JP2004128481A - Wiring board and its manufacturing method - Google Patents

Wiring board and its manufacturing method Download PDF

Info

Publication number
JP2004128481A
JP2004128481A JP2003203537A JP2003203537A JP2004128481A JP 2004128481 A JP2004128481 A JP 2004128481A JP 2003203537 A JP2003203537 A JP 2003203537A JP 2003203537 A JP2003203537 A JP 2003203537A JP 2004128481 A JP2004128481 A JP 2004128481A
Authority
JP
Japan
Prior art keywords
back surface
wiring
layer
core substrate
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003203537A
Other languages
Japanese (ja)
Inventor
Sumio Ota
太田 純雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2003203537A priority Critical patent/JP2004128481A/en
Publication of JP2004128481A publication Critical patent/JP2004128481A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring board which is equipped with a build-up layer only on the surface of a core board and never warped or hard to be warped and to provide a method of manufacturing the same. <P>SOLUTION: The wiring board 1 includes the core board 2 with a front surface 4 and a rear surface 5, a surface wiring layer 8 and a rear wiring layer 9 which are separately formed on the front surface 4 and rear surface 5 of the core board 2 respectively, the build-up layer BU which is formed on the surface 4 of the core board 2 and composed of insulating layers 10 and 16 and wiring layers 14 and 20 which are located between the insulating layers 10 and 16, and a back insulating layer 11 formed on the rear surface 5 of the core board 2. Furthermore, the back insulating layer 11 has, at least, one of physical properties, such as a Young's modulus of 4 Gpa or above (1), a thermal expansion coefficient (RT to Tg) of 20 ppm or above (2), an elongation of 4% or below (3), and a cure shrinkage of 1,000 ppm or above. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、コア基板の表面の上方にのみビルドアップ層を有する配線基板およびその製造方法に関する。
【0002】
【従来の技術】
近年、低コスト化の要請に応じるため、図5(A)に示すように、コア基板31の片面(表面)32上方にのみ複数の絶縁層35,39,41および複数の配線層34,37,40を積層したビルドアップ層BUなどを形成した配線基板30が提案されている(例えば、特許文献1参照)。上記コア基板31は、厚み約800μmの絶縁板であり、その表面32上方に厚み約30μmの絶縁層35,39,41と厚み約15μmの配線層34,37,40とを交互に積層している。
また、図5(A)に示すように、配線層34,37,40間を導通するため、ビア導体36,38が絶縁層35,39に形成されている。更に、最上層の配線層40上の所定の位置には、絶縁層(ソルダーレジスト層)41を貫通し且つ第1主面43よりも高く突出するハンダバンプ42が複数形成され、第1主面43上に実装する図示しないICチップなどの電子部品の端子と個別に接続される。
【0003】
【特許文献1】
特開2002−290031号公報 (図1など)
【0004】
以上のような配線基板30おいては、コア基板31の表面32側に絶縁層35,39,41と配線層34,37,40とからなるビルドアップ層BUなどを形成しているのに対し、コア基板31の裏面33側には何も形成されていない。
このため、コア基板31と絶縁層35,39,41との熱膨張率の差により、図5(A)中の一点鎖線で示すように、配線基板30全体が、当該配線基板30の厚み方向と垂直方向の長さ330mmに対し、厚み方向に約4〜5mm変形した反りを生じることがある。かかる反りにより、例えば配線層34,37,40、ビア導体36,38、およびハンダバンプ42相互間の接続が不十分になるため、これらの間において導通が取れなくなる、という問題があった。
また、ハンダバンプ42にICチップなどの電子部品を接続する際に、上記反りにより当該接続が不十分になる、という問題もあった。
【0005】
以上の問題点を解決するため、図5(B)に示すような配線基板50も検討されている。即ち、配線基板50は、厚み約800μmの絶縁板であるコア基板51と、その表面52上方に厚み約30μmの絶縁層60,66,72と厚み約15μmの配線層58,64,70とを交互に積層したビルドアップ層BUなどと、コア基板51の裏面53に形成した厚み約15μmの配線層59および厚みが約40μmの絶縁層(ソルダーレジスト層)61と、を備えている。
コア基板51には、その表面52と裏面53との間を貫通する複数のスルーホール54が形成され、それらの内壁に沿ってスルーホール導体56および充填樹脂57が形成されている。各スルーホール導体56は、その上端および下端で配線層58,59と接続している。
【0006】
図5(B)に示すように、上記配線層58,64,70間を導通するため、ビア導体62,68が絶縁層60,66に形成されている。最上層の配線層72上の所定の位置には、絶縁層(ソルダーレジスト層)72を貫通し且つ第1主面74よりも高く突出するハンダバンプ76が複数形成され、第1主面74上に実装する図示しないICチップなどの電子部品の端子と個別に接続される。
一方、図5(B)に示すように、コア基板51の裏面53に形成した配線層59から延び且つ絶縁層61の開口部65から第2主面63側に露出する配線67は、図示しないマザーボードなどのプリント基板との接続端子として用いられる。以上の配線基板50では、コア基板51を挟んでビルドアップ層BUなどと厚めの絶縁層(ソルダーレジスト層)61とが配置されている。このため、コア基板51と絶縁層60,66,72との熱膨張率の差による反りは、図5(B)中の一点鎖線で示すように、第2主面63寄りのある程度の変形に抑制される。
【0007】
【発明が解決すべき課題】
しかしながら、図5(B)に示す反りによっても、配線層58,64,70、ビア導体62,68、ハンダバンプ76、スルーホール導体56、および、配線層59の相互間の接続が不十分になり得るため、これらの間において導通が取れなくなる、という問題があった。また、ハンダバンプ76にICチップなどの電子部品を接続する際、上記反りにて該接続が不十分になる、という問題もあった。本発明は、以上に説明した従来の技術における問題点を解決し、コア基板の表面にのみビルドアップ層を有し且つ反りを生じないか、あるいは反りにくい配線基板およびその製造方法を提供する、ことを課題とする。
【0008】
【課題を解決するための手段】
本発明は、上記課題を解決するため、コア基板の裏面に形成する裏面絶縁層の特性によって、かかるコア基板の表面上方に形成するビルドアップ層による収縮変形を解消ないし抑制する、ことに着想して成されたものである。
【0009】
即ち、本発明の配線基板(請求項1)は、表面および裏面を有するコア基板と、上記コア基板の表面および裏面に個別に形成される表面配線層および裏面配線層と、上記コア基板の表面の上方に形成され且つ複数の絶縁層とこれらの間に位置する複数の配線層とからなるビルドアップ層と、上記コア基板の裏面の上方に形成される裏面絶縁層と、を含み、上記裏面絶縁層は、下記(1)乃至(4)の少なくとも何れかの特性を有する、ことを特徴とする。
(1)ヤング率が4Gpa以上、(2)熱膨張率(RT〜Tg)が20ppm以上、(3)伸び率が4%以下(但し0は含まず)、(4)硬化収縮が1000ppm以上
【0010】
これによれば、コア基板の裏面に形成される裏面絶縁層は、上記(1)乃至(4)の特性を有するため、かかる裏面絶縁層は、一定以上の弾性および熱膨張率を有し、且つ伸び率が低く、硬化収縮が高くなっている。このため、上記コア基板の表面上方に前記ビルドアップ層を形成されても、これを形成する複数の絶縁層や複数の配線層による当該ビルドアップ層および上記コア基板を上向きに凹ませようとする反り変形を解消し、あるいは極く僅かに抑制できる。即ち、上記裏面絶縁層は、配線基板においてかかる反りを矯正する機能をも発揮する。従って、平坦なビルドアップ層を表面に有する配線基板とすることができる。しかも、ビルドアップ配線層から第1主面よりも高く突出するハンダバンプに対し、当該第1主面に実装するICチップなどの電子部品を確実に接続することができる。
