるが、加工後の肉厚で0.7〜4mmとすることが望ましく、肉厚が0.7未満では、押出し加工の加工率を適正に設定することが難しくなり安定した定着効率が期待できず、また肉厚が4mmを超えると定着効率はそれほど変わらないが、金属スリーブの外径を大きくする必要が生じるためである。
【0017】
また、上記請求項1記載の繊維複合線材端部の定着構造においては、金属スリーブとして、引張強度800MPa以上の高強度鋼で形成されてなる高強度鋼スリーブが望ましい(請求項3)。引張強度が800MPa以上あれば、従来の機械構造用炭素鋼スリーブに比較して外径で約10%程度小さくできる。より安定してコンパクトにするためには引張強度が1000MPa以上であることが望ましい。また、金属スリーブの断面外形形状は円形が一般的であるが、本発明では円形であってもよいが、特に複数本を定着板に取付ける場合には金属スリーブ同士の間隔が狭い方がよりコンパクトに定着できるため、金属スリーブの断面外形形状は多角形であってもよい(請求項4)。
【0018】
本発明(請求項5)は、外周面の先端がダイスのアプローチ面に沿う形状に形成された金属スリーブの挿入孔に肉厚1〜6mmの延性に優れる金属フィラー材を挿入し、その金属フィラー材の内径部に繊維複合線材端部を挿入した後、ダイスを通して加工率11.5〜17%で押出し、金属スリーブを縮径加工して繊維複合線材端部に圧着することを特徴とする繊維複合線材端部の定着形成方法である。
【0019】
このような定着形成方法によれば、円滑な押出し加工ができる上に、繊維複合線材の端部に押出し加工によって金属スリーブを安定した定着効率でもって定着させることができる。この場合、金属スリーブの挿入孔に挿入する金属フィラー材は、その肉厚が1〜6mmのものを使用することが望ましく、また金属スリーブを押出し縮径加工する際の加工率(押出し前、後のスリーブ外径の差/押出し前のスリーブ外径)は11.5〜17%で押出し加工することが望ましく、これらの範囲を外れた押出し加工では、繊維複合線材に金属スリーブを安定した定着効率でもって定着させることができにくくなるためである。
【0020】
そして、上記請求項5記載の繊維複合線材端部の定着形成方法においては、金属スリーブとして、引張強度800MPa以上の高強度鋼で形成されてなる高強度鋼スリーブを用いることができる(請求項6)。引張強度が800MPa以上あれば、従来の機械構造用炭素鋼スリーブに比較して外径で約10%程度小さくできる。より安定してコンパクトにするためには引張強度が1000MPa以上の高強度鋼スリーブを用いることが望ましい。また、高強度鋼スリーブを用いる押出しによる繊維複合線材端部の定着形成方法においては、高強度鋼スリーブの外周に、高強度鋼スリーブの断面外形形状に沿う内径形状を備える補強用筒体を設けて押出すことが望ましい(請求項7)。このようにして押出すことで、高強度鋼スリーブの押出し方向が定まり、また万一押出し荷重が偏っても円滑に押出すことができる。また、金属スリーブとして、その外周面に軸方向のテーパが形成されてなる金属スリーブを用いることができる。このような金属スリーブを用いダイスを通して押出すことで、内面側に鼓状のテーパを形成させることができ、より安定した定着が期待される。
【0021】
本発明(請求項8)は、上記請求項1乃至4のいずれかに記載の繊維複合線材端部の定着構造を備える繊維複合線材を受け材に取付ける取付け構造であって、前記受け材が、繊維複合線材を挿通する貫通孔とこの貫通孔の受け材背面側に金属スリーブを収容する収容孔とを同心に備えるものであることを特徴とする、定着された繊維複合線材の取付け構造である。この取付け構造であれば、金属スリーブの外径を可能な限り小径に形成して繊維複合線材の端末定着を形成したものであっても、金属スリーブを膨出(座屈)させることなく定着板に取付けることができ、定着部のコンパクト化が図れる。特に、金属スリーブが高強度鋼スリーブの場合で小径に形成した場合に効果的に適用できる。また特に、定着部が橋梁等の構造物の場合にはアンカーヘッド(定着板)を備えるアンカー部がコンパクトに形成でき(請求項9)、構造物の定着部もコンパクトにできる。また、定着板が、コンクリート型枠における支圧板である場合(請求項10)にも定着具をコンパクトに形成できる。
【0022】
而して、本発明によれば、炭素繊維、アラミド繊維、ガラス繊維等の高強度低伸度繊維を用いた複合ケーブルなどの繊維複合線材を対象として、コンパクトな繊維複合線材端部の定着構造とすることができるとともに、その繊維複合線材端部を定着する構造物の定着板(定着部)をコンパクトにできる。
【0023】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。図1は、本発明に係る繊維複合線材端部の定着構造の説明図であって、aは一部を断面で示す正断面図、bはaのA−A断面図である。
【0024】
繊維複合線材端部の定着構造1は、金属スリーブ2と、この金属スリーブ2の挿入孔3内部の、延性に優れる金属フィラー材としてのアルミニウム管(以下アルミ管と称す)4と、このアルミ管4の挿入孔5内部の繊維複合線材(繊維複合より線)6とを備えて構成されている。
【0025】
上記繊維複合線材端部の定着構造1は、次のように押出し圧着加工して製作される。すなわち、図2に示すように、押出ダイス7の加工孔8に反押出し側より繊維複合線材6の線材端部を挿通させ、その繊維複合線材端部を、予め所定肉厚のアルミ管4を金属スリーブ2の挿入孔3内に挿着して金属スリーブ2とアルミ管4の複合スリーブ9に形成したアルミ管4の挿入孔5内に挿入した後、図3に示すように、複合スリーブ9の端面を押出ダイス7の加工孔8の前面に押し当てるとともに、背面より押出し装置10を作動して複合スリーブ9を押出ダイス7の加工孔8より押出す。このように押出すことで、金属スリーブ2が縮径して、挿入孔3内に挿入されているアルミ管4を延伸且つ縮径して繊維複合線材6の外表面に食い込むようにして圧着加工される。
【0026】
上記の繊維複合構成の線材端部の定着構造1によれば、圧着後のアルミ管4の肉厚を0.7〜4mmの範囲内とすることで、金属スリーブ2から、アルミ管4はもとより繊維複合線材端部が抜け出ることはなく、また定着効率(定着後の破断荷重と繊維複合線材の平均破断強度との比率)の高い繊維複合線材端部の定着構造が得られる。
【0027】
因みに、外径49mm×長さ150mmの金属スリーブ2と、挿入孔5の内径18mm×長さ150mmのアルミ管4とを用い、アルミ管4の肉厚を0.5〜11.0mmの範囲内で変え、それに合せて金属スリーブ2の挿入孔3の内径を変えて複合スリーブ9を準備した。この複合スリーブ9の挿入孔5内に平均外径16mmの組紐状繊維複合線材6(断面が楕円状に形成されているため平均外径とした)を挿入し、上記の要領で複合スリーブ9を押出ダイス7の加工孔8より押出し圧着加工を行った。このときの押出し後の金属スリーブ2の外径は43mmで、加工率は約12.2%であった。
【0028】
上記のようにして得られた繊維複合線材端部の定着構造物を引張試験機で引張試験を行った。この試験では図4に示すように金属スリーブ2の端面のみが支圧板11に支持されるようにして試験した。前記引張試験の結果を基に定着効率(定着後の破断荷重と繊維複合線材の平均破断強度との比率)を調査した。また、比較のため金属スリーブ2のみを用いた場合も同様に圧着加工し、引張試験して定着効率を調査した。これらの調査結果を図5に示す。
【0029】
図5より明らかなように、アルミ管4の押出し加工前の肉厚が1〜6mm(加工後の肉厚が0.7〜4mm)の本発明では90%以上の定着効率が得られるが、加工前の肉厚が0.5mmのアルミ管4では金属スリーブ2との間でスリップを生じ、約70%の定着効率であった。一方、肉厚が6mmを超えると定着効率はそれほど大きく低下しないが、金属スリーブ2の外径を大きくする必要が生じるため好ましくない。また、アルミ管4を設けなかったものもスリップを生じ、約60%の定着効率であった。なお、繊維複合線材端部に増摩材を吹き付けて同様に圧着加工したものでも定着効率は図5と同様の傾向が見られた。この場合は、金属スリーブ2の長さを上記150mmより短くしても、図5と同様の定着効率が期待でき、金属スリーブ2をよりコンパクトにできることが想定される。
