JP2004009572A - Thermal transfer image receiving sheet - Google Patents

Thermal transfer image receiving sheet Download PDF

Info

Publication number
JP2004009572A
JP2004009572A JP2002166809A JP2002166809A JP2004009572A JP 2004009572 A JP2004009572 A JP 2004009572A JP 2002166809 A JP2002166809 A JP 2002166809A JP 2002166809 A JP2002166809 A JP 2002166809A JP 2004009572 A JP2004009572 A JP 2004009572A
Authority
JP
Japan
Prior art keywords
thermal transfer
layer
transfer image
receiving sheet
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002166809A
Other languages
Japanese (ja)
Inventor
Masayasu Yamazaki
山崎 昌保
Naoyuki Mitsuyasu
光安 直之
Shinji Yonetani
米谷 伸二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2002166809A priority Critical patent/JP2004009572A/en
Publication of JP2004009572A publication Critical patent/JP2004009572A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal transfer image receiving sheet comparable with a photographic print sheet and exhibiting a high thermal insulation, a high print density and a high print quality at a cost equivalent to that of a photographic print sheet by providing a porous layer containing bubbles between a sheet basic material and a dye receiving layer. <P>SOLUTION: In an arrangement where a thermal insulation layer 2 containing at least hollow particles and a dye receiving layer 3 are formed sequentially on the sheet basic material 1 principally comprising cellulose, gas permeability of the basic material 1 is set between 1,000 sec and 3,500 sec thus providing a thermal insulation layer 2 having a high porosity. Air in the thermal insulation layer 2 can pass to the basic material 1 side when the dye receiving layer 3 is applied or dried or when the thermal transfer sheet is heated for imaging. Since a defect due to bubbling of air can be prevented on the dye receiving layer 3 side, print quality comparable with that of a photographic print sheet can be attained. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、セルロースを主成分とする基材上に染料受容層を設けた熱転写受像シートに関し、更に詳しくは、高濃度でムラ、印画抜け等の欠点のない高品質の画像が得られる熱転写受像シートに関するものである。
【0002】
【従来の技術】
従来、種々の熱転写方法が公知であるが、それらの中で、昇華性染料を記録材とし、これをポリエステルフィルム等の基材シートに担持させて熱転写シートとし、昇華性染料で染着可能な被転写材、例えば、紙やプラスチックフィルム等に、染料受容層を形成した受像シート上に各種のフルカラー画像を形成する方法が提案されている。この場合には加熱手段として、プリンターのサーマルヘッド或いはレーザーが使用され、極めて短時間の加熱によって3色又は4色の多数の色ドットを受像シートに転移させ、該多色の色ドットにより原稿のフルカラー画像を再現するものである。
【0003】
この様に形成された画像は、使用する色材が染料であることから、非常に鮮明であり、且つ、透明性に優れているため、得られる画像は中間色の再現性や階調性に優れ、従来のオフセット印刷やグラビア印刷による画像と同様であり、且つ、フルカラー写真画像に匹敵する高品質の画像が形成可能となっている。
【0004】
【発明が解決しようとする課題】
上記のような昇華型熱転写方式に使用される熱転写受像シートの基材シートとしては、プラスチックシートと紙等との積層シート、合成紙等が使用されているが、近年のデジタルカメラの急速な普及に伴い、昇華型熱転写受像シートに写真印画紙ライクの質感が求められている。写真印画紙は紙にポリエチレン等の樹脂をコーティングした基材(RCペーパー)の上に感光材を塗布した構成で、紙の地合が適度に残った質感となっている。昇華型熱転写受像シートは紙にボイドを有するポリプロピレンフィルムやPETフィルムを貼り合わせたものに染料受容層をコーティングしたものが一般的である。このようにプラスチックフィルムを貼り合わせた昇華型熱転写受像シートは最表面のプラスチックの質感が強調され、写真用途に用いた場合、違和感を覚える場合がある。また、コスト的にも写真印画紙と比べ、高くなり、不利である。
【0005】
これらの問題を解決するために、コート紙等の基材に直接染料受容層を形成することが考えられるが、この場合、サーマルヘッドからの熱エネルギーを有効に利用し、印画濃度を高くするためには、断熱性を高め、さらにサーマルヘッドとの接触を良好にするためクッション性を高めることが必要となる、かかる性能を得るために、基材または基材と染料受容層の間に気泡を含有する多孔質な層を形成することが知られている。
多孔質を形成する方法として、中空粒子を用いる方法が一般的である。中空粒子には初めから中空のタイプ、粒子内部の液体が加熱により揮発して中空になるタイプ、粒子内部の液体が気化・膨張して中空になるタイプ等がある。
【0006】
中空粒子の粒径は大きいほど空隙率の高いものが得られるが、受像紙の表面平滑性を確保するためには1.5μm程度までが好ましい。1.5μm程度の中空粒子では現状空隙率は60%程度までが限界であり、それ以上のものを安定して得ることは難しい。
これらの中空粒子を用いて多孔質を形成する場合、充分な断熱性を得るためには中空粒子内部の空隙だけでは断熱性が不十分であり、粒子間にも空隙を形成することにより、層全体の空隙率を高める必要がある。
しかし、粒子間空隙が存在する場合、このような多孔質な層(断熱層)の上に中間層や染料受容層を塗布した場合、塗工液が多孔層の空隙に染み込み、空隙に存在する空気が表面に押出され、中間層や染料受容層面に泡となって発生する「バブリング」と呼ばれる現象が生じて、熱転写受像シートの表面外観を損なわせ、印画される画像にムラや抜けが生じたりして、大きな問題となる。
【0007】
したがって、本発明では、このような問題を解決するために、コスト的に写真印画紙と比べ、同等であり、紙基材と染料受容層の間に気泡を含有する多孔質層を設け、断熱性が高く、印画濃度を高く、印画品質も高く、写真印画紙に匹敵する熱転写受像シートを提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明の熱転写受像シートは、請求項1として、セルロースを主成分とする紙基材上に、少なくとも中空粒子を含有する断熱層及び染料受容層を順次有する構成で、該基材の透気度が1000秒以上、3500秒以下であることを特徴とする。
請求項2として、請求項1に記載の基材において、基材の少なくとも受容層が形成される面に無機充填材を主成分とするコート層を有することを特徴とする。
【0009】
請求項3として、請求項1に記載の中空粒子が塗布乾燥工程で粒径の変化がないことを特徴とする。