尚、上記(1)乃至(4)の特性を全て満たすことが、反り防止の効果の上で好ましい。また、上記熱膨張率(RT〜Tg)は、上記コア基板の裏面に沿った平面方向における熱膨張率を指す。
【0011】
付言すると、本発明の配線基板は、表面および裏面を有するコア基板と、かかるコア基板の表面および裏面に個別に形成される表面配線層および裏面配線層と、上記コア基板の表面と裏面との間を貫通し且つ表面配線層と裏面配線層との間を接続するスルーホール導体と、上記コア基板の表面の上方に形成され且つ複数の絶縁層とこれらの間に位置する複数の配線層とらなるビルドアップ層と、上記コア基板の裏面の上方に形成される裏面絶縁層と、を含み、上記裏面絶縁層は、前記(1)乃至(4)の少なくとも何れか特性を有する、とすることも可能である。
【0012】
また、本発明には、前記裏面絶縁層は、無機繊維または有機繊維を含む半硬化性樹脂シートを硬化させたものである、配線基板(請求項2)も含まれる。
これによれば、裏面絶縁層に求められる前記(1)乃至(4)の特性を確実に与えられるため、前述した反りがないか抑制された平坦なビルドアップ層を表面に有する配線基板とすること一層確実となる。
尚、上記無機繊維は、例えばガラス繊維が含まれ、特にランダムな配向となるガラス繊維の不織布やガラスフィラが推奨される。かかる無機繊維は、コア基板や裏面絶縁層において、40〜60wt%の割合で配合されると、後述する低い熱膨張率を実現できる。また、上記ガラス繊維には、Eガラス、Dガラス、Qガラス、Sガラスの何れか、またはこれらのうちの2種類以上を併用したものが含まれる。一方、上記有機繊維には、エポキシ繊維などが含まれる。
更に、上記半硬化性樹脂シートは、例えば無機または有機材料の繊維または不織布繊維を含浸したエポキシ樹脂、ビスマレイミド・トリアジン(BT)樹脂、ポリイミド樹脂などからなるプリプレグであり、上記硬化させるとは、上記シートに対して、UV(紫外線)照射、熱硬化、熱圧着などの処理をすることを指す。
【0013】
加えて、本発明には、前記コア基板は、セラミックからなる、配線基板(請求項3)も含まれる。これによれば、コア基板にセラミックを用いることで、コア基板自体が反りにくい材質であるため、前記基板の各部が一層反りにくくなり、且つ接続性に優れた配線基板とすることが可能となる。
【0014】
一方、本発明の配線基板の製造方法(請求項4)は、前記配線基板の製造方法であって、表面および裏面を有し且つ少なくとも裏面に形成した裏面配線層を有する一対のコア基板を、それらの裏面および裏面配線層の上にそれぞれ裏面絶縁層を形成し且つ離型シートを介して積層して加圧する工程と、上記一対のコア基板のそれぞれの表面に複数の絶縁層とこれらの間に位置する複数の配線層とを含むビルドアップ層を形成する工程と、を含む、ことを特徴とする。
これによれば、一対のコア基板を離型シートを介してそれらの裏面を対向させつつ各裏面に裏面絶縁層を積層した状態で、上記一対のコア基板を加圧するため、これら裏面絶縁層自体が生じる反りを互いに抑制できると共に、各コア基板の表面に上記ビルドアップ層を平坦にして形成することができる。
尚、上記離型シートは、クッション性を併せ持つもので望ましい。また、上記の各工程は、製品単位である上記コア基板を複数有する多数個取り用の一対のパネルにより、行うことも可能である。
付言すれば、本発明には、前記コア基板は、セラミックからなる、配線基板の製造方法、を含むことも可能である。これよる場合、コア基板にセラミックを用いることで、コア基板自体が反りにくい材質であるため、前記各部が一層反りにくくなり、且つ接続性に優れた配線基板を提供することが可能となる。
【0015】
【発明の実施の形態】
以下において、本発明の実施に好適な形態を図面と共に説明する。
図1は、本発明の配線基板1における主要部を示す断面図である。
配線基板1は、図1に示すように、表面4および裏面5を有するコア基板2と、かかるコア基板2の表面4と裏面5との間を貫通する複数のスルーホール導体6と、コア基板2の表面4および裏面5に個別に形成した表面配線層8および裏面配線層9と、を備えている。
また、図1に示すように、コア基板2の表面4上方には、複数のビルドアップ絶縁層10,16や絶縁層(ソルダーレジスト)層22と複数のビルドアップ配線層14,20とを、交互に積層したビルドアップ層BUが形成され、コア基板2の裏面5上方(図面下側)には裏面絶縁層11が形成されている。
【0016】
上記コア基板2は、平面視でほぼ正方形を呈し、例えばエポキシ系樹脂にガラス繊維または炭素繊維(本実施形態ではガラス繊維)を含有させた厚みが400〜1000μm(本実施形態では800μm)で熱膨張率が30ppm/℃以下の絶縁板である。コア基板2の表面4と裏面5との間には、直径約200μmのスルーホール3が複数貫通し、各スルーホール3の内壁に沿って厚み数10μmで銅メッキ製のスルーホール導体6が形成されている。各スルーホール導体6の内側には、シリカフィラなどの無機フィラを含む充填樹脂7が形成されている。
また、図1に示すように、コア基板2の表面4と裏面5とには、厚み約15μmの銅メッキ製で所定パターンを有する表面配線層8と裏面配線層9が個別に形成され、これらは各スルーホール導体6の上端または下端と接続されている。
【0017】
更に、図1に示すように、コア基板2の表面4上方には、シリカフィラなどの無機フィラを含むエポキシ樹脂からなり、厚み約30μmのビルドアップ絶縁層10,16と、厚み約20μmの絶縁層(ソルダーレジスト層)22と、ビルドアップ絶縁層10,16の間、およびビルドアップ絶縁層16と絶縁層22との間に形成した銅メッキからなる厚み約15μmのビルドアップ配線層14,20が位置する。表面配線層8、ビルドアップ配線層14,20間を導通するため、ビルドアップ絶縁層10,16には、銅メッキ製のフィルドビア導体12,18が形成される。尚、ビルドアップ絶縁層10,16およびビルドアップ配線層14,20は、ビルドアップ層BUを形成する。因みに、ビルドアップ絶縁層10,16や絶縁層22の熱膨張率は、約40〜70ppm/℃である。
【0018】
最上層の配線層20上の所定の位置には、絶縁層(ソルダーレジスト層)22を貫通し且つ第1主面24よりも高く突出する複数のハンダバンプ26が形成される。かかるバンプ26は、例えばSn−Ag系などの低融点合金からなり、図1に示すように、第1主面24上に実装するICチップ(電子部品)28の図示しない端子と個別に接続される。尚、かかる端子と各ハンダバンプ26とは、図示しないアンダーフィル材により埋設され且つ保護される。
【0019】
また、図1に示すように、コア基板2の裏面5上方(図面下側)で且つ裏面配線層9の上方には、厚みが20〜150μm(本実施形態では40μm)の裏面絶縁層11が形成されている。かかる裏面絶縁層11は、例えばエポキシ系樹脂などに無機繊維(本実施形態ではガラス繊維)を含浸させた半硬化性樹脂シートを、真空熱プレス処理して硬化させたものである。そして、裏面絶縁層11は、(1)ヤング率が4Gpa以上、(2)熱膨張率(RT〜Tg)が20ppm以上、(3)伸び率が4%以下、(4)硬化収縮が1000ppm以上、という特性を備えている。尚、上記熱膨張率(RT〜Tg)は、コア基板2の裏面5に平行な平面方向に沿った熱膨張率である。また、上記伸び率は、0を含まない。
【0020】
かかる裏面絶縁層11の所定の位置には、その表面である第2主面13側に開口する複数の開口部15が形成され、その底部にはコア配線層9から延びて第2主面13側に露出する配線17が位置する。かかる配線17は、その表面にNiメッキおよびAuメッキが被覆され、当該配線基板1を搭載する図示しないマザーボードなどのプリント基板との接続端子となる。
尚、上記開口部15は、裏面絶縁層11の上記各特性を保つため、かかる絶縁層11全体の平面視における開口率で15%以下にして形成する。また、上記配線17にハンダを介して銅系または鉄系合金からなるピンを接続しても良い。
【0021】
以上のような配線基板1では、裏面絶縁層11は、前記特性(1)〜(4)を併有しているので、一定以上の弾性および熱膨張率を有し、且つ伸び率が低く、硬化収縮が高くなっている。このため、コア基板2を挟んで、その表面4上方に交互に積層したビルドアップ絶縁層10,16を含むビルドアップ層BUの硬化収縮などと裏面絶縁層11との上記硬化収縮などとのバランスが保ち易くなる。
この結果、かかる配線基板1によれば、厚み方向に反りを生じないか、極く僅かな反りに抑制可能となる。
従って、配線基板1では、コア配線層8,9、ビルドアップ配線層14,20、ビア導体12,18、およびスルーホール導体6の相互間における導通を、確実且つ安定して取ることが可能となる。尚、裏面絶縁層11は、前記無機繊維を含む接着性の樹脂としても良い。また、ガラス繊維には、線径8約μmで比較的長さの短いガラス糸を不規則に積層して含有するガラス不織布を用いても良い。
【0022】
【実施例】
ここで、本発明の配線基板1に用いた裏面絶縁層11の前記特性(1)〜(4)について、検証する。厚みが800μmでエポキシ系樹脂にガラス繊維を含み且つ表面4および裏面5に厚みが18μmの銅箔をそれぞれ貼り付けたコア基板2を6枚用意した。これらのコア基板2の裏面5に、表1に示す樹脂および繊維を含む裏面絶縁層を厚み60μmにして形成した後、200℃に100分間加熱および加圧(約2.94×10N/m)するホットプレスを行った。
尚、上記裏面絶縁層の素材の種類に応じて、表1に示すように、上記6枚のコア基板2を実施例1,2および比較例1〜4とした。また、各例の裏面絶縁層におけるヤング率などの特性を表1に示した。
更に、上記ホットプレス後に、各例の裏面絶縁層付きのコア基板2を、その裏面絶縁層を上向きして定盤の上に載置し、4隅のうちで最も反り上がった位置における反り量(単板反り量)を、ノギスにより測定し、その結果も表1に示した。
【0023】
【表1】

Figure 2004128481
【0024】
