JP2004129900A - Compound formed body between charcoal and negative ion generating material - Google Patents

Compound formed body between charcoal and negative ion generating material Download PDF

Info

Publication number
JP2004129900A
JP2004129900A JP2002298475A JP2002298475A JP2004129900A JP 2004129900 A JP2004129900 A JP 2004129900A JP 2002298475 A JP2002298475 A JP 2002298475A JP 2002298475 A JP2002298475 A JP 2002298475A JP 2004129900 A JP2004129900 A JP 2004129900A
Authority
JP
Japan
Prior art keywords
charcoal
molded body
ore powder
negative ion
ion generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002298475A
Other languages
Japanese (ja)
Inventor
Koichiro Muramatsu
村松 浩一郎
Akio Furuta
古田 昭男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aioi Hakko KK
Original Assignee
Aioi Hakko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aioi Hakko KK filed Critical Aioi Hakko KK
Priority to JP2002298475A priority Critical patent/JP2004129900A/en
Publication of JP2004129900A publication Critical patent/JP2004129900A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compound formed body between charcoal and a negative ion generating material, inexpensive, easily handled, having an adsorbing effect on various chemical substances and diffusing tourmaline and natural radiation derived negative ions. <P>SOLUTION: Two or more kinds of charcoal obtained by burning wood at different carbonization temperatures are granulated to form granular charcoal 13, and two kinds of granular charcoal 13 are mixed and formed by a binder 14 or formed and burnt to manufacture a charcoal formed body 11. An ore powder layer 12 formed of one or both of tourmaline ore powder and natural radioactive ore powder is made to appear on the surface of the charcoal formed body 11 to manufacture a compound formed body 10, and then the compound formed body 10 is integrated with a heating means 40 composed of a ceramic formed body 41 and an electric resistance heating element 42. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、炭及びマイナスイオン発生材を一体化した複合成型体に関するものである。
【0002】
【従来の技術】
近年、ホルムアルデヒド、トルエン等の化学物質がシックハウス症候群の原因として大きな社会問題となっている。前記化学物質は主に住宅用建材から気散することによって、居住者にアレルギー反応を誘発されるおそれがある。そのため、WHOにおいて特定化学物質の濃度基準が提示され、現在各種の国内法令が準備段階にある。
【0003】
現在特定化学物質の吸着には、住居内に空気清浄機を設置することが多い。しかし、空気清浄機自体の構造が複雑であり、運転コスト等が高価である。また空気清浄機に用いられる活性炭フィルターは、集塵及び芳香族化合物の吸着に有効であるが、アンモニアやホルムアルデヒド等の吸着能が劣る問題があった。
【0004】
そこで安価かつ取り扱いが容易で多様な化学物質の吸着に効果を上げる化学物質吸着材として木材又は竹を炭化した炭を利用するものがある(例えば、特許文献1参照。)。前記の化学物質吸着材は、壁や天井等の内装材に組み込むことにより、住居内に気散する化学物質の吸着に効果を発揮する。
【0005】
また、ストレスの緩和等の生理的機能改善効果について、マイナスイオンを利用することが注目されている。マイナスイオンの生成法には、コロナ放電の他、トルマリン鉱石の自発分極(例えば、特許文献2参照。)、天然鉱石中に含まれる元素の放射性壊変に伴い放射されるα線、β線、γ線のエネルギーを利用したもの(例えば、特許文献3参照。)がある。
【0006】
しかるに、両者の好適な特性を生かし、シックハウス症候群の原因となる各種の化学物質の吸着性能が高くかつ生理機能の向上を図る製品は未だに存在しなかった。
【0007】
【特許文献1】
特開2002−59409号公報(第2−4頁、第2図)
【特許文献2】
特開2002−95733号公報(第3頁)