【0030】
また、外径49mm×長さ150mmの金属スリーブ2と、挿入孔5の内径18mm×長さ150mmのアルミ管4とを用い、アルミ管4の肉厚を2.0mmとした複合スリーブ9を準備し、この複合スリーブ9の挿入孔5内に平均外径16mmの組紐状繊維複合線材6(断面が楕円状に形成されているため平均外径とした)を挿入し、加工率を10.5〜17.0%の範囲内で変え、上記の要領で複合スリーブ9を押出ダイス7の加工孔8より押出し圧着加工を行った。
【0031】
上記のようにして得られた繊維複合線材端部の定着構造物を、上記アルミ管4の肉厚を変えたときと同様の要領で引張試験を行うとともに、定着効率(定着後の破断荷重と繊維複合線材の平均破断強度との比率)を調査した。また、比較のため金属スリーブ2のみを用いた場合も同様に圧着加工し、引張試験して定着効率を調査した。これらの調査結果を図6に示す。
【0032】
図6より明らかなように、加工率が11.5〜17.0%の本発明では80%以上の定着効率が得られるが、加工率が11.0%以下では金属スリーブ2との間でスリップを生じ、約60%の定着効率であった。一方、加工率が17%を超えると、アルミ管4の肉厚にもよるかもしれないが、定着効率が80%以下に低減する傾向が見られた。また、アルミ管4を設けなかったものは、加工率が10〜11%ところで約80%前後の定着効率となったが、加工率が10未満では金属スリーブ2との間でスリップを生じ約60%の定着効率となり、また加工率が11%を超えても定着効率が80%以下に低減する傾向が見られた。
【0033】
なお、上記例では、金属スリーブ2の長さを150mmのものを用いたが、本発明では、実用的な100〜300mmの長さで充分に実用可能である。
【0034】
また、上記例は、金属スリーブ2として機械構造用炭素鋼スリーブを例としたものであるが、引張強度800MPa以上の高強度鋼で形成されてなる高強度鋼スリーブを用いることができる。引張強度が800MPa以上あれば、前記機械構造用炭素鋼スリーブに比較して外径で約10%程度小さくできる。より安定してコンパクトにするためには引張強度が1000MPa以上の高強度鋼スリーブを用いることが望ましい。
【0035】
また、上記のような高強度鋼スリーブを用いる押出しによる繊維複合線材端部の定着形成方法においては、高強度鋼スリーブの外周に、高強度鋼スリーブの断面外形形状に沿う内径形状を備える補強用筒体12(図3に二点鎖線で示す)を設けて押出すことが望ましい。このようにして押出すことで、高強度鋼スリーブの押出し方向が定まり、また万一押出し荷重が偏っても円滑に押出すことができる。
【0036】
次に、上記構成の繊維複合線材端部の定着構造1に定着された繊維複合線材の取付け構造について図7に基づいて説明する。図7は、繊維複合線材端部の定着構造1を備える繊維複合線材6の複数本をアンカーヘッド(定着板)に取付けた取付け構造を示す正断面図、図8は、図7のアンカーヘッドの拡大断面図、図9は、図8のB−B矢視図である。
【0037】
アンカーヘッド13は、外周面におねじが形成されており、そのおねじに定着ナット14が螺合されている。アンカーヘッド13には、上述した繊維複合線材端部の定着構造1を備える繊維複合線材6が本例では19本取付けられており、その取付け後に金属スリーブ2の末端群に押え板15を取付けて固定した後、アンカーヘッド13の外周面のおねじに螺合させてキャップ16が取付けられている。また、アンカーヘッド13の繊維複合線材6群側の外周には、オーバーラップ管17及び本管18が取付けられてアンカーヘッド13に取付けた繊維複合線材6群を密閉している。そして、このような構造に形成して図示省略する構造物(橋梁等のアンカー部など)の定着部に定着ナット14を介して取付け使用される。
【0038】
また、アンカーヘッド13の内部には、図8、9に示すように、繊維複合線材6を挿通して取付けるための貫通孔19が本例では19本開けられている。その貫通孔19のアンカーヘッド13の背面側は、金属スリーブ2を収容し得る内径を有する収容孔20が同心に開けられており、その収容孔20に金属スリーブ2の先端側を収容、繋止する。
【0039】
上記収容孔20の深さhは、金属スリーブ2の約半分の長さが埋まる程度が望ましく、深さhが1/10未満であると、金属スリーブ2の最も荷重を受ける部分が収容孔20の外に出るため当該部分の膨出を抑制する効果が期待できなくなる。一方、収容孔20の深さhを金属スリーブ2の全長が埋まる深さとしてもよいが、アンカーヘッド13に取付ける繊維複合線材6の本数によっては(特に少ない場合)アンカーヘッド13の厚みが不必要に厚くなり軽量化が図れなくなる。また、このような構造に形成して取付ける、図示省略する構造物の定着部のコンパクト化も期待できなくなる。
【0040】
なお、上記例では、アンカーヘッド13を用いる場合を例に説明したが、アンカーヘッドに代えてコンクリート型枠などの支圧板に直接貫通孔19、収容孔20を形成して取付けてもよい。
【0041】
【発明の効果】
以上説明したように、本発明に係る繊維複合線材端部の定着構造によれば、繊維複合線材を金属スリーブ内に金属フィラー材を介在して定着することで、金属スリーブから抜け出ることのない、また定着効率の高い繊維複合線材端部の定着構造とすることができる。
【0042】
また、本発明に係る繊維複合線材端部の定着形成方法によれば、円滑な押出し加工ができる上に、繊維複合線材の端部に押出し加工によって金属スリーブを安定した定着効率でもって定着させることができる。
【0043】
また、本発明に係る定着された繊維複合線材の取付け構造によれば、金属スリーブの外径を可能な限り小径に形成して繊維複合線材の端末定着を形成したものであっても、金属スリーブを膨出(座屈)させることなく定着板に取付けることができ、定着部のコンパクト化を図ることができる。
【図面の簡単な説明】
【図1】本発明に係る繊維複合線材端部の定着構造の説明図であって、aは一部を断面で示す正断面図、bはaのA−A断面図である。
【図2】本発明に係る繊維複合線材端部の定着形成方法を説明するための説明図である。
【図3】本発明に係る繊維複合線材端部の定着形成方法を説明するための説明図である。
【図4】本発明に係る繊維複合線材端部の定着構造物の引張試験状態の説明図である。
【図5】本発明に係る繊維複合線材端部の定着構造と従来のアルミ管無しの繊維複合線材端部の定着構造とのアルミ管の肉厚と定着効率の関係を比較して示すグラフ図である。
【図6】本発明に係る繊維複合線材端部の定着構造と従来のアルミ管無しの繊維複合線材端部の定着構造との押出し加工率と定着効率の関係を比較して示すグラフ図である。
【図7】本発明に係る繊維複合線材端部の定着構造を備える繊維複合線材の複数本をアンカーヘッドに取付けた取付け構造を示す正断面図である。
【図8】図7のアンカーヘッドの拡大断面図である。
【図9】図8のB−B矢視図である。
【符号の説明】
1:繊維複合線材端部の定着構造 2:金属スリーブ
3:挿入孔 4:アルミ管 5:挿入孔
6:繊維複合線材 7:押出ダイス 8:加工孔
9:複合スリーブ 10:押出し装置 11:支圧板
12:補強用筒体 13:アンカーヘッド 14:定着ナット
15:押え板 16:キャップ 17:オーバーラップ管
18:本管 19:貫通孔 20:収容孔
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a fixing structure and fixing forming method of an end portion of a fiber composite wire, and a mounting structure of a fixed fiber composite wire. Specifically, high strength and low elongation fibers such as carbon fiber, aramid fiber, and glass fiber are used. The present invention relates to a technique for fixing an end portion of a fiber composite wire.