請求項4として、請求項1及び請求項3に記載の中空粒子の平均粒径が0.5〜4.0μmであることを特徴とする。
請求項5として、請求項1、3、4のいずれかに記載の中空粒子の中空率が50%以上であることを特徴とする。
請求項6として、請求項1に記載の断熱層と染料受容層の間に中間層を有することを特徴とする。
【0010】
本発明の熱転写受像シートは、セルロースを主成分とする紙基材上に、少なくとも中空粒子を含有する断熱層及び染料受容層を順次有する構成で、該基材の透気度を1000秒以上、3500秒以下とすることで、空隙率の高い断熱層を有し、その断熱層に有する空気が染料受容層の塗工、乾燥時や熱転写受像シートへの印画形成時の加熱の際に、基材側に抜けることができ、染料受容層側にその空気によるバブリングを防止でき、写真印画紙に匹敵する優れた印画品質を有したものが得られる。
【0011】
【発明の実施の形態】
以下に、本発明の熱転写受像シートに関し、発明の実施の形態を図面に基づいて説明する。図1は、本発明の熱転写受像シートである一つの実施形態を示す概略断面図である。本発明の熱転写受像シートは、図1に示す通り、基材1の一方の面に、基材1側から順次に断熱層2、染料受容層3を設ける。
また図2は本発明の熱転写受像シートである他の実施形態を示す概略断面図であり、基材1上に断熱層2、中間層4、染料受容層3を順次設けた構成である。図3は本発明の熱転写受像シートである他の実施形態を示す概略断面図であり、基材1の一方の面に断熱層2、染料受容層3を順次設け、基材1の他方の面に裏面層5を設けたものである。
【0012】
(基材)
本発明の熱転写受像シートで使用する基材1としては、セルロースを主成分とした紙基材であり、その基材の透気度がJAPAN TAPPI No.5B法に規定された王研式透気度試験器(加圧式)で測定したデータで、1000秒以上、3500秒以下である。このように紙ベースの基材で、透気度が上記の範囲であり、具体的には、例えば、上質紙、アート紙、軽量コート紙、微塗工紙、コート紙、キャストコート紙、合成樹脂又はエマルジョン含浸紙、合成ゴムラテックス含浸紙、合成樹脂内添紙、熱転写用紙等が挙げられる。この中で好ましいものは、軽量コート紙、微塗工紙、コート紙、熱転写用紙のような表面塗工紙であり、特に基材の受容層が形成される面に無機充填材を主成分とするコート層を有した基材が望ましい。
【0013】
紙基材において、その透気度が1000秒未満であると、結果的に表面平滑性が低下し、熱転写受像シートとして染料受容層に形成する画像にムラ等が生じてしまう。一方で、紙基材の透気度が3500秒を上回るようになると、断熱層に有する空気が加熱の際に、基材側に抜けにくくなり、染料受容層側にその空気によるバブリングが生じやすくなる。
本発明の熱転写受像シートで用いる基材の厚さは、40〜300μm、好ましくは60〜200μmである。
【0014】
(断熱層)
本発明における熱転写受像シートの断熱層2としては、少なくとも中空粒子を含有するもので、バインダーとしての樹脂と中空粒子を主成分として構成する。その中空粒子は大別すると、以下の3種が挙げられる。
1.粒子内部の液体が加熱により揮発して、中空になるタイプ
2.加熱前後に関わらず、初めから中空のタイプ
3.粒子内部の液体が気化・膨張して中空になるタイプ
【0015】
上記1.の中空粒子の場合、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリアクリル酸エステル、ポリアクリロニトリル、ポリブタジエンあるいはそれらの共重合体樹脂等の樹脂を壁材として中空粒子の外殻を形成し、その粒子内部に水等の液体が入っており、その中空粒子を含有する断熱層の塗工、乾燥時の熱によって液体が蒸発して中空となり、高いクッション性及び断熱性を有する多孔質構造を有した層を与える。
【0016】
また、上記1.の場合、上記の中空粒子を公知の水溶性高分子、水性高分子エマルジョンなどのバインダーと共に水に分散し、これを基材表面に塗布し、乾燥することによって断熱層が得られる。中空粒子は上記1.のみならず、上記2.及び3.の中空粒子においても、有機溶剤に弱く、断熱層用溶液を塗工する際に有機溶剤を用いると、中空粒子の隔壁が破壊されてしまい、所望の断熱性が得られない。そのために断熱多孔質層用塗工液は、中空粒子に影響を与えない水系塗工液であることが好ましい。
【0017】
したがって、断熱層を形成する際に使用されるバインダーは、従来公知の水溶性高分子及び(又は)水性高分子エマルジョンから適宜選択使用される。その具体例としては、水溶性高分子として例えば、ポリビニルアルコール、澱粉及びその誘導体、メトキシセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース、メチルセルロース、エチルセルロース等のセルロース誘導体、ポリアクリル酸ソーダ、ポリビニルピロリドン、アクリルアミド/アクリル酸エステル共重合体、アクリルアミド/アクリル酸エステル/メタクリル酸三元共重合体、スチレン/無水マレイン酸共重合体アルカリ塩、ポリアクリルアミド、アルギン酸ソーダ、ゼラチン、カゼイン等が挙げられる。また、水性高分子エマルジョンとしては、スチレン/ブタジエン/アクリル系共重合体等のラテックスや酢酸ビニル樹脂、酢酸ビニル/アクリル酸共重合体、スチレン/アクリル酸エステル共重合体、アクリル酸エステル樹脂、ポリウレタン樹脂等のエマルジョン等が挙げられる。
【0018】
また、上記2.の中空粒子の場合、その中空粒子は、熱可塑性樹脂を殻とし、内部に空気、その他の気体を含有するものである。上記の殻を構成する熱可塑性樹脂は、上記1.で挙げた樹脂が同様に使用でき、また上記2.の中空粒子を結着させるバインダーは、上記1.で挙げた樹脂が同様に使用できる。
上記3.の中空粒子の場合、粒子内部の液体が気化、膨張して中空になるもので、断熱層として、樹脂と熱膨張性を有するマイクロスフェアからなる層である。上記熱膨張性を有するマイクロスフェアは、ブタン、ペンタン等の低沸点液体をポリ塩化ビニリデンやポリアクリロニトリル等の樹脂で覆ってマイクロカプセルとしたものである。このようなマイクロスフェアは、断熱層形成後に加熱により発泡し、発泡後高いクッション性及び断熱性を有する多孔質層を与える。また上記3.の中空粒子を結着させるバインダーは、上記1.で挙げた樹脂が同様に使用できる。
【0019】
上記3.の熱膨張性を有するマイクロスフェアからなる断熱層は、塗工液の塗工後の加熱乾燥時に発泡するため、該層上に後述の染料受容層形成用溶液を塗工及び乾燥させた場合、形成された染料受容層の表面に凹凸が生じる恐れがある。そのために上記凹凸が小さく、均一性の高い画像を転写させることが可能な染料受容層表面を得るためには、上記1.または上記2.の中空粒子を用いた断熱層が好ましい。
それは、上記1.または上記2.の中空粒子は、基材上に断熱層を塗布、乾燥する工程で、粒径の変化がないからである。本発明では、この中空粒子の粒径の変化がないと規定していることは、中空粒子を含有する断熱層の形成の際に、加熱乾燥前と加熱乾燥後の粒径を比較し、約2割程度までの変化については粒径の変化がないということにした。
【0020】
以上のように形成される断熱層は乾燥時5〜50μmの厚さで設けることが好ましい。厚みが5μm未満では所望の断熱性が得られず、印字感度向上の効果が低い。また、厚みが50μmを超えると,塗工乾燥後の表面の平滑性が低下するため、サーマルヘッド等との密着性が低下し、印字感度を向上させる効果が低下する。
本発明の断熱層に使用する中空粒子は、平均粒径で0.5〜4.0μmであることが、断熱性、表面平滑性等の点で、望ましい。(上記1.〜3.の全てについてであり、3.の粒子は熱膨張後の粒径が上記範囲である。)
【0021】
また、本発明の断熱層に使用する中空粒子の中空率は50%以上であることが望ましい。ここでいう中空率とは中空粒子の外径と内径の比であり、(中空粒子の内径/中空粒子の外径)×100%で表される。中空度が50%未満のものでは断熱性が不充分なため、印字感度を向上させる効果が少ない。
上記のような中空粒子は、断熱層を形成するバインダー樹脂100重量部当り、100〜400重量部の範囲で配合して使用することが好ましい。この範囲より中空粒子の添加量が少ないと、断熱性が低く、印字感度向上の効果が低くなり、一方でその添加量が多すぎると、形成される断熱層の強度が低下したり、表面の凹凸が大きくなってくる。
断熱層中には、隠蔽性や白色性を付与するために、また、熱転写受像シートの質感を調節するために、無機顔料として、炭酸カルシウム、タルク、カオリン、酸化チタン、酸化亜鉛、その他公知の無機顔料や、蛍光増白剤を含有させてもよい。
【0022】
(染料受容層)
上記の断熱層上に形成する染料受容層3は、熱転写シートから移行してくる昇華性染料を受容し、形成された画像を維持するためのものである。染料受容層を形成するための樹脂としては、例えば、ポリプロピレン等のポリオレフィン系樹脂、ポリ塩化ビニル、塩化ビニル・酢酸ビニル共重合体、エチレン・酢酸ビニル共重合体、ポリ塩化ビニリデン等のハロゲン化ポリマー、ポリ酢酸ビニル、ポリアクリル酸エステル等のビニルポリマー、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル系樹脂、ポリスチレン系樹脂、ポリアミド系樹脂、エチレンやプロピレン等のオレフィンと他のビニルモノマーとの共重合体系樹脂、アイオノマー、セルロースジアセテート等のセルロース系樹脂、ポリカーボネート等が挙げられ、特に好ましいものはビニル系樹脂及びポリエステル系樹脂である。