表1によれば、裏面絶縁層の各特性が前記特性(1)〜(4)に含まれる実施例1,2のコア基板は、その裏面絶縁層11側が凹む反りの反り量が6.5nm以上と高くなった。これに対し、前記特性(1)〜(4)の何れかを欠く比較例1〜4のコア基板における反り量は、2.00〜約4.5nmに留まった。
以上のような実施例1,2の結果によって、前記特性(1)〜(4)を併有する裏面絶縁層11をコア板2の裏面5に形成することにより、コア基板2の表面4上方に形成するビルドアップ層BUの反り変形を解消または抑制できることが裏付けられた。
【0025】
次に、以上のような配線基板1の製造方法を図2〜図3により説明する。
図2(A)は、厚みが約800μmのコア基板2の断面を示し、その表面4と裏面5とには、厚みが約18μmの銅箔4a,5aが全面に貼り付けてある。かかるコア基板2における所定の位置に対し、その厚み方向に沿ってドリルの挿入またはレーザ(炭酸ガスレーザなど)の照射を行う。
その結果、図2(B)に示すように、コア基板2において、その表面4と裏面5との間を貫通する直径約200μmのスルーホール3が複数穿孔される。
次に、各スルーホール3の内壁に予めPdなどを含むメッキ触媒を付着した後、図2(C)に示すように、コア基板2の全面に対し無電解銅メッキおよび電解銅メッキを施す。
【0026】
その結果、図2(C)に示すように、各スルーホール3の内壁に沿ってスルーホール導体6が形成され、コア基板2の表面4と裏面5には、前記銅箔4a,5aを含む銅メッキ膜4b,5bが形成される。尚、図2(C)では、かかる銅メッキ膜4b,5bの厚みは、前記銅箔4a,5aと便宜上同じ厚みとして図示した。次いで、図2(D)に示すように、各スルーホール導体6の内側に、シリカフィラなどの無機フィラを含むエポキシ樹脂からなる充填樹脂7を形成した後、かかる充填樹脂7を蓋メッキするため、コア基板2の表面4および裏面5の全面に図示しない銅メッキ層を形成する。この状態で、かかる銅メッキ層の上に所定のパターンを有する図示しないエッチングレジストを形成した後、かかるレジストの隙間から露出する上記銅メッキ層4b,5bをエッチングして除去する公知のサブトラクティブ法を施す。その結果、図2(D)に示すように、コア基板2の表面4および裏面5には、上記レジストのパターンに倣った所定パターンの表面配線層8と裏面配線層9とが個別に形成される。
【0027】
図3(A)に示すように、スルーホール導体6、表面配線層8、および裏面配線層9を有する一対のコア基板2,2を、それらの裏面5,5を対向させ、両者の間に裏面絶縁層11およびクッション性を有する離型シート27を挟持して積層し且つ拘束する。かかる状態で、一対のコア基板2、一対の裏面絶縁層11、および離型剤27を図3(A)中の矢印で示すように、ホットプレスにより加熱しつつ加圧する。
その結果、図3(B)に示すように、上記一対のコア基板2,2の裏面5および裏面配線層9の上方に、前記樹脂シートにガラス繊維を含有する裏面絶縁層11が個別に形成される。これにより、各裏面絶縁層11は、各コア基板2の裏面5に密着すると共に、これら裏面絶縁層11自体が生じる反りを互いに抑制しつつ、各コア基板2の裏面5にかかる裏面絶縁層11を平坦に形成できる。
【0028】
次いで、図3(B)において、一対のコア基板2の外側に露出する表面4の上方にビルドアップ層BUを形成する。この工程は、前記ビルドアップ層BUを形成する前記ビルドアップ絶縁層10,16、絶縁層22、ビルドアップ配線層14,20、およびフィルドビア導体12,18を、公知のビルトアップ技術(セミアディティブ法、フルアディティブ法、サブトラクティブ法、フィルム状樹脂材料のラミネートによる絶縁層の形成、フォトリソグラフィ技術)により形成する。更に、前記ハンダバンプ(IC接続端子)26を第1主面24側に形成する。
最後に、一対のコア基板2を分離した後、それぞれの裏面側絶縁層11にレーザ加工などによって開口部15を形成した後、その底部に露出する前記配線17の表面にNiメッキおよびAuメッキを施す。
この結果、前記図1に示した配線基板1を得ることができる。
尚、以上のような製造工程は、複数のコア基板2(製品単位)を平面方向に併有する多数個取りの基板(パネル)にて行っても良い。
【0029】
図4は、配線基板1の応用形態の配線基板1aにおける主要部の断面を示す。配線基板1aは、図4に示すように、多層基板のコア基板2と、コア基板2の表面4と裏面5との間を貫通する複数のスルーホール導体6と、コア基板2の表面4や裏面5に形成した表面配線層8および裏面配線層9と、を備えている。
また、図4に示すように、コア基板2の表面4上方には、前記同様の複数の絶縁層10,16,22と複数の配線層14,20とを、交互に積層したビルドアップ層BUが形成される。前記同様に、表面配線層8、ビルドアップ配線層14,20間を導通するフィルドビア導体12,18や、最上層の上記配線層20にはハンダバンプ26が形成されている。
更に、コア基板2の裏面5上(図面下側)には、前記(1)ヤング率が4Gpa以上、(2)熱膨張率(RT〜Tg)が20ppm以下、(3)伸び率が4%以下、および(4)硬化収縮が1000ppm以上の特性を、併有する裏面絶縁層11が形成されると共に、その開口部15の底部には前記同様の配線17が位置している。
【0030】
コア基板2は、エポキシ系樹脂にガラス繊維などを含有させた厚みが約400μmで熱膨張率が30ppm/℃以下の絶縁層2aと、同じ素材からなり厚みが約200μmで熱膨張率が30ppm/℃以下の絶縁層2b,2cと、これらの間に位置する銅メッキからなる厚み約15μmの配線層25,27とからなる。かかる多層基板のコア基板2の表面4と裏面5との間を貫通する直径約200μmで複数のスルーホール3が複数貫通し、各スルーホール3の内壁に沿って厚み数10μmで銅メッキ製のスルーホール導体6が形成される。各スルーホール導体6の内側には、シリカフィラなどの無機フィラを含む充填樹脂7が形成されている。また、各スルーホール導体6は、その中間で配線層25,27と接続されている。
【0031】
以上のような配線基板1aによれば、裏面絶縁層11によりビルドアップ層BU側が凹形となる反りが防げると共に、コア基板2中の配線層25,27も、スルーホール導体6を介してコア配線層8,9やビルドアップ配線層14,20と確実に導通する。このため、多くの配線層を高密度で有し且つ互いに安定した導通を得ることが可能となる。
尚、コア基板2は、中央の絶縁層2aにおける表面21と裏面23とに予め配線層25,27を前述したサブトラクティブ法などにより形成し、これらの上に絶縁層2b,2cを形成した後、厚み方向に前記同様してスルーホール3、スルーホール導体6、および充填樹脂7を形成を形成することにより得られる。これ以降は、前記図3(A),(B)の各工程を経ることにより、図4に示すような配線基板1aを得ることができる。
【0032】
本発明は、以上において説明した各形態に限定されるものではない。
前記裏面絶縁層の素材は、前記(1)〜(4)の特性を有するものであれば、前記の形態に限るものではない。
また、前記コア基板2などの材質は、前記ガラス繊維または炭素繊維を含むものであれば、エポキシ系樹脂の他、ビスマレイミド・トリアジン(BT)樹脂、エポキシ樹脂、ポリイミド樹脂などを用いても良い。あるいは、連続気孔を有するPTFEなど3次元網目構造のフッ素系樹脂にガラス繊維などを含有させた複合材料などを用いることも可能である。
【0033】
あるいは、前記コア基板2や多層基板のコア基板2における絶縁層2a〜2cの材質をセラミックとしても良い。かかるセラミックには、アルミナ、珪酸、ガラスセラミック、窒化アルミニウムなどが含まれ、更には約1000℃以下の比較的低温で焼成が可能な低温焼成基板を用いることもできる。
かかるセラミックからなるコア基板2は、以下のようにして形成される。
未焼成のアルミナなどからなるセラミックグリーンシートにレーザ加工または金型加工などにて、スルーホール3を形成する。次に、かかるスルーホール3にWなどの金属粉末を含む導電性ペーストを印刷して充填する。尚、この導電性ペーストは、追ってセラミックグリーンシートの焼成時に同時に燒結されて、前記スルーホール導体6となる。次いで、上記セラミックグリーンシート表面上の所定位置にも、導電性ペーストを所定パターンで印刷する。尚、この表面に印刷された導電性ペーストは、追ってセラミックグリーンシートの焼成時に同時に燒結されて、前記配線層25,27、表面配線層8、裏面配線層9などとなる。
更に、導電性ペーストが印刷された単層または複数の未焼成セラミックセラミックグリーンシート2a,2b,2cをラミネートし熱圧着することで一体化し、未焼成のコア基板2とする。そして、かかる未焼成のコア基板2を約1300℃にて焼成することで、焼成後のセラミックからなる単層または多層基板のコア基板2が得られる。尚、セラミックからなるコア基板2の場合、スルーホール3の内側には、前記充填樹脂7は形成せず、省略される。加えて、かかるコア基板2の表面4上には、樹脂フィルムからなる絶縁層10などがラミネートされると共に、前述したビルドアップ工程によりビルドアップ層BUが形成される。
【0034】
尚、上記導電性ペーストは、Mo、Cu、Ag、Au、Ag−Pt、Ag−Pdなどの素材としても良い。
前記スルーホール導体6、表面配線層8、配線層14,20などの材質は、前記Cu(銅)の他、Ag、Ni、Ni−Au系などにしても良く、あるいは金属のメッキ層を用いず、導電性樹脂を塗布するなどの方法により形成しても良い。
【0035】
更に、前記ビルドアップ層の絶縁層10,16などの材質は、前記エポキシ樹脂を主成分とするもののほか、同様の耐熱性、パターン成形性などを有するポリイミド樹脂、BT樹脂、PPE樹脂、あるいは、連続気孔を有するPTFEなど3次元網目構造のフッ素系樹脂にエポキシ樹脂などの樹脂を含浸させた樹脂−樹脂系の複合材料などを用いることもできる。尚、絶縁層の形成には、絶縁性の樹脂フィルムを熱圧着する方法のほか、液状の樹脂をロールコータにより塗布する方法を用いることもできる。尚また、絶縁層に混入するガラス繊維またはガラスフィラの組成は、Eガラス、Dガラス、Qガラス、Sガラスの何れか、またはこれらのうちの2種類以上を併用したものとしても良い。