[0002]
[Prior art]
In recent years, in addition to PC steel materials such as PC steel strands and PC steel wires, high strength and low elongation fibers are used for cables used in prestressed concrete structures and for bridge structures such as suspension bridges and cable-stayed bridges. A fiber composite wire material using is used. When the fiber composite wire is attached to the structure, a fixing portion is formed at the end of the fiber composite wire, and one or more of the two are attached to the fixing plate. As a technique for forming the fixing portion at the end of the fiber composite wire, for example, Patent Document 1 (Japanese Patent Laid-Open No. 2-269886), Patent Document 2 (Japanese Patent Laid-Open No. 4-2893), and Patent Document 3 (Japanese Laid-Open Patent Application No. Hei 2). 6-128886), Patent Document 4 (Japanese Patent Laid-Open No. 7-247630), and the like.
[0003]
In Patent Document 1, a fiber composite material (rod-like body, linear body, twisted body, etc.) obtained by impregnating a thermosetting resin into a high-strength low-elongation fiber and curing it is applied to a steel wire or a wire rope. When fixing the terminal part using the wedge socket method or the metal sleeve method, it is found that there is a problem that when the tensile load is applied, the fiber composite material is reduced in diameter so that it can be easily removed from the sleeve, and this is improved. As an invention, the end of a fiber composite material obtained by impregnating a thermosetting resin into a high-strength low elongation fiber and curing it is inserted into a die casting mold, and a low melting point metal is injected into the die casting mold, A cylindrical fixing portion is formed on the outer periphery of the terminal portion by the low melting point metal, and the fixing portion is pressed by applying a compressive force from the outer periphery with a cold press, and the fiber composite is passed through the pressed fixing portion. Fixed end of material Fixing the parts, the terminal fixing method of a fiber composite material has been proposed.
[0004]
According to the above invention, the fixing portion is formed by a low-melting-point metal die-casting method, and further, a compressive force is applied from the outer periphery thereof by cold pressing, so that the constituent metal of the fixing portion is a fiber composite material. The fixing portion and the fiber composite material are tightly and firmly bonded to each other, so that high fixing efficiency can be obtained.
[0005]
Patent Document 2 is proposed by the same applicant as Patent Document 1, and in the configuration proposed in Patent Document 1, bubbles are easily caught in the low melting point metal forming the fixing portion, and the strength of the fixing portion is not uniform. As an invention to find a new problem and improve it, the fixing part after die casting is inserted into a metal pipe, and a press machine is applied to the fixing part by applying a compressive force from the outer peripheral surface of the metal pipe. A fiber composite material terminal fixing method is proposed in which after a metal pipe fixing portion is formed, a fiber composite material terminal portion is fixed to a fixing portion via the metal pipe fixing portion.