【0023】
上記樹脂から染料受容層を形成する際には、熱転写時における熱転写シートと染料受容層との融着を防止するために、上記樹脂に離型剤を混合して使用することが好ましい。混合して使用する好ましい離型剤としては、シリコーンオイル、リン酸エステル系界面活性剤、フッ素系界面活性剤等が挙げられるが、シリコーンオイルが望ましい。
【0024】
該シリコーンオイルとしては、エポキシ変性、アルキル変性、アミノ変性、カルボキシル変性、アルコール変性、フッ素変性、アルキルアラルキルポリエーテル変性、エポキシ・ポリエーテル変性、ポリエーテル変性等の変性シリコーンオイルが望ましい。これらの離型剤は1種若しくは2種以上の混合物が使用される。又、この離型剤の添加量は、染料受容層形成樹脂100重量部に対して0.5〜30重量部の範囲が好ましい。この添加量の範囲を満たさない場合は、熱転写シートと染料受容層との融着若しくは印字感度の低下等の問題が生じる場合がある。このような離型剤を染料受容層に添加することによって、転写後の染料受容層の表面に離型剤がブリードアウトして離型層が形成される。
【0025】
染料受容層は、前記の断熱層上に上記の如き樹脂に離型剤等の必要な添加剤を加えたものを、適当な有機溶剤に溶解した溶液或いは分散した分散体を、例えば、グラビア印刷法、スクリーン印刷法、グラビア版を用いたリバースロールコーティング法等の形成手段により塗工及び乾燥することによって形成される。上記染料受容層の形成に際しては、染料受容層の白色度を向上させて転写画像の鮮明度を更に高める目的で、蛍光増白剤、酸化チタン、酸化亜鉛、カオリンクレー、炭酸カルシウム、微粉末シリカ等の顔料や充填剤を添加することができる。以上の如く形成される染料受容層は、任意の厚さでよいが、一般的には乾燥時1〜50μmの厚さである。
【0026】
(中間層)
本発明の熱転写受像シートで断熱層と染料受容層との間に、中間層4を設け、中空粒子を含有する断熱層表面の凹凸を少なくして、熱転写受像シートの受像面の最表面をより平滑にすることができる。
中間層は、必ずしも必要とはされないが、従来公知の中間層の中から適当なものを選んで用いることができる。中間層としては、例えば、熱可塑性樹脂、熱硬化性樹脂、或いは官能基を有する熱可塑性樹脂を、各種の硬化剤その他の手法を用いて、形成することができる。具体的にはポリビニルアルコール、ポリビニルピロリドン、ポリエステル、塩素化ポリプロピレン、変性ポリオレフィン、ウレタン樹脂、酢酸ビニル樹脂、アクリル樹脂、ポリカーボネート、アイオノマー、単官能及び/又は多官能水酸基含有のプレポリマーをイソシアネート等で硬化させた樹脂等を使用することができる。これらの樹脂には、必要に応じて白色性や隠蔽性等の機能を付与するために、酸化チタン、炭酸カルシウム、硫酸バリウムその他公知の無機顔料や有機フィラー、蛍光増白剤等の添加剤を加えることができる。その塗布厚みは乾燥状態で0.5〜30μm程度が好ましい。
【0027】
(裏面層)
基材の染料受容層を設けた面と反対の面に、熱転写受像シートの搬送性の向上や、カール防止などのために、裏面層5を設けることができる。このような機能をもつ裏面層として、アクリル系樹脂、セルロース系樹脂、ポリカーボネート樹脂、ポリビニルアセタール樹脂、ポリビニルアルコール樹脂、ポリアミド樹脂、ポリスチレン系樹脂、ポリエステル系樹脂、ハロゲン化ポリマー等の樹脂中に、添加剤として、アクリル系フィラー、ポリアミド系フィラー、フッ素系フィラー、ポリエチレンワックスなどの有機系フィラー、及び二酸化珪素や金属酸化物などの無機フィラーを加えたものが使用できる。
この裏面層の厚さは、乾燥時0.2〜10μm程度が好ましい。厚さが上記の範囲を下回る場合、裏面層の性能が発揮できず、また厚さが上記の範囲を上回る場合は、裏面層の効果は飽和し、普通紙様の質感を失わせしめるばかりか、不経済でもある。
【0028】
【実施例】
以下に実施例及び比較例をあげて、本発明をさらに具体的に説明する。尚、文中部とあるのは重量基準である。
(実施例1)
カレンダー処理により透気度を調節したコート紙1(透気度1,700sec、坪量170g/m)を基材として、その基材のコート面側に、下記組成の断熱層塗工液を乾燥時厚さ30μmになるように、塗布、乾燥を行ない、断熱層を形成した。次に、断熱層の上に下記組成の中間層塗工液を乾燥時厚さ5μmになるように、塗布、乾燥を行ない、中間層を形成した。さらに、その中間層の上に、下記組成の染料受容層塗工液を乾燥時厚さ5μmになるように、塗布、乾燥を行ない、染料受容層を形成し、実施例1の熱転写受像シートを得た。
【0029】
(断熱層塗工液)
中空粒子                           100部
(上記1.の粒子内部の液体が加熱により揮発し、中空になるタイプで、スチレン−アクリル系樹脂の中空粒子、中空率55%、平均粒子径1μm;ロームアンドハース社製 ローペイク HP−1055)
ポリビニルアルコール樹脂の15%溶液              19部
(日本合成化学工業(株)製 KM−11)
水                               40部
【0030】
(中間層塗工液)
ウレタン樹脂                          50部
(大日本インキ化学工業(株)製 ハイドランAP−40)
ポリビニルアルコール樹脂の10%溶液              50部
(日本合成化学工業(株)製 KM−11)
【0031】
(染料受容層塗工液)
塩化ビニル−酢酸ビニル共重合樹脂               100部
(電気化学工業(株)製 #1000AKT)
アミノ変性シリコーン(信越化学工業(株)製 KS−343)    5部
エポキシ変性シリコーン(信越化学工業(株)製 KF−393)   5部
メチルエチルケトン                      200部
トルエン                           200部
【0032】
(実施例2)
実施例1で使用した基材を、以下のものに変更した以外は、実施例1と同様にして、実施例2の熱転写受像シートを得た。
基材;カレンダー処理により透気度を調節したコート紙2(透気度2,100sec、坪量170g/m
【0033】
(実施例3)
実施例1で使用した基材を、以下のものに変更した以外は、実施例1と同様にして、実施例3の熱転写受像シートを得た。
基材;カレンダー処理により透気度を調節したコート紙3(透気度3,100sec、坪量170g/m
【0034】
(実施例4)
実施例1で使用した基材を、以下のものに変更した以外は、実施例1と同様にして、実施例4の熱転写受像シートを得た。
基材;日本加工製紙(株)製 NKハイコート(透気度1,500sec、坪量186g/m
【0035】
(実施例5)
実施例1で使用した基材を、以下のものに変更した以外は、実施例1と同様にして、実施例5の熱転写受像シートを得た。
基材;大王製紙(株)製 ピカソコートC(透気度3,500sec、坪量157g/m
【0036】
(比較例1)
実施例1で使用した基材を、以下のものに変更した以外は、実施例1と同様にして、比較例1の熱転写受像シートを得た。
基材;カレンダー処理により透気度を調節したコート紙4(透気度3,800sec、坪量170g/m
【0037】
(比較例2)
実施例1で使用した基材を、以下のものに変更した以外は、実施例1と同様にして、比較例2の熱転写受像シートを得た。
基材;大王製紙(株)製 ピカソコートC(透気度4,300sec、坪量209g/m
【0038】
(比較例3)
実施例1で使用した基材を、以下のものに変更した以外は、実施例1と同様にして、比較例3の熱転写受像シートを得た。
基材;大王製紙(株)製 リューオーコート(透気度6,600sec、坪量157g/m
【0039】
(比較例4)
実施例1で使用した基材を、以下のものに変更した以外は、実施例1と同様にして、比較例4の熱転写受像シートを得た。
基材;王子製紙(株)製 スーパーミラー(透気度25,000sec以上)
【0040】
上記の各実施例及び比較例の熱転写受像シートで使用した基材の透気度は、JAPAN TAPPI No.5B法に規定された王研式透気度試験器(加圧式)で測定したもので、また試料となる基材は23℃/50%RHにて、24時間以上放置した後、透気度の測定を行なった。
【0041】
以上のように作製した実施例1〜5、および比較例1〜4の各熱転写受像シートを試料として、下記の方法で、その外観評価を行なった。
(外観評価の方法)
実施例1〜5と比較例1〜4の各熱転写受像シートについて、その受像面の外観で、バブリング等による表面欠陥の有無を目視により、調べて、評価した。
その評価の判断基準は以下の通りである。
○;バブリング等による表面欠陥が無く、良好である。
×:バブリングによる表面欠陥が認められ、外観不良である。
【0042】
以上の評価結果を下記の表1に示す。
【表1】