また、ビア導体は、前記フィルドビア導体12などでなく、内部が完全に導体で埋まってない逆円錐形状のコンフォーマルビア導体とすることもできる。あるいは、各ビア導体の軸心をずらしつつ積み重ねるスタッガードの形態でも良いし、途中で平面方向に延びる配線層が介在する形態としても良い。
【0036】
【発明の効果】
以上に説明した本発明の配線基板(請求項1)によれば、裏面絶縁層は、前記特性(1)乃至(4)を有するので、一定以上の弾性および熱膨張率を有し、且つ伸び率が低く、硬化収縮が高くなっているため、コア基板を挟んで、その表面上方に形成されるビルドアップ層の硬化収縮などのバランスが保ち易くなる。
従って、ビルドアップ層側の中央部が凹む厚み方向に反りを生じないか、極く僅かな反りに抑制可能とした配線基板とすることができると共に、表面配線層、裏面配線層、ビルドアップ配線層、およびスルーホール導体の相互間における導通を確実に取ることが可能となる。しかも、ビルドアップ配線層から第1主面よりも高く突出するハンダバンプに、かかる第1主面に実装するICチップなどの電子部品を確実に接続することができる。
【0037】
また、請求項2の配線基板によれば、裏面絶縁層に求められる前記各特性を確実に得られるため、配線基板全体の反りを一層防止することが可能となる。
更に、請求項3の配線基板によれば、コア基板にセラミックを用いることでコア基板自体が反りにくい材質となるため、前記ビルドアップ層などが一層反りにくくなり、且つ接続性に優れた配線基板とすることが可能となる。
一方、本発明の配線基板の製造方法(請求項4)によれば、一対のコア基板をそれらの裏面を対向させ、一対の裏面絶縁層および離型シートを介して積層して加圧するため、上記一対のコア基板の各裏面に裏面絶縁層自体が生じる反りを互いに抑制しつつ形成できる。しかも、各コア基板の表面において、前記ビルドアップ層をそれぞれ平坦にして形成することもできる。
【図面の簡単な説明】
【図1】本発明の配線基板の1形態における主要部を示す断面図。
【図2】(A)〜(D)は上記配線基板を得るための主な製造工程を示す概略図。
【図3】(A),(B)は図2(D)に続く主な製造工程を示す概略図。
【図4】図1の配線基板の応用形態の配線基板における主要部を示す断面図。
【図5】(A),(B)は従来の配線基板における主要部を示す断面図。
【符号の説明】
1,1a……配線基板、      2……………コア基板、
4……………表面、        5……………裏面、
8……………表面配線層、     9……………裏面配線層、
10,16…絶縁層、       11…………裏面絶縁層、
14,20…配線層、       27…………離型シート、
BU…………ビルドアップ層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wiring board having a build-up layer only above a surface of a core substrate, and a method for manufacturing the same.
[0002]
[Prior art]
In recent years, in order to meet the demand for cost reduction, as shown in FIG. 5A, a plurality of insulating layers 35, 39, 41 and a plurality of wiring layers 34, 37 are provided only above one surface (front surface) 32 of the core substrate 31. , 40 is proposed (for example, see Patent Document 1). The core substrate 31 is an insulating plate having a thickness of about 800 μm, and has insulating layers 35, 39, 41 having a thickness of about 30 μm and wiring layers 34, 37, 40 having a thickness of about 15 μm alternately stacked on a surface 32 thereof. I have.
In addition, as shown in FIG. 5A, via conductors 36 and 38 are formed in the insulating layers 35 and 39 for conduction between the wiring layers 34, 37 and 40. Further, a plurality of solder bumps 42 penetrating the insulating layer (solder resist layer) 41 and projecting higher than the first main surface 43 are formed at predetermined positions on the uppermost wiring layer 40. It is individually connected to terminals of electronic components such as an IC chip (not shown) mounted thereon.
[0003]
[Patent Document 1]
JP-A-2002-290031 (FIG. 1 etc.)
[0004]
In the wiring board 30 as described above, the build-up layer BU including the insulating layers 35, 39, 41 and the wiring layers 34, 37, 40 is formed on the surface 32 side of the core substrate 31. Nothing is formed on the back surface 33 side of the core substrate 31.
Therefore, due to the difference in the coefficient of thermal expansion between the core substrate 31 and the insulating layers 35, 39, and 41, the entire wiring substrate 30 is moved in the thickness direction of the wiring substrate 30 as shown by a dashed line in FIG. And a warp deformed by about 4 to 5 mm in the thickness direction with respect to the length of 330 mm in the vertical direction. Due to such a warp, for example, the connection between the wiring layers 34, 37, 40, the via conductors 36, 38, and the solder bumps 42 becomes insufficient, so that there is a problem that conduction cannot be established therebetween.
In addition, when connecting an electronic component such as an IC chip to the solder bump 42, there is a problem that the connection becomes insufficient due to the warpage.
[0005]
In order to solve the above problems, a wiring board 50 as shown in FIG. That is, the wiring substrate 50 includes a core substrate 51 which is an insulating plate having a thickness of about 800 μm, insulating layers 60, 66, 72 having a thickness of about 30 μm above the surface 52 thereof, and wiring layers 58, 64, 70 having a thickness of about 15 μm. It includes a build-up layer BU and the like alternately stacked, a wiring layer 59 having a thickness of about 15 μm and an insulating layer (solder resist layer) 61 having a thickness of about 40 μm formed on the back surface 53 of the core substrate 51.
A plurality of through holes 54 penetrating between the front surface 52 and the back surface 53 are formed in the core substrate 51, and a through hole conductor 56 and a filling resin 57 are formed along the inner walls thereof. Each through-hole conductor 56 is connected to the wiring layers 58 and 59 at the upper end and the lower end.
[0006]
As shown in FIG. 5B, via conductors 62 and 68 are formed in the insulating layers 60 and 66 to conduct between the wiring layers 58, 64 and 70. A plurality of solder bumps 76 penetrating the insulating layer (solder resist layer) 72 and projecting higher than the first main surface 74 are formed at predetermined positions on the uppermost wiring layer 72. It is individually connected to terminals of electronic components such as an IC chip (not shown) to be mounted.
On the other hand, as shown in FIG. 5B, a wiring 67 extending from the wiring layer 59 formed on the back surface 53 of the core substrate 51 and exposed from the opening 65 of the insulating layer 61 toward the second main surface 63 is not shown. Used as a connection terminal to a printed circuit board such as a motherboard. In the wiring substrate 50 described above, the build-up layer BU and the like and the thick insulating layer (solder resist layer) 61 are arranged with the core substrate 51 interposed therebetween. For this reason, the warpage due to the difference in the coefficient of thermal expansion between the core substrate 51 and the insulating layers 60, 66, and 72 is caused by a certain degree of deformation near the second main surface 63, as indicated by a dashed line in FIG. Is suppressed.
[0007]
[Problems to be solved by the invention]
However, due to the warpage shown in FIG. 5B, the interconnection between the wiring layers 58, 64, 70, the via conductors 62, 68, the solder bumps 76, the through-hole conductors 56, and the wiring layer 59 becomes insufficient. Therefore, there is a problem that conduction cannot be established between them. Further, when connecting an electronic component such as an IC chip to the solder bumps 76, there is also a problem that the connection becomes insufficient due to the warpage. The present invention solves the problems in the prior art described above, and provides a wiring board having a build-up layer only on the surface of a core substrate and causing no warping or hardly warping, and a method for manufacturing the same. That is the task.
[0008]
[Means for Solving the Problems]
The present invention has been conceived to solve or suppress the shrinkage deformation caused by the build-up layer formed above the surface of the core substrate by the characteristics of the back surface insulating layer formed on the back surface of the core substrate. It was made.
[0009]
That is, the wiring board of the present invention (claim 1) comprises: a core substrate having a front surface and a back surface; a front wiring layer and a back wiring layer separately formed on the front and back surfaces of the core substrate; And a back-up insulating layer formed above a back surface of the core substrate, the build-up layer including a plurality of insulating layers and a plurality of wiring layers positioned therebetween, and a back surface insulating layer formed above the back surface of the core substrate. The insulating layer has at least one of the following characteristics (1) to (4).
(1) Young's modulus is 4 Gpa or more, (2) Thermal expansion coefficient (RT to Tg) is 20 ppm or more, (3) Elongation is 4% or less (excluding 0), (4) Curing shrinkage is 1000 ppm or more. 0010
According to this, since the back surface insulating layer formed on the back surface of the core substrate has the above-described characteristics (1) to (4), the back surface insulating layer has elasticity and thermal expansion coefficient of a certain level or more, In addition, the elongation is low and the curing shrinkage is high. For this reason, even if the build-up layer is formed above the surface of the core substrate, the build-up layer and the core substrate formed by a plurality of insulating layers and a plurality of wiring layers which form the build-up layer are depressed upward. Warpage deformation can be eliminated or suppressed very slightly. That is, the back surface insulating layer also has a function of correcting such warpage in the wiring board. Therefore, a wiring board having a flat build-up layer on the surface can be obtained. In addition, an electronic component such as an IC chip mounted on the first main surface can be reliably connected to the solder bump projecting higher than the first main surface from the build-up wiring layer.
It is preferable to satisfy all of the above characteristics (1) to (4) from the viewpoint of the effect of preventing warpage. The coefficient of thermal expansion (RT to Tg) indicates a coefficient of thermal expansion in a plane direction along the back surface of the core substrate.
[0011]
In addition, the wiring board of the present invention includes a core substrate having a front surface and a back surface, a front surface wiring layer and a back surface wiring layer individually formed on the front surface and the back surface of the core substrate, and a front surface and a back surface of the core substrate. A through-hole conductor penetrating therethrough and connecting between the front surface wiring layer and the back surface wiring layer; a plurality of insulating layers formed above the surface of the core substrate and a plurality of wiring layers positioned therebetween; A back-up insulating layer formed above the back surface of the core substrate, wherein the back-side insulating layer has at least one of the characteristics (1) to (4). Is also possible.
[0012]
The present invention also includes a wiring board (claim 2) in which the back surface insulating layer is obtained by curing a semi-curable resin sheet containing inorganic fibers or organic fibers.
According to this, since the characteristics (1) to (4) required for the back surface insulating layer can be reliably provided, the wiring substrate having the flat build-up layer on the surface with no warping or suppressed as described above is provided. It is even more certain.
The inorganic fibers include, for example, glass fibers, and nonwoven fabrics and glass fillers of glass fibers having a random orientation are particularly recommended. When such an inorganic fiber is blended in the core substrate or the back surface insulating layer at a ratio of 40 to 60 wt%, a low coefficient of thermal expansion described later can be realized. Further, the glass fiber includes any one of E glass, D glass, Q glass, and S glass, or a combination of two or more of them. On the other hand, the organic fibers include epoxy fibers and the like.
Further, the semi-curable resin sheet is a prepreg made of, for example, an epoxy resin impregnated with fibers of an inorganic or organic material or a non-woven fabric fiber, a bismaleimide triazine (BT) resin, a polyimide resin, and the like. Refers to processing such as UV (ultraviolet) irradiation, heat curing, and thermocompression on the sheet.
[0013]
In addition, the present invention includes a wiring substrate (claim 3), wherein the core substrate is made of ceramic. According to this, by using ceramic for the core substrate, the core substrate itself is made of a material that is unlikely to warp, so that each part of the substrate is more unlikely to warp, and a wiring board with excellent connectivity can be obtained. .
[0014]
On the other hand, a method for manufacturing a wiring board according to the present invention (claim 4) is a method for manufacturing a wiring board, comprising: a pair of core substrates having a front surface and a back surface and having at least a back wiring layer formed on the back surface; Forming a back surface insulating layer on each of the back surface and the back surface wiring layer, laminating via a release sheet, and pressing the plurality of insulating layers on each surface of the pair of core substrates; And forming a build-up layer including a plurality of wiring layers located at the same position.
According to this, the pair of core substrates are pressed with the pair of core substrates in a state in which the pair of core substrates are laminated with a back surface insulating layer on each back surface with their back surfaces facing each other via a release sheet. Warpage can be suppressed, and the build-up layer can be formed flat on the surface of each core substrate.
The release sheet preferably has both cushioning properties. Further, each of the above steps can be performed by a pair of multi-cavity panels each having a plurality of core substrates as product units.
In other words, the present invention can include a method of manufacturing a wiring board, wherein the core substrate is made of ceramic. In this case, by using ceramic for the core substrate, since the core substrate itself is a material that is less likely to warp, it is possible to provide a wiring substrate that is less likely to warp and that has excellent connectivity.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a sectional view showing a main part of a wiring board 1 of the present invention.
As shown in FIG. 1, the wiring board 1 includes a core substrate 2 having a front surface 4 and a back surface 5, a plurality of through-hole conductors 6 penetrating between the front surface 4 and the back surface 5 of the core substrate 2, A front wiring layer 8 and a rear wiring layer 9 which are individually formed on the front surface 4 and the rear surface 5 of the substrate 2.
As shown in FIG. 1, a plurality of build-up insulating layers 10 and 16, an insulating layer (solder resist) layer 22 and a plurality of build-up wiring layers 14 and 20 are provided above the surface 4 of the core substrate 2. The build-up layers BU alternately stacked are formed, and the back surface insulating layer 11 is formed above the back surface 5 of the core substrate 2 (the lower side in the drawing).
[0016]
The core substrate 2 has a substantially square shape in a plan view, and has a thickness of 400 to 1000 μm (800 μm in the present embodiment) in which an epoxy resin contains glass fibers or carbon fibers (glass fibers in the present embodiment). An insulating plate having an expansion coefficient of 30 ppm / ° C. or less. A plurality of through holes 3 having a diameter of about 200 μm penetrate between the front surface 4 and the back surface 5 of the core substrate 2, and a through-hole conductor 6 made of copper plating and having a thickness of several tens μm is formed along the inner wall of each through hole 3. Have been. Filled resin 7 containing an inorganic filler such as a silica filler is formed inside each through-hole conductor 6.
Further, as shown in FIG. 1, a front surface wiring layer 8 and a rear surface wiring layer 9 each having a predetermined pattern made of copper plating having a thickness of about 15 μm are separately formed on the front surface 4 and the rear surface 5 of the core substrate 2. Is connected to the upper or lower end of each through-hole conductor 6.
[0017]
Further, as shown in FIG. 1, above the surface 4 of the core substrate 2, an epoxy resin containing an inorganic filler such as a silica filler is used. Build-up wiring layers 14 and 20 made of copper plating formed between the layer (solder resist layer) 22 and the build-up insulating layers 10 and 16 and between the build-up insulating layer 16 and the insulating layer 22. Is located. Filled via conductors 12 and 18 made of copper plating are formed on the build-up insulating layers 10 and 16 to conduct between the surface wiring layer 8 and the build-up wiring layers 14 and 20. The build-up insulating layers 10, 16 and the build-up wiring layers 14, 20 form a build-up layer BU. Incidentally, the thermal expansion coefficients of the build-up insulating layers 10 and 16 and the insulating layer 22 are about 40 to 70 ppm / ° C.
[0018]
At predetermined positions on the uppermost wiring layer 20, a plurality of solder bumps 26 penetrating the insulating layer (solder resist layer) 22 and projecting higher than the first main surface 24 are formed. The bumps 26 are made of, for example, a low melting point alloy such as Sn-Ag, and are individually connected to terminals (not shown) of an IC chip (electronic component) 28 mounted on the first main surface 24 as shown in FIG. You. The terminals and the solder bumps 26 are buried and protected by an underfill material (not shown).
[0019]
As shown in FIG. 1, a back surface insulating layer 11 having a thickness of 20 to 150 μm (40 μm in the present embodiment) is provided above the back surface 5 of the core substrate 2 (under the drawing) and above the back wiring layer 9. Is formed. The back surface insulating layer 11 is obtained by, for example, curing a semi-curable resin sheet obtained by impregnating an inorganic resin (glass fiber in the present embodiment) with an epoxy resin or the like, by performing a vacuum hot press treatment. The back surface insulating layer 11 has (1) a Young's modulus of 4 Gpa or more, (2) a thermal expansion coefficient (RT to Tg) of 20 ppm or more, (3) an elongation of 4% or less, and (4) a curing shrinkage of 1000 ppm or more. , Has the characteristic of. The thermal expansion coefficient (RT to Tg) is a thermal expansion coefficient along a plane parallel to the back surface 5 of the core substrate 2. The elongation does not include 0.
[0020]
A plurality of openings 15 are formed at predetermined positions of the back surface insulating layer 11 so as to open toward the second main surface 13 which is the surface thereof, and at the bottom thereof, the second main surface 13 extends from the core wiring layer 9. The wiring 17 exposed on the side is located. The surface of the wiring 17 is coated with Ni plating and Au plating, and serves as a connection terminal to a printed board such as a mother board (not shown) on which the wiring board 1 is mounted.
The opening 15 is formed so that the opening ratio of the entire insulating layer 11 is not more than 15% in order to maintain the above-mentioned characteristics of the back surface insulating layer 11. Further, a pin made of a copper-based or iron-based alloy may be connected to the wiring 17 via solder.
[0021]
In the wiring board 1 as described above, since the back surface insulating layer 11 has the above-mentioned properties (1) to (4) together, it has elasticity and thermal expansion coefficient of a certain level or more, and low elongation rate. Curing shrinkage is high. For this reason, the balance between the cure shrinkage of the build-up layer BU including the build-up insulation layers 10 and 16 alternately stacked above the front surface 4 with the core substrate 2 interposed therebetween and the cure shrinkage of the back surface insulation layer 11 and the like. Is easy to keep.
As a result, according to the wiring board 1, it is possible to prevent the warp in the thickness direction or to suppress the warp to a very slight warp.
Therefore, in the wiring board 1, conduction between the core wiring layers 8, 9, the build-up wiring layers 14, 20, the via conductors 12, 18, and the through-hole conductor 6 can be reliably and stably conducted. Become. In addition, the back surface insulating layer 11 may be an adhesive resin containing the inorganic fiber. Further, as the glass fiber, a glass nonwoven fabric containing a glass thread having a wire diameter of about 8 μm and having a relatively short length that is irregularly laminated may be used.
[0022]
【Example】
Here, the characteristics (1) to (4) of the back surface insulating layer 11 used for the wiring board 1 of the present invention will be verified. Six core substrates 2 each having a thickness of 800 μm, containing glass fibers in an epoxy resin, and affixing copper foils each having a thickness of 18 μm on the front surface 4 and the back surface 5 were prepared. After forming a back surface insulating layer containing the resin and the fiber shown in Table 1 with a thickness of 60 μm on the back surface 5 of these core substrates 2, heating and pressurizing at 200 ° C. for 100 minutes (about 2.94 × 10 6 N / m 2 ).
As shown in Table 1, the six core substrates 2 were used as Examples 1 and 2 and Comparative Examples 1 to 4 according to the type of the material of the back surface insulating layer. Table 1 shows the characteristics such as the Young's modulus of the back surface insulating layer of each example.
Further, after the hot pressing, the core substrate 2 with the back surface insulating layer of each example was placed on a surface plate with the back surface insulating layer facing upward, and the amount of warpage at the most warped position among the four corners (Single veneer warpage) was measured with a caliper, and the results are also shown in Table 1.
[0023]
[Table 1]
Figure 2004128481
[0024]
According to Table 1, in the core substrates of Examples 1 and 2 in which the respective characteristics of the back surface insulating layer are included in the characteristics (1) to (4), the amount of warpage of the warp in which the back surface insulating layer 11 side is depressed is 6.5 nm. It was higher than above. On the other hand, the amount of warpage in the core substrates of Comparative Examples 1 to 4 lacking any of the characteristics (1) to (4) remained at 2.00 to about 4.5 nm.
According to the results of Examples 1 and 2 as described above, by forming the back surface insulating layer 11 having the above characteristics (1) to (4) on the back surface 5 of the core plate 2, It has been proved that the warp deformation of the build-up layer BU to be formed can be eliminated or suppressed.
[0025]
Next, a method for manufacturing the wiring substrate 1 as described above will be described with reference to FIGS.
FIG. 2A shows a cross section of the core substrate 2 having a thickness of about 800 μm, and copper foils 4 a and 5 a having a thickness of about 18 μm are attached to the front surface 4 and the back surface 5 of the entire surface. A predetermined position on the core substrate 2 is subjected to insertion of a drill or irradiation of a laser (a carbon dioxide laser or the like) along the thickness direction thereof.
As a result, as shown in FIG. 2B, in the core substrate 2, a plurality of through holes 3 having a diameter of about 200 μm penetrating between the front surface 4 and the back surface 5 are formed.
Next, after a plating catalyst containing Pd or the like is attached to the inner wall of each through hole 3 in advance, as shown in FIG. 2C, the entire surface of the core substrate 2 is subjected to electroless copper plating and electrolytic copper plating.
[0026]
As a result, as shown in FIG. 2C, a through-hole conductor 6 is formed along the inner wall of each through-hole 3, and the front surface 4 and the back surface 5 of the core substrate 2 include the copper foils 4a, 5a. Copper plating films 4b and 5b are formed. In FIG. 2C, the thicknesses of the copper plating films 4b and 5b are illustrated as the same thickness as the copper foils 4a and 5a for convenience. Next, as shown in FIG. 2D, a filling resin 7 made of an epoxy resin containing an inorganic filler such as a silica filler is formed inside each through-hole conductor 6, and then the filling resin 7 is plated with a lid. Then, a copper plating layer (not shown) is formed on the entire front surface 4 and the rear surface 5 of the core substrate 2. In this state, a known subtractive method of forming an etching resist (not shown) having a predetermined pattern on the copper plating layer and etching and removing the copper plating layers 4b and 5b exposed from gaps in the resist is used. Is applied. As a result, as shown in FIG. 2D, on the front surface 4 and the back surface 5 of the core substrate 2, a front wiring layer 8 and a back wiring layer 9 having a predetermined pattern following the resist pattern are individually formed. You.
[0027]
As shown in FIG. 3A, a pair of core substrates 2 and 2 having a through-hole conductor 6, a front surface wiring layer 8, and a back surface wiring layer 9 are placed with their back surfaces 5 and 5 facing each other. The back insulating layer 11 and the release sheet 27 having a cushioning property are sandwiched, laminated and restrained. In this state, the pair of core substrates 2, the pair of back surface insulating layers 11, and the release agent 27 are pressurized while being heated by a hot press, as indicated by arrows in FIG.
As a result, as shown in FIG. 3 (B), a back surface insulating layer 11 containing glass fiber in the resin sheet is individually formed above the back surface 5 and the back surface wiring layer 9 of the pair of core substrates 2 and 2. Is done. Thereby, each back surface insulating layer 11 adheres closely to the back surface 5 of each core substrate 2, and also suppresses the warpage generated by the back surface insulating layers 11 themselves, and also forms the back surface insulating layer 11 on the back surface 5 of each core substrate 2. Can be formed flat.
[0028]
Next, in FIG. 3B, a build-up layer BU is formed above the surfaces 4 exposed outside the pair of core substrates 2. In this step, the build-up insulating layers 10 and 16 forming the build-up layer BU, the insulating layer 22, the build-up wiring layers 14 and 20, and the filled via conductors 12 and 18 are combined with a known build-up technique (semi-additive method). , A full additive method, a subtractive method, an insulating layer formed by laminating a film-like resin material, and a photolithography technique). Further, the solder bumps (IC connection terminals) 26 are formed on the first main surface 24 side.
Finally, after separating the pair of core substrates 2, an opening 15 is formed in each of the backside insulating layers 11 by laser processing or the like, and the surface of the wiring 17 exposed at the bottom thereof is plated with Ni and Au. Apply.
As a result, the wiring board 1 shown in FIG. 1 can be obtained.
The above manufacturing process may be performed on a multi-cavity substrate (panel) having a plurality of core substrates 2 (product units) in the plane direction.
[0029]
FIG. 4 shows a cross section of a main part of a wiring board 1 a in an application form of the wiring board 1. As shown in FIG. 4, the wiring substrate 1a includes a core substrate 2 of a multilayer substrate, a plurality of through-hole conductors 6 penetrating between the front surface 4 and the rear surface 5 of the core substrate 2, a front surface 4 of the core substrate 2, And a front surface wiring layer 8 and a back surface wiring layer 9 formed on the back surface 5.
Further, as shown in FIG. 4, above the surface 4 of the core substrate 2, a build-up layer BU in which a plurality of insulating layers 10, 16, 22 and a plurality of wiring layers 14, 20 as described above are alternately stacked. Is formed. Similarly to the above, the solder vias 26 are formed on the surface wiring layer 8, the filled via conductors 12 and 18 that conduct between the build-up wiring layers 14 and 20, and the uppermost wiring layer 20.
Further, on the back surface 5 (lower side in the drawing) of the core substrate 2, (1) the Young's modulus is 4 Gpa or more, (2) the thermal expansion coefficient (RT to Tg) is 20 ppm or less, and (3) the elongation rate is 4%. Hereinafter, and (4) the back surface insulating layer 11 having the property of curing shrinkage of 1000 ppm or more is formed, and the wiring 17 similar to the above is located at the bottom of the opening 15.
[0030]
The core substrate 2 is made of the same material as the insulating layer 2a having a thickness of about 400 μm and a thermal expansion coefficient of 30 ppm / ° C. or less in which an epoxy resin contains glass fiber or the like, and a thickness of about 200 μm and a thermal expansion coefficient of 30 ppm / It is composed of insulating layers 2b and 2c at a temperature of not more than 0.degree. C. and wiring layers 25 and 27 of copper plating and having a thickness of about 15 .mu.m located therebetween. A plurality of through holes 3 having a diameter of about 200 μm penetrate between the front surface 4 and the back surface 5 of the core substrate 2 of such a multilayer substrate, and a number of 10 μm thick copper plated along the inner wall of each through hole 3. A through-hole conductor 6 is formed. Filled resin 7 containing an inorganic filler such as a silica filler is formed inside each through-hole conductor 6. Each through-hole conductor 6 is connected to the wiring layers 25 and 27 in the middle.
[0031]
According to the wiring board 1a as described above, the back surface insulating layer 11 can prevent the build-up layer BU from being warped such that the build-up layer BU side is concave, and the wiring layers 25 and 27 in the core substrate 2 are also connected to the core via the through-hole conductor 6. Conduction with the wiring layers 8 and 9 and the build-up wiring layers 14 and 20 is ensured. For this reason, it is possible to have many wiring layers at high density and obtain stable conduction with each other.
In the core substrate 2, wiring layers 25 and 27 are previously formed on the front surface 21 and the back surface 23 of the central insulating layer 2a by the above-described subtractive method or the like, and the insulating layers 2b and 2c are formed thereon. The through-hole 3, the through-hole conductor 6, and the filling resin 7 are formed in the thickness direction in the same manner as described above. Thereafter, the wiring board 1a as shown in FIG. 4 can be obtained through the steps shown in FIGS. 3A and 3B.
[0032]
The present invention is not limited to the embodiments described above.
The material of the back surface insulating layer is not limited to the above-described embodiment as long as it has the characteristics (1) to (4).
In addition, as long as the material of the core substrate 2 or the like includes the glass fiber or the carbon fiber, a bismaleimide triazine (BT) resin, an epoxy resin, a polyimide resin, or the like may be used in addition to the epoxy resin. . Alternatively, it is also possible to use a composite material or the like in which glass fiber or the like is contained in a fluororesin having a three-dimensional network structure such as PTFE having continuous pores.
[0033]
Alternatively, the material of the insulating layers 2a to 2c in the core substrate 2 or the multilayer core substrate 2 may be ceramic. Such ceramics include alumina, silicic acid, glass ceramics, aluminum nitride, and the like, and a low-temperature fired substrate that can be fired at a relatively low temperature of about 1000 ° C. or less can also be used.
The core substrate 2 made of such a ceramic is formed as follows.
A through hole 3 is formed in a ceramic green sheet made of unfired alumina or the like by laser processing or die processing. Next, a conductive paste containing a metal powder such as W is printed and filled in the through holes 3. The conductive paste is simultaneously sintered at the time of firing the ceramic green sheet to form the through-hole conductor 6. Next, a conductive paste is also printed at a predetermined position on the surface of the ceramic green sheet in a predetermined pattern. The conductive paste printed on the surface is simultaneously sintered when the ceramic green sheet is fired, and becomes the wiring layers 25 and 27, the surface wiring layer 8, the back wiring layer 9, and the like.
Further, a single layer or a plurality of unfired ceramic ceramic green sheets 2 a, 2 b, 2 c on which the conductive paste is printed are laminated and thermocompression bonded to form an unfired core substrate 2. Then, by firing the unfired core substrate 2 at about 1300 ° C., the fired ceramic single-layer or multilayer core substrate 2 is obtained. In the case of the core substrate 2 made of ceramic, the filling resin 7 is not formed inside the through hole 3 and is omitted. In addition, on the surface 4 of the core substrate 2, the insulating layer 10 made of a resin film and the like are laminated, and the build-up layer BU is formed by the above-described build-up process.
[0034]
The conductive paste may be a material such as Mo, Cu, Ag, Au, Ag-Pt, or Ag-Pd.
The material of the through-hole conductor 6, the surface wiring layer 8, the wiring layers 14 and 20, etc. may be Ag, Ni, Ni-Au or the like in addition to Cu (copper), or use a metal plating layer. Instead, it may be formed by a method such as applying a conductive resin.
[0035]
Further, the material of the insulating layers 10 and 16 of the build-up layer includes, in addition to the epoxy resin as a main component, a polyimide resin, a BT resin, a PPE resin, or the like having similar heat resistance and pattern moldability. A resin-resin composite material in which a resin such as an epoxy resin is impregnated with a fluorine-based resin having a three-dimensional network structure such as PTFE having continuous pores can also be used. The insulating layer may be formed by a method of applying a liquid resin by a roll coater in addition to a method of thermocompression bonding an insulating resin film. The composition of the glass fiber or glass filler mixed into the insulating layer may be any one of E glass, D glass, Q glass, and S glass, or a combination of two or more of them.
Further, the via conductor may be a conformal via conductor having an inverted conical shape in which the inside is not completely filled with the conductor, instead of the filled via conductor 12 or the like. Alternatively, a staggered configuration in which the via conductors are stacked while shifting their axes may be used, or a configuration in which a wiring layer extending in the plane direction is interposed in the middle.
[0036]
【The invention's effect】
According to the wiring board of the present invention described above (claim 1), since the back surface insulating layer has the above-mentioned properties (1) to (4), it has elasticity and thermal expansion coefficient of a certain level or more, and Since the ratio is low and the curing shrinkage is high, it is easy to maintain the balance such as the curing shrinkage of the build-up layer formed above the surface of the core substrate with the core substrate interposed therebetween.
Therefore, it is possible to provide a wiring board in which the warp does not occur in the thickness direction in which the central portion on the buildup layer side is depressed or can be suppressed to a very small warp, and the front surface wiring layer, the back surface wiring layer, the buildup wiring It is possible to ensure conduction between the layer and the through-hole conductor. In addition, an electronic component such as an IC chip mounted on the first main surface can be reliably connected to the solder bump projecting higher than the first main surface from the build-up wiring layer.
[0037]
Further, according to the wiring board of the second aspect, since each of the above-mentioned characteristics required for the back surface insulating layer can be reliably obtained, it is possible to further prevent the entire wiring board from being warped.
Furthermore, according to the wiring substrate of claim 3, since the core substrate itself is made of a material that is less likely to be warped by using ceramics for the core substrate, the build-up layer and the like are less likely to be warped, and the wiring substrate is excellent in connectivity. It becomes possible.
On the other hand, according to the method for manufacturing a wiring board of the present invention (claim 4), a pair of core substrates are laminated with a pair of back surface insulating layers and a release sheet interposed therebetween, and pressurized. The pair of core substrates can be formed while suppressing the warpage caused by the back surface insulating layer itself on each back surface of the pair of core substrates. In addition, the build-up layers can be formed flat on the surface of each core substrate.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a main part in one embodiment of a wiring board of the present invention.
FIGS. 2A to 2D are schematic diagrams showing main manufacturing steps for obtaining the wiring board.
FIGS. 3A and 3B are schematic diagrams showing main manufacturing steps following FIG. 2D.
FIG. 4 is a sectional view showing a main part of a wiring board according to an application of the wiring board of FIG. 1;
FIGS. 5A and 5B are cross-sectional views showing main parts of a conventional wiring board.
[Explanation of symbols]
1, 1a ... wiring board, 2 ... core board,
4 ... front side, 5 ... back side,
8 front surface wiring layer, 9 back surface wiring layer,
10, 16 ... insulating layer, 11 ... back surface insulating layer,
14, 20: wiring layer, 27: release sheet,
BU ………… Build-up layer

Claims (4)

表面および裏面を有するコア基板と、
上記コア基板の表面および裏面に個別に形成される表面配線層および裏面配線層と、
上記コア基板の表面の上方に形成され且つ複数の絶縁層とこれらの間に位置する複数の配線層とからなるビルドアップ層と、
上記コア基板の裏面の上方に形成される裏面絶縁層と、を含み、
上記裏面絶縁層は、下記(1)乃至(4)の少なくとも何れかの特性を有する、
ことを特徴とする配線基板。
(1)ヤング率が4Gpa以上
(2)熱膨張率(RT〜Tg)が20ppm以上
(3)伸び率が4%以下
(4)硬化収縮が1000ppm以上
A core substrate having a front surface and a back surface,
A front surface wiring layer and a back surface wiring layer formed separately on the front surface and the back surface of the core substrate,
A build-up layer formed above the surface of the core substrate and including a plurality of insulating layers and a plurality of wiring layers located therebetween;
A back surface insulating layer formed above the back surface of the core substrate,
The back surface insulating layer has at least one of the following characteristics (1) to (4).
A wiring board characterized by the above-mentioned.
(1) Young's modulus is 4 Gpa or more (2) Thermal expansion coefficient (RT to Tg) is 20 ppm or more (3) Elongation is 4% or less (4) Curing shrinkage is 1000 ppm or more
前記裏面絶縁層は、無機繊維または有機繊維を含む半硬化性樹脂シートを硬化させたものである、ことを特徴とする請求項1に記載の配線基板。The wiring board according to claim 1, wherein the back surface insulating layer is obtained by curing a semi-curable resin sheet containing inorganic fibers or organic fibers. 前記コア基板は、セラミックからなる、
ことを特徴とする請求項1または2に記載の配線基板。
The core substrate is made of ceramic,
The wiring board according to claim 1, wherein:
請求項1乃至3の何れかに記載の配線基板の製造方法であって、
表面および裏面を有し且つ少なくとも裏面に形成した裏面配線層を有する一対のコア基板を、それらの裏面および裏面配線層の上にそれぞれ裏面絶縁層を形成し且つ離型シートを介して積層して加圧する工程と、
上記一対のコア基板のそれぞれの表面に複数の絶縁層とこれらの間に位置する複数の配線層とを含むビルドアップ層を形成する工程と、を含む、
ことを特徴とする配線基板の製造方法。
It is a manufacturing method of the wiring board in any one of Claims 1 thru | or 3, Comprising:
A pair of core substrates having a front surface and a back surface and having at least a back surface wiring layer formed on the back surface are formed by forming a back surface insulating layer on each of the back surface and the back surface wiring layer and laminating via a release sheet. Pressurizing,
Forming a build-up layer including a plurality of insulating layers and a plurality of wiring layers located therebetween on each surface of the pair of core substrates,
A method for manufacturing a wiring board, comprising:
JP2003203537A 2002-07-31 2003-07-30 Wiring board and its manufacturing method Withdrawn JP2004128481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003203537A JP2004128481A (en) 2002-07-31 2003-07-30 Wiring board and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002223781 2002-07-31
JP2003203537A JP2004128481A (en) 2002-07-31 2003-07-30 Wiring board and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004128481A true JP2004128481A (en) 2004-04-22

Family

ID=32300705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003203537A Withdrawn JP2004128481A (en) 2002-07-31 2003-07-30 Wiring board and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004128481A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351819A (en) * 2005-06-16 2006-12-28 Matsushita Electric Ind Co Ltd Board with built-in component
JP2007158150A (en) * 2005-12-07 2007-06-21 Shinko Electric Ind Co Ltd Process for producing wiring board and process for producing electronic component mounting structure
JP2007194353A (en) * 2006-01-18 2007-08-02 Sumitomo Bakelite Co Ltd Semiconductor device
JP2014216478A (en) * 2013-04-25 2014-11-17 イビデン株式会社 Printed wiring board, method of measuring printed wiring board
CN112349676A (en) * 2019-08-06 2021-02-09 奥特斯奥地利科技与系统技术有限公司 Semi-flexible component carrier and method for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351819A (en) * 2005-06-16 2006-12-28 Matsushita Electric Ind Co Ltd Board with built-in component
JP2007158150A (en) * 2005-12-07 2007-06-21 Shinko Electric Ind Co Ltd Process for producing wiring board and process for producing electronic component mounting structure
TWI399153B (en) * 2005-12-07 2013-06-11 Shinko Electric Ind Co Method of manufacturing wiring substrate and method of manufacturing electronic component mounting structure
JP2007194353A (en) * 2006-01-18 2007-08-02 Sumitomo Bakelite Co Ltd Semiconductor device
JP2014216478A (en) * 2013-04-25 2014-11-17 イビデン株式会社 Printed wiring board, method of measuring printed wiring board
CN112349676A (en) * 2019-08-06 2021-02-09 奥特斯奥地利科技与系统技术有限公司 Semi-flexible component carrier and method for producing the same

Similar Documents

Publication Publication Date Title
JP4392157B2 (en) WIRING BOARD SHEET MATERIAL AND ITS MANUFACTURING METHOD, AND MULTILAYER BOARD AND ITS MANUFACTURING METHOD
TWI325745B (en) Circuit board structure and fabrication method thereof
US9775237B2 (en) Wiring substrate and method for manufacturing the same
WO2007126090A1 (en) Circuit board, electronic device and method for manufacturing circuit board
JP2003303938A (en) Multilayer wiring board with built-in semiconductor device and manufacturing method thereof
TW201021636A (en) Wiring substrate with reinforcement
JPH11354684A (en) Low heat expansion wiring board and multilayer wiring board
JP5170253B2 (en) Wiring board and method of manufacturing wiring board
JP4694007B2 (en) Manufacturing method of three-dimensional mounting package
JP5176676B2 (en) Manufacturing method of component-embedded substrate
JP3940617B2 (en) Wiring board and manufacturing method thereof
JP2004095854A (en) Multilayer interconnection board
JP2004128481A (en) Wiring board and its manufacturing method
JP4695289B2 (en) Wiring board manufacturing method
JP4082995B2 (en) Wiring board manufacturing method
JP2016009763A (en) Multilayer printed wiring board and method of manufacturing the same
JP5623364B2 (en) Wiring board, mounting structure, and electronic device
JP2004228521A (en) Wiring board and its manufacturing method
JP3955799B2 (en) Wiring board manufacturing method
JP4892924B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP3588888B2 (en) Method for manufacturing multilayer printed wiring board
JP6603124B2 (en) Resin substrate, mounting structure, and resin substrate sheet
JP2003229661A (en) Wiring board and its manufacturing method
JP2015060912A (en) Package substrate for mounting semiconductor element
JP6133689B2 (en) Wiring board and mounting structure using the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061003