[0006]
In Patent Document 3, a sheet-like prepreg material in which a high-strength low-stretch fiber is impregnated with a thermosetting resin is wound on a periphery of a stranded wire formed by twisting high-strength low-stretch fibers at a predetermined thickness. A method for forming a terminal fixing portion of a composite cable using a high-strength low-stretch fiber has been proposed in which a fixing portion having a buffer layer integral with a stranded wire is formed by applying pressure while heating after being attached.
[0007]
And according to the said invention, it is supposed that there exist the following effects. That is, by wrapping a sheet-shaped prepreg material in which a high-strength low-stretch fiber is impregnated with a thermosetting resin at the end of a cable using high-strength low-stretch fiber and heating it while applying pressure, the cable body and the prepreg The material is completely integrated with each other, and a tough buffer layer having a short length of less than 8 to 10 times the diameter of the cable and a relatively thin thickness is obtained. As a result, it is possible to alleviate the direct action of the shearing force on the cable body, and to prevent the cable from being broken early and to reliably fix it. And since it attaches with the special machine which has a heating-pressing mechanism compared with the conventional system, the stable shape and dimension are obtained. Moreover, it is also effective when a large number of stranded wires are arranged in a narrow place as in the case of PC steel, and is convenient for use.
[0008]
In Patent Document 4, a sheet-like bonding material having a predetermined thickness is surrounded on the outer periphery of the end portion of the FRP tension material, a steel sleeve is fitted around the periphery, and the sleeve is crimped. There has been proposed an end fixing method for a non-metallic tension material, in which an FRP tension material and a steel sleeve are integrated via the bonding material. In the present invention, the FRP tension material and the steel sleeve are integrated with the joining material interposed by crimping the steel sleeve, so that the structure of the fixing end is simple. It is inexpensive and its cost is low, and the equipment that performs the crimping process is simple, and it can be used in small and light, and it can be easily processed at the site where the tension material is used. Therefore, it is said that there is an effect such as being able to flexibly cope with the absorption of the length error at the construction site.
[0009]
[Patent Document 1]
JP-A-2-269886 (Claims, page 2 left column bottom lines 3-12, page 3 right column bottom lines 1-7)
[Patent Document 2]
JP-A-4-2893 (Claims, page 2, right column, upper 3rd, left, lower 8th line)
[Patent Document 3]
JP-A-6-128886 (Claims, paragraph [0006])
[Patent Document 4]
JP-A-7-247630 (Claims, paragraph [0008]
[0010]
[Problems to be solved by the invention]
In the terminal fixing method of the fiber composite material described in Patent Document 1, although the above-described effects are expected, as described in Patent Document 2 of the same applicant, bubbles are formed in the low melting point metal forming the fixing portion. Is likely to be caught and the strength of the fixing portion becomes uneven. Moreover, in the terminal fixing method of the fiber composite material described in Patent Document 2, it is expected that the problem of entrainment of bubbles is reduced, but each terminal fixing method uses die casting, No, as long as the molten metal is used, a melting apparatus is also required, which makes the apparatus large and cannot be said to be a method that can be easily performed at the construction site.
[0011]
In the method for forming the terminal fixing portion of the composite cable using the high-strength low-stretch fiber described in Patent Document 3, although the above-described effects are expected, the manufacturing cost is lower than that of a structure in which fixing is performed using a metal sleeve. We are anxious about becoming higher.
[0012]
In the end fixing method of the non-metallic tendon described in Patent Document 4, the above effect is expected. However, as described in paragraph [0009] of Patent Document 4, the bonding material is room temperature pressure sensitive. Adhesive material is used and fixing workability is good, but it is expensive and expensive.
[0013]
On the other hand, in recent years, for prestressed concrete structures, bridge structures such as suspension bridges and cable-stayed bridges, the fixing part structure for attaching fiber composite wires (composite cables) using high-strength low-stretch fibers has been fixed. It is desired to make the structure lightweight and compact for the purpose of improving the performance, etc., but those having a high fixing efficiency, a light and compact structure, and a structure having utility are applicable as described above. I can't find anything.
[0014]
Accordingly, the present invention has been made to improve the above-mentioned problems, and a first object thereof is a fiber composite wire having a high fixing efficiency using a metal sleeve in the same manner as a conventional PC steel wire. An end fixing structure and a fixing forming method are provided. A second object is to employ a fixing structure of such a fiber composite wire end so that a lightweight and compactly fixed fiber composite wire can be obtained. An attachment structure is provided.
[0015]
[Means for Solving the Problems]
In order to achieve the above first and second objects, the present inventors have conducted various types of investigations and studies on the prior art as described in the section of the prior art. On the other hand, research and development have been conducted on a technology that can extrude and press-bond a metal sleeve at the end of PC steel wire and PC steel wire with improved fixing efficiency. (See Japanese Patent Application No. 2002-295273) ). Now, we are trying to apply extrusion pressure bonding technology using a metal sleeve with good fixing workability for fiber composite wire using high strength and low elongation fiber. The present invention has been completed by improving the fixing efficiency by improving the problem of breakage caused by the diameter reduction of the fiber composite wire, and the present invention having the following constitution.
[0016]
That is, according to the present invention (Claim 1), in a fixing structure of a fiber composite wire end portion in which a metal sleeve is reduced in diameter and pressure-bonded to an end portion of a fiber composite wire, a meat is interposed between the metal sleeve and the fiber composite wire. The fixing structure of the end portion of the fiber composite wire material is characterized by being fixed by interposing a metal filler material having a thickness of 0.7 to 4 mm and excellent in ductility. In this way, by fixing the metal filler material having a thickness of 0.7 to 4 mm between the metal sleeve and the fiber composite wire, the metal sleeve does not come out of the metal sleeve, and the fixing efficiency ( A fixing structure of the end portion of the fiber composite wire having a high ratio of the breaking load after fixing and the average breaking strength of the fiber composite wire is obtained. In this case, the metal filler material is preferably a metal having excellent ductility, such as aluminum or an alloy thereof (Claim 2), copper, or a copper alloy. Further, the thickness of the metal filler material depends on the processing rate in the extrusion process and the length of the metal sleeve, but the thickness after processing is preferably 0.7 to 4 mm, and the thickness is 0.7 If it is less than 5, it is difficult to properly set the processing rate of the extrusion process, and stable fixing efficiency cannot be expected. If the thickness exceeds 4 mm, the fixing efficiency does not change so much, but the outer diameter of the metal sleeve is increased. This is because a need arises.