Figure 2004009572
尚、実施例1〜5の熱転写受像シートは、バブリング等による表面欠陥がなく、受像面に熱転写画像を形成すると、濃度ムラや、印画抜け等の欠点のない高品質の画像が得られた。
【0043】
【発明の効果】
このように本発明によれば、セルロースを主成分とする紙基材上に、少なくとも中空粒子を含有する断熱層及び染料受容層を順次有する熱転写受像シートにおいて、該基材の透気度を1000秒以上、3500秒以下とすることで、空隙率の高い断熱層を有し、その断熱層に有する空気が染料受容層の塗工、乾燥時や熱転写受像シートへの印画形成時の加熱の際に、基材側に抜けることができ、染料受容層側にその空気によるバブリング等の欠陥の発生を防止でき、写真印画紙に匹敵する優れた印画品質を有したものが得られた。
【図面の簡単な説明】
【図1】本発明の熱転写受像シートである一つの実施形態を示す概略断面図である。本
【図2】本発明の熱転写受像シートである他の実施形態を示す概略断面図である。
【図3】本発明の熱転写受像シートである他の実施形態を示す概略断面図である。
【符号の説明】
1   基材
2   断熱層
3   染料受容層
4   中間層
5   裏面層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thermal transfer image receiving sheet provided with a dye receiving layer on a substrate containing cellulose as a main component, and more particularly, to a thermal transfer image receiving sheet capable of obtaining a high-quality image at a high density without defects such as unevenness and printout. It is about a sheet.
[0002]
[Prior art]
Conventionally, various thermal transfer methods are known, but among them, a sublimable dye is used as a recording material, and this is carried on a base sheet such as a polyester film to form a thermal transfer sheet, which can be dyed with a sublimable dye. There have been proposed methods of forming various full-color images on an image receiving sheet having a dye receiving layer formed on a material to be transferred, for example, paper or a plastic film. In this case, a thermal head or a laser of a printer is used as a heating means, and a large number of three or four color dots are transferred to the image receiving sheet by heating for a very short time, and the multicolored dots are used to print the original. It reproduces a full-color image.
[0003]
The image formed in this way is very clear because the coloring material used is a dye, and is excellent in transparency, so that the obtained image is excellent in reproducibility and gradation of intermediate colors. Thus, it is possible to form a high-quality image which is similar to an image obtained by conventional offset printing or gravure printing and is comparable to a full-color photographic image.
[0004]
[Problems to be solved by the invention]
As a base sheet of the thermal transfer image receiving sheet used in the above-described sublimation type thermal transfer system, a laminated sheet of a plastic sheet and paper, a synthetic paper, and the like are used. Accordingly, the sublimation type thermal transfer image receiving sheet is required to have a photographic paper-like texture. The photographic printing paper has a configuration in which a photosensitive material is applied on a base material (RC paper) in which a resin such as polyethylene is coated on paper, and has a texture in which the formation of the paper remains appropriately. The sublimation-type thermal transfer image-receiving sheet is generally a sheet in which a polypropylene film or a PET film having voids is bonded to paper and coated with a dye-receiving layer. The sublimation-type thermal transfer image-receiving sheet to which the plastic film is bonded in this way emphasizes the texture of the plastic on the outermost surface, and when used for photographic applications, may feel uncomfortable. In addition, the cost is higher than that of photographic printing paper, which is disadvantageous.
[0005]
In order to solve these problems, it is conceivable to form a dye receiving layer directly on a base material such as coated paper. In this case, in order to effectively use the heat energy from the thermal head and increase the printing density, In order to obtain such performance, it is necessary to increase the heat insulating property and further enhance the cushioning property in order to make good contact with the thermal head.To obtain such performance, bubbles are generated between the substrate or the substrate and the dye receiving layer. It is known to form a porous layer containing.
As a method for forming a porous material, a method using hollow particles is generally used. The hollow particles include a hollow type from the beginning, a type in which the liquid inside the particle is volatilized by heating to become hollow, and a type in which the liquid inside the particle is vaporized and expanded to become hollow.
[0006]
The larger the diameter of the hollow particles, the higher the porosity can be obtained. However, in order to ensure the surface smoothness of the image receiving paper, the diameter is preferably up to about 1.5 μm. At present, the porosity of hollow particles of about 1.5 μm is limited to about 60%, and it is difficult to stably obtain particles of more than 60%.
When a porous body is formed by using these hollow particles, in order to obtain sufficient heat insulating properties, only the voids inside the hollow particles have insufficient heat insulating properties. It is necessary to increase the overall porosity.
However, when an interparticle gap exists, when an intermediate layer or a dye receiving layer is applied on such a porous layer (heat insulating layer), the coating liquid permeates into the pores of the porous layer and exists in the pores. A phenomenon called "bubbling" occurs when air is extruded to the surface and forms bubbles on the surface of the intermediate layer or the dye receiving layer, which impairs the surface appearance of the thermal transfer image receiving sheet and causes unevenness or omission in the printed image. It is a big problem.
[0007]
Therefore, in the present invention, in order to solve such a problem, a porous layer containing air bubbles is provided between the paper substrate and the dye receiving layer, which is equivalent in cost as compared with photographic printing paper, and is provided with heat insulation. It is an object of the present invention to provide a thermal transfer image-receiving sheet having high printability, high printing density, high printing quality and comparable to photographic printing paper.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the thermal transfer image-receiving sheet of the present invention has, as claim 1, a constitution in which a heat-insulating layer containing at least hollow particles and a dye-receiving layer are sequentially provided on a paper base material containing cellulose as a main component. The air permeability of the substrate is 1000 seconds or more and 3500 seconds or less.
According to a second aspect, in the substrate according to the first aspect, at least a surface of the substrate on which the receiving layer is formed has a coat layer containing an inorganic filler as a main component.
[0009]
According to a third aspect, the hollow particles according to the first aspect are characterized in that there is no change in the particle diameter in the coating and drying step.
According to a fourth aspect, the hollow particles according to the first and third aspects have an average particle diameter of 0.5 to 4.0 μm.
As a fifth aspect, the hollow particles according to any one of the first to third aspects have a hollow ratio of 50% or more.
A sixth aspect is characterized in that an intermediate layer is provided between the heat insulating layer and the dye receiving layer according to the first aspect.
[0010]
The thermal transfer image-receiving sheet of the present invention has a configuration in which a heat insulating layer containing at least hollow particles and a dye-receiving layer are sequentially formed on a paper base mainly containing cellulose, and the air permeability of the base is 1000 seconds or more, By setting it to 3500 seconds or less, the heat-insulating layer having a high porosity has a base, and the air in the heat-insulating layer is used as a base when the dye-receiving layer is coated, dried, and heated during printing on the thermal transfer image-receiving sheet. The ink can escape to the material side, bubbling by the air can be prevented on the dye receiving layer side, and a material having excellent printing quality comparable to photographic printing paper can be obtained.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic sectional view showing one embodiment of the thermal transfer image-receiving sheet of the present invention. In the thermal transfer image-receiving sheet of the present invention, as shown in FIG. 1, a heat insulating layer 2 and a dye receiving layer 3 are sequentially provided on one surface of a substrate 1 from the substrate 1 side.
FIG. 2 is a schematic sectional view showing another embodiment of the thermal transfer image-receiving sheet of the present invention, in which a heat insulating layer 2, an intermediate layer 4, and a dye receiving layer 3 are sequentially provided on a substrate 1. FIG. 3 is a schematic cross-sectional view showing another embodiment of the thermal transfer image-receiving sheet of the present invention, in which a heat insulating layer 2 and a dye receiving layer 3 are sequentially provided on one surface of a substrate 1, and the other surface of the substrate 1 is provided. Is provided with a back surface layer 5.
[0012]
(Base material)
The substrate 1 used in the thermal transfer image-receiving sheet of the present invention is a paper substrate containing cellulose as a main component, and the air permeability of the substrate is JAPAN TAPPI No. It is 1000 seconds or more and 3500 seconds or less as measured by an Oken-type air permeability tester (pressurized type) specified in the 5B method. As described above, in the paper-based substrate, the air permeability is in the above range. Specifically, for example, high-quality paper, art paper, lightweight coated paper, lightly coated paper, coated paper, cast coated paper, synthetic paper Examples include resin or emulsion impregnated paper, synthetic rubber latex impregnated paper, synthetic resin internal paper, and thermal transfer paper. Preferred among these are lightweight coated papers, lightly coated papers, coated papers, surface coated papers such as thermal transfer papers, and particularly those containing an inorganic filler as a main component on the surface of the substrate on which the receiving layer is formed. A substrate having a coating layer is preferred.
[0013]
If the air permeability of the paper base material is less than 1000 seconds, the surface smoothness is consequently reduced, and an image formed on the dye receiving layer as a thermal transfer image-receiving sheet may be uneven. On the other hand, when the air permeability of the paper base material exceeds 3500 seconds, the air in the heat insulating layer hardly escapes to the base material side when heated, and bubbling by the air easily occurs on the dye receiving layer side. Become.
The thickness of the substrate used in the thermal transfer image-receiving sheet of the present invention is 40 to 300 μm, preferably 60 to 200 μm.
[0014]
(Insulation layer)
The heat-insulating layer 2 of the thermal transfer image-receiving sheet in the present invention contains at least hollow particles, and is composed mainly of a resin as a binder and hollow particles. The hollow particles are roughly classified into the following three types.
1. 1. A type in which the liquid inside the particles is volatilized by heating and becomes hollow. 2. Hollow type from the beginning regardless of before and after heating A type in which the liquid inside the particles evaporates and expands to become hollow.
The above 1. In the case of hollow particles, the outer shell of the hollow particles is formed by using a resin such as polystyrene, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polyacrylate, polyacrylonitrile, polybutadiene or a copolymer resin thereof as a wall material. The inside of the particles contains a liquid such as water, and the heat of the coating and drying of the heat-insulating layer containing the hollow particles evaporates the liquid into a hollow, porous body having high cushioning and heat insulating properties. A structured layer is provided.
[0016]
In addition, 1. In the case of (1), the above-mentioned hollow particles are dispersed in water together with a known binder such as a water-soluble polymer or an aqueous polymer emulsion, and the resultant is applied to the surface of a substrate and dried to obtain a heat insulating layer. The hollow particles are as described in 1. above. Not only the above 2. And 3. The hollow particles are also susceptible to organic solvents, and if an organic solvent is used when applying the solution for a heat insulating layer, the partition walls of the hollow particles will be broken, and the desired heat insulating properties cannot be obtained. Therefore, the coating liquid for the heat insulating porous layer is preferably an aqueous coating liquid that does not affect the hollow particles.
[0017]
Therefore, the binder used in forming the heat insulating layer is appropriately selected from conventionally known water-soluble polymers and / or aqueous polymer emulsions. Specific examples thereof include water-soluble polymers such as polyvinyl alcohol, starch and derivatives thereof, cellulose derivatives such as methoxycellulose, hydroxyethylcellulose, carboxymethylcellulose, methylcellulose, and ethylcellulose, sodium polyacrylate, polyvinylpyrrolidone, acrylamide / acrylic acid. Ester copolymers, acrylamide / acrylic ester / methacrylic acid terpolymers, styrene / maleic anhydride copolymer alkali salts, polyacrylamide, sodium alginate, gelatin, casein, and the like. Examples of the aqueous polymer emulsion include latexes such as styrene / butadiene / acrylic copolymers, vinyl acetate resins, vinyl acetate / acrylic acid copolymers, styrene / acrylic ester copolymers, acrylate resin, polyurethane Emulsions of resins and the like are included.
[0018]
In addition, 2. In the case of the hollow particles, the hollow particles have a shell of a thermoplastic resin and contain air and other gases inside. The thermoplastic resin constituting the shell is as described in 1. above. The same resins as those described in 2. above can be used. The binder for binding the hollow particles of 1. The resins mentioned above can be used similarly.
3 above. In the case of the hollow particles, the liquid inside the particles is vaporized and expanded to become hollow, and is a layer formed of a resin and microspheres having thermal expansion properties as a heat insulating layer. The microspheres having thermal expansion properties are microcapsules obtained by covering a low-boiling liquid such as butane or pentane with a resin such as polyvinylidene chloride or polyacrylonitrile. Such microspheres foam by heating after the formation of the heat insulating layer, and provide a porous layer having high cushioning and heat insulating properties after foaming. The above 3. The binder for binding the hollow particles of 1. The resins mentioned above can be used similarly.
[0019]
3 above. The heat insulating layer composed of microspheres having a thermal expansion property, because of foaming during heating and drying after the application of the coating liquid, when a solution for forming a dye receiving layer described below is applied and dried on the layer, Irregularities may occur on the surface of the formed dye receiving layer. Therefore, in order to obtain the surface of the dye receiving layer capable of transferring an image having a small unevenness and high uniformity, the above-mentioned 1. Or 2. The heat insulating layer using the hollow particles is preferred.
It is described in 1. Or 2. This is because there is no change in the particle diameter of the hollow particles in the step of applying and drying the heat insulating layer on the substrate. In the present invention, the fact that there is no change in the particle size of the hollow particles means that when forming a heat insulating layer containing the hollow particles, the particle sizes before and after heating and drying are compared. It was determined that there was no change in the particle size for the change up to about 20%.
[0020]
The heat-insulating layer formed as described above is preferably provided with a thickness of 5 to 50 μm when dried. If the thickness is less than 5 μm, the desired heat insulating property cannot be obtained, and the effect of improving the printing sensitivity is low. On the other hand, if the thickness exceeds 50 μm, the smoothness of the surface after coating and drying is reduced, so that the adhesion to a thermal head or the like is reduced, and the effect of improving printing sensitivity is reduced.
The hollow particles used in the heat insulating layer of the present invention preferably have an average particle size of 0.5 to 4.0 μm from the viewpoint of heat insulating properties, surface smoothness and the like. (All of the above-mentioned 1. to 3., and the particle of the above 3. has a particle size after thermal expansion within the above range.)
[0021]
Further, the hollow ratio of the hollow particles used in the heat insulating layer of the present invention is desirably 50% or more. The hollow ratio here is a ratio of the outer diameter to the inner diameter of the hollow particles, and is represented by (inner diameter of hollow particles / outer diameter of hollow particles) × 100%. When the hollowness is less than 50%, the heat insulating property is insufficient, and thus the effect of improving the printing sensitivity is small.
The hollow particles as described above are preferably used in the range of 100 to 400 parts by weight per 100 parts by weight of the binder resin forming the heat insulating layer. If the addition amount of the hollow particles is less than this range, the heat insulating property is low, the effect of improving the printing sensitivity is low, while if the addition amount is too large, the strength of the formed heat insulating layer is reduced, The irregularities become larger.
In the heat insulating layer, in order to impart hiding properties and whiteness, and to adjust the texture of the thermal transfer image-receiving sheet, as an inorganic pigment, calcium carbonate, talc, kaolin, titanium oxide, zinc oxide, and other known materials An inorganic pigment or a fluorescent whitening agent may be contained.
[0022]
(Dye receiving layer)
The dye receiving layer 3 formed on the heat insulating layer receives the sublimable dye transferred from the thermal transfer sheet and maintains the formed image. Examples of the resin for forming the dye receiving layer include polyolefin resins such as polypropylene, polyvinyl chloride, vinyl chloride / vinyl acetate copolymer, ethylene / vinyl acetate copolymer, and halogenated polymers such as polyvinylidene chloride. , Polyvinyl acetate, vinyl polymers such as polyacrylates, polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polystyrene resins, polyamide resins, copolymers of olefins such as ethylene and propylene with other vinyl monomers Resins, ionomers, cellulosic resins such as cellulose diacetate, polycarbonates, etc., are particularly preferred. Vinyl resins and polyester resins are particularly preferred.
[0023]
When forming the dye receiving layer from the resin, it is preferable to use a mixture of a releasing agent with the resin in order to prevent fusion between the thermal transfer sheet and the dye receiving layer during thermal transfer. Preferred release agents to be used in combination include silicone oils, phosphate ester surfactants, fluorine surfactants and the like, with silicone oil being preferred.
[0024]
As the silicone oil, a modified silicone oil such as an epoxy-modified, an alkyl-modified, an amino-modified, a carboxyl-modified, an alcohol-modified, a fluorine-modified, an alkylaralkyl-polyether-modified, an epoxy-polyether-modified, or a polyether-modified is preferable. One or a mixture of two or more of these release agents is used. The amount of the release agent is preferably in the range of 0.5 to 30 parts by weight based on 100 parts by weight of the resin for forming the dye receiving layer. If the addition amount is not satisfied, problems such as fusion between the thermal transfer sheet and the dye receiving layer or reduction in printing sensitivity may occur. By adding such a release agent to the dye-receiving layer, the release agent bleeds out on the surface of the dye-receiving layer after the transfer to form a release layer.
[0025]
The dye-receiving layer is formed by dissolving or dispersing a solution obtained by adding a necessary additive such as a release agent to the resin as described above on the heat insulating layer in an appropriate organic solvent, for example, by gravure printing. It is formed by applying and drying by forming means such as a method, a screen printing method, and a reverse roll coating method using a gravure plate. In the formation of the dye receiving layer, a fluorescent whitening agent, titanium oxide, zinc oxide, kaolin clay, calcium carbonate, fine powder silica is used for the purpose of improving the whiteness of the dye receiving layer to further enhance the sharpness of the transferred image. And other fillers and fillers. The dye receiving layer formed as described above may have any thickness, but generally has a thickness of 1 to 50 μm when dried.
[0026]
(Middle layer)
In the thermal transfer image-receiving sheet of the present invention, an intermediate layer 4 is provided between the heat-insulating layer and the dye-receiving layer to reduce irregularities on the surface of the heat-insulating layer containing the hollow particles so that the outermost surface of the image receiving surface of the thermal transfer image-receiving sheet can be further improved. Can be smoothed.
The intermediate layer is not necessarily required, but an appropriate one can be selected from conventionally known intermediate layers. As the intermediate layer, for example, a thermoplastic resin, a thermosetting resin, or a thermoplastic resin having a functional group can be formed using various curing agents and other methods. Specifically, polyvinyl alcohol, polyvinylpyrrolidone, polyester, chlorinated polypropylene, modified polyolefin, urethane resin, vinyl acetate resin, acrylic resin, polycarbonate, ionomer, monofunctional and / or polyfunctional hydroxyl-containing prepolymer are cured with isocyanate or the like. Resin or the like can be used. To these resins, additives such as titanium oxide, calcium carbonate, barium sulfate and other known inorganic pigments and organic fillers, fluorescent brighteners, etc., in order to impart functions such as whiteness and concealing properties as necessary. Can be added. The coating thickness in a dry state is preferably about 0.5 to 30 μm.
[0027]
(Back layer)
On the surface of the substrate opposite to the surface on which the dye receiving layer is provided, a back surface layer 5 can be provided for improving the transportability of the thermal transfer image-receiving sheet and preventing curling. As a back layer having such a function, it is added to a resin such as an acrylic resin, a cellulose resin, a polycarbonate resin, a polyvinyl acetal resin, a polyvinyl alcohol resin, a polyamide resin, a polystyrene resin, a polyester resin, and a halogenated polymer. As the agent, an organic filler such as an acrylic filler, a polyamide filler, a fluorine filler, or a polyethylene wax, and an inorganic filler such as silicon dioxide or a metal oxide can be used.
The thickness of the back layer is preferably about 0.2 to 10 μm when dried. When the thickness is less than the above range, the performance of the back layer cannot be exhibited, and when the thickness exceeds the above range, the effect of the back layer is saturated and not only loses the texture of plain paper, It is also uneconomic.
[0028]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. It should be noted that the parts in the text are based on weight.
(Example 1)
Using a coated paper 1 (air permeability 1,700 sec, basis weight 170 g / m 2 ) whose air permeability was adjusted by a calendering treatment as a base material, a heat insulating layer coating solution having the following composition was applied to the coated surface side of the base material. Coating and drying were performed to a thickness of 30 μm when dried to form a heat insulating layer. Next, an intermediate layer coating solution having the following composition was applied and dried on the heat insulating layer so as to have a dry thickness of 5 μm to form an intermediate layer. Further, on the intermediate layer, a dye receiving layer coating solution having the following composition was applied and dried so as to have a dry thickness of 5 μm to form a dye receiving layer, and the thermal transfer image-receiving sheet of Example 1 was prepared. Obtained.
[0029]
(Insulation layer coating liquid)
100 parts of hollow particles (a type in which the liquid inside the particles is volatilized by heating and becomes hollow, hollow particles of styrene-acrylic resin, hollow ratio of 55%, average particle diameter of 1 μm; Rohm and Haas Co., Ltd. HP-1055)
19 parts of 15% solution of polyvinyl alcohol resin (KM-11 manufactured by Nippon Synthetic Chemical Industry Co., Ltd.)
40 parts of water
(Intermediate layer coating liquid)
50 parts of urethane resin (Hydran AP-40 manufactured by Dainippon Ink and Chemicals, Inc.)
50 parts of a 10% solution of polyvinyl alcohol resin (KM-11 manufactured by Nippon Synthetic Chemical Industry Co., Ltd.)
[0031]
(Dye receiving layer coating solution)
100 parts of vinyl chloride-vinyl acetate copolymer resin (# 1000AKT manufactured by Denki Kagaku Kogyo KK)
Amino-modified silicone (KS-343, Shin-Etsu Chemical Co., Ltd.) 5 parts Epoxy-modified silicone (KF-393, Shin-Etsu Chemical Co., Ltd.) 5 parts Methyl ethyl ketone 200 parts Toluene 200 parts
(Example 2)
A thermal transfer image-receiving sheet of Example 2 was obtained in the same manner as in Example 1 except that the base material used in Example 1 was changed to the following.
Base material: coated paper 2 whose air permeability was adjusted by calendering treatment (air permeability: 2,100 sec, basis weight: 170 g / m 2 )
[0033]
(Example 3)
A thermal transfer image-receiving sheet of Example 3 was obtained in the same manner as in Example 1, except that the base material used in Example 1 was changed to the following.
Base material: coated paper 3 whose air permeability was adjusted by calendering treatment (air permeability: 3,100 sec, basis weight: 170 g / m 2 )
[0034]
(Example 4)
A thermal transfer image-receiving sheet of Example 4 was obtained in the same manner as in Example 1 except that the base material used in Example 1 was changed to the following.
Substrate: NK High Coat, manufactured by Nippon Kaishi Paper Co., Ltd. (air permeability 1,500 sec, basis weight 186 g / m 2 )
[0035]
(Example 5)
A thermal transfer image-receiving sheet of Example 5 was obtained in the same manner as in Example 1, except that the base material used in Example 1 was changed to the following.
Base material: Picasso Coat C manufactured by Daio Paper Co., Ltd. (air permeability: 3,500 sec, basis weight: 157 g / m 2 )
[0036]
(Comparative Example 1)
A thermal transfer image-receiving sheet of Comparative Example 1 was obtained in the same manner as in Example 1, except that the substrate used in Example 1 was changed to the following.
Base material: coated paper 4 whose air permeability was adjusted by calendering treatment (air permeability 3,800 sec, basis weight 170 g / m 2 )
[0037]
(Comparative Example 2)
A thermal transfer image-receiving sheet of Comparative Example 2 was obtained in the same manner as in Example 1, except that the substrate used in Example 1 was changed to the following.
Substrate: Daio Paper Co., Ltd. Picasso Coat C (air permeability 4,300 sec, basis weight 209 g / m 2 )
[0038]
(Comparative Example 3)
A thermal transfer image-receiving sheet of Comparative Example 3 was obtained in the same manner as in Example 1, except that the substrate used in Example 1 was changed to the following.
Substrate: Lioh Coat (Daio Paper Co., Ltd.) (air permeability 6,600 sec, basis weight 157 g / m 2 )
[0039]
(Comparative Example 4)
A thermal transfer image-receiving sheet of Comparative Example 4 was obtained in the same manner as in Example 1 except that the substrate used in Example 1 was changed to the following.
Substrate: Oji Paper Co., Ltd. Super Mirror (air permeability 25,000 sec or more)
[0040]
The air permeability of the base material used in the thermal transfer image-receiving sheet of each of the above Examples and Comparative Examples was determined according to JAPAN TAPPI No. Measured by Oken type air permeability tester (pressurized type) specified in 5B method. The base material used as a sample was left at 23 ° C./50% RH for 24 hours or more, and then air permeability was measured. Was measured.
[0041]
The appearance of each of the thermal transfer image-receiving sheets of Examples 1 to 5 and Comparative Examples 1 to 4 produced as described above was evaluated by the following method.
(Appearance evaluation method)
Each of the thermal transfer image receiving sheets of Examples 1 to 5 and Comparative Examples 1 to 4 was visually inspected for the appearance of the image receiving surface for surface defects due to bubbling or the like, and evaluated.
The evaluation criteria are as follows.
;: Good without surface defects due to bubbling or the like.
×: Surface defects due to bubbling were observed, and appearance was poor.
[0042]
The above evaluation results are shown in Table 1 below.
[Table 1]
Figure 2004009572
The thermal transfer image-receiving sheets of Examples 1 to 5 had no surface defects due to bubbling or the like, and when a thermal transfer image was formed on the image receiving surface, a high-quality image without defects such as density unevenness and missing prints was obtained.
[0043]
【The invention's effect】
Thus, according to the present invention, in a thermal transfer image-receiving sheet having a heat-insulating layer containing at least hollow particles and a dye-receiving layer on a paper base mainly composed of cellulose, the air permeability of the base is 1000 By having the heat insulating layer having a high porosity by setting it to not less than 2 seconds and not more than 3500 seconds, the air contained in the heat insulating layer is applied when the dye receiving layer is coated, dried, or heated at the time of forming a print on the thermal transfer image receiving sheet. In addition, it was possible to obtain a material having excellent printing quality comparable to that of photographic printing paper, which was able to escape to the base material side and prevent the occurrence of defects such as bubbling due to air on the dye receiving layer side.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing one embodiment of a thermal transfer image receiving sheet of the present invention. FIG. 2 is a schematic sectional view showing another embodiment of the thermal transfer image-receiving sheet of the present invention.
FIG. 3 is a schematic sectional view showing another embodiment of the thermal transfer image receiving sheet of the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 base material 2 heat insulating layer 3 dye receiving layer 4 intermediate layer 5 back layer

Claims (6)

セルロースを主成分とする紙基材上に、少なくとも中空粒子を含有する断熱層及び染料受容層を順次有する熱転写受像シートにおいて、該基材の透気度が1000秒以上、3500秒以下であることを特徴とする熱転写受像シート。In a thermal transfer image-receiving sheet having a heat-insulating layer containing at least hollow particles and a dye-receiving layer on a paper base mainly composed of cellulose, the air permeability of the base is 1000 seconds or more and 3500 seconds or less. A heat transfer image receiving sheet characterized by the above-mentioned. 請求項1に記載の基材において、基材の少なくとも受容層が形成される面に無機充填材を主成分とするコート層を有することを特徴とする熱転写受像シート。The thermal transfer image-receiving sheet according to claim 1, further comprising a coating layer containing an inorganic filler as a main component, at least on a surface of the substrate on which the receiving layer is formed. 請求項1に記載の中空粒子が塗布乾燥工程で粒径の変化がないことを特徴とする熱転写受像シート。A thermal transfer image-receiving sheet, wherein the hollow particles according to claim 1 do not change in particle diameter in a coating and drying step. 請求項1及び請求項3に記載の中空粒子の平均粒径が0.5〜4.0μmであることを特徴とする熱転写受像シート。4. A thermal transfer image-receiving sheet according to claim 1, wherein the hollow particles according to claim 1 have an average particle size of 0.5 to 4.0 [mu] m. 請求項1、3、4のいずれかに記載の中空粒子の中空率が50%以上であることを特徴とする熱転写受像シート。A thermal transfer image-receiving sheet, wherein the hollow particles according to any one of claims 1, 3, and 4 have a hollow ratio of 50% or more. 請求項1に記載の断熱層と染料受容層の間に中間層を有することを特徴とする熱転写受像シート。A heat transfer image-receiving sheet comprising an intermediate layer between the heat insulating layer according to claim 1 and a dye receiving layer.
JP2002166809A 2002-06-07 2002-06-07 Thermal transfer image receiving sheet Pending JP2004009572A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002166809A JP2004009572A (en) 2002-06-07 2002-06-07 Thermal transfer image receiving sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002166809A JP2004009572A (en) 2002-06-07 2002-06-07 Thermal transfer image receiving sheet

Publications (1)

Publication Number Publication Date
JP2004009572A true JP2004009572A (en) 2004-01-15

Family

ID=30434249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002166809A Pending JP2004009572A (en) 2002-06-07 2002-06-07 Thermal transfer image receiving sheet

Country Status (1)

Country Link
JP (1) JP2004009572A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7223513B2 (en) * 2004-08-25 2007-05-29 Konica Minolta Photo Imaging, Inc. Thermal transfer image receiving sheet and manufacturing method of thermal transfer image receiving sheet
JP2007237613A (en) * 2006-03-09 2007-09-20 Fujifilm Corp Thermal transfer image-receiving sheet and method for forming image
US20100247815A1 (en) * 2009-03-30 2010-09-30 Fujifilm Corporation Thermal transfer image-receiving sheet and method for producing same
US7968496B2 (en) * 2006-09-29 2011-06-28 Fujifilm Corporation Heat-sensitive transfer image-receiving sheet, image forming method using heat-sensitive transfer system and method of producing heat-sensitive transfer image receiving sheet
US8053389B2 (en) 2005-11-30 2011-11-08 Fujifilm Corporation Heat-sensitive transfer image-receiving sheet
US8188000B2 (en) * 2007-08-29 2012-05-29 Fujifilm Corporation Heat-sensitive transfer image-receiving sheet and method of producing the same
JP2020055270A (en) * 2018-10-04 2020-04-09 凸版印刷株式会社 Thermal transfer image-receiving sheet
JP2020055271A (en) * 2018-10-04 2020-04-09 凸版印刷株式会社 Thermal transfer image-receiving sheet

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7223513B2 (en) * 2004-08-25 2007-05-29 Konica Minolta Photo Imaging, Inc. Thermal transfer image receiving sheet and manufacturing method of thermal transfer image receiving sheet
US8053389B2 (en) 2005-11-30 2011-11-08 Fujifilm Corporation Heat-sensitive transfer image-receiving sheet
JP2007237613A (en) * 2006-03-09 2007-09-20 Fujifilm Corp Thermal transfer image-receiving sheet and method for forming image
JP4575892B2 (en) * 2006-03-09 2010-11-04 富士フイルム株式会社 Thermal transfer image-receiving sheet and image forming method
US7998901B2 (en) 2006-03-09 2011-08-16 Fujifilm Corporation Heat-sensitive transfer image-receiving sheet and image-forming method
US7968496B2 (en) * 2006-09-29 2011-06-28 Fujifilm Corporation Heat-sensitive transfer image-receiving sheet, image forming method using heat-sensitive transfer system and method of producing heat-sensitive transfer image receiving sheet
US8188000B2 (en) * 2007-08-29 2012-05-29 Fujifilm Corporation Heat-sensitive transfer image-receiving sheet and method of producing the same
US20100247815A1 (en) * 2009-03-30 2010-09-30 Fujifilm Corporation Thermal transfer image-receiving sheet and method for producing same
US8399377B2 (en) * 2009-03-30 2013-03-19 Fujifilm Corporation Thermal transfer image-receiving sheet and method for producing same
JP2020055270A (en) * 2018-10-04 2020-04-09 凸版印刷株式会社 Thermal transfer image-receiving sheet
JP2020055271A (en) * 2018-10-04 2020-04-09 凸版印刷株式会社 Thermal transfer image-receiving sheet

Similar Documents

Publication Publication Date Title
EP0893274B1 (en) Thermal transfer image-receiving sheet with a barrier layer
JPH0516539A (en) Thermal dye transfer image receiving sheet
JPH0999651A (en) Heat transfer image-receiving sheet
JP2004009572A (en) Thermal transfer image receiving sheet
JPH0725217B2 (en) Thermal transfer image receiving sheet
US6013602A (en) Thermal transfer image-receiving sheet
JPH11277917A (en) Thermal transfer image receiving sheet
JPH058572A (en) Preparation of image receiving sheet for thermal transfer recording
JP2003305961A (en) Composition for image receiving sheet for heat transfer recording and image receiving sheet for heat transfer recording using the same
JP2000141920A (en) Thermal transfer image receiving sheet
JP2000263955A (en) Thermal transfer image receiving sheet and its manufacture
JP3427549B2 (en) Melt transfer type ink receiving sheet and method of manufacturing the same
JPH10193805A (en) Thermal transfer image receiving sheet and its manufacture
JPH1045163A (en) Package of heat transfer image receiving sheet roll
JPH05229265A (en) Thermal transfer image receiving sheet
JP3308387B2 (en) Thermal transfer image receiving sheet
JP3218660B2 (en) Image receiving sheet for thermal transfer recording
JP4341575B2 (en) Thermal transfer receiving sheet
JPH06270559A (en) Thermal transfer image receiving sheet
JP3085477B2 (en) Receiving layer transfer sheet and thermal transfer image receiving sheet
JP3210065B2 (en) Receiving layer transfer sheet, thermal transfer image receiving sheet and method for producing the same.
JP3195329B2 (en) Inkjet recording paper
JPH082129A (en) Thermal transfer image receiving sheet and use thereof
JP2000272259A (en) Heat transfer receiving sheet
JP2001138644A (en) Heat transfer image receiving sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080311