JP2004130753A - Melt type thermal transfer image receiving paper - Google Patents

Melt type thermal transfer image receiving paper Download PDF

Info

Publication number
JP2004130753A
JP2004130753A JP2002299868A JP2002299868A JP2004130753A JP 2004130753 A JP2004130753 A JP 2004130753A JP 2002299868 A JP2002299868 A JP 2002299868A JP 2002299868 A JP2002299868 A JP 2002299868A JP 2004130753 A JP2004130753 A JP 2004130753A
Authority
JP
Japan
Prior art keywords
thermal transfer
receiving paper
type thermal
transfer image
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002299868A
Other languages
Japanese (ja)
Inventor
Hiroshi Enomoto
榎本 洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshinbo Holdings Inc
Original Assignee
Nisshinbo Industries Inc
Nisshin Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshinbo Industries Inc, Nisshin Spinning Co Ltd filed Critical Nisshinbo Industries Inc
Priority to JP2002299868A priority Critical patent/JP2004130753A/en
Publication of JP2004130753A publication Critical patent/JP2004130753A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a melt type thermal transfer image receiving paper with excellent carrying properties, which can fully exhibit characteristics, even with a printer equipped with a carrying roller of a small load, for obtaining high quality printability by a melt type thermal transfer method which has a high cushion property that a porous ink receiving layer is provided with and can keep a smoothing property following the thermal head pressure. <P>SOLUTION: In the melt type thermal transfer image receiving paper in which a porous ink receiving layer composed mainly of a resin and a pigment is provided on one face of a substrate, while a rear face processing layer formed by coating an aqueous coating fluid containing an aqueous binder resin and an organic filler is provided on the other face of the substrate, fillers having an average particle size equivalent to 0.5 to 50 times the average hole diameter of the surface of the ink receiving layer are used as an organic filler. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は熱転写受像紙に関し、さらに詳しくは、基材上に多孔質のインク受理層を有し、クッション性が大きく、印字性に良好であるという特性を有しながら、滑り性に優れ、特に、溶融型熱転写プリントに適した受像紙に関するものである。
【0002】
【従来の技術】
最近、カラープリンターの使用形態が大きく広がりを見せ、何時何処でも印画可能なモバイルプリンターが注目されている。モバイルプリンターとは、オフィス向けのレーザープリンタや家庭用のインクジェットプリンタのような据置型とは異なり、持ち運びが容易な小型のプリンターをいい、中には携帯可能な電池駆動の超小型サイズも現れてきた。
従来、熱転写記録方式のプリンターに用いる受像紙には、その搬送性(重送がないスムースな走行性)を向上させたものが知られている。溶融型熱転写受像紙では、受像層面と裏面との摩擦係数を低減させるために、無機微粉末(無機フィラー)を使用せずにシリコン−アクリル樹脂で滑り性の良好な裏面を形成した受像紙が提案されている(例えば特許文献1を参照)。また、昇華型熱転写受像紙でも、バックコート層(裏面)に有機フィラーを含有させて特定の表面粗さにし、さらに必要に応じてすることにより、重送を抑制する受像紙が提案されている(例えば特許文献2を参照)。
【0003】
【特許文献1】
特開平7−223384号公報
【特許文献2】
特開平9−123623号公報
【0004】
しかしながら、小型、軽量で電源に制約があるモバイルプリンターでは、搬送ローラーの荷重は通常のプリンターに比べて小さいため、上記の文献に提案されている従来の熱転写受像紙では適度な搬送性が確保できにくく、重送されることによってプリンターの印画部へ送られた受像紙の位置が不安定となることがあり高品位の印画には不向きであった。
また、表面にシリコン等の離型層を設けることができる昇華型熱転写受像紙であれば、表面離型層自体が受像紙表裏間の滑り性を向上させる構成にもなりうるのであるが、受像層表面にインクを付着させる溶融型熱転写受像紙では、表面に離型層を設けることは機構上困難である。
【0005】
【発明が解決しようとする課題】
本発明は、多孔質のインク受理層の有する、クッション性が大きく、サーマルヘッドの圧力に追随して平滑性を保てるという、溶融型熱転写方式で高品位の印画性を得るための特性を、荷重の小さい搬送ローラーを備える、モバイルプリンターのようなプリンターでも十分に発揮することができる、優れた搬送性を有する溶融型熱転写受像紙を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明者は、前記の荷重の小さい搬送ローラーを備えるプリンターでも良好な搬送性を発現できる溶融型熱転写受像紙を開発すべく鋭意研究を重ねた結果、多孔質のインク受理層の表面の孔の平均孔径との関係において、特定された平均粒径の有機フィラーを含有する裏面処理層を設けることにより、その目的を達成し得ることを見出した。
本発明は、かかる知見に基づいて完成したものである。
【0007】
すなわち、本発明は、
(1)基材の一方の面に主として樹脂と顔料とからなる多孔質のインク受理層を設け、他方の面に水系のバインダー樹脂と有機フィラーとを含む水性の塗工液を塗工することにより形成された裏面処理層を設けてなる溶融型熱転写受像紙において、有機フィラーがインク受理層表面の孔の平均孔径の0.5〜50倍に相当する平均粒径のフィラーであることを特徴とする溶融型熱転写受像紙、