[0017]
In the fixing structure of the end portion of the fiber composite wire according to claim 1, a high-strength steel sleeve made of high-strength steel having a tensile strength of 800 MPa or more is desirable as the metal sleeve (claim 3). If the tensile strength is 800 MPa or more, the outer diameter can be reduced by about 10% as compared with the conventional carbon steel sleeve for mechanical structure. In order to make it more stable and compact, it is desirable that the tensile strength is 1000 MPa or more. In addition, the cross-sectional outer shape of the metal sleeve is generally circular. However, in the present invention, it may be circular, but in particular, when a plurality of metal sleeves are attached to the fixing plate, it is more compact when the interval between the metal sleeves is narrow. The cross-sectional outer shape of the metal sleeve may be a polygon.
[0018]
According to the present invention (Claim 5), a metal filler material having a wall thickness of 1 to 6 mm and having excellent ductility is inserted into an insertion hole of a metal sleeve formed so that the tip of the outer peripheral surface follows the approach surface of the die. A fiber characterized by inserting an end portion of a fiber composite wire into an inner diameter portion of a material, then extruding the die through a die at a processing rate of 11.5 to 17%, reducing the diameter of a metal sleeve, and crimping the end of the fiber composite wire This is a fixing formation method for the end portion of the composite wire.
[0019]
According to such a fixing forming method, a smooth extrusion process can be performed, and the metal sleeve can be fixed to the end portion of the fiber composite wire with a stable fixing efficiency by the extrusion process. In this case, the metal filler material to be inserted into the insertion hole of the metal sleeve is preferably one having a thickness of 1 to 6 mm, and the processing rate when the metal sleeve is extruded and reduced (before and after extrusion) It is desirable to extrude at a sleeve outer diameter difference of 11.5-17% (extruded sleeve outer diameter) / extruding outside of these ranges. When extruding outside these ranges, the metal sleeve is stably fixed to the fiber composite wire. This is because it becomes difficult to fix.
[0020]
In the fixing method of the fiber composite wire end portion according to claim 5, a high-strength steel sleeve formed of high-strength steel having a tensile strength of 800 MPa or more can be used as the metal sleeve (claim 6). ). If the tensile strength is 800 MPa or more, the outer diameter can be reduced by about 10% as compared with the conventional carbon steel sleeve for mechanical structure. In order to make it more stable and compact, it is desirable to use a high-strength steel sleeve having a tensile strength of 1000 MPa or more. Further, in the fixing method of the end portion of the fiber composite wire by extrusion using a high strength steel sleeve, a reinforcing cylinder having an inner diameter shape along the cross-sectional outer shape of the high strength steel sleeve is provided on the outer periphery of the high strength steel sleeve. It is desirable to extrude (claim 7). By extruding in this manner, the extrusion direction of the high-strength steel sleeve is determined, and even if the extrusion load is uneven, it can be smoothly extruded. Further, as the metal sleeve, a metal sleeve having an axial taper formed on the outer peripheral surface thereof can be used. By using such a metal sleeve and extruding through a die, a drum-like taper can be formed on the inner surface side, and more stable fixing is expected.
[0021]
The present invention (Claim 8) is an attachment structure for attaching a fiber composite wire having a fixing structure at the end of the fiber composite wire according to any one of Claims 1 to 4 to the receiving material, wherein the receiving material is A fixing structure for a fixed fiber composite wire, characterized in that a through hole for inserting the fiber composite wire and a receiving hole for receiving the metal sleeve are provided concentrically on the back side of the receiving material of the through hole. . With this mounting structure, even if the outer diameter of the metal sleeve is made as small as possible and the terminal fixing of the fiber composite wire is formed, the fixing plate does not bulge (buckle) the metal sleeve. The fixing part can be made compact. In particular, the present invention can be effectively applied when the metal sleeve is a high-strength steel sleeve and has a small diameter. In particular, when the fixing portion is a structure such as a bridge, the anchor portion including the anchor head (fixing plate) can be formed compactly (Claim 9), and the fixing portion of the structure can also be made compact. Further, when the fixing plate is a bearing plate in a concrete mold (claim 10), the fixing tool can be formed compactly.
[0022]
Thus, according to the present invention, the fixing structure of the end portion of the compact fiber composite wire for a fiber composite wire such as a composite cable using high-strength low-stretch fiber such as carbon fiber, aramid fiber, glass fiber, etc. In addition, the fixing plate (fixing portion) of the structure for fixing the end portion of the fiber composite wire can be made compact.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view of a fixing structure of an end portion of a fiber composite wire according to the present invention, in which a is a front sectional view partially showing a cross section, and b is a sectional view taken on line AA.
[0024]
The fixing structure 1 at the end of the fiber composite wire includes a metal sleeve 2, an aluminum tube (hereinafter referred to as an aluminum tube) 4 as a metal filler material having excellent ductility inside the insertion hole 3 of the metal sleeve 2, and the aluminum tube. 4 and a fiber composite wire (fiber composite strand) 6 inside the insertion hole 5.
[0025]
The fixing structure 1 at the end of the fiber composite wire is manufactured by extrusion pressing as follows. That is, as shown in FIG. 2, the end of the fiber composite wire 6 is inserted into the processed hole 8 of the extrusion die 7 from the non-extrusion side, and the end of the fiber composite wire is attached to the aluminum tube 4 having a predetermined thickness in advance. After being inserted into the insertion hole 3 of the metal sleeve 2 and inserted into the insertion hole 5 of the aluminum tube 4 formed in the composite sleeve 9 of the metal sleeve 2 and the aluminum tube 4, as shown in FIG. Is pressed against the front surface of the processing hole 8 of the extrusion die 7 and the extrusion device 10 is operated from the back surface to push the composite sleeve 9 out of the processing hole 8 of the extrusion die 7. By extruding in this way, the diameter of the metal sleeve 2 is reduced, and the aluminum tube 4 inserted into the insertion hole 3 is stretched and reduced in diameter so as to bite into the outer surface of the fiber composite wire 6. Is done.
[0026]
According to the fixing structure 1 at the end of the wire having the above-described fiber composite structure, the thickness of the aluminum tube 4 after the crimping is set within a range of 0.7 to 4 mm, so that the aluminum tube 4 as well as the metal tube 2 can be used. The end portion of the fiber composite wire does not come out, and a fixing structure of the end portion of the fiber composite wire having high fixing efficiency (ratio between the breaking load after fixing and the average breaking strength of the fiber composite wire) is obtained.