【特許文献3】
特開平10−195764号公報(第4頁)
【0008】
【発明が解決しようとする課題】
本発明は前記の点に鑑みなされたものであり、化学物質の吸着によりシックハウス症候群の症状緩和に効果を発揮すると同時にマイナスイオンの生成により生理的機能改善効果を併せ持ち、安価かつ取り扱いの容易な炭及びマイナスイオン発生材の複合成型体を提供するものである。
【0009】
【課題を解決するための手段】
すなわち、請求項1の発明は、異なる炭化温度で焼成された2種類以上の炭を細粒化して混合し結合材によって成型又は成型後焼成した炭成型体であって、前記炭成型体の表面にトルマリン鉱石粉末又は天然放射性鉱石粉末を現出させたことを特徴とする炭及びマイナスイオン発生材の複合成型体に係る。
【0010】
請求項2の発明は、異なる炭化温度で焼成された2種類以上の炭を細粒化して混合し結合材によって成型又は成型後焼成した炭成型体であって、前記炭成型体の表面にトルマリン鉱石粉末及び天然放射性鉱石粉末を現出させたことを特徴とする炭及びマイナスイオン発生材の複合成型体に係る。
【0011】
請求項3の発明は、前記炭成型体の表面にさらに銀粉末を現出させたことを特徴とする請求項1又は2に記載の炭及びマイナスイオン発生材の複合成型体に係る。
【0012】
請求項4の発明は、前記炭成型体と発熱手段とが一体化されていることを特徴とする請求項1ないし3のいずれか1項に記載の炭及びマイナスイオン発生材の複合成型体に係る。
【0013】
【発明の実施の形態】
以下添付の図面に従ってこの発明を詳細に説明する。
図1はこの発明の一実施例に係る炭及びマイナスイオン発生材の複合成型体の部分断面図、図2は他の実施例に係る炭及びマイナスイオン発生材の複合成型体の部分断面図、図3はさらに他の実施例に係る炭及びマイナスイオン発生材の複合成型体の斜視図、図4は図3に表す発熱手段を裏面側から見た斜視図、図5は図3におけるX−X線の位置で切断した状態の部分断面図である。
【0014】
図1は、請求項1及び2に記載する炭及びマイナスイオン発生材の複合成型体の主要部断面を表すものである。前記炭及びマイナスイオン発生材の複合成型体10は、炭成型体11と該炭成型体11表面に現出する鉱石粉末層12より構成される。なお、符号13は細粒炭、14は結合材、15はトルマリン鉱石粉末又は天然放射性鉱石粉末のいずれか一方もしくは両方の鉱石粉末、16は前記鉱石粉末15に銀粉末を含む混合粉末を表す。
【0015】
前記炭成型体11の製法は次のとおりである。木材、竹、その他天然繊維質の木質を原料とし、これらの原料はチップ状に粉砕後、異なる炭化温度のもとで焼成される。異なる炭化温度で得られた2種類以上の炭のそれぞれは、公知の粉砕機により粒径5mm以下に細粒化され、粒径の大半が1〜5mmに存在するように選別され、細粒炭13が得られる。前記細粒炭13は結合材14と共に混練後、公知のプレス成型機等により所望の形状に成型され、炭成型体11が得られる。なお、前記炭成型体は、さらに150〜300℃、1〜2時間焼成することにより、細粒化した炭同士の固着性を高めてもよい。
【0016】
一般に異なる炭化温度下で木材等を焼成すると、炭化時に発達する細孔の大きさに差が生じることが知られている。特に木材では、高温になるほどの炭化は促進し細孔の大きさは小さくなる。炭化温度として、約500℃付近の低温度域、700〜900℃の中温度域、950〜1000℃の高温度域として示す炭化温度が利用される。前記低温度域において木材を焼成すると、主にアンモニア、各種アミン等の塩基性化合物の吸着に効果を発揮し、消臭剤に適する。前記中温度域においてはイソ吉草酸、ホルムアルデヒド、アセトアルデヒド等の極性化合物、高温度域においてはトルエン、ベンゼン、キシレン等の芳香族化合物の吸着に効果を発揮する。このように各炭化温度で焼成した炭を適切に組み合わせることにより、幅広い化学物質の吸着に効果を上げることが可能である。従って、細粒炭13の原料は、間伐材や廃木材等の木材が好ましい。
【0017】
前記結合材14としては、酢酸ビニル等の公知の有機化合物が用いられる。しかしながら、本発明の複合成型体は廃棄後の微生物分解性を重視するため、前記結合材は、環境負荷が少なく微生物分解性に富むことと同時に炭成型体の強度維持を鑑み、でんぷん糊、アラビアゴム、アルギン酸ナトリウム等が好ましく、とりわけでんぷん糊が好適である。
【0018】
前記炭成型体11の表面に現出する鉱石粉末層12は、請求項1においてはトルマリン鉱石粉末又は天然放射性鉱石粉末のいずれか一方、請求項2においてはトルマリン鉱石粉末と天然放射性鉱石粉末の両方である。
【0019】
前記鉱石粉末層12を構成するトルマリン鉱石粉末は、トルマリン鉱石(tourmaline)をボールミル等の公知の粉砕手段により粒径1〜3μmに粉砕したものである。前記トルマリンは別名電気石とも呼ばれ、天然に産出する誘電体・焦電体であり、外部から摩擦や加熱等の物理的な力が加わることにより分極し、周囲の空気(空気中の水分)に作用しマイナスイオンを生じさせることが知られている。
【0020】
また、前記天然放射性鉱石粉末は、ウラン元素、トリウム元素の各種化合物、及びウラン元素、トリウム元素から放射性壊変を伴い生じた元素(化合物を含む)を含有する鉱石である。天然放射性鉱石には、人形石、閃ウラン鉱、トリウム鉱、モナザイト、褐れん石、北投石、バストネサイト等各種の鉱石が挙げられるが、放射性同位元素から放射される線量を勘案し、原子力基本法、核原料物質,核燃料物質及び原子炉の規制に関する法律をはじめとする各種の法律、規則等における保管、取り扱い及び入手容易性を考慮するとモナザイトの利用が好ましい。天然放射性鉱石粉末は、天然放射性鉱石をボールミル等の公知の粉砕手段により粒径1〜5μmに粉砕した粉末である。
【0021】
請求項1及び請求項2における現出は、図1から理解されるように炭成型体11表面の一側11aにトルマリン鉱石粉末又は天然放射性鉱石粉末のいずれか一方からなる鉱石粉末層12、もしくは所定比率で混合した両鉱石の混合鉱石粉末からなる鉱石粉末層12を炭成型体の単位面積あたり均一重量となるように付着させることである。現出の方法としては、前記でんぷん糊等のゲル状物にトルマリン鉱石粉末、天然放射性鉱石粉末を均一になるように混合分散したものを炭成型体表面に刷毛、スプレー等により直接塗布する方法がある。
【0022】
他に図2に示すとおり、前記でんぷん糊等にトルマリン鉱石粉末、天然放射性鉱石粉末を均一になるように混合分散したものを紙や布に塗布して鉱石塗布体21を予め調整し、該鉱石塗布体21を炭成型体11に被せる方法である。図2に示す炭及びマイナスイオン発生剤の複合成型体20は、通気性に優れた紙17に予め鉱石粉末15を塗布して鉱石粉末層12を形成し、得られた鉱石塗布体21を炭成型体11(一側11a)に張り合わせたものである。図示のとおり鉱石粉末層12は、炭成型体11と紙17の間に保持されるものである。なお、図1と同一部材については同一符号とし、その説明を省略する。
【0023】
トルマリン鉱石粉末、天然放射性鉱石粉末の粒径を前記のとおりに規定すると、鉱石粉末の表面積、すなわち空気中の水分等との接触面積が増加し、マイナスイオン発生効率の上昇に寄与することができる。併せて、微粉末化されているため、炭成型体表面へ塗布等による現出が容易となる。
【0024】
請求項3に記載の炭及びマイナスイオン発生材の複合成型体は、前出の請求項1及び2に詳述した鉱石粉末層12にさらに銀粉末を添加し、該銀粉末を炭成型体11表面の一側11aに現出させたものである。銀は、光(電磁波)のエネルギーを受け、触媒として空気中の水分や酸素に作用し、各種のラジカル体を形成することが知られ、発生したラジカル体により雑菌の繁殖を抑制するものである。また、銀はγ線をはじめとする電磁波に対し高い遮蔽性を有するため、前出の天然放射性鉱石粉末から放射されるγ線の線量軽減が期待できる。併せて、マイナスイオン生成時、同時に発生する電子の受容体となり、同じく固体中に発生したプラス電荷と電子の再結合を防止する(電荷分離)役割を担うと考えられる。
【0025】
そこで、炭成型体表面の現出容易性と銀粉末の表面積拡大を考慮し、前記銀粉末は粒径1〜5μmの粉末を使用することが好適である。なお、銀粉末の現出方法は、鉱石粉末に所定比率で配合された後、上記鉱石粉末の場合と同様の方法であり、鉱石粉末・銀粉末の混合粉末がでんぷん糊に分散され、炭成型体又は布、紙に塗布されるものである。
【0026】
請求項1ないし3において、単位面積当たりの炭成型体表面に現出させるトルマリン鉱石粉末、天然放射性鉱石粉末、銀粉末の現出量及び混合比率は、当該複合成型体の大きさ、形状、使用目的、所望とするマイナスイオン発生量等に応じて適宜設定される。例えばトルマリン鉱石粉末と天然放射性鉱石粉末の混合比は、トルマリン鉱石粉末3重量部にモナザイト粉末1重量部の混合比が好適なものとして例示できる。天然放射性鉱石粉末は、照射される放射線量が選択する鉱石種により大きく異なり、加えて産地毎の変動も大きい。そのため、製造に際し、逐次放射線量が測定され、基準値以下とするように使用量が設定される。
【0027】
図3に示す炭及びマイナスイオン発生材の複合成型体30は、請求項4に記載のとおり、請求項1ないし3に記載の細粒炭を基材とする複合成型体10と発熱手段40を一体化させた暖房装置である。特に前記炭成型体を介在させるため、炭から発生する遠赤外線の温熱作用を有効に利用することができる。前記発熱手段40は、セラミック製の電気ヒーター、オイルヒーター等が用いられるが、軽量かつ取り扱い容易性、成型の自由度を加味し前者のセラミック製の電気ヒーターとすることが望ましい。前記炭を基材とする複合成型体10と発熱手段40は、ボルト・ナット等による螺着もしくは熱安定性を有する接着剤等により接合される。図3は接着剤45により、互いを接合するものを例示する。
【0028】
図4は、発熱手段40を裏面側から表すものである。前記発熱手段40は、セラミック成型体41の一側の面に電気抵抗発熱体42を敷設したものである。前記電気抵抗発熱体42は、ニッケル,クロム等の合金からなる薄状体であり、セラミック成型体41の一側の面にむらなく配設されている。このため、通電による発熱の損失を少なくしつつセラミック成型体41、ひいては細粒炭を基材とする複合成型体10に効率よく発熱を伝導することができる。前記電気抵抗発熱体42は、セラミック成型体41に絶縁性保護体(図示せず)により、密着固定されている。
【0029】
図5は前記炭及びマイナスイオン発生材の複合成型体30の図3におけるX−X線の位置で切断した状態の部分断面図である。図より理解されるとおり、前記複合成型体30は、細粒炭13を結合材14により固着し、表面に鉱石粉末層12を形成する炭成型体11と、電気抵抗発熱体42が固定されたセラミック成型体41からなる発熱手段40とを接着剤45を用いて結合させたものである。前記炭成型体11及びセラミック成型体41の形状は目的に応じて適宜とされるが、前記複合成型体30を平板状とする場合には、炭成型体11は厚さ7〜15mm、セラミック成型体41は厚さ3〜5mmが望ましい。なお、図3ないし図5において細粒炭を基材とする複合成型体10の代わりに鉱石塗布体21(紙17)を張り合わせた細粒炭を基材とする複合成型体20とすることも可能である。
【0030】
炭及びマイナスイオン発生材の複合成型体30は、細粒炭を基材とする複合成型体10(20)と発熱手段40を一体化させたため、特にトルマリン鉱石粉末を現出させたものは、セラミック成型体41による発熱を受けトルマリンが焦電体として作用し、より多くのマイナスイオンを発生する。なお、炭及びマイナスイオン発生材の複合成型体30の細粒炭を基材とする複合成型体10(20)部分の表面温度は、人体への接触時の火傷の危険性から40〜50℃に設定することが望ましい。温度調節にあたっては、図示はしないがサーモスタット等の公知の安全装置により電気抵抗発熱体42の発熱量を制御する。
【0031】
図1ないし図4においては、炭及びマイナスイオン発生材の複合成型体の平板状物を例示するものである。他に湾曲状物、球状物、柱状物等の適宜の形状に成型可能である。また、表面に凹凸等の任意の意匠形状を成型することができる。
前記複合成型体は、壁材、床材、天井材等の住宅用建材、事務所用のパーテーション、椅子、テーブル等の家具、自動車、船舶、航空機用の内装材等に利用される。特に図3等に表す発熱手段と一体化した平板状の炭及びマイナスイオン発生材の複合成型体は住宅、事務所等に利用すると面状に室内の空気を暖めることができるため、暖房効率がよく暖房装置として有効である。
【0032】
【発明の効果】
以上図示し説明したように、請求項1及び2の発明に係るの炭及びマイナスイオン発生材の複合成型体によると、異なる炭化温度で焼成された2種類以上の炭を用いるため、炭の有する吸湿性に加え、多様な化学物質の吸着固定に対応することができる。また、炭成型体の表面にトルマリン鉱石粉末又は天然放射性鉱石粉末のいずれか一方、もしくは両方を現出させるため、良好なマイナスイオン発生源の機能を付加することができる。
【0033】
請求項3の発明に係るの炭及びマイナスイオン発生材の複合成型体によると、前記炭成型体にトルマリン鉱石粉末又は天然放射性鉱石粉末のいずれか一方、もしくは両方に銀粉末も併せて現出させるため、マイナスイオン発生源としての機能に加え、銀の有する抗菌効果、遮蔽効果等を併せ持つこととなる。
【0034】
請求項4の発明に係るの炭及びマイナスイオン発生材の複合成型体によると、請求項1ないし3に記載の炭及びマイナスイオン発生材の複合成型体に発熱手段を一体化させるため、炭から発生する遠赤外線を利用した良質な暖房装置が得られる。とりわけ、トルマリン鉱石粉末を炭成型体表面に現出させたものにあっては、トルマリンが焦電体として作用しマイナスイオンの発生量を増加させることができる。
【図面の簡単な説明】
【図1】本発明の一実施例に係る炭及びマイナスイオン発生材の複合成型体の部分断面図である。
【図2】他の実施例に係る炭及びマイナスイオン発生材の複合成型体の部分断面図である。
【図3】さらに他の実施例に係る炭及びマイナスイオン発生材の複合成型体の斜視図である。
【図4】図3に表す発熱手段を裏面側から見た斜視図である。
【図5】図3におけるX−X線の位置で切断した状態の部分断面図である。
【符号の説明】
10,20,30 炭及びマイナスイオン発生材の複合成型体
11 炭成型体
12 鉱石粉末層
13 細粒炭
14 結合材
17 紙
21 鉱石塗布体
40 発熱手段
41 セラミック成型体
42 電気抵抗発熱体
45 接着剤
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a composite molded body in which charcoal and a negative ion generating material are integrated.
[0002]
[Prior art]
In recent years, chemical substances such as formaldehyde and toluene have become a major social problem as a cause of sick house syndrome. The above-mentioned chemical substance may be scattered mainly from building materials for home use, and may cause an allergic reaction to residents. For this reason, the WHO has proposed a standard for the concentration of specific chemical substances, and various domestic laws and regulations are currently in the preparation stage.
[0003]
At present, air purifiers are often installed in houses to adsorb specific chemical substances. However, the structure of the air purifier itself is complicated, and the operating cost is high. Activated carbon filters used in air purifiers are effective in collecting dust and adsorbing aromatic compounds, but have a problem of poor adsorption capacity for ammonia and formaldehyde.
[0004]
Therefore, there is a material that uses charcoal obtained by carbonizing wood or bamboo as a chemical substance adsorbent that is inexpensive, easy to handle, and has an effect of adsorbing various chemical substances (for example, see Patent Document 1). The above-mentioned chemical substance adsorbent is effective in adsorbing a chemical substance that diffuses in a house by incorporating it into an interior material such as a wall or a ceiling.
[0005]
In addition, attention has been paid to the use of negative ions for physiological function improvement effects such as stress reduction. In addition to corona discharge, spontaneous polarization of tourmaline ore (see, for example, Patent Document 2), α-rays, β-rays, and γ-rays emitted due to radioactive decay of elements contained in natural ores other than corona discharge There is one that uses the energy of a line (for example, see Patent Document 3).
[0006]
However, there has not yet been a product that utilizes both suitable properties and has high adsorption performance for various chemical substances causing sick house syndrome and improves physiological functions.
[0007]
[Patent Document 1]
JP-A-2002-59409 (pages 2-4, FIG. 2)
[Patent Document 2]
JP-A-2002-95733 (page 3)
[Patent Document 3]
JP-A-10-195768 (page 4)
[0008]
[Problems to be solved by the invention]
The present invention has been made in view of the above points, and has an effect of alleviating the symptoms of sick house syndrome by adsorption of a chemical substance, and at the same time, has an effect of improving a physiological function by generating negative ions, and is inexpensive and easy to handle. And a composite molded article of a negative ion generating material.
[0009]
[Means for Solving the Problems]
That is, the invention according to claim 1 is a charcoal molded product obtained by granulating and mixing two or more types of charcoal fired at different carbonization temperatures and molding or molding with a binder, and then firing. The present invention relates to a composite molded body of charcoal and a negative ion generating material, characterized in that a tourmaline ore powder or a natural radioactive ore powder is produced.
[0010]
The invention according to claim 2 is a charcoal molding obtained by granulating and mixing two or more types of charcoal fired at different carbonization temperatures and molding or molding with a binder, and then calcining the surface of the charcoal molding. The present invention relates to a composite formed body of charcoal and a negative ion generating material, characterized in that an ore powder and a natural radioactive ore powder are revealed.
[0011]
The invention according to claim 3 relates to the composite molded body of charcoal and the negative ion generating material according to claim 1 or 2, wherein silver powder is further exposed on the surface of the carbon molded body.
[0012]
According to a fourth aspect of the present invention, there is provided a composite molded body of charcoal and a negative ion generating material according to any one of the first to third aspects, wherein the charcoal molded body and the heat generating means are integrated. Related.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a partial cross-sectional view of a composite molded body of charcoal and a negative ion generating material according to one embodiment of the present invention. FIG. 2 is a partial cross-sectional view of a composite molded body of charcoal and a negative ion generating material according to another embodiment. FIG. 3 is a perspective view of a composite molded body of charcoal and a negative ion generating material according to still another embodiment, FIG. 4 is a perspective view of the heating means shown in FIG. 3 as viewed from the back side, and FIG. It is a partial sectional view in the state where it was cut at the position of X-rays.
[0014]
FIG. 1 shows a cross section of a main part of a composite molded body of charcoal and a negative ion generating material according to the first and second aspects. The composite molded body 10 of the charcoal and the negative ion generating material includes a charcoal molded body 11 and an ore powder layer 12 appearing on the surface of the carbon molded body 11. Reference numeral 13 denotes fine-grained coal, 14 denotes a binder, 15 denotes tourmaline ore powder and / or natural radioactive ore powder, and 16 denotes a mixed powder containing silver powder in the ore powder 15.
[0015]
The manufacturing method of the charcoal molding 11 is as follows. Wood, bamboo, and other natural fibrous materials are used as raw materials. These raw materials are pulverized into chips and fired at different carbonization temperatures. Each of two or more types of charcoal obtained at different carbonization temperatures is pulverized to a particle size of 5 mm or less by a known pulverizer, and is sorted so that most of the particle size exists in 1 to 5 mm. 13 is obtained. The fine-grained charcoal 13 is kneaded with the binder 14 and then molded into a desired shape by a known press molding machine or the like, and the charcoal molded body 11 is obtained. The charcoal molded body may be further baked at 150 to 300 ° C. for 1 to 2 hours to enhance the adhesion between the finely divided charcoals.
[0016]
It is generally known that firing wood or the like at different carbonization temperatures causes a difference in the size of pores developed during carbonization. In particular, in wood, the higher the temperature, the more the carbonization is promoted and the size of the pores is reduced. As the carbonization temperature, a carbonization temperature shown as a low temperature range around about 500 ° C, a medium temperature range of 700 to 900 ° C, and a high temperature range of 950 to 1000 ° C is used. When wood is fired in the low temperature range, it exhibits an effect mainly on adsorption of basic compounds such as ammonia and various amines, and is suitable as a deodorant. It exerts an effect on the adsorption of polar compounds such as isovaleric acid, formaldehyde and acetaldehyde in the medium temperature range, and on the adsorption of aromatic compounds such as toluene, benzene and xylene in the high temperature range. By appropriately combining the charcoal fired at each carbonization temperature in this way, it is possible to improve the effect of adsorbing a wide range of chemical substances. Therefore, the raw material of the fine coal 13 is preferably wood such as thinned wood or waste wood.
[0017]
As the binder 14, a known organic compound such as vinyl acetate is used. However, since the composite molded article of the present invention attaches importance to the biodegradability after disposal, the binder has a low environmental load and is rich in microbial degradability, and at the same time, in consideration of maintaining the strength of the charcoal molded article, starch paste, Arabic starch, and the like. Rubber, sodium alginate and the like are preferred, and starch paste is particularly preferred.
[0018]
The ore powder layer 12 appearing on the surface of the charcoal molded body 11 is either one of tourmaline ore powder and natural radioactive ore powder in claim 1, and both the tourmaline ore powder and natural radioactive ore powder in claim 2. It is.
[0019]
The tourmaline ore powder constituting the ore powder layer 12 is obtained by crushing tourmaline ore to a diameter of 1 to 3 μm by a known crushing means such as a ball mill. Tourmaline, also called tourmaline, is a naturally occurring dielectric or pyroelectric substance that is polarized by the application of a physical force such as friction or heating from the outside, resulting in the surrounding air (moisture in the air). It is known to act on to produce negative ions.
[0020]
The natural radioactive ore powder is an ore containing various compounds of uranium element and thorium element, and elements (including compounds) generated from uranium element and thorium element with radioactive decay. Natural ores include various ores such as doll stones, uranium ores, thorium ores, monazite, olivine, hokutoseki, and bastnaesite, but taking into account the dose emitted from radioisotopes, Considering the storage, handling and availability in various laws and regulations, including the Basic Law, the Law on Regulation of Nuclear Raw Materials, Nuclear Fuel Materials and Reactors, the use of monazite is preferred. The natural radioactive ore powder is a powder obtained by crushing a natural radioactive ore to a particle size of 1 to 5 μm by a known crushing means such as a ball mill.
[0021]
As can be seen from FIG. 1, the ore powder layer 12 made of one of tourmaline ore powder and natural radioactive ore powder is provided on one side 11 a of the surface of the charcoal molded body 11. The purpose is to adhere an ore powder layer 12 made of a mixed ore powder of both ores mixed at a predetermined ratio so as to have a uniform weight per unit area of the carbon molded body. As a method of appearance, a method in which tourmaline ore powder and a natural radioactive ore powder are mixed and dispersed in a gel-like substance such as the starch paste so as to be uniform, and directly applied to the surface of the charcoal molded product by brushing, spraying, or the like. is there.
[0022]
In addition, as shown in FIG. 2, a tourmaline ore powder and a natural radioactive ore powder mixed and dispersed in the starch paste or the like so as to be uniform are applied to paper or cloth to prepare an ore coated body 21 in advance, and This is a method in which the coating body 21 is put on the charcoal molding 11. The composite molded body 20 of charcoal and the anion generator shown in FIG. 2 is obtained by previously coating the ore powder 15 on the paper 17 having excellent air permeability to form the ore powder layer 12, and then coating the obtained ore coated body 21 with the charcoal. It is bonded to the molded body 11 (one side 11a). As illustrated, the ore powder layer 12 is held between the charcoal molded body 11 and the paper 17. The same members as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
[0023]
When the particle size of tourmaline ore powder and natural radioactive ore powder is specified as described above, the surface area of the ore powder, that is, the contact area with moisture in the air and the like increases, which can contribute to an increase in negative ion generation efficiency. . At the same time, since the powder is pulverized, it becomes easy to appear by applying it to the surface of the charcoal molded body.
[0024]
In the composite molded body of the charcoal and the negative ion generating material according to the third aspect, silver powder is further added to the ore powder layer 12 described in the above first and second aspects, and the silver powder is converted into the carbon molded body 11. This is exposed on one side 11a of the front surface. Silver is known to receive the energy of light (electromagnetic waves) and act as a catalyst on water and oxygen in the air to form various types of radicals. The generated radicals suppress the propagation of various bacteria. . Further, silver has a high shielding property against electromagnetic waves such as γ-rays, so that the dose of γ-rays emitted from the natural radioactive ore powder described above can be expected to be reduced. At the same time, it becomes an acceptor of electrons generated at the same time when negative ions are generated, and is also considered to play a role of preventing recombination of positive charges and electrons generated in the solid (charge separation).
[0025]
Therefore, it is preferable to use a powder having a particle size of 1 to 5 μm in consideration of the ease of appearance of the surface of the charcoal molding and the increase in the surface area of the silver powder. The method of producing silver powder is the same method as in the case of the above-mentioned ore powder after being mixed with the ore powder in a predetermined ratio, and the mixed powder of the ore powder and the silver powder is dispersed in starch paste, and charcoal molding is performed. It is applied to the body, cloth or paper.
[0026]
4. The amount and the mixing ratio of the tourmaline ore powder, the natural radioactive ore powder, and the silver powder that appear on the surface of the carbon molded body per unit area according to claim 1, the size, the shape, and the use of the composite molded body. It is set appropriately according to the purpose, the desired amount of generated negative ions, and the like. For example, the mixing ratio of tourmaline ore powder and natural radioactive ore powder can be exemplified as a suitable mixing ratio of 3 parts by weight of tourmaline ore powder and 1 part by weight of monazite powder. For natural radioactive ore powder, the radiation dose to be irradiated greatly varies depending on the ore type selected, and in addition, there is a large variation between production areas. Therefore, upon manufacturing, the radiation dose is measured successively, and the used amount is set so as to be equal to or less than the reference value.
[0027]
As shown in claim 4, the composite molded body 30 of charcoal and the negative ion generating material shown in FIG. 3 is composed of the composite molded body 10 based on fine-grained charcoal according to claim 1 and the heating means 40. It is an integrated heating device. In particular, since the charcoal molded body is interposed, it is possible to effectively use the thermal effect of far infrared rays generated from charcoal. As the heat generating means 40, a ceramic electric heater, an oil heater, or the like is used. However, it is preferable to use the former ceramic electric heater in consideration of light weight, easy handling, and flexibility in molding. The composite molded body 10 made of charcoal as a base material and the heat generating means 40 are joined by screwing with bolts and nuts or by an adhesive having thermal stability. FIG. 3 illustrates an example in which the components are joined to each other by an adhesive 45.
[0028]
FIG. 4 shows the heat generating means 40 from the back side. The heat generating means 40 is one in which an electric resistance heating element 42 is laid on one surface of a ceramic molded body 41. The electric resistance heating element 42 is a thin body made of an alloy such as nickel and chromium, and is disposed evenly on one surface of the ceramic molded body 41. For this reason, heat generation can be efficiently conducted to the ceramic molded body 41, and eventually to the composite molded body 10 based on fine-grained charcoal, while reducing the loss of heat generation due to energization. The electric resistance heating element 42 is tightly fixed to the ceramic molded body 41 by an insulating protective body (not shown).
[0029]
FIG. 5 is a partial cross-sectional view of the composite molded body 30 of the charcoal and the negative ion generating material cut along the line XX in FIG. As can be understood from the figure, in the composite molded body 30, the fine-grained charcoal 13 is fixed by the binder 14, and the charcoal molded body 11 forming the ore powder layer 12 on the surface and the electric resistance heating element 42 are fixed. The heat generating means 40 made of a ceramic molded body 41 is bonded using an adhesive 45. The shapes of the charcoal molded body 11 and the ceramic molded body 41 are appropriately determined according to the purpose. However, when the composite molded body 30 is formed in a flat plate shape, the charcoal molded body 11 has a thickness of 7 to 15 mm and is formed of ceramic. The body 41 preferably has a thickness of 3 to 5 mm. 3 to 5, instead of the composite molded body 10 based on fine-grained charcoal, the composite molded body 20 based on fine-grained charcoal with the ore coating 21 (paper 17) bonded thereto may be used. It is possible.
[0030]
Since the composite molded body 30 of charcoal and the negative ion generating material integrates the composite molded body 10 (20) based on fine-grained charcoal and the heating means 40, the one that has revealed the tourmaline ore powder is particularly: The tourmaline acts as a pyroelectric body by receiving heat generated by the ceramic molded body 41, and generates more negative ions. The surface temperature of the composite molded body 10 (20) based on fine-grained charcoal of the composite molded body 30 of the charcoal and the negative ion generating material is set to 40 to 50 ° C. due to the risk of burns upon contact with the human body. It is desirable to set to. In adjusting the temperature, the calorific value of the electric resistance heating element 42 is controlled by a known safety device such as a thermostat (not shown).
[0031]
1 to 4 exemplify a flat plate of a composite molded body of charcoal and a negative ion generating material. In addition, it can be formed into an appropriate shape such as a curved object, a spherical object, and a columnar object. Also, an arbitrary design shape such as unevenness can be molded on the surface.
The composite molded body is used for housing materials such as wall materials, floor materials and ceiling materials, office partitions, furniture such as chairs and tables, and interior materials for automobiles, ships and aircraft. In particular, when the flat molded composite body of the charcoal and the negative ion generating material integrated with the heat generating means shown in FIG. 3 and the like is used for a house, an office, or the like, the indoor air can be heated in a planar manner. Well effective as a heating device.
[0032]
【The invention's effect】
As shown and described above, according to the composite molded body of charcoal and the negative ion generating material according to the first and second aspects of the present invention, since two or more types of charcoal fired at different carbonization temperatures are used, the charcoal has In addition to hygroscopicity, it can cope with adsorption and fixation of various chemical substances. In addition, since one or both of the tourmaline ore powder and the natural radioactive ore powder are exposed on the surface of the charcoal molded body, a good function of a negative ion source can be added.
[0033]
According to the composite molded body of charcoal and the negative ion generating material according to the third aspect of the present invention, one of tourmaline ore powder and natural radioactive ore powder, or both, and silver powder also appear on the charcoal molded body. Therefore, in addition to the function as a negative ion generating source, the antibacterial effect and the shielding effect of silver are also obtained.
[0034]
According to the composite molded body of charcoal and the negative ion generating material according to the invention of claim 4, since the heat generating means is integrated with the composite molded body of the charcoal and the negative ion generating material according to any one of claims 1 to 3, the charcoal and negative ion generating material are integrated. A high-quality heating device using the generated far infrared rays can be obtained. In particular, in the case where the tourmaline ore powder is exposed on the surface of the charcoal molded body, the tourmaline acts as a pyroelectric body, thereby increasing the amount of negative ions generated.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view of a composite molded body of charcoal and a negative ion generating material according to one embodiment of the present invention.
FIG. 2 is a partial cross-sectional view of a composite molded body of charcoal and a negative ion generating material according to another embodiment.
FIG. 3 is a perspective view of a composite molded body of charcoal and a negative ion generating material according to still another embodiment.
FIG. 4 is a perspective view of the heat generating means shown in FIG. 3 as viewed from the back side.
FIG. 5 is a partial cross-sectional view taken along a line XX in FIG. 3;
[Explanation of symbols]
10, 20, 30 Composite molded body of charcoal and anion generating material 11 Coal molded body 12 Ore powder layer 13 Fine-grained charcoal 14 Bonding material 17 Paper 21 Ore applied body 40 Heating means 41 Ceramic molded body 42 Electric resistance heating element 45 Adhesion Agent

Claims (4)

異なる炭化温度で焼成された2種類以上の炭を細粒化して混合し結合材によって成型又は成型後焼成した炭成型体であって、
前記炭成型体の表面にトルマリン鉱石粉末又は天然放射性鉱石粉末を現出させたことを特徴とする炭及びマイナスイオン発生材の複合成型体。
A charcoal molded body which is obtained by granulating and mixing two or more types of charcoal fired at different carbonization temperatures and molding or molding with a binder, followed by firing.
A composite molded body of charcoal and a negative ion generating material, wherein tourmaline ore powder or natural radioactive ore powder is exposed on the surface of the charcoal molded body.
異なる炭化温度で焼成された2種類以上の炭を細粒化して混合し結合材によって成型又は成型後焼成した炭成型体であって、
前記炭成型体の表面にトルマリン鉱石粉末及び天然放射性鉱石粉末を現出させたことを特徴とする炭及びマイナスイオン発生材の複合成型体。
A charcoal molded body which is obtained by granulating and mixing two or more types of charcoal fired at different carbonization temperatures and molding or molding with a binder, followed by firing.
A composite molded body of charcoal and a negative ion generating material, wherein tourmaline ore powder and natural radioactive ore powder are exposed on the surface of the charcoal molded body.
前記炭成型体の表面にさらに銀粉末を現出させたことを特徴とする請求項1又は2に記載の炭及びマイナスイオン発生材の複合成型体。The composite molded body of charcoal and a negative ion generating material according to claim 1 or 2, wherein silver powder is further exposed on the surface of the carbon molded body. 前記炭成型体と発熱手段とが一体化されていることを特徴とする請求項1ないし3のいずれか1項に記載の炭及びマイナスイオン発生材の複合成型体。The composite molded body of charcoal and a negative ion generating material according to any one of claims 1 to 3, wherein the charcoal molded body and the heat generating means are integrated.
JP2002298475A 2002-10-11 2002-10-11 Compound formed body between charcoal and negative ion generating material Pending JP2004129900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002298475A JP2004129900A (en) 2002-10-11 2002-10-11 Compound formed body between charcoal and negative ion generating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002298475A JP2004129900A (en) 2002-10-11 2002-10-11 Compound formed body between charcoal and negative ion generating material

Publications (1)

Publication Number Publication Date
JP2004129900A true JP2004129900A (en) 2004-04-30

Family

ID=32287879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002298475A Pending JP2004129900A (en) 2002-10-11 2002-10-11 Compound formed body between charcoal and negative ion generating material

Country Status (1)

Country Link
JP (1) JP2004129900A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008228832A (en) * 2007-03-16 2008-10-02 Takehiko Oki Stool
JP2009082559A (en) * 2007-10-01 2009-04-23 Jen-Taut Yeh Composite powdery body which emits negative ion at high efficiency, composite powdery body deposit, and its manufacturing method
WO2013073634A1 (en) * 2011-11-18 2013-05-23 味の素株式会社 Electromagnetic wave absorption plate, and composition for same and method for manufacturing same
CN113880593A (en) * 2021-10-25 2022-01-04 中国地质大学(武汉) High-temperature sintered tourmaline type negative ion unglazed ceramic and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008228832A (en) * 2007-03-16 2008-10-02 Takehiko Oki Stool
JP2009082559A (en) * 2007-10-01 2009-04-23 Jen-Taut Yeh Composite powdery body which emits negative ion at high efficiency, composite powdery body deposit, and its manufacturing method
WO2013073634A1 (en) * 2011-11-18 2013-05-23 味の素株式会社 Electromagnetic wave absorption plate, and composition for same and method for manufacturing same
CN113880593A (en) * 2021-10-25 2022-01-04 中国地质大学(武汉) High-temperature sintered tourmaline type negative ion unglazed ceramic and preparation method thereof
CN113880593B (en) * 2021-10-25 2023-01-13 中国地质大学(武汉) High-temperature sintered tourmaline type negative ion unglazed ceramic and preparation method thereof

Similar Documents

Publication Publication Date Title
US20070068339A1 (en) Method of making heat cells comprising exothermic compositions having absorbent gelling material
JP2017534567A (en) Expanded vermiculite cement board for releasing anions and method for producing the same
CN101451307A (en) Long acting cooling composite powder, cooling fiber and method for producing the same
CN102173719A (en) Non-combustible vermiculite plate
KR101321517B1 (en) A heater of honeycomb structure using silicon carbide
JP2004129900A (en) Compound formed body between charcoal and negative ion generating material
CN102814162A (en) Modified activated carbon adsorption scavenger and preparation method
JP2006132112A (en) Negative ion generating building interior material
US8801977B2 (en) Enhanced alpha particle emitter
CN105413628A (en) Healthcare type negative ion far infrared particles as well as preparation raw materials, preparation method and application thereof
CN105732011A (en) A preparing method of novel multifunctional diatomite ceramsite
CN102344275A (en) Gypsum board and its preparation method
CN112573891A (en) Far infrared health maintenance diatom ooze board and preparation method thereof
CN105521805B (en) Nanocomposite GO-MgWO4Preparation method and application
JP2005058964A (en) Material and product having environment improving function
CN104556032A (en) CO purifier and gas heater with same
JP2004315241A (en) Activated carbon and method for manufacturing the same
CN108371940A (en) A kind of material and preparation method thereof for adsorbing PM2.5 particles in air
KR200326158Y1 (en) Beb using carbon molding panel
CN203308050U (en) Floor heating module
CN104927462B (en) A kind of negative ion putty powder
JP5794443B1 (en) Humidity control building materials
JP2002201015A (en) Method for modifying charcoal, molded article and carrier containing modified charcoal powder modified by the method, and plastered wall containing modified charcoal powder
JPS62178642A (en) Building material
KR20040031073A (en) Heating element using charcoal