(2)インク受理層表面の孔の平均孔径が0.05〜10μmである上記(1)の溶融型熱転写受像紙、
(3)インク受理層が、湿式凝固法で形成された層である上記(1)又は(2)の溶融型熱転写受像紙、
(4)裏面処理層の形成に用いられる水性の塗工液に含まれる水系のバインダー樹脂が、ガラス転移温度−20℃以上80℃以下の樹脂である上記(1)〜(3)のいずれかの溶融型熱転写受像紙、
(5)裏面処理層の形成に用いられる水性の塗工液に含まれる水系のバインダー樹脂が、コロイダルシリカ複合体エマルジョンである上記(1)〜(4)のいずれかの溶融型熱転写受像紙、
(6)裏面処理層の形成に用いられる水性の塗工液に含まれる有機フィラーが、ポリオレフィン系のフィラーである上記(1)〜(5)のいずれかの溶融型熱転写受像紙、(7)裏面処理層の形成に用いられる水性の塗工液に含まれる有機フィラーが球状である(1)〜(6)のいずれかの溶融型熱転写受像紙、
(8)モバイルプリンター用である上記(1)〜(7)のいずれかの溶融型熱転写受像紙、を提供するものである。
【0008】
【発明の実施の形態】
本発明の溶融型熱転写受像紙においては、基材の一方の面には、主として樹脂と顔料とからなる多孔質のインク受理層を設ける。
本発明においては、基材は、シート状のものであればよく、特に限定されるものではない。紙、プラスチックフィルム、不織布等の種々のものが使用可能である。
紙は、平滑化処理をしたものや、コーティングを施したものでも良い。また、多孔質のインク受理層を湿式凝固法で設ける場合には、紙は、樹脂を含浸又はラミネートして、耐水性を持たせたものであってもよい。
【0009】
プラスチックフィルムは、一般的な熱可塑性樹脂フィルムから選択することが可能であり、内部に空隙を設けたもの、フィラーを添加して不透明にしたものでもよい。例えば、ポリオレフィン樹脂に炭酸カルシウム等のフィラーを練り込んで空隙を設けたもの、ポリエステル樹脂に酸化チタン、硫酸バリウム等のフィラーを練り込んで空隙を設けた合成紙を使用することができ、単層から多層のものがある。
ポリエチレンや、ポリプロピレン等のポリオレフィン樹脂を用いたものが、ポリエステル樹脂よりも軟らかく、さらに、内部に空隙を有しているものがクッション性の面から好ましい。基材が軟らかいものは、プリント時にヘッドとの密着性が向上し、色の薄い部分の濃度が高くなる特徴を有する。
また、密着性や濡れ性を向上させるため、コロナ処理や易接着処理を施したものでもよい。
なお、ここでいうプラスチックフィルムには、合成紙と称されるものも含まれる。
基材の厚さは10〜400μm、好ましくは12〜300μmである。
【0010】
インク受理層は、画像の電気信号に応じてサーマルヘッドから供給される熱により、液体上になって転写されるインクを受容し、像を形成する層である。
インク受理層は主として樹脂および顔料よりなり、樹脂は接着剤としておよびインクとの親和性を向上させるために用い、顔料はインク親和性向上、不透明度向上のために用いる。
インク受理層に用いる樹脂としては、例えば、アクリル樹脂、塩化ビニル樹脂、塩化ビニル−酢酸ビニル共重合体、ポリエステル樹脂、エチレン−酢酸ビニル共重合体、ウレタン樹脂、ポリビニルブチラール樹脂が挙げられる。
一方、インク受理層に用いる顔料としては、酸化チタン、タルク、焼成カオリン、クレー、炭酸カルシウム、けいそう土、水酸化アルミニウム、シリカ、ポリスチレン、ポリメタクリレート等の有機及び無機のものが挙げられる。インク受理層の平坦性を向上させるためには、顔料の平均粒径は10μm以下、好ましくは5μm以下がよい。
【0011】
本発明の溶融型熱転写受像紙においては、インク受理層は多孔質の層であり、
そのインク受理層表面の孔の平均孔径は、0.05〜10μmが好ましい。
平均孔径はクッション性と受理層強度に関係があり、平均孔径が0.05μm未満の場合、個々の空隙が小さくクッション性が不足する恐れがあり、10μmよりも大きい場合は、空隙率を大きくした場合に強度が不足し表層が脆くなってしまう恐れがある。また、孔の部分にはインクのドットが転写しないため、印画後の濃度が低くなってしまう恐れがある。
【0012】
層を多孔質とする方法としては、孔の細かさ、平坦性の得やすさから、湿式凝固法が有効である。
湿式凝固法は、例えば溶媒に樹脂を溶解したものに顔料を添加して基材に塗工後、前記溶媒は溶解するが樹脂は溶解しない液中に通して凝固させ、60℃以上好ましくは80℃以上の熱浴に通した後、乾燥して製造するもので、溶媒として例えばジメチルホルムアミド、樹脂が溶解しない液として水が挙げられる。
湿式凝固法に用いられる樹脂としては、アクリロニトリル−スチレン共重合樹脂、スチレン樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、塩化ビニル−酢酸ビニル共重合樹脂、飽和ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂等が挙げられ、疎水性のものが好ましい。
【0013】
インク受理層の厚みは1〜80μm、特に5〜50μmが好ましい。インク受理層の厚みは、見掛けの空隙率と関係があり、厚みが厚いと溶剤の脱離・蒸発が悪くなり、空隙率が低くなってしまう恐れがあり、厚みが薄すぎると空隙率を大きくした場合、強度が不足し表層が脆くなってしまう。
インク受理層には、樹脂,顔料以外に、消泡剤,界面活性剤,可塑剤、帯電防止剤、湿潤剤、蛍光増白剤等を適宜添加してもよい。また、摩擦係数を調整するために、ワックス,シリコン等の滑り剤、シリカ等のスリップ防止剤を添加してもよい。
基材とインク受理層の間には、接着強度を増すためのアンカーコート層やクッション性を増すための中間層を設けてもよい。
【0014】
本発明の溶融型熱転写受像紙においては、基材のインク受理層を設けた面(表面)とは反対の面(裏面)に、水系のバインダー樹脂と有機フィラーとを含む水性の塗工液を塗工することにより形成された裏面処理層を設ける。
水系のバインダー樹脂は、基材に対する密着性がよいものであればその種類は問わないが、具体的には、アクリル樹脂、スチレン−ブタジエン樹脂、ウレタン樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ポリエステル樹脂、シリコン樹脂、等を挙げることができる。またアクリル−シリコン樹脂のようなグラフト重合等の複合化をしたものを用いてもよい。さらにこの樹脂がコロイダルシリカ複合体エマルジョンであるとの点でより好ましい。
また、水系のバインダー樹脂は、ガラス転移温度(以下、Tgと省略)が−20℃以上80℃以下である樹脂が好ましく、Tgが−20℃未満では樹脂自体が軟らかすぎてべた付き、かえって搬送性を減じてしまう恐れがあり、80℃を超えると、裏面処理層が硬くなり受像紙を曲げた際に裏面処理層にひび割れが生ずる恐れがある。
【0015】
裏面処理層のみによって従来の受像紙以上の搬送性を付与するために、裏面処理層に有機フィラーを添加する。搬送性は、無機フィラーによっても得られるが、その硬度の高さゆえ、受像紙を積層したときに受像紙表面に傷がをつける恐れがあるため、無機フィラーより柔らかい有機フィラーを用いる。有機フィラーとしては、ポリオレフィン系、ポリスチレン系、メラミン系、アクリル系、シリコーン系樹脂等の有機フィラーを挙げることができる。
有機フィラーは球状であり、かつその平均粒径は多孔質のインク受理層表面の孔の平均孔径の0.5〜50倍であることが望ましい。0.5倍以上であれば、有機フィラーによって凹凸が形成された裏面と多孔の表面の間の接触面積を減らすことが可能となり、フィラーの粒子によって形成された凹凸が多孔の表面に対する滑剤として機能するが、0.5倍未満であると、搬送性の向上にはさほど寄与しない。この理由は明らかではないが、裏面上の有機フィラーによる凹凸が受像層表面の孔に引っ掛かる度合いが増加するためと推定される。一方、50倍を超えるとプリントの給紙の際にインク受理層と裏面処理層が擦られ、裏面の有機フィラーが脱落しやすくなる。
【0016】
裏面処理層に有機フィラーの他に、帯電防止剤、湿潤剤、界面活性剤、蛍光増白剤等を適宜添加してもよい。
裏面処理層の厚みは、基材の粗さによっても異なるが、0.01〜15μmが好ましく、経済性を考慮すると特に0.05〜7μmが好ましい。0.01μm未満では、傷防止効果が低く、15μmを超えるとひび割れや密着性が劣る等の好ましくないことが起こる恐れがある。