[0027]
Incidentally, the metal sleeve 2 with an outer diameter of 49 mm × length 150 mm and the aluminum tube 4 with an inner diameter of 18 mm × length 150 mm of the insertion hole 5 are used, and the thickness of the aluminum tube 4 is in the range of 0.5 to 11.0 mm. The composite sleeve 9 was prepared by changing the inner diameter of the insertion hole 3 of the metal sleeve 2 in accordance with the change. A braided fiber composite wire 6 having an average outer diameter of 16 mm is inserted into the insertion hole 5 of the composite sleeve 9 (which has an average outer diameter because the cross section is formed in an elliptical shape), and the composite sleeve 9 is mounted as described above. Extrusion pressure bonding was performed from the processing hole 8 of the extrusion die 7. The outer diameter of the metal sleeve 2 after extrusion at this time was 43 mm, and the processing rate was about 12.2%.
[0028]
The fixing structure at the end of the fiber composite wire obtained as described above was subjected to a tensile test using a tensile tester. In this test, as shown in FIG. 4, only the end surface of the metal sleeve 2 was supported by the bearing plate 11. Based on the result of the tensile test, the fixing efficiency (ratio between the breaking load after fixing and the average breaking strength of the fiber composite wire) was investigated. For comparison, when only the metal sleeve 2 was used, the crimping process was performed in the same manner, and the fixing efficiency was investigated by a tensile test. The results of these investigations are shown in FIG.
[0029]
As is clear from FIG. 5, the fixing efficiency of 90% or more is obtained in the present invention in which the thickness of the aluminum tube 4 before extrusion is 1 to 6 mm (the thickness after processing is 0.7 to 4 mm). In the aluminum tube 4 having a thickness of 0.5 mm before processing, slip occurred between the metal tube 2 and the fixing efficiency was about 70%. On the other hand, if the thickness exceeds 6 mm, the fixing efficiency does not decrease so much, but it is not preferable because the outer diameter of the metal sleeve 2 needs to be increased. In addition, the case where the aluminum pipe 4 was not provided also caused a slip and had a fixing efficiency of about 60%. In addition, the same tendency as that in FIG. 5 was observed in the fixing efficiency even in the case where the end of the fiber composite wire was sprayed with a thickener and subjected to the same pressure bonding process. In this case, even if the length of the metal sleeve 2 is made shorter than 150 mm, the same fixing efficiency as in FIG. 5 can be expected and the metal sleeve 2 can be made more compact.
[0030]
Also, a composite sleeve 9 is prepared in which the metal sleeve 2 having an outer diameter of 49 mm × length 150 mm and the aluminum tube 4 having an inner diameter 18 mm × length 150 mm of the insertion hole 5 are used, and the thickness of the aluminum tube 4 is 2.0 mm. Then, a braided fiber composite wire 6 having an average outer diameter of 16 mm is inserted into the insertion hole 5 of the composite sleeve 9 (the average outer diameter is formed because the cross section is formed in an elliptical shape), and the processing rate is 10.5. The composite sleeve 9 was extruded through the processing hole 8 of the extrusion die 7 and subjected to pressure bonding processing in the above-described manner while changing within a range of ˜17.0%.
[0031]
The fixing structure at the end of the fiber composite wire obtained as described above is subjected to a tensile test in the same manner as when the thickness of the aluminum tube 4 is changed, and fixing efficiency (breaking load after fixing and The ratio to the average breaking strength of the fiber composite wire was investigated. For comparison, when only the metal sleeve 2 was used, the crimping process was performed in the same manner, and the fixing efficiency was investigated by a tensile test. The results of these investigations are shown in FIG.
[0032]
As is apparent from FIG. 6, in the present invention in which the processing rate is 11.5 to 17.0%, a fixing efficiency of 80% or more is obtained, but when the processing rate is 11.0% or less, it is between the metal sleeve 2. Slip was generated and the fixing efficiency was about 60%. On the other hand, when the processing rate exceeds 17%, the fixing efficiency tends to decrease to 80% or less, although it may depend on the thickness of the aluminum tube 4. In the case where the aluminum tube 4 was not provided, the fixing efficiency was about 80% when the processing rate was 10 to 11%. However, when the processing rate was less than 10, slipping occurred between the metal sleeve 2 and about 60%. The fixing efficiency was reduced to 80% or less even when the processing rate exceeded 11%.
[0033]
In the above example, the metal sleeve 2 having a length of 150 mm is used. However, in the present invention, a practical length of 100 to 300 mm is sufficiently practical.
[0034]
In the above example, a carbon steel sleeve for mechanical structure is used as an example of the metal sleeve 2, but a high-strength steel sleeve formed of high-strength steel having a tensile strength of 800 MPa or more can be used. If the tensile strength is 800 MPa or more, the outer diameter can be reduced by about 10% as compared with the carbon steel sleeve for mechanical structure. In order to make it more stable and compact, it is desirable to use a high-strength steel sleeve having a tensile strength of 1000 MPa or more.
[0035]
Further, in the fixing method of the fiber composite wire end by extrusion using the high-strength steel sleeve as described above, the outer periphery of the high-strength steel sleeve has an inner diameter shape along the cross-sectional outer shape of the high-strength steel sleeve. It is desirable to provide and extrude the cylinder 12 (shown by a two-dot chain line in FIG. 3). By extruding in this manner, the extrusion direction of the high-strength steel sleeve is determined, and even if the extrusion load is uneven, it can be smoothly extruded.
[0036]
Next, the attachment structure of the fiber composite wire fixed to the fixing structure 1 at the end of the fiber composite wire having the above structure will be described with reference to FIG. FIG. 7 is a front sectional view showing an attachment structure in which a plurality of fiber composite wires 6 including the fixing structure 1 at the end of the fiber composite wire are attached to an anchor head (fixing plate). FIG. 8 is a view of the anchor head of FIG. 9 is an enlarged cross-sectional view, and FIG. 9 is a view taken in the direction of arrows BB in FIG.
[0037]
The anchor head 13 has a screw formed on the outer peripheral surface, and a fixing nut 14 is screwed to the male screw. In the anchor head 13, 19 fiber composite wires 6 having the fixing structure 1 at the end of the fiber composite wire are attached in this example, and a presser plate 15 is attached to the end group of the metal sleeve 2 after the attachment. After fixing, the cap 16 is attached by being screwed onto the external thread of the anchor head 13. An overlap pipe 17 and a main pipe 18 are attached to the outer periphery of the anchor head 13 on the fiber composite wire 6 group side to seal the fiber composite wire 6 group attached to the anchor head 13. Then, it is attached to a fixing portion of a structure (an anchor portion such as a bridge) which is formed in such a structure and is not shown via a fixing nut 14.
[0038]
In addition, as shown in FIGS. 8 and 9, 19 through holes 19 for inserting and attaching the fiber composite wire 6 are opened in the anchor head 13 in this example. An accommodation hole 20 having an inner diameter capable of accommodating the metal sleeve 2 is formed concentrically on the back side of the anchor head 13 of the through hole 19, and the distal end side of the metal sleeve 2 is accommodated and locked in the accommodation hole 20. To do.
[0039]
The depth h of the housing hole 20 is preferably such that about half the length of the metal sleeve 2 is filled. When the depth h is less than 1/10, the portion of the metal sleeve 2 that receives the most load is the housing hole 20. Since it goes out of the area, the effect of suppressing the bulging of the part cannot be expected. On the other hand, the depth h of the accommodation hole 20 may be set to a depth at which the entire length of the metal sleeve 2 is buried, but the thickness of the anchor head 13 is not necessary depending on the number of fiber composite wires 6 attached to the anchor head 13 (particularly when the number is small). It becomes thicker and it becomes impossible to reduce the weight. In addition, it is impossible to expect a compact fixing portion of a structure not shown which is formed and attached in such a structure.
[0040]
In the above example, the case where the anchor head 13 is used has been described as an example. However, instead of the anchor head, the through hole 19 and the accommodation hole 20 may be directly formed and attached to a bearing plate such as a concrete formwork.
[0041]
【The invention's effect】
As described above, according to the fixing structure of the end portion of the fiber composite wire according to the present invention, by fixing the fiber composite wire through the metal filler material in the metal sleeve, it does not come out of the metal sleeve. Further, the fixing structure of the end portion of the fiber composite wire having high fixing efficiency can be obtained.
[0042]
In addition, according to the fixing formation method for the end portion of the fiber composite wire according to the present invention, it is possible to smoothly extrude and fix the metal sleeve to the end portion of the fiber composite wire with a stable fixing efficiency. Can do.
[0043]
Further, according to the fixing structure of the fixed fiber composite wire according to the present invention, even if the outer diameter of the metal sleeve is formed as small as possible to form the terminal fixing of the fiber composite wire, Can be attached to the fixing plate without bulging (buckling), and the fixing portion can be made compact.
[Brief description of the drawings]
1A and 1B are explanatory views of a fixing structure of an end portion of a fiber composite wire according to the present invention, in which a is a front sectional view partially showing a section, and b is an AA sectional view of a.
FIG. 2 is an explanatory diagram for explaining a fixing formation method for an end portion of a fiber composite wire according to the present invention.
FIG. 3 is an explanatory diagram for explaining a fixing formation method for an end portion of a fiber composite wire according to the present invention.
FIG. 4 is an explanatory diagram of a tensile test state of a fixing structure at an end portion of a fiber composite wire according to the present invention.
FIG. 5 is a graph showing a comparison between the thickness of the aluminum pipe and the fixing efficiency of the fixing structure at the end of the fiber composite wire according to the present invention and the fixing structure at the end of the fiber composite wire without the aluminum pipe according to the present invention. It is.
FIG. 6 is a graph showing a comparison between the extrusion rate and the fixing efficiency of the fixing structure of the end portion of the fiber composite wire according to the present invention and the fixing structure of the end portion of the fiber composite wire without an aluminum tube. .
FIG. 7 is a front sectional view showing an attachment structure in which a plurality of fiber composite wires each having a fixing structure at the end of a fiber composite wire according to the present invention are attached to an anchor head.
8 is an enlarged cross-sectional view of the anchor head of FIG.
FIG. 9 is a view taken along arrow BB in FIG. 8;
[Explanation of symbols]
1: fixing structure of fiber composite wire end part 2: metal sleeve 3: insertion hole 4: aluminum tube 5: insertion hole 6: fiber composite wire 7: extrusion die 8: processing hole 9: composite sleeve 10: extrusion device 11: support Pressure plate 12: Reinforcing cylinder 13: Anchor head 14: Fixing nut 15: Presser plate 16: Cap 17: Overlap pipe 18: Main pipe 19: Through hole 20: Housing hole

Claims (10)

繊維複合線材端部に金属スリーブが縮径して圧着されてなる繊維複合線材端部の定着構造において、金属スリーブと繊維複合線材との間に、肉厚0.7〜4mmの延性に優れる金属フィラー材を介在して定着してなることを特徴とする繊維複合線材端部の定着構造。Metal having excellent ductility with a wall thickness of 0.7 to 4 mm between the metal sleeve and the fiber composite wire in the fixing structure of the fiber composite wire made by shrinking the diameter of the metal sleeve at the end of the fiber composite wire A fixing structure of an end portion of a fiber composite wire material, wherein the fixing structure is fixed through a filler material. 金属フィラー材が、アルミニウムやその合金である請求項1記載の繊維複合線材端部の定着構造。2. The fixing structure of an end portion of a fiber composite wire according to claim 1, wherein the metal filler material is aluminum or an alloy thereof. 金属スリーブが、引張強度800MPa以上の高強度鋼で形成されてなる請求項1又は2に記載の繊維複合線材端部の定着構造。The fixing structure of an end portion of a fiber composite wire according to claim 1 or 2, wherein the metal sleeve is made of high strength steel having a tensile strength of 800 MPa or more. 金属スリーブの断面外形形状が多角形である請求項1乃至3のいずれかに記載の線材端部の定着構造。4. The fixing structure of a wire end part according to claim 1, wherein the cross-sectional outer shape of the metal sleeve is a polygon. 外周面の先端がダイスのアプローチ面に沿う形状に形成された金属スリーブの挿入孔に肉厚1〜6mmの延性に優れる金属フィラー材を挿入し、その金属フィラー材の内径部に繊維複合線材端部を挿入した後、ダイスを通して加工率11.5〜17%で押出し、金属スリーブを縮径加工して繊維複合線材端部に圧着することを特徴とする繊維複合線材端部の定着形成方法。