裏面処理層の平均表面粗さ(Ra)は、基材の粗さによっても異なるが、0.20〜0.60μmが好ましい。0.20μm未満となると裏面の平滑性が高くなり、インク受理層との接触面積が広すぎ、受像紙同士が密着し重送が起こる。0.60μmを超えると給紙の際、裏面に接触したインク受理層に擦れ跡がつきやすくなる。
インク受理層や裏面処理層の塗工方法としては、公知のリバースロールコート、エアナイフコート、グラビアコート、ブレードコート、コンマコート等種々の方法で塗工し、乾燥する方法の何れもが使用できる。
【0017】
【実施例】
次に、本発明を実施例によりさらに詳しく説明するが、本発明は、これらの例によってなんら限定されるものではない。
なお、受像紙の性能は、以下に示す要領に従って評価した。
【0018】
(1)インク受理層表面の孔の孔径
マイクロスコープ(キーエンス社製)による透過観察で確認し、汎用画像処理ソフトNS2KPro(ナノシステム社製)により測定した。
(2)裏面処理層に使用した有機フィラーの平均粒径
BET法により測定した。
(3)プリント適性
溶融型熱転写モバイルプリンター〔SHARP社製、商品名:デジタルビデオカメラビューカムVL−FD1〕でテストパターンを撮影し、これをカードベースでプリントして、受像紙の搬送性を調査した。
○:受像紙のスムースな走行性により高品位印画可能
△:印画可能だが各インクの色ズレを生ずる
×:受像紙の重送により印画が困難
(4)耐擦疵性(擦れ疵の度合い)
プリント適正評価後の受像紙のインク受理層を目視観察し、擦れ疵の度合いを、次の基準で評価した。
1:弱〜無
2:中
3:強
【0019】
実施例1
基材としての厚さ97μmの白色ポリエステルフィルム〔帝人デュポン社製、商品名:メリネックス339〕の片面(表面)に、下記組成のアンカーコート層用塗工液−Aを塗工・乾燥し、厚さ1〜2μmのアンカーコート層を形成した。
アンカーコート層用塗工液−A
(1) スチレン−アクリル樹脂エマルジョン〔BASFディスパージョン社製、商品名:クロナールYJ−2721D、固形分46%〕37重量部
(2) シリカ〔水澤化学工業社製、商品名:ミズカシルP−801、平均粒径2.6μm〕2重量部
(3) 潤滑剤〔サンノプコ社製、商品名:SN WET366〕1重量部
(4) 消泡剤〔サンノプコ社製、商品名:SNデフォーマー480〕0.02重量部
(5) 水59重量部
【0020】
次いで、このアンカーコート層の上に、下記組成のインク受理層用塗工液−Bを塗工したのち、20℃の水に1分間、更に90℃の湯に5秒間浸漬し、水切り乾燥して、厚さ30μmのインク受理層を形成した。
インク受理層用塗工液−A
(1) 塩化ビニル−酢酸ビニル共重合樹脂〔日信化学工業社製、商品名:ソルバインC〕18重量部
(2) 炭酸カルシウム〔丸尾カルシウム社製、商品名:軽質炭酸カルシウム、平均粒径2μm〕11重量部
(3) 疎水性シリカ〔日本アエロジル社製、商品名:アエロジルR−972、平均粒径16nm〕4重量部
(4) ジメチルホルムアミド67重量部
【0021】
その後、他の面(裏面)に、下記組成の裏面処理層用塗工液−Aを塗工・乾燥して、厚さ3μmの裏面処理層を形成し、受像紙を得た。
裏面処理層用塗工液−A
(1) アクリル酸エステル共重合体コロイダルシリカ水性エマルジョン〔ヘキスト合成社製、商品名:モビニール8020、Tg:−17℃〕52.8重量部
(2) ポリオレフィン水性ディスパージョン〔三井化学工業社製、商品名:ケミパールW−500、平均粒径:2.5μm〕21重量部
(3) 湿潤剤〔日信化学工業社製、商品名:オルフィンSTG〕0.03重量部
(4) 消泡剤〔サンノプコ社製、商品名:SNデフォーマ480〕0.03重量部
(5) 帯電防止剤〔日本油脂社製、商品名:エレガンTOF−4530〕3重量部
(6) 水38.8重量部
【0022】
実施例2
下記組成の裏面処理層用塗工液−Bを使用して厚さ4μmの裏面処理層を形成した以外は、実施例1と同様にして、受像紙を得た。
裏面処理層用塗工液−B
(1) 不飽和共重合体ポリエステル〔東洋紡社製、商品名:バイロナールMD1500、Tg:77℃〕61.0重量部
(2) ポリエチレンワックス〔クラリアントジャパン社製、商品名:セリダリスト3620、平均粒径:8.5μm〕6.6重量部
(3) 水32.4重量部
【0023】
実施例3
基材としての厚さ130μmの白色ポリプロピレンフィルム〔ユポコーポレーション社製、商品名:YUPO FPG#130〕の片面(表面)に、上記のアンカーコート層用塗工液−Aを塗工・乾燥し、厚さ1〜2μmのアンカーコート層を形成した。
次いで、このアンカーコート層上に、下記組成のインク受理層用塗工液−Bを塗工した後、20℃の水に1分間、更に90℃の湯に5秒間浸漬し、水切り後、乾燥して、厚さ20μmのインク受理層を形成した。
インク受理層用塗工液−B
(1) 塩化ビニル−酢酸ビニル共重合樹脂〔日信化学化学工業社製、商品名:ソルバインC〕13重量部
(2) ポリビニルブチラール樹脂〔積水化学工業社製、商品名:エスレックBMS〕3重量部
(3) ポリアクリロニトリル樹脂〔東邦テキスタイル社製、商品名:ベスロンW−241〕6重量部
(4) 蛍光増白剤〔三井東圧染料社製、商品名:Mikephor ERN conc〕0.05重量部
(5) ジメチルホルムアミド78重量部
その後、他の面(裏面)に、上記の裏面処理層用塗工液−Aを塗工・乾燥して、厚さ3μmの裏面処理層を形成し、受像紙を得た。
【0024】
比較例1
実施例1において、裏面処理層用塗工液−Aから(2)ポリオレフィン水性ディスパージョンを除いた以外は同様にして受像紙を得た。
【0025】
比較例2
下記組成の裏面処理層用塗工液−Bを使用して厚さ3μmの裏面処理層を形成した以外は同様にして受像紙を得た。
裏面処理層用塗工液−C
(1) 不飽和共重合体ポリエステル〔東洋紡社製、商品名:バイロナールMD1500、Tg:77℃〕61.0重量部
(2) ポリエチレンワックス〔クラリアントジャパン社製、商品名:セリダリスト3719、平均粒径:12μm〕6.6重量部
(3) 水32.4重量部
【0026】
比較例3
下記組成の裏面処理層用塗工液−Dを使用して厚さ3μmの裏面処理層を形成した以外は、実施例1と同様にして、受像紙を得た。
裏面処理層用塗工液−D
(1) アクリル酸エステル共重合体コロイダルシリカ水性エマルジョン〔ヘキスト合成社製、商品名:モビニール8020、Tg:−17℃〕52.8重量部
(2) シリカ〔水澤化学工業社製、商品名:ミズカシルP−801、平均粒径2.6μm〕8.4重量部
(3) 湿潤剤〔日信化学工業社製、商品名:オルフィンSTG〕0.03重量部
(4) 消泡剤〔サンノプコ社製、商品名:SNデフォーマ480〕0.03重量部
(5) 帯電防止剤〔日本油脂社製、商品名:エレガンTOF−4530〕3重量部
(6) 水 35.7重量部
【0027】
比較例4
下記組成の裏面処理層用塗工液−Eを使用して厚さ3μmの裏面処理層を形成した以外は、実施例3と同様にして、受像紙を得た。
裏面処理層用塗工液−E
(1) アクリル酸エステル共重合体コロイダルシリカ水性エマルジョン〔ヘキスト合成社製、商品名:モビニール8020、Tg:−17℃〕52.8重量部
(2) ポリオレフィン水性ディスパージョン〔三井化学工業社製、商品名:ケミパールW−900、平均粒径:0.6μm〕21重量部
(3) ポリエチレンワックス〔クラリアントジャパン社製、商品名:セリダリスト3620、平均粒径:8.5μm〕8.4重量部
(4) 湿潤剤〔日信化学工業社製、商品名:オルフィンSTG〕0.03重量部
(5) 消泡剤〔サンノプコ社製、商品名:SNデフォーマー480〕0.03重量部
(5) 帯電防止剤〔日本油脂社製、商品名:エレガンTOF−4530〕3重量部(6) 水38.8重量部 下記組成の裏面処理層用塗工液−Fを使用して厚さ3μmの裏面処理層を形成した以外は、実施例1と同様にして、受像紙を得た。
裏面処理層用塗工液−F
(1) シリコン−アクリル樹脂分散品〔新中村化学工業社製、商品名:DK−7800〕70重量部
(2) アクリル酸エステル共重合体コロイダルシリカ水性エマルジョン〔ヘキスト合成社製、商品名:モビニール8020、Tg:−17℃〕25重量部
(3)帯電防止剤〔日本油脂社製、商品名:エレガンTOF−4530〕5重量部
【0028】
上記実施例1〜3及び比較例1〜7で得られた受像紙のそれぞれについて、(1)測定・評価したインク受理層表面の孔の平均孔径、(2)裏面処理層に使用した有機フィラーの平均粒径及び該平均粒径とインク受理層表面の孔の平均孔径との比率、(3)プリント適性(4)耐擦疵性を第1表に示す。
【0029】
【表1】

Figure 2004130753
【0030】
【発明の効果】
本発明の溶融型熱転写受像紙は、多孔質のインク受理層の有する、クッション性が大きく、サーマルヘッドの圧力に追随して平滑性を保てるという、溶融型熱転写方式で高品位の印画性を得るための特性を、荷重の小さい搬送ローラーを備えるプリンターでも十分に発揮することができる、優れた搬送性を有するものである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thermal transfer image receiving paper, more specifically, having a porous ink receiving layer on a substrate, a large cushioning property, while having the property of good printability, excellent in slipperiness, especially The present invention relates to an image receiving paper suitable for fusion-type thermal transfer printing.
[0002]
[Prior art]
In recent years, the use of color printers has greatly expanded, and mobile printers that can print anytime and anywhere have attracted attention. Mobile printers are small printers that are easy to carry, unlike stationary printers such as laser printers for office use and inkjet printers for home use. Was.
2. Description of the Related Art Conventionally, there is known an image receiving paper used for a printer of a thermal transfer recording system in which the transportability (smooth running performance without double feed) is improved. In the fusion type thermal transfer image receiving paper, in order to reduce the coefficient of friction between the image receiving layer surface and the back surface, an image receiving paper having a smooth back surface formed of silicon-acrylic resin without using inorganic fine powder (inorganic filler) is used. It has been proposed (see, for example, Patent Document 1). Further, as for the sublimation type thermal transfer image receiving paper, an image receiving paper has been proposed in which a back coat layer (back surface) contains an organic filler to have a specific surface roughness, and furthermore, if necessary, suppresses double feeding. (See, for example, Patent Document 2).
[0003]
[Patent Document 1]
JP-A-7-223384 [Patent Document 2]
Japanese Patent Application Laid-Open No. 9-123623
However, in mobile printers that are small, lightweight and have a limited power supply, the load on the transport roller is smaller than that of a normal printer, so that the conventional thermal transfer receiving paper proposed in the above-mentioned document can secure adequate transportability. However, the position of the image receiving paper sent to the printing unit of the printer may become unstable due to the double feeding, which is not suitable for high quality printing.
In addition, in the case of a sublimation type thermal transfer image receiving paper that can be provided with a release layer such as silicon on the surface, the surface release layer itself may be configured to improve the slipperiness between the front and back of the image receiving paper. It is mechanically difficult to provide a release layer on the surface of a fusion-type thermal transfer image receiving paper on which ink is adhered to the layer surface.
[0005]
[Problems to be solved by the invention]
The present invention is based on the fact that the porous ink receiving layer has a large cushioning property and can maintain smoothness by following the pressure of the thermal head. It is an object of the present invention to provide a fusion-type thermal transfer image-receiving paper having excellent transportability, which can be sufficiently exerted by a printer such as a mobile printer having a transport roller having a small size.
[0006]
[Means for Solving the Problems]
The present inventor has conducted intensive studies to develop a fusion-type thermal transfer image receiving paper capable of expressing good transportability even in a printer including a transport roller having a small load, and as a result, the pores on the surface of the porous ink receiving layer have been developed. In relation to the average pore diameter, it has been found that the object can be achieved by providing a back surface treatment layer containing an organic filler having a specified average particle diameter.
The present invention has been completed based on such findings.
[0007]
That is, the present invention
(1) A porous ink receiving layer mainly composed of a resin and a pigment is provided on one surface of a base material, and an aqueous coating solution containing an aqueous binder resin and an organic filler is applied on the other surface. Wherein the organic filler is a filler having an average particle size equivalent to 0.5 to 50 times the average pore size of the pores on the surface of the ink receiving layer in the fusion type thermal transfer image receiving paper provided with the back surface treatment layer formed by the method described above. Fusing type thermal transfer image receiving paper,
(2) The fusion-type thermal transfer image-receiving paper of (1), wherein the average pore diameter of the pores on the surface of the ink receiving layer is 0.05 to 10 μm;
(3) The melt-type thermal transfer image-receiving paper according to (1) or (2), wherein the ink receiving layer is a layer formed by a wet coagulation method.
(4) Any one of the above (1) to (3), wherein the aqueous binder resin contained in the aqueous coating liquid used for forming the back surface treatment layer is a resin having a glass transition temperature of −20 ° C. to 80 ° C. Fusing type thermal transfer image receiving paper,
(5) The fusion type thermal transfer image-receiving paper according to any one of the above (1) to (4), wherein the aqueous binder resin contained in the aqueous coating solution used for forming the back surface treatment layer is a colloidal silica composite emulsion.
(6) The melt-type thermal transfer image-receiving paper according to any one of the above (1) to (5), wherein the organic filler contained in the aqueous coating solution used for forming the back surface treatment layer is a polyolefin-based filler; The melt-type thermal transfer image-receiving paper according to any one of (1) to (6), wherein the organic filler contained in the aqueous coating liquid used for forming the back surface treatment layer is spherical.
(8) An object of the present invention is to provide a fusion-type thermal transfer image-receiving paper according to any one of the above (1) to (7), which is used for a mobile printer.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
In the fusion type thermal transfer image-receiving paper of the present invention, a porous ink receiving layer mainly composed of a resin and a pigment is provided on one surface of the substrate.
In the present invention, the substrate may be a sheet-like substrate, and is not particularly limited. Various materials such as paper, plastic film, and nonwoven fabric can be used.
The paper may be subjected to a smoothing treatment or a coating. When the porous ink receiving layer is provided by a wet coagulation method, the paper may be impregnated or laminated with a resin to have water resistance.
[0009]
The plastic film can be selected from general thermoplastic resin films, and may be a film having voids therein or an opaque film by adding a filler. For example, a polyolefin resin kneaded with a filler such as calcium carbonate or the like to form voids, or a polyester resin kneaded with a filler such as titanium oxide or barium sulfate or the like and a synthetic paper provided with a void can be used. There are multiple layers.
Those using a polyolefin resin such as polyethylene or polypropylene are softer than the polyester resin, and those having voids inside are preferable from the viewpoint of cushioning properties. A soft base material has the characteristics that the adhesion to the head is improved during printing and the density of the lightly colored portion is increased.
Further, in order to improve the adhesion and the wettability, a material subjected to a corona treatment or an easy adhesion treatment may be used.
It should be noted that the plastic film referred to here includes what is called synthetic paper.
The thickness of the substrate is 10 to 400 μm, preferably 12 to 300 μm.
[0010]
The ink receiving layer is a layer that receives an ink transferred on a liquid by heat supplied from a thermal head according to an electric signal of an image and forms an image.
The ink receiving layer is mainly composed of a resin and a pigment. The resin is used as an adhesive and for improving the affinity with the ink, and the pigment is used for improving the ink affinity and opacity.
Examples of the resin used for the ink receiving layer include an acrylic resin, a vinyl chloride resin, a vinyl chloride-vinyl acetate copolymer, a polyester resin, an ethylene-vinyl acetate copolymer, a urethane resin, and a polyvinyl butyral resin.
On the other hand, examples of the pigment used in the ink receiving layer include organic and inorganic pigments such as titanium oxide, talc, calcined kaolin, clay, calcium carbonate, diatomaceous earth, aluminum hydroxide, silica, polystyrene, and polymethacrylate. In order to improve the flatness of the ink receiving layer, the average particle size of the pigment is preferably 10 μm or less, and more preferably 5 μm or less.
[0011]
In the fusion type thermal transfer image receiving paper of the present invention, the ink receiving layer is a porous layer,
The average pore diameter of the pores on the surface of the ink receiving layer is preferably 0.05 to 10 μm.
The average pore diameter is related to the cushioning property and the strength of the receiving layer. When the average pore diameter is less than 0.05 μm, the individual voids may be small and the cushioning property may be insufficient. When the average pore diameter is larger than 10 μm, the porosity is increased. In such a case, the strength may be insufficient and the surface layer may become brittle. In addition, since ink dots are not transferred to the holes, the density after printing may be low.
[0012]
As a method for making the layer porous, a wet coagulation method is effective from the viewpoint of fineness of pores and ease of obtaining flatness.
In the wet coagulation method, for example, a pigment is added to a solution in which a resin is dissolved in a solvent, and after coating on a substrate, the solvent is dissolved but the resin is passed through a liquid in which the resin does not dissolve, and coagulation is performed. It is manufactured by drying after passing through a heat bath at a temperature of not less than ℃, for example, dimethylformamide as a solvent, and water as a liquid in which the resin is not dissolved.
Examples of the resin used in the wet coagulation method include acrylonitrile-styrene copolymer resin, styrene resin, vinyl chloride resin, vinyl acetate resin, vinyl chloride-vinyl acetate copolymer resin, saturated polyester resin, polyurethane resin, and acrylic resin. , Hydrophobic ones are preferred.
[0013]
The thickness of the ink receiving layer is preferably 1 to 80 μm, particularly preferably 5 to 50 μm. The thickness of the ink receiving layer is related to the apparent porosity, and if the thickness is large, the solvent is not easily desorbed and evaporated, and the porosity may be reduced.If the thickness is too small, the porosity is increased. In this case, the strength is insufficient and the surface layer becomes brittle.
In addition to the resin and the pigment, an antifoaming agent, a surfactant, a plasticizer, an antistatic agent, a wetting agent, a fluorescent whitening agent, and the like may be appropriately added to the ink receiving layer. Further, in order to adjust the friction coefficient, a slip agent such as wax and silicon, and an anti-slip agent such as silica may be added.
An anchor coat layer for increasing the adhesive strength and an intermediate layer for increasing the cushioning property may be provided between the substrate and the ink receiving layer.
[0014]
In the fusion type thermal transfer image-receiving paper of the present invention, an aqueous coating liquid containing an aqueous binder resin and an organic filler is coated on the surface (back surface) opposite to the surface (front surface) on which the ink receiving layer of the base material is provided. A back surface treatment layer formed by coating is provided.
The type of the aqueous binder resin is not particularly limited as long as it has good adhesion to the substrate, but specifically, an acrylic resin, a styrene-butadiene resin, a urethane resin, a vinyl chloride resin, a vinyl acetate resin, a polyester resin , Silicon resin, and the like. Further, a compound such as an acrylic-silicone resin, which has been compounded by graft polymerization or the like, may be used. Further, this resin is more preferable in that it is a colloidal silica composite emulsion.
Further, the aqueous binder resin is preferably a resin having a glass transition temperature (hereinafter abbreviated as Tg) of not less than -20 ° C and not more than 80 ° C. If the Tg is less than -20 ° C, the resin itself is too soft and sticky, and conveyed instead. If the temperature exceeds 80 ° C., the back surface treatment layer becomes hard, and the back surface treatment layer may be cracked when the image receiving paper is bent.
[0015]
An organic filler is added to the back surface treatment layer in order to provide more transportability than the conventional image receiving paper only by the back surface treatment layer. Although the transportability can be obtained by the inorganic filler, the organic filler is softer than the inorganic filler because the hardness thereof is high and the surface of the image receiving paper may be damaged when the image receiving paper is laminated. Examples of the organic filler include polyolefin-based, polystyrene-based, melamine-based, acrylic-based, and silicone-based resin fillers.
The organic filler is preferably spherical and has an average particle size of 0.5 to 50 times the average pore size of the pores on the surface of the porous ink receiving layer. If it is 0.5 times or more, it is possible to reduce the contact area between the back surface where the unevenness is formed by the organic filler and the porous surface, and the unevenness formed by the filler particles functions as a lubricant for the porous surface. However, if it is less than 0.5 times, it does not contribute much to the improvement of transportability. The reason for this is not clear, but is presumed to be due to the fact that the degree to which the irregularities due to the organic filler on the back surface are caught by the holes on the surface of the image receiving layer increases. On the other hand, when it exceeds 50 times, the ink receiving layer and the back surface treatment layer are rubbed when feeding the print, and the organic filler on the back surface is easily dropped.
[0016]
In addition to the organic filler, an antistatic agent, a wetting agent, a surfactant, a fluorescent whitening agent, and the like may be appropriately added to the back surface treatment layer.
The thickness of the back surface treatment layer varies depending on the roughness of the substrate, but is preferably 0.01 to 15 μm, and particularly preferably 0.05 to 7 μm in consideration of economy. If it is less than 0.01 μm, the effect of preventing scratches is low, and if it exceeds 15 μm, undesired effects such as cracking and poor adhesion may occur.
The average surface roughness (Ra) of the back surface treatment layer varies depending on the roughness of the substrate, but is preferably 0.20 to 0.60 μm. When the thickness is less than 0.20 μm, the smoothness of the back surface is increased, the contact area with the ink receiving layer is too large, and the image receiving papers come into close contact with each other to cause double feeding. When the thickness exceeds 0.60 μm, a rub mark is easily formed on the ink receiving layer in contact with the back surface during paper feeding.
As a method of applying the ink receiving layer or the back surface treatment layer, any of known methods such as reverse roll coating, air knife coating, gravure coating, blade coating, comma coating, and the like can be used.
[0017]
【Example】
Next, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.
The performance of the image receiving paper was evaluated according to the following procedure.
[0018]
(1) The diameter of the pores on the surface of the ink receiving layer was confirmed by transmission observation using a microscope (manufactured by Keyence Corporation), and measured using general-purpose image processing software NS2KPro (manufactured by NanoSystems Corporation).
(2) The average particle size of the organic filler used for the back surface treatment layer was measured by the BET method.
(3) Print aptitude A test pattern was photographed with a fusion-type thermal transfer mobile printer [manufactured by SHARP, trade name: Digital Video Camera View Cam VL-FD1], printed on a card basis, and examined for transportability of the receiving paper. .
:: High quality printing is possible due to the smooth running of the receiving paper. △: Printing is possible, but color shift of each ink occurs. ×: Printing is difficult due to double feeding of the receiving paper. (4) Scratch resistance (degree of scratching)
After the print adequacy evaluation, the ink receiving layer of the image receiving paper was visually observed, and the degree of abrasion was evaluated according to the following criteria.
1: weak to nothing 2: medium 3: strong
Example 1
One side (front surface) of a 97 μm-thick white polyester film (manufactured by Teijin DuPont, trade name: Melinex 339) as a base material is coated and dried with a coating solution-A for an anchor coat layer having the following composition, and dried. An anchor coat layer having a thickness of 1 to 2 μm was formed.
Coating solution for anchor coat layer-A
(1) 37 parts by weight of styrene-acrylic resin emulsion [manufactured by BASF Dispersion Co., Ltd., trade name: Clonal YJ-2721D, solid content 46%] (2) Silica [manufactured by Mizusawa Chemical Industry Co., Ltd., trade name: Mizukasil P-801, Average particle size 2.6 μm] 2 parts by weight (3) Lubricant [manufactured by San Nopco, trade name: SN WET366] 1 part by weight (4) Antifoaming agent [manufactured by San Nopco, trade name: SN Deformer 480] 0.02 Parts by weight (5) 59 parts by weight of water
Next, a coating liquid-B for an ink receiving layer having the following composition is applied on the anchor coat layer, and then immersed in water at 20 ° C. for 1 minute and further in 90 ° C. water for 5 seconds, drained and dried. Thus, an ink receiving layer having a thickness of 30 μm was formed.
Coating liquid for ink receiving layer-A
(1) 18 parts by weight of vinyl chloride-vinyl acetate copolymer resin [manufactured by Nissin Chemical Industry Co., Ltd., trade name: Solvain C] (2) Calcium carbonate [manufactured by Maruo Calcium Co., trade name: light calcium carbonate, average particle size 2 μm] 11 parts by weight (3) Hydrophobic silica [manufactured by Nippon Aerosil Co., Ltd., trade name: Aerosil R-972, average particle size 16 nm] 4 parts by weight (4) dimethylformamide 67 parts by weight
Thereafter, a coating liquid-A for a back surface treatment layer having the following composition was applied to the other surface (back surface) and dried to form a back surface treatment layer having a thickness of 3 μm, thereby obtaining an image receiving paper.
Coating liquid for backside treatment layer-A
(1) Acrylic ester copolymer colloidal silica aqueous emulsion [manufactured by Hoechst Gosei Co., Ltd., trade name: Movinyl 8020, Tg: -17 ° C] 52.8 parts by weight (2) Polyolefin aqueous dispersion [manufactured by Mitsui Chemicals, Inc. Trade name: Chemipearl W-500, average particle size: 2.5 μm] 21 parts by weight (3) Wetting agent [trade name: Olfine STG, manufactured by Nissin Chemical Co., Ltd.] 0.03 parts by weight (4) Antifoaming agent [ Sannopco, trade name: SN Deformer 480] 0.03 parts by weight (5) Antistatic agent [manufactured by NOF CORPORATION, trade name: Elegan TOF-4530] 3 parts by weight (6) Water 38.8 parts by weight ]
Example 2
An image receiving paper was obtained in the same manner as in Example 1, except that a back surface treatment layer having a thickness of 4 μm was formed using the back surface treatment layer coating solution-B having the following composition.
Coating liquid for backside treatment layer-B
(1) 61.0 parts by weight of unsaturated copolymer polyester [manufactured by Toyobo Co., Ltd., trade name: Vironal MD1,500, Tg: 77 ° C.] (2) Polyethylene wax [manufactured by Clariant Japan Co., trade name: Celidarist 3620, average particle size] : 8.5 μm] 6.6 parts by weight (3) 32.4 parts by weight of water
Example 3
On one side (surface) of a 130 μm thick white polypropylene film (YUPO FPG # 130, manufactured by YUPO Corporation) as a base material, the above-mentioned coating liquid-A for anchor coat layer is applied and dried, An anchor coat layer having a thickness of 1 to 2 μm was formed.
Next, a coating liquid-B for an ink receiving layer having the following composition is coated on the anchor coat layer, and then immersed in water at 20 ° C. for 1 minute, further immersed in 90 ° C. water for 5 seconds, drained, and dried. Thus, an ink receiving layer having a thickness of 20 μm was formed.
Coating liquid for ink receiving layer -B
(1) Vinyl chloride-vinyl acetate copolymer resin [manufactured by Nissin Chemical Co., Ltd., trade name: Solvain C] 13 parts by weight (2) Polyvinyl butyral resin [manufactured by Sekisui Chemical Co., Ltd., trade name: Esrec BMS] 3 weight parts Part (3) 6 parts by weight of polyacrylonitrile resin [manufactured by Toho Textile Co., trade name: Vethron W-241] (4) 0.05 parts by weight of fluorescent whitening agent [manufactured by Mitsui Toatsu Dye Co., Ltd., trade name: Mikephor ERN conc] Part (5) 78 parts by weight of dimethylformamide Thereafter, the above-mentioned coating solution-A for a back surface treatment layer is coated on the other surface (back surface) and dried to form a back surface treatment layer having a thickness of 3 μm. I got the paper.
[0024]
Comparative Example 1
An image receiving paper was obtained in the same manner as in Example 1, except that (2) the aqueous polyolefin dispersion was removed from the coating liquid-A for the backside treatment layer.
[0025]
Comparative Example 2
An image receiving paper was obtained in the same manner except that a back surface treatment layer having a thickness of 3 μm was formed using the back surface treatment layer coating solution-B having the following composition.
Coating liquid for backside treatment layer -C
(1) 61.0 parts by weight of unsaturated copolymer polyester [manufactured by Toyobo Co., Ltd., trade name: Vylonal MD 1500, Tg: 77 ° C.] (2) Polyethylene wax [manufactured by Clariant Japan, trade name: Celidarist 3719, average particle size] : 12 μm] 6.6 parts by weight (3) 32.4 parts by weight of water
Comparative Example 3
An image receiving paper was obtained in the same manner as in Example 1, except that a back surface treatment layer having a thickness of 3 μm was formed using Coating Solution-D for a back surface treatment layer having the following composition.
Coating liquid for backside treatment layer-D
(1) Acrylic ester copolymer colloidal silica aqueous emulsion [manufactured by Hoechst Gosei Co., Ltd., trade name: Movinyl 8020, Tg: -17 ° C] 52.8 parts by weight (2) Silica [manufactured by Mizusawa Chemical Industry Co., Ltd., trade name: Mizukasil P-801, average particle size 2.6 μm] 8.4 parts by weight (3) Wetting agent [manufactured by Nissin Chemical Industry Co., Ltd., trade name: Olfine STG] 0.03 parts by weight (4) Defoaming agent [San Nopco Co., Ltd.] (Trade name: SN Deformer 480) 0.03 parts by weight (5) Antistatic agent (trade name: Elegant TOF-4530, manufactured by NOF Corporation) 3 parts by weight (6) Water 35.7 parts by weight
Comparative Example 4
An image receiving paper was obtained in the same manner as in Example 3 except that a back surface treatment layer having a thickness of 3 μm was formed using the back surface treatment layer coating solution-E having the following composition.
Coating liquid for backside treatment layer -E
(1) Acrylic ester copolymer colloidal silica aqueous emulsion [manufactured by Hoechst Gosei Co., Ltd., trade name: Movinyl 8020, Tg: -17 ° C] 52.8 parts by weight (2) Polyolefin aqueous dispersion [manufactured by Mitsui Chemicals, Inc. Brand name: Chemipearl W-900, average particle size: 0.6 μm] 21 parts by weight (3) Polyethylene wax [manufactured by Clariant Japan Co., Ltd., trade name: Celidarist 3620, average particle size: 8.5 μm] 8.4 parts by weight ( 4) Wetting agent [manufactured by Nissin Chemical Industry Co., Ltd., trade name: Olfin STG] 0.03 parts by weight (5) Antifoaming agent [manufactured by San Nopco Co., trade name: SN Deformer 480] 0.03 parts by weight (5) Charge 3 parts by weight (6) 38.8 parts by weight of water Using a coating solution-F for a back surface treatment layer having the following composition: inhibitor [manufactured by NOF Corporation, trade name: Elegant TOF-4530] Except for forming a rear surface treatment layer having a thickness of 3μm and is in the same manner as in Example 1 to obtain an image receiving sheet.
Coating liquid for backside treatment layer -F
(1) 70 parts by weight of a silicone-acrylic resin dispersion product (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name: DK-7800) (2) Acrylic ester copolymer colloidal silica aqueous emulsion [manufactured by Hoechst Gosei Co., trade name: Movinyl 8020, Tg: -17 ° C] 25 parts by weight (3) 5 parts by weight of an antistatic agent (trade name: Elegant TOF-4530, manufactured by NOF Corporation)
For each of the image receiving papers obtained in Examples 1 to 3 and Comparative Examples 1 to 7, (1) the average pore diameter of the pores on the surface of the ink receiving layer measured and evaluated, and (2) the organic filler used for the back surface treatment layer Table 1 shows the average particle size, the ratio of the average particle size to the average pore size of the pores on the surface of the ink receiving layer, (3) printability, and (4) scratch resistance.
[0029]
[Table 1]
Figure 2004130753
[0030]
【The invention's effect】
The fusion type thermal transfer image-receiving paper of the present invention has a porous ink receiving layer, has a large cushioning property, and can maintain smoothness by following the pressure of a thermal head, and obtains high quality printability by a fusion type thermal transfer method. Therefore, a printer having a transport roller with a small load can sufficiently exhibit the characteristics required for this purpose, and has excellent transportability.

Claims (8)

基材の一方の面に主として樹脂と顔料とからなる多孔質のインク受理層を設け、他方の面に水系のバインダー樹脂と有機フィラーとを含む水性の塗工液を塗工することにより形成された裏面処理層を設けてなる溶融型熱転写受像紙において、該有機フィラーがインク受理層表面の孔の平均孔径の0.5〜50倍に相当する平均粒径のフィラーであることを特徴とする溶融型熱転写受像紙。A porous ink receiving layer mainly composed of a resin and a pigment is provided on one surface of a base material, and the other surface is formed by applying an aqueous coating solution containing an aqueous binder resin and an organic filler. Wherein the organic filler is a filler having an average particle size equivalent to 0.5 to 50 times the average pore size of the pores on the surface of the ink receiving layer. Fused thermal transfer image receiving paper. インク受理層表面の孔の平均孔径が、0.05〜10μmである請求項1に記載の溶融型熱転写受像紙。The fusion type thermal transfer image receiving paper according to claim 1, wherein the average pore diameter of the pores on the surface of the ink receiving layer is 0.05 to 10 m. インク受理層が、湿式凝固法で形成された層である請求項1又は2に記載の溶融型熱転写受像紙。The fusion type thermal transfer image receiving paper according to claim 1, wherein the ink receiving layer is a layer formed by a wet coagulation method. 裏面処理層の形成に用いられる水性の塗工液に含まれる水系のバインダー樹脂が、ガラス転移温度−20℃以上80℃以下の樹脂である請求項1〜3のいずれかに記載の溶融型熱転写受像紙。The melt-type thermal transfer according to any one of claims 1 to 3, wherein the aqueous binder resin contained in the aqueous coating liquid used for forming the back surface treatment layer is a resin having a glass transition temperature of −20 ° C. or more and 80 ° C. or less. Image receiving paper. 裏面処理層の形成に用いられる水性の塗工液に含まれる水系のバインダー樹脂が、コロイダルシリカ複合体エマルジョンである請求項1〜4のいずれかに記載の溶融型熱転写受像紙。The fusion type thermal transfer image receiving paper according to any one of claims 1 to 4, wherein the aqueous binder resin contained in the aqueous coating liquid used for forming the back surface treatment layer is a colloidal silica composite emulsion. 裏面処理層の形成に用いられる水性の塗工液に含まれる有機フィラーが、ポリオレフィン系のフィラーである請求項1〜5のいずれかに記載の溶融型熱転写受像紙。The melt-type thermal transfer image-receiving paper according to any one of claims 1 to 5, wherein the organic filler contained in the aqueous coating solution used for forming the back surface treatment layer is a polyolefin-based filler. 裏面処理層の形成に用いられる水性の塗工液に含まれる有機フィラーが球状である請求項1〜6のいずれかに記載の溶融型熱転写受像紙。The fusion type thermal transfer image-receiving paper according to any one of claims 1 to 6, wherein the organic filler contained in the aqueous coating solution used for forming the back surface treatment layer is spherical. モバイルプリンター用である請求項1〜7のいずれかに記載の溶融型熱転写受像紙。The heat transfer image receiving paper according to any one of claims 1 to 7, which is for a mobile printer.
JP2002299868A 2002-10-15 2002-10-15 Melt type thermal transfer image receiving paper Pending JP2004130753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002299868A JP2004130753A (en) 2002-10-15 2002-10-15 Melt type thermal transfer image receiving paper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002299868A JP2004130753A (en) 2002-10-15 2002-10-15 Melt type thermal transfer image receiving paper

Publications (1)

Publication Number Publication Date
JP2004130753A true JP2004130753A (en) 2004-04-30

Family

ID=32288881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002299868A Pending JP2004130753A (en) 2002-10-15 2002-10-15 Melt type thermal transfer image receiving paper

Country Status (1)

Country Link
JP (1) JP2004130753A (en)

Similar Documents

Publication Publication Date Title
US6357871B1 (en) Ink jet recording medium, apparatus for preparing an ink jet printed product, and ink jet printed product
EP0688677B1 (en) Ink jet recording film and recording method using the same
US5654080A (en) Thermal transfer medium
JPH05278324A (en) Recording sheet
EP0409598B1 (en) Thermal transfer dye image-receiving sheet
CA2784525A1 (en) Heat transfer materials and methods of making and using the same
JPH09175010A (en) Ink jet recording sheet
EP1136275B1 (en) Thermal transfer recording material
JP2006240179A (en) Thermal transfer receptive sheet
EP0609355A1 (en) Acceptor sheet useful for mass transfer imaging
JP2011104967A (en) Thermal transfer image receiving sheet
JP2004130753A (en) Melt type thermal transfer image receiving paper
US20060154002A1 (en) Recording paper
JP2004009572A (en) Thermal transfer image receiving sheet
JPS62261486A (en) Thermal transfer recording sheet
JPH09123623A (en) Photographic paper for thermal transfer
JPH07223384A (en) Thermal transfer image receiving paper
JP2003291505A (en) Sheet for inkjet recording and inkjet-recorded matter
JP3895931B2 (en) Thermal transfer image receiving medium for composite recording
JPH07237366A (en) Thermal transfer image receiving body
US6740622B2 (en) Thermal transfer image-receiving sheet
JP2007237522A (en) Thermal transfer receiving sheet
JPH09150571A (en) Ink jet recording sheet and its manufacture
JP2004299108A (en) Thermal transfer image-receiving sheet
JP2007313753A (en) Method for manufacturing thermal transfer receiving sheet