Insert a metal filler material having excellent ductility with a thickness of 1 to 6 mm into the insertion hole of the metal sleeve formed so that the tip of the outer peripheral surface follows the approach surface of the die, and the end of the fiber composite wire at the inner diameter part of the metal filler material A method for fixing and forming a fiber composite wire rod end portion, comprising: inserting a portion and then extruding the die through a die at a processing rate of 11.5 to 17%, reducing the diameter of the metal sleeve, and crimping the end of the fiber composite wire rod. 金属スリーブが、引張強度800MPa以上の高強度鋼で形成されてなる請求項5記載の繊維複合線材端部の定着形成方法。The fixing method for fixing an end portion of a fiber composite wire according to claim 5, wherein the metal sleeve is made of high strength steel having a tensile strength of 800 MPa or more. 高強度鋼スリーブの外周に、高強度鋼スリーブの断面外形形状に沿う内径形状を備える補強用筒体を設けて押出す請求項6記載の繊維複合線材端部の定着形成方法。The method for forming a fixing of an end portion of a fiber composite wire according to claim 6, wherein a reinforcing cylindrical body having an inner diameter shape along a cross-sectional outer shape of the high-strength steel sleeve is provided on the outer periphery of the high-strength steel sleeve and extruded. 請求項1乃至4のいずれかに記載の繊維複合線材端部の定着構造を備える繊維複合線材を受け材に取付ける取付け構造であって、前記受け材が、繊維複合線材を挿通する貫通孔とこの貫通孔の受け材背面側に金属スリーブを収容する収容孔とを同心に備えるものであることを特徴とする、定着された繊維複合線材の取付け構造。An attachment structure for attaching to a fiber composite wire comprising a fixing structure at the end of the fiber composite wire according to any one of claims 1 to 4, wherein the receiving material has a through-hole through which the fiber composite wire is inserted and this A fixing structure for a fixed fiber composite wire, characterized in that a receiving hole for receiving a metal sleeve is provided concentrically on the back side of the receiving member of the through hole. 受け材が、定着具のアンカースリーブである請求項8に記載の定着された繊維複合線材の取付け構造。9. The fixing structure for a fixed fiber composite wire according to claim 8, wherein the receiving material is an anchor sleeve of a fixing tool. 受け材が、コンクリート型枠における支圧板である請求項8に記載の定着された繊維複合線材の取付け構造。The fixing structure for a fixed fiber composite wire according to claim 8, wherein the receiving material is a bearing plate in a concrete formwork.
JP2003035381A 2003-02-13 2003-02-13 Fixing structure and fixing forming method of fiber composite wire end, and fixing structure of fixed fiber composite wire Expired - Fee Related JP4068982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003035381A JP4068982B2 (en) 2003-02-13 2003-02-13 Fixing structure and fixing forming method of fiber composite wire end, and fixing structure of fixed fiber composite wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003035381A JP4068982B2 (en) 2003-02-13 2003-02-13 Fixing structure and fixing forming method of fiber composite wire end, and fixing structure of fixed fiber composite wire

Publications (2)

Publication Number Publication Date
JP2004244750A JP2004244750A (en) 2004-09-02
JP4068982B2 true JP4068982B2 (en) 2008-03-26

Family

ID=33020819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003035381A Expired - Fee Related JP4068982B2 (en) 2003-02-13 2003-02-13 Fixing structure and fixing forming method of fiber composite wire end, and fixing structure of fixed fiber composite wire

Country Status (1)

Country Link
JP (1) JP4068982B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105971288B (en) * 2016-07-06 2018-04-06 中国京冶工程技术有限公司 Integral type intermediate plate type anchor device structure device and its assemble method
CN107268459B (en) * 2017-06-19 2023-08-11 桂林理工大学 Construction method for prestressed fiber cloth reinforced concrete pier column
CN109112977B (en) * 2018-09-04 2024-01-16 南京林业大学 Rapid prestress reinforced bridge body structure and method
CN114214937B (en) * 2021-11-23 2023-09-08 上海浦江缆索股份有限公司 Method for improving anchoring uniformity of carbon fiber inhaul cable
CN114214938B (en) * 2021-11-23 2023-11-14 上海浦江缆索股份有限公司 Anchoring strength improving method for carbon fiber inhaul cable
CN114214936B (en) * 2021-11-23 2023-11-24 上海浦江缆索股份有限公司 Carbon fiber inhaul cable good in anchoring effect and even in stress

Also Published As

Publication number Publication date
JP2004244750A (en) 2004-09-02

Similar Documents

Publication Publication Date Title
RU2372697C1 (en) Installation of joined power transmission cables
JP6235041B2 (en) Rope terminal fixing method, rope with terminal fixing tool, and end fitting for use in rope terminal fixing method
US5211500A (en) Composite rope having molded-on fixing member at end portion thereof
JP2002235291A (en) Individually protected strand, and its manufacturing process
US11329467B2 (en) Termination arrangement for an overhead electrical cable
CA2013886C (en) Method for forming fixing end portion of composite rope and composite rope having fixing end portion
JP4068982B2 (en) Fixing structure and fixing forming method of fiber composite wire end, and fixing structure of fixed fiber composite wire
CN107447757B (en) A kind of Extruded anchoring tool and anchoring process of FRP tendons
JP3692123B2 (en) Cable terminal fixing portion and manufacturing method thereof
CN106320609B (en) Steel strand inhaul cable and manufacturing method thereof
CN112593660A (en) Extrusion anchorage sleeve inhaul cable and manufacturing method thereof
JPH1082178A (en) Cable end fixing method and cable end fixing structure
JPH0533425A (en) Fixing end part of pc steel stranded wire
JP2772358B2 (en) Terminal fixing method and terminal fixing device for fiber composite material
JP2006286333A (en) End fixing structure for frp rod
KR101178574B1 (en) Barrel type cable anchorage apparatus with compression grip of strand
JP2001107507A (en) Fixing part structure of pc steel product and buffer material injection method in fixing part of pc steel product
CN216739275U (en) Carbon fiber rib for inhaul cable and anchoring structure thereof
CN220867983U (en) Semi-parallel carbon fiber rib inhaul cable
CN210134589U (en) Firm round anchor type stranded wire connector
JPH05161238A (en) Clamping method of fiber reinforced overhead transmission wire
JPH0790788A (en) Method for fixing terminal of frp tension material composed of twisted high-tenacity fiber
JP3462923B2 (en) Terminal fixing method of multilayer fiber composite cable
CN105098686A (en) Wire clamp
JPH08135090A (en) Terminal anchor section formation method for high strength fiber composite tendon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4068982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees