JP2004128110A - Manufacturing method of thin film solar cell - Google Patents

Manufacturing method of thin film solar cell Download PDF

Info

Publication number
JP2004128110A
JP2004128110A JP2002288346A JP2002288346A JP2004128110A JP 2004128110 A JP2004128110 A JP 2004128110A JP 2002288346 A JP2002288346 A JP 2002288346A JP 2002288346 A JP2002288346 A JP 2002288346A JP 2004128110 A JP2004128110 A JP 2004128110A
Authority
JP
Japan
Prior art keywords
electrode
film
electrode layer
photoelectric conversion
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002288346A
Other languages
Japanese (ja)
Inventor
Shin Shimozawa
下沢 慎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2002288346A priority Critical patent/JP2004128110A/en
Publication of JP2004128110A publication Critical patent/JP2004128110A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a thin film solar cell capable of suppressing degradation in characteristics of it even if a high speed film forming is performed using a compact film forming device, in which (minimum proximity distance A between the reactive chamber wall and high frequency electrode)/(inter-electrode distance D between ground electrode and high frequency electrode) is 1 or below. <P>SOLUTION: A first electrode layer, a non-crystal photoelectric conversion layer, and a transparent electrode layer (second electrode layer) are laminated on the surface of a substrate having electrically insulating property. The photoelectric conversion layer is formed by a plasma CVD method in which a material gas is decomposed by glow discharge with a high frequency voltage applied in a vacuum reactive chamber. The reactive chamber comprises a ground electrode, a high frequency electrode, and a reactive chamber wall. Film-forming is performed with A/D being 1 or below, the film-forming pressure in the reactive chamber being 130-400 Pa, and the frequency of high frequency voltage being 13-60 MHz. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、光電変換層をプラズマCVD法によって製膜する薄膜太陽電池の製造方法に関する。
【0002】
【従来の技術】
薄膜太陽電池は、薄型で軽量、製造コストの安さ、大面積化が容易であることなどから、今後の太陽電池の主流となると考えられ、電力供給用以外に、建物の屋根や窓などにとりつけて利用される業務用,一般住宅用にも需要が広がってきている。
【0003】
従来の薄膜太陽電池はガラス基板を用いているものが一般的であった。近年、軽量化、施工性、量産性においてプラスチックフィルムを用いたフレキシブルタイプの太陽電池の研究開発が進められ実用化されている。さらに、フレキシブルな金属材料に絶縁被覆したフィルム基板を用いたものも開発されている。このフレキシブル性を生かし、ロールツーロール方式やステッピングロール方式の製造方法により大量生産が可能となった。
【0004】
上記の薄膜太陽電池は、電気絶縁性フィルム基板上に、例えば、第1電極(以下、下電極ともいう)、薄膜半導体層からなる光電変換層および第2電極(以下、透明電極ともいう)が積層されてなる光電変換素子(またはセル)が複数形成されている。ある光電変換素子の第1電極と隣接する光電変換素子の第2電極を電気的に接続することを繰り返すことにより、最初の光電変換素子の第1電極と最後の光電変換素子の第2電極とに必要な電圧を出力させることができる。例えば、インバータにより交流化し商用電力源として交流100Vを得るためには、薄膜太陽電池の出力電圧は100V以上が望ましく、実際には数10個以上の素子が直列接続される。
【0005】
このような光電変換素子とその直列接続は、電極層と光電変換層の成膜と各層のパターニングおよびそれらの組み合わせ手順により形成される。上記太陽電池の構成および製造方法の一例は、例えば、後記の特許文献1に記載されている。
【0006】
図10は、上記特許文献1に記載された薄膜太陽電池の一例を示し、(a)は平面図、(b)は(a)における線ABCDおよびBQCに沿っての断面図であり、(c)は(a)におけるEE断面図を示す。
【0007】
電気絶縁性でフレキシブルな樹脂からなる長尺のフィルム基板上に、順次、第1電極層、光電変換層、第2電極層が積層され、フィルム基板の反対側(裏面)には第3電極層、第4電極層が積層され、裏面電極が形成されている。光電変換層は例えばアモルファスシリコンのpin接合である。フィルム基板用材料としては、ポリイミドのフィルム、例えば厚さ50μmのフィルムが用いられている。
【0008】
フィルムの材質としては、他に、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)、ポリエチレンテレフタレート(PET)、またはアラミド系のフィルムなどを用いることができる。
【0009】
次に、製造工程の概要につき以下に説明する。
【0010】
先ず、フィルム基板にパンチを用いて、例えば、直径1mmの接続孔h1を開け、基板の片側(表側とする)に第1電極層として、スパッタにより銀を、例えば100nmの厚さに成膜し、これと反対の面(裏側とする)には、第3電極層として、同じく銀電極を成膜する。接続孔h1の内壁で第1電極層と第3電極層とは重なり、導通する。
【0011】
電極層としては、銀(Ag)以外に、Al,Cu,Ti等の金属をスパッタまたは電子ビーム蒸着等により成膜しても良く、金属酸化膜と金属の多層膜を電極層としても良い。成膜後、表側では、第1電極層を所定の形状にレーザ加工して、下電極l1〜l6をパターニングする。下電極l1〜l6の隣接部は一本の分離線g2を、二列の直列接続の光電変換素子間および周縁導電部fとの分離のためには二本の分離線g2を形成し、下電極l1〜l6は分離線により囲まれるようにする。再度パンチを用いて、集電孔h2を開けた後、表側に、光電変換層pとしてa−Si層をプラズマCVDにより成膜する。マスクを用いて幅W2の成膜とし、レーザ加工により二列素子の間だけに第1電極層と同じ分離線を形成する。なお、前記幅W2は、接続孔h1にまたがってもよい。
【0012】
さらに第2電極層として表側に透明電極層(ITO層)を成膜する。但し、二つの素子列の間とこれに平行な基板の両側端部にはマスクを掛け接続孔h1には成膜しないようにし、素子部のみに成膜する。透明電極層としては、ITO(インシ゛ウムスス゛オキサイト゛)以外に、SnO、ZnOなどの酸化物導電層を用いることができる。
【0013】
次いで裏面全面に第4電極層として金属膜などの低抵抗導電膜からなる層を成膜する。第4電極の成膜により、集電孔h2の内壁で第2電極と第4電極とが重なり、導通する。表側では、レーザ加工により下電極と同じパターンの分離線を入れ、個別の第2電極u1〜u6を形成し、裏側では第3電極と第4電極とを同時にレーザ加工し、接続電極e12〜e56、および電力取り出し電極o1,o2を個別化し、基板の周縁部では表側の分離線g3と重なるように分離線g2を形成し、隣接電極間には一本の分離線を形成する。
【0014】
全ての薄膜太陽電池素子を一括して囲う周縁、および二列の直列接続太陽電池素子の隣接する境界には(周縁導電部fの内側)分離線g3がある。分離線g3の中にはどの層も無い。裏側では、全ての電極を一括して囲う周縁、および二列の直列接続電極の隣接する境界には(周縁導電部fの内側)分離線g2がある。分離線g2の中にはどの層も無い。
【0015】
こうして、電力取り出し電極o1−集電孔h2−上電極u1、光電変換層、下電極l1−接続孔h1−接続電極e12−上電極u2、光電変換層、下電極l2−接続電極e23−・・・−上電極u6、光電変換層、下電極l6−接続孔h1−電力取出し電極o2の順の光電変換素子の直列接続が完成する。
【0016】
なお、第3電極層と第4電極層は電気的には同一の電位であるので、以下の説明においては説明の便宜上、併せて一層の接続電極層として扱うこともある。
【0017】
図11は、構造の理解の容易化のために、薄膜太陽電池の構成を簡略化して斜視図で示したものである。図11において、基板61の表面に形成した単位光電変換素子62および基板61の裏面に形成した接続電極層63は、それぞれ複数の単位ユニットに完全に分離され、それぞれの分離位置をずらして形成されている。このため、素子62のアモルファス半導体部分である光電変換層65で発生した電流は、まず透明電極層66に集められ、次に該透明電極層領域に形成された集電孔67(h2)を介して背面の接続電極層63に通じ、さらに該接続電極層領域で素子の透明電極層領域の外側に形成された直列接続用の接続孔68(h1)を介して上記素子と隣り合う素子の透明電極層領域の外側に延びている下電極層64に達し、両素子の直列接続が行われている。
【0018】
上記薄膜太陽電池の簡略化した製造工程を図12(a)から(g)に示す。プラスチックフィルム71を基板として(工程(a))、これに接続孔78を形成し(工程(b))、基板の両面に第1電極層(下電極)74および第3電極層(接続電極の一部)73を形成(工程(c))した後、接続孔78と所定の距離離れた位置に集電孔77を形成する(工程(d))。工程(c)と工程(d)との間に、第1電極層(下電極)74を所定の形状にレーザ加工して、下電極をパターニングする工程があるが、ここではこの工程の図を省略している。
【0019】
次に、第1電極層74の上に、光電変換層となる半導体層75および第2電極層である透明電極層76を順次形成するとともに(工程(e)および工程(f))、第3電極層73の上に第4電極層(接続電極層)79を形成する(工程(g))。この後、レーザビームを用いて、基板71の両側の薄膜を分離加工して図11に示すような直列接続構造を形成する。
【0020】
なお、図12においては、集電孔h2内における透明電極層76と第4電極層79との接続をそれぞれの層を重ねて2層で図示しているが、前記図10においては、電気的に一層として扱い、1層で図示している。
【0021】
ところで、上記図10〜12に示した薄膜太陽電池の構成は、いわゆるSCAF(Series Connection through Apertures on Film )型と呼称されるものであるが、上記構成以外に、例えばガラス基板の片面にのみ、第1電極層,非単結晶の光電変換層,透明電極層(第2電極層)を積層してなる片面形成型薄膜太陽電池も知られている。また、前記片面形成型の場合においても、透明電極層をガラス基板表面に直接形成する場合と、第1電極層および光電変換層を形成した上で、その表面に透明電極層を形成する場合など、種々の薄膜太陽電池の構成が知られている。
【0022】
次に、前記非単結晶の光電変換層を形成する際のプラズマCVD装置について述べる。上記プラズマCVDによって形成する薄膜は、例えば下記のような装置により形成される。図13は、a−Si 薄膜太陽電池をプラズマ放電によって形成する場合の成膜室の概略構造の一例を示し、後記の特許文献2に記載された構造の一例を示す。図13(a)、(b)はそれぞれ、成膜室の開放時および封止時の概略断面図を示す。
【0023】
図13(a)に示すように、断続的に搬送されてくる可撓性基板10の上下に函状の下部成膜部室壁体21と上部成膜部室壁体22とを対向配置し、成膜室の封止時には、下部成膜部室と上部成膜部室からなる独立した処理空間を構成するようになっている。この例においては、下部成膜部室は電源40に接続された高周波電極31を備え、上部成膜部室は、ヒータ33を内蔵した接地電極32を備える。
【0024】
成膜時には、図13(b)に示すように、上部成膜部室壁体22が下降し、接地電極32が基板10を抑えて下部成膜部室壁体21の開口側端面に取付けられたシール部材50に接触させる。これにより、下部成膜部室壁体21と基板10とから、排気管61に連通する気密に密閉された成膜空間60を形成する。上記のような成膜室において、高周波電極31へ高周波電圧を印加することにより、プラズマを成膜空間60に発生させ、図示しない導入管から導入された原料ガスを分解して基板10上に膜を形成することができる。
【0025】
【特許文献1】
特開平10−233517号公報(第4頁、図1)
【特許文献2】
特開平8−250431号公報(第2−3頁、図2)
【0026】
【発明が解決しようとする課題】
ところで、前述のようなプラズマCVD装置を用いて基板上にa−Siに代表される薄膜を形成する場合、装置としては一般に、接地電極と高周波電極との電極間距離をD、前記反応室壁体と高周波電極との最近接距離をAとした場合、A/D>1の構成が用いられる。
【0027】
図14は、前記図13に示した装置を、説明の便宜上簡略化したプラズマCVD装置の模式図で、高周波電極d1と接地電極d2との間の電極間距離Dと、接地電極d2以外で接地電位を有する導電性部位d3と高周波電極d1との最小距離Aを示す。即ち、従来の装置は、反応室壁体と高周波電極との最近接距離Aを、電極間距離Dよりも大きくとることにより、電極間以外の領域での放電を防止するようにしており、通常、A/Dは1.5〜3程度に設計されている。
【0028】
上記のような装置構成の場合、下記のような問題がある。即ち、反応室の容積は放電空間の10〜20倍と大きくなり、設置スペースが大きくなって装置コストが高くなる問題、圧力制御や真空引きに時間がかかる問題、ガス収率の向上が困難となる問題等である。
【0029】
前記問題を解決する方法として、A/Dを1以下とし、反応室壁体との高周波電極との最近接距離を小さくすることにより装置をコンパクトにし、前記電極間以外の領域での放電は、アースシールドにより抑制する方式が考えられている。
【0030】
しかしながら、上記A/Dを1以下としたコンパクト型装置を用いた場合、新たに下記の問題があることが判明した。即ち、前記コンパクト型装置を用いた場合、光電変換層におけるi層の製膜速度の増加とともに太陽電池の特性が大きく低下するという、コンパクト型装置固有の問題である。
【0031】
一例として、大型装置(A/D=2の例)およびコンパクト型装置(A/D=0.17の例)を用いてi層300nmのpin型a−Siシングルセル太陽電池を製膜して特性を比較した結果について述べる。図15は、i層製膜速度と光劣化後の変換効率(光照射300時間後の安定化した変換効率)の関係を示す。尚、製膜条件は比較的一般的な条件を適用し、電源周波数13MHz、製膜圧力65Paとした。
【0032】
図15の結果から明らかなように、大型装置(A/D>1)の場合、i層製膜速度を3nm/min程度から30nm/min程度まで増加させても、光劣化後変換効率は1ポイント程度しか低下しないのに対し、コンパクト型装置(A/D≦1)の場合、14nm/minまでの増加で光劣化後変換効率が2ポイント以上大きく低下してしまうことが分かった。
【0033】
コンパクト型装置に関しては、電極サイズの異なる2種類の装置で確認したが結果は同様であり、この問題は、コンパクト型装置固有のものであることが分かった。
【0034】
この発明は、上記のような問題点を解消するためになされたもので、この発明の課題は、A/Dが1以下のコンパクト型製膜装置を用いて高速製膜を行なった際においても、薄膜太陽電池の特性低下を抑制することが可能な薄膜太陽電池の製造方法を提供することにある。
【0035】
【課題を解決するための手段】
前述の課題を解決するため、コンパクト型製膜装置に関して製膜条件を変えて鋭意検討を行った結果、一般的な製膜条件では製膜速度増加に伴って、プラズマポテンシャル(プラズマ中のバルクの電位)が大きくなり、そのためプラズマ中で発生したイオンが高い電位で加速されて薄膜にダメージ(欠陥発生、結合角の歪み等)を与える、即ち製膜時のイオンダメージが大きくなって膜質が低下することが判明した。
【0036】
この発明は上記に着目してなされたもので、この発明においては、電気絶縁性を有する基板の表面に第1電極層,非単結晶の光電変換層,透明電極層(第2電極層)を積層してなり、前記光電変換層は、真空の反応室内で高周波電圧の印加の下で原料ガスのグロー放電分解を行なうプラズマCVD法によって製膜する薄膜太陽電池の製造方法において、
前記反応室は、接地電極と高周波電極と反応室壁体とで構成し、前記接地電極と高周波電極との電極間距離をD、前記反応室壁体と高周波電極との最近接距離をAとした場合、A/Dを1以下とし、かつ、前記反応室内の製膜圧力を130〜400Paとし、さらに、前記高周波電圧の周波数を13〜60MHzとして製膜する(請求項1の発明)。
【0037】
上記製膜条件に制御すれば、詳細は後述するように、高速製膜時のプラズマポテンシャルを低く抑え、膜質低下を抑止することが可能となる。なお、前記製膜圧力は、より好ましくは、130〜340Paとし、さらに、前記高周波電圧の周波数は、より好ましくは、13〜50MHzとする。なお、周波数は、電波法上は、RF=13.56MHzの整数倍、即ち、13.56MHz、27.12MHz、40.68MHz・・・であるが、シールドが完備していれば、かならずしも整数倍である必要はなくいので、後述の説明においては、概略値(例えば、13、41などの整数)とし、また前記整数倍以外の周波数とする場合もある。
【0038】
また、前記請求項1の発明の実施態様としては、下記請求項2ないし4の発明が好ましい。即ち、請求項1に記載の製造方法において、前記薄膜太陽電池は、電気絶縁性を有する基板の表面に下電極層としての第1電極層,光電変換層,透明電極層(第2電極層)を順次積層してなる光電変換部と、前記基板の裏面に形成した接続電極層としての第3電極層および第4電極層とを備え、前記光電変換部および接続電極層を互いに位置をずらして単位部分にパターニングしてなり、前記透明電極層形成領域内に形成した電気的直列接続用の接続孔を介して、前記表面上の互いにパターニングされて隣合う単位光電変換部分(ユニットセル)を電気的に直列に接続する(請求項2の発明)。
【0039】
さらに、前記請求項1または2に記載の製造方法において、前記非単結晶の光電変換層は、非単結晶シリコン、非単結晶シリコンゲルマニウム、非単結晶シリコンカーバイド、非単結晶シリコンオキサイド、非単結晶シリコンナイトライドの内の少なくともいずれか一つとする(請求項3の発明)。
【0040】
さらにまた、生産性向上の観点から、前記請求項1または2に記載の製造方法において、前記非単結晶の光電変換層は非単結晶シリコンとし、前記原料ガスとしてはSiHをHで希釈したガスを用い、その水素希釈率H/SiHを2〜20とする(請求項4の発明)。詳細は後述するが、前記水素希釈率の範囲は、より好ましくは、5〜15とする。
【0041】
【発明の実施の形態】
図面に基づき、本発明の実施例について以下に述べる。
【0042】
図1〜図9は、本発明に関わり製膜条件を種々変化させて実験した結果例を示す。図1〜図9の内、図1〜図5においては、A/D=0.17の装置で実験した結果例を示し、図6〜図9においては、A/D=0.5の装置で薄膜太陽電池を製作して実験した結果例を示す。
【0043】
なお、A/Dは、前記図14の装置模式図によるが、図14における接地電位を有する導電性部位d3は、反応室外壁に限らず、アースシールド等を用いた場合には、てアースシールドとd1との間の距離をAとしても良い。また、電位は接地電位でなくとも高周波電極に印加される最大電位に比べて十分小さい電位であれば良い。
【0044】
ここで、A/D=0.17における電極間距離Dは3cmとし、前記Aは0.5cmとした。また、電極間距離Dの値は製膜の製膜速度、均一性等との相関を考慮して2cm≦D≦5cmの範囲で可変としても良いが、2cm≦D≦4cmの範囲で可変とすることが好ましい。
【0045】
上記コンパクト型装置を用い、イオンダメージの低い高速製膜条件を導出するためのプラズマ計測を行った。比較のために、大型装置(A/D=2)についても同様の計測を行った。図1は電源周波数13MHzでの両装置のプラズマポテンシャルの製膜圧力依存性の実験結果を示し、図1(a)は従来の大型装置(A/D=2)の場合、図1(b)は本発明のA/D=0.17の場合を示す。図1の結果から、新しい知見として、両装置でプラズマポテンシャルの圧力依存性が大きく異なることが分かった。即ち、図1(a)に示す大型装置では、プラズマポテンシャル(V)は圧力(Pa)の増加と共に単調に増加する。実際に、大型装置でi層製膜圧力をパラメータにしてa−Siシングルセルを試作したところ、圧力の増加とともに前記光劣化後変換効率が低下することが分かった。
【0046】
一方、図1(b)に示すコンパクト型装置では、プラズマポテンシャルが最低となる圧力が存在し、この最低となる圧力は高周波電源に投入するパワー密度を増加させるほど高圧力側にシフトすることが分かった。また、A/D=0.17以外の装置についても実験した結果によれば、A/Dが1以下であれば、図1(b)と同様の傾向を示すことが確認された。なお、製膜圧力の好ましい範囲に関しては、後述する図3とともに述べる。
【0047】
さらに、前記コンパクト型装置で、電源パワー密度32mW/cm、圧力130Paとして、プラズマポテンシャルの電源周波数依存性を調べた結果を、図2に示す。図2の結果によれば、電源周波数(MHz)を高くすることによりプラズマポテンシャル(V)が低下することが分かった。
【0048】
以上の実験結果から、イオンダメージの低減には、高圧力化と高周波数化が有効と考え、さらに膜厚分布の確認とセルの試作を行い、各種条件における良、不良の判定のためのデータを測定した。その結果を以下に述べる。
【0049】
図3および図4は、それぞれ、製膜圧力と光電変換層の膜厚分布R(%)との関係および電源周波数と同膜厚分布R(%)との関係を示す。ここで、光電変換層の膜厚分布の指標としては、R(%)を下記、即ち
R(%)=100(面内の最大膜厚−面内の最小膜厚)/(面内の膜厚平均値)
と定義し、R≧20%のセルを膜厚が不均一なセルと判断し、不良品と判定する。R値に関しては、外観および太陽電池の特性との関係を考慮して、R≦15%の均一性を得ることが望ましい。
【0050】
図3に示す結果によれば、製膜圧力(Pa)と膜厚分布R(%)との関係は、単調な増加カーブを示し、340Pa以上ではR=15%を上回り、400Pa以上ではR=20%を上回る。よって膜厚分布の観点から、製膜圧力は400Pa以下が好ましく、340Pa以下がより好ましい。下限は、図1(b)の結果から130Paが好ましく、製膜圧力の好ましい範囲としては、130〜400Pa、より好ましくは130〜340Paである。
【0051】
次に、図4について述べる。図4に示す電源周波数については、電源周波数50MHz以上でR=15%を上回り、60MHz以上では不良判定ラインとなるR=20%を上回ることが分かる。よって、電源周波数の好ましい範囲としては、13〜60MHz、より好ましくは、13〜50MHzである。
【0052】
次に、図5について述べる。図5は水素希釈率(H/SiH)と製膜速度(nm/min)との関係を示す。水素希釈率を増加させると膜質が向上し、太陽電池としての特性は向上するが、図5に示すように製膜速度が低下し、生産性が低下してしまう。水素希釈率は、従来、2〜10程度の値を用いてきたが、生産性の観点から、製膜速度がH/SiH=10の時の半分程度となるH/SiH=20が許容限度である。よって、水素希釈率の範囲は、2〜20、より好ましくは、生産性とセル特性のバランスから5〜15とするのが望ましい。
【0053】
次に、薄膜太陽電池の製作と特性等の実験結果について述べる。薄膜太陽電池としては、前記図10〜12に示すSCAF型薄膜太陽電池であって、発電領域の面積が3000cmのpin型a−Siシングルセルを作製した。光電変換層のi層を製膜する際、前記プラズマCVD装置のA/Dは0.5として製膜した。製膜には、ステッピングロール方式の製膜装置を用い、n−i−pの順に製膜を行った。
【0054】
シングルセルi層の作製条件としては、高周波電源の周波数を13〜41MHz、水素希釈率を10、高周波電源電力密度を10〜80mW/cm、製膜圧力を65〜400Paとし、この範囲で製膜条件を変化させ、a−Siシングルセルを作製した。製膜速度は、事前に作製した各i層製膜条件を用いたa−Si薄膜において、光学的に算出した膜厚と、製膜時間を用いて算出した。シングルセル作製時にはこの製膜速度を用いて、設計膜厚が300nmとなるように製膜時間を調節した。シングルセルのi層膜厚は、セル作製後再び光学的に膜厚を測定し、300nm近傍であることを確認した。
【0055】
図10〜図12で説明したようにして、多段直列接続の太陽電池を形成した後、逆バイアス印加処理、およびモジュール化工程を経てサンプル作製を終了した。サンプル作製後、光劣化後のセル特性を測定するため、サンプルを100mW/cmの強度の光を発するソーラーシミュレーターに投入し、約300時間光に曝した。その後、サンプルを取り出し、各ユニツトセル毎の白色光下(100mW/cm)でのIV特性を測定した。測定の際、面積を正確にするため、既知の面積を有するマスクを太陽電池上に覆った状態で測定した。また、測定したデータは温度補正で25℃相当の値に補正した。
【0056】
以上のような測定、および補正を行って、製膜速度と光照射300時間後変換効率との関係をプロットした結果を図6〜8に示す。図6〜8は、それぞれ電源周波数13MHz、27MHz、41MHzで作製したセルに対応する結果を示す。
【0057】
図6〜8の結果は、いずれも同様の傾向を示すが、代表的に、図7に示す電源周波数27MHzの例に着目してセル特性を比較すると、従来適用していた代表的な製膜圧力である65Paで作製したセルで、かつ製膜速度4.8nm/minで作製したセルと、製膜速度16.8nm/minで作製したセルの光照射300時間後変換効率を比較すると、前者が7.4%、後者が4.8%であり、製膜速度を増加させたことによる変換効率の低下が著しいことが分かる。
【0058】
これに対して、製膜圧力130Paで作製したセルで、製膜速度8.2nm/minで作製したセルと、製膜速度27.2nm/minのセルの光照射300時間後変換効率を比較すると、前者が7.5%、後者が6.1%となっており、製膜速度増加時の変換効率低下抑制効果が大きくなっていることが分かる。また、200Pa、250Paの場合には、130Paの時よりさらに製膜速度増加時の変換効率低下抑制効果が大きくなっていることが明らかである。製膜圧力400Paの場合には、200Pa,250Paの場合と比較すると、製膜速度を増加時の変換効率低下抑制効果は小さくなっているが、従来適用していた製膜圧力65Paの場合と比較すると、変換効率低下抑制効果はあると言うことが出来る。
【0059】
400Paの場合、変換効率低下抑制効果が小さくなる理由として、面内膜厚分布が大きくなり、セル特性が低下していることが考えられる。前述の膜厚分布の結果も加味すると、製膜圧力の範囲は130〜400Paとすることが好ましく、130〜340Paとすることがさらに好ましい。
【0060】
電源周波数の増加も、製膜速度増加時の変換効率低下を抑制する効果がある。一例として、図6〜8で製膜速度30nm/min近傍で、製膜圧力200Paで作製したセルの光照射300時間後変換効率を比較すると、従来適用していた電源周波数13MHzで作製したセルは6.6%(図6)であり、27MHzで作製したセルは7.2%(図7)、41MHzで作製したセルは6.9%(図8)であることが分かる。
【0061】
これらの結果から、例えば光照射300時間後変換効率7%以上のセルを作製する場合、従来の条件(13MHz,65Pa)で作製したセルは、製膜速度3.2nm/minで変換効率7.2%であったが、適当な電源周波数と製膜圧力の組み合わせ、例えば(27MHz,200Pa)の条件を適用すれば、製膜速度33.2nm/minで変換効率7.3%を得ることが可能となる。以上の結果から、電源周波数に関しては、前述のように、13〜60MHzとすることが好ましく、さらには13〜50MHzとすることがより好ましい。
【0062】
以上、イオンダメージの影響を抑えてセルの特性を向上させる本発明の効果について述べたが、本発明によれば、前記効果とは別の下記効果もある。図9は製膜圧力と製膜後のプラスチック基板の曲率半径の関係を示すが、本図によれば、製膜圧力の増加と共に曲率半径が大きくなっていることが分かる。製膜圧力の高圧力化によりイオンダメージが前述のように減少した結果、膜の内部応力が減少してプラスチック基板の曲率半径が大きくなったと考えられる。基板の曲率半径増大は、▲1▼CVD装置の電極板のa−Si剥離限界膜厚増加、▲2▼フィルムのハンドリングの向上の観点から好ましい。
【0063】
ところで、図9に示す基板の曲率半径の数値は20mm前後であり、a−Si製膜後のフィルム基板をフリーにすると包帯のように巻き取られた状態になる。しかしながら、プロセス中はフィルム基板にテンションをかけて伸ばした状態となっており、最終的に樹脂等でラミネートすればカールはなくなる。但し、内部応力が残留するので、これにより以下の点が問題となる。
【0064】
▲1▼CVD装置の電極からのa−Si膜剥離の問題
応力によって、電極に付着したa−Si膜が限界膜厚を超えたときに剥離する現象で、これが発生すると膜中に多量のピンホールが発生するため、剥離限界膜厚が装置のメンテサイクルを決めることになる。従来の高速条件では剥離限界膜厚(セル量産時の積算値)は20〜30μmだったのに対し、本発明の適用によれば、限界膜厚を70μm以上に引き上げることができた。これは、内部応力が小となって剥離が抑制されることによる。
【0065】
▲2▼モジュール化作業中のハンドリングの問題
フィルムを切断してモジュール化を行う場合、カールが生ずると作業性が極めて悪くなる。この対策として、接着性樹脂(EVA)シートを仮ラミネートとする方法も採用されているが、本発明の適用によれば、カールが小さくなるので仮ラミネートを行わなくともモジュール化作業を行なうことが可能となる。
【0066】
▲3▼信頼性の問題
対候性試験として2000時間以上の高温高湿試験を行うとa−Si膜の内部応力が一因となって下部電極とフィルムあるいは電極とa−Siの間で剥離が発生する。本発明の適用によれば、この現象も緩和される。
【0067】
ところで、以上の本発明の実施例の説明においては、a−Siシングルセルに適用した場合について述べたが、プラズマポテンシャルを低下させることでイオンダメージを抑える効果は、a−SiGeやa−SiC,a−SiO等の合金膜あるいは微結晶シリコン等を用いた太陽電池に対しても有効である。また、薄膜太陽電池の構成は、前記SCAF型に限定されない。
【0068】
【発明の効果】
この発明によれば前述のように、電気絶縁性を有する基板の表面に第1電極層,非単結晶の光電変換層,透明電極層(第2電極層)を積層してなり、前記光電変換層は、真空の反応室内で高周波電圧の印加の下で原料ガスのグロー放電分解を行なうプラズマCVD法によって製膜する薄膜太陽電池の製造方法において、
前記反応室は、接地電極と高周波電極と反応室壁体とで構成し、前記接地電極と高周波電極との電極間距離をD、前記反応室壁体と高周波電極との最近接距離をAとした場合、A/Dを1以下とし、かつ、前記反応室内の製膜圧力を130〜400Paとし、さらに、前記高周波電圧の周波数を13〜60MHzとして製膜することにより、
高速製膜時のプラズマポテンシャルを低く抑え、膜質低下を抑止することが可能となる。さらに、形成される薄膜の内部応力も弱くなり、太陽電池の生産性の向上、a−Si剥離限界膜厚増加、フィルムのハンドリングの向上等の効果も得られる。上記により、低コストのコンパクト型製膜装置を用いた薄膜太陽電池の量産化が可能となる。
【図面の簡単な説明】
【図1】本発明の実施例に関わる製膜圧力とプラズマポテンシャルとの関係を示す図
【図2】本発明の実施例に関わる電源周波数とプラズマポテンシャルとの関係を示す図
【図3】本発明の実施例に関わる製膜圧力と膜厚分布Rとの関係を示す図
【図4】本発明の実施例に関わる電源周波数と膜厚分布Rとの関係を示す図
【図5】本発明の実施例に関わる水素希釈率と製膜速度との関係を示す図
【図6】本発明の実施例に関わる製膜速度と光照射300時間後変換効率との関係を示す図
【図7】電源周波数が図6とは異なる場合の図6と同様の関係図
【図8】電源周波数が図6とはさらに異なる場合の図6と同様の関係図
【図9】本発明の実施例に関わる製膜圧力と基板の曲率半径との関係を示す図
【図10】従来のSCAF型薄膜太陽電池の構成図
【図11】従来のSCAF型薄膜太陽電池の概略構成を示す斜視図
【図12】従来のSCAF型薄膜太陽電池の製造工程の概略を示す図
【図13】従来のプラズマCVD装置の成膜室の概略構造の一例を示す図
【図14】図13を簡略化した模式図
【図15】各反応室構造におけるa−Si形成時のi層製膜速度と光劣化後変換効率との関係を示す図
【符号の説明】
61:基板、64:下電極層、65:光電変換層、66:透明電極層、67:集電孔、68:接続孔、d1:高周波電極、d2:接地電極、d3:反応室壁体の接地電位を有する導電性部位、A:反応室壁体と高周波電極との最近接距離、D:高周波電極と接地電極との間の電極間距離。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a thin-film solar cell in which a photoelectric conversion layer is formed by a plasma CVD method.
[0002]
[Prior art]
Thin-film solar cells are considered to be the mainstream of solar cells in the future because they are thin, lightweight, inexpensive in manufacturing cost, and easy to increase in area, so they are used not only for power supply but also for building roofs and windows. Demand is expanding for business use and general residential use.
[0003]
Conventional thin-film solar cells generally use a glass substrate. In recent years, research and development of a flexible type solar cell using a plastic film has been promoted in terms of weight reduction, workability, and mass productivity, and the solar cell has been put into practical use. Further, a device using a film substrate insulated from a flexible metal material has been developed. Taking advantage of this flexibility, mass production has become possible by roll-to-roll or stepping roll manufacturing methods.
[0004]
In the above-described thin-film solar cell, for example, a first electrode (hereinafter, also referred to as a lower electrode), a photoelectric conversion layer including a thin-film semiconductor layer, and a second electrode (hereinafter, also referred to as a transparent electrode) are formed on an electrically insulating film substrate. A plurality of stacked photoelectric conversion elements (or cells) are formed. By repeatedly electrically connecting the first electrode of a certain photoelectric conversion element and the second electrode of an adjacent photoelectric conversion element, the first electrode of the first photoelectric conversion element and the second electrode of the last photoelectric conversion element Required voltage can be output. For example, in order to obtain an AC of 100 V as a commercial power source by converting into an AC by an inverter, the output voltage of the thin-film solar cell is desirably 100 V or more, and actually several tens or more elements are connected in series.
[0005]
Such a photoelectric conversion element and its serial connection are formed by forming an electrode layer and a photoelectric conversion layer, patterning each layer, and combining them. An example of the configuration and manufacturing method of the solar cell is described in, for example, Patent Document 1 described below.
[0006]
FIGS. 10A and 10B show an example of the thin-film solar cell described in Patent Document 1, in which FIG. 10A is a plan view, FIG. 10B is a sectional view taken along lines ABCD and BQC in FIG. () Shows an EE sectional view in (a).
[0007]
A first electrode layer, a photoelectric conversion layer, and a second electrode layer are sequentially laminated on a long film substrate made of an electrically insulating and flexible resin, and a third electrode layer is provided on the opposite side (back surface) of the film substrate. , A fourth electrode layer, and a back surface electrode is formed. The photoelectric conversion layer is, for example, a pin junction of amorphous silicon. As the material for the film substrate, a polyimide film, for example, a film having a thickness of 50 μm is used.
[0008]
As a material of the film, polyethylene naphthalate (PEN), polyether sulfone (PES), polyethylene terephthalate (PET), an aramid-based film, or the like can be used.
[0009]
Next, an outline of the manufacturing process will be described below.
[0010]
First, a connection hole h1 having a diameter of, for example, 1 mm is formed using a punch on a film substrate, and silver is formed as a first electrode layer on one side (referred to as a front side) of the substrate by sputtering to a thickness of, for example, 100 nm. A silver electrode is similarly formed as a third electrode layer on the surface opposite to this (the back side). The first electrode layer and the third electrode layer overlap with each other on the inner wall of the connection hole h1 and conduct.
[0011]
As the electrode layer, in addition to silver (Ag), a metal such as Al, Cu, or Ti may be formed by sputtering or electron beam evaporation, or a multilayer film of a metal oxide film and a metal may be used as the electrode layer. After the film formation, on the front side, the first electrode layer is laser-processed into a predetermined shape, and the lower electrodes 11 to 16 are patterned. An adjacent portion of the lower electrodes 11 to 16 forms one separation line g2, and two separation lines g2 for separation between two rows of photoelectric conversion elements connected in series and the periphery conductive portion f. The electrodes 11 to 16 are surrounded by a separation line. After the collector hole h2 is opened again by using the punch, an a-Si layer is formed as a photoelectric conversion layer p on the front side by plasma CVD. A film having a width of W2 is formed using a mask, and the same separation line as that of the first electrode layer is formed only between the two-row elements by laser processing. The width W2 may extend over the connection hole h1.
[0012]
Further, a transparent electrode layer (ITO layer) is formed on the front side as a second electrode layer. However, a mask is applied between the two element rows and on both side edges of the substrate parallel to the two element rows so that the film is not formed in the connection hole h1, but is formed only in the element section. As the transparent electrode layer, in addition to ITO (indium oxide), SnO 2 2 And an oxide conductive layer such as ZnO.
[0013]
Next, a layer made of a low-resistance conductive film such as a metal film is formed as a fourth electrode layer on the entire back surface. Due to the formation of the fourth electrode, the second electrode and the fourth electrode are overlapped on the inner wall of the current collecting hole h2, and conduction is achieved. On the front side, a separation line having the same pattern as that of the lower electrode is formed by laser processing to form individual second electrodes u1 to u6. On the rear side, the third and fourth electrodes are simultaneously laser-processed, and connection electrodes e12 to e56 are formed. , And the power extraction electrodes o1 and o2 are separated from each other, a separation line g2 is formed at the periphery of the substrate so as to overlap the separation line g3 on the front side, and one separation line is formed between the adjacent electrodes.
[0014]
There is a separation line g3 on the periphery surrounding all the thin-film solar cells collectively and on the adjacent boundary between the two rows of series-connected solar cells (inside the peripheral conductive portion f). There are no layers in the separation line g3. On the back side, there is a separation line g2 (inside the peripheral conductive portion f) at the periphery surrounding all the electrodes collectively and at the adjacent boundary between the two rows of serially connected electrodes. There are no layers in the separation line g2.
[0015]
Thus, the power extraction electrode o1-current collection hole h2-upper electrode u1, photoelectric conversion layer, lower electrode 111-connection hole h1-connection electrode e12-upper electrode u2, photoelectric conversion layer, lower electrode 12-connection electrode e23 -... The series connection of the photoelectric conversion elements in the order of the upper electrode u6, the photoelectric conversion layer, the lower electrode 16-the connection hole h1-the power extraction electrode o2 is completed.
[0016]
Since the third electrode layer and the fourth electrode layer have the same electrical potential, they may be treated as a single connection electrode layer in the following description for convenience of description.
[0017]
FIG. 11 is a simplified perspective view of the configuration of a thin-film solar cell for easy understanding of the structure. In FIG. 11, the unit photoelectric conversion element 62 formed on the front surface of the substrate 61 and the connection electrode layer 63 formed on the back surface of the substrate 61 are each completely separated into a plurality of unit units, and are formed with their respective separation positions shifted. ing. Therefore, the current generated in the photoelectric conversion layer 65, which is the amorphous semiconductor portion of the element 62, is first collected in the transparent electrode layer 66, and then flows through the current collecting holes 67 (h2) formed in the transparent electrode layer region. Through the connection electrode layer 63 on the back side, and further through the connection hole 68 (h1) for series connection formed outside the transparent electrode layer region of the device in the connection electrode layer region, to allow the transparent connection of the device adjacent to the device. It reaches the lower electrode layer 64 extending outside the electrode layer region, and the two devices are connected in series.
[0018]
FIGS. 12A to 12G show a simplified manufacturing process of the thin film solar cell. Using the plastic film 71 as a substrate (step (a)), a connection hole 78 is formed in this (step (b)), and a first electrode layer (lower electrode) 74 and a third electrode layer (a lower electrode) on both surfaces of the substrate. After forming the (part) 73 (step (c)), a current collecting hole 77 is formed at a position separated from the connection hole 78 by a predetermined distance (step (d)). Between the step (c) and the step (d), there is a step of patterning the lower electrode by laser processing the first electrode layer (lower electrode) 74 into a predetermined shape. Omitted.
[0019]
Next, a semiconductor layer 75 serving as a photoelectric conversion layer and a transparent electrode layer 76 serving as a second electrode layer are sequentially formed on the first electrode layer 74 (step (e) and step (f)). A fourth electrode layer (connection electrode layer) 79 is formed on the electrode layer 73 (step (g)). Thereafter, the thin films on both sides of the substrate 71 are separated and processed using a laser beam to form a series connection structure as shown in FIG.
[0020]
In FIG. 12, the connection between the transparent electrode layer 76 and the fourth electrode layer 79 in the current collecting hole h2 is illustrated as two layers with the respective layers overlapped. However, in FIG. Are treated as a single layer and are shown in one layer.
[0021]
Incidentally, the configuration of the thin film solar cell shown in FIGS. 10 to 12 is a so-called SCAF (Series Connection Through Properties on Film) type, but in addition to the above configuration, for example, only on one side of a glass substrate, There is also known a single-sided thin-film solar cell in which a first electrode layer, a non-single-crystal photoelectric conversion layer, and a transparent electrode layer (second electrode layer) are laminated. Also, in the case of the single-sided formation type, the case where the transparent electrode layer is directly formed on the surface of the glass substrate, the case where the first electrode layer and the photoelectric conversion layer are formed, and then the transparent electrode layer is formed on the surface, etc. Various thin-film solar cell configurations are known.
[0022]
Next, a plasma CVD apparatus for forming the non-single-crystal photoelectric conversion layer will be described. The thin film formed by the plasma CVD is formed by, for example, the following apparatus. FIG. 13 shows an example of a schematic structure of a film forming chamber when an a-Si thin film solar cell is formed by plasma discharge, and shows an example of a structure described in Patent Document 2 described later. FIGS. 13A and 13B are schematic cross-sectional views when the film forming chamber is opened and when it is sealed, respectively.
[0023]
As shown in FIG. 13A, a box-shaped lower film-forming section chamber wall 21 and an upper film-forming section chamber wall 22 are arranged oppositely above and below a flexible substrate 10 conveyed intermittently. When the film chamber is sealed, an independent processing space composed of a lower film forming section chamber and an upper film forming section chamber is formed. In this example, the lower film forming unit chamber includes a high-frequency electrode 31 connected to a power supply 40, and the upper film forming unit room includes a ground electrode 32 having a built-in heater 33.
[0024]
At the time of film formation, as shown in FIG. 13B, the upper film-forming section chamber wall 22 is lowered, and the ground electrode 32 holds down the substrate 10 and is attached to the opening-side end face of the lower film-forming section chamber wall 21. The member 50 is brought into contact. As a result, an airtightly sealed film-forming space 60 communicating with the exhaust pipe 61 is formed from the lower film-forming section chamber wall 21 and the substrate 10. In the film forming chamber as described above, a high-frequency voltage is applied to the high-frequency electrode 31 to generate plasma in the film forming space 60 and to decompose the raw material gas introduced from an introduction pipe (not shown) to form a film on the substrate 10. Can be formed.
[0025]
[Patent Document 1]
JP-A-10-233517 (page 4, FIG. 1)
[Patent Document 2]
JP-A-8-250431 (page 2-3, FIG. 2)
[0026]
[Problems to be solved by the invention]
By the way, when a thin film typified by a-Si is formed on a substrate using the above-described plasma CVD apparatus, the distance between the ground electrode and the high-frequency electrode is generally D, and the reaction chamber wall is generally used. When the closest distance between the body and the high-frequency electrode is A, a configuration of A / D> 1 is used.
[0027]
FIG. 14 is a schematic view of a plasma CVD apparatus obtained by simplifying the apparatus shown in FIG. 13 for convenience of explanation, and shows a distance D between the high-frequency electrode d1 and the ground electrode d2 and a ground other than the ground electrode d2. The minimum distance A between the conductive portion d3 having a potential and the high-frequency electrode d1 is shown. That is, in the conventional apparatus, the closest distance A between the reaction chamber wall and the high-frequency electrode is set to be larger than the distance D between the electrodes, thereby preventing discharge in a region other than between the electrodes. , A / D are designed to be about 1.5 to 3.
[0028]
In the case of the above-described device configuration, there are the following problems. That is, the volume of the reaction chamber is 10 to 20 times as large as the discharge space, the installation space is large, the apparatus cost is high, the pressure control and evacuation take time, and the gas yield is difficult to improve. Problems.
[0029]
As a method for solving the above problem, the A / D is set to 1 or less, the apparatus is made compact by reducing the closest distance between the reaction chamber wall and the high-frequency electrode, and the discharge in a region other than between the electrodes is performed as follows. A method of suppressing the noise with an earth shield has been considered.
[0030]
However, it has been found that the use of a compact device having the A / D of 1 or less has the following new problems. That is, when the compact type device is used, there is a problem inherent in the compact type device that the characteristics of the solar cell are greatly reduced as the film forming speed of the i-layer in the photoelectric conversion layer increases.
[0031]
As an example, a pin-type a-Si single-cell solar cell having an i-layer of 300 nm is formed using a large-sized device (example of A / D = 2) and a compact device (example of A / D = 0.17). The result of comparing the characteristics will be described. FIG. 15 shows the relationship between the i-layer film formation speed and the conversion efficiency after light degradation (stable conversion efficiency after 300 hours of light irradiation). The film forming conditions were relatively general conditions, and the power supply frequency was 13 MHz and the film forming pressure was 65 Pa.
[0032]
As is clear from the results of FIG. 15, in the case of a large-sized apparatus (A / D> 1), the conversion efficiency after light degradation is 1 even if the i-layer deposition rate is increased from about 3 nm / min to about 30 nm / min. In contrast, in the case of the compact device (A / D ≦ 1), the conversion efficiency after light degradation is significantly reduced by 2 points or more in the case of the compact device (A / D ≦ 1).
[0033]
As for the compact device, the results were confirmed with two types of devices having different electrode sizes, but the results were similar, and it was found that this problem was unique to the compact device.
[0034]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a high-speed film forming apparatus using a compact film forming apparatus having an A / D of 1 or less. It is another object of the present invention to provide a method of manufacturing a thin-film solar cell capable of suppressing deterioration in characteristics of the thin-film solar cell.
[0035]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors conducted intensive studies on the film forming conditions of a compact type film forming apparatus by changing the film forming conditions. As a result, under the general film forming conditions, the plasma potential (the bulk of the plasma Potential), and the ions generated in the plasma are accelerated at a high potential to damage the thin film (defect generation, distortion of the bond angle, etc.), that is, the ion damage during film formation increases and the film quality deteriorates It turned out to be.
[0036]
The present invention has been made in view of the above. In the present invention, a first electrode layer, a non-single-crystal photoelectric conversion layer, and a transparent electrode layer (second electrode layer) are provided on the surface of an electrically insulating substrate. The method for manufacturing a thin-film solar cell, wherein the photoelectric conversion layer is formed by laminating the layers by a plasma CVD method in which a source gas is subjected to glow discharge decomposition under application of a high frequency voltage in a vacuum reaction chamber,
The reaction chamber is composed of a ground electrode, a high-frequency electrode, and a reaction chamber wall, and the distance between the ground electrode and the high-frequency electrode is D, and the closest distance between the reaction chamber wall and the high-frequency electrode is A. In this case, A / D is set to 1 or less, the film forming pressure in the reaction chamber is set to 130 to 400 Pa, and the frequency of the high frequency voltage is set to 13 to 60 MHz (the invention of claim 1).
[0037]
If the film forming conditions are controlled as described above, it is possible to suppress the plasma potential during high-speed film forming and suppress deterioration in film quality, as described in detail later. In addition, the film forming pressure is more preferably 130 to 340 Pa, and the frequency of the high frequency voltage is more preferably 13 to 50 MHz. According to the Radio Law, the frequency is an integral multiple of RF = 13.56 MHz, that is, 13.56 MHz, 27.12 MHz, 40.68 MHz... Therefore, in the following description, it may be a rough value (for example, an integer such as 13, 41) or a frequency other than the integer multiple.
[0038]
As an embodiment of the first aspect of the present invention, the following second to fourth aspects of the present invention are preferable. That is, in the manufacturing method according to claim 1, the thin-film solar cell comprises a first electrode layer, a photoelectric conversion layer, and a transparent electrode layer (second electrode layer) as lower electrode layers on a surface of an electrically insulating substrate. And a third electrode layer and a fourth electrode layer as connection electrode layers formed on the back surface of the substrate, wherein the photoelectric conversion unit and the connection electrode layer are displaced from each other. The adjacent unit photoelectric conversion portions (unit cells) patterned on each other on the surface are electrically connected to each other through a connection hole for electrical series connection formed in the transparent electrode layer formation region. (The invention of claim 2).
[0039]
Further, in the manufacturing method according to claim 1 or 2, the non-single-crystal photoelectric conversion layer is formed of non-single-crystal silicon, non-single-crystal silicon germanium, non-single-crystal silicon carbide, non-single-crystal silicon oxide, At least one of crystalline silicon nitride (the invention of claim 3).
[0040]
Furthermore, from the viewpoint of improving productivity, in the manufacturing method according to claim 1 or 2, the non-single-crystal photoelectric conversion layer is made of non-single-crystal silicon, and the source gas is SiH. 4 To H 2 Hydrogen dilution rate H 2 / SiH 4 Is set to 2 to 20 (the invention of claim 4). Although the details will be described later, the range of the hydrogen dilution rate is more preferably 5 to 15.
[0041]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0042]
FIG. 1 to FIG. 9 show examples of the results of experiments related to the present invention with variously changed film forming conditions. 1 to 5, FIGS. 1 to 5 show examples of the results of experiments performed with an apparatus with A / D = 0.17, and FIGS. 6 to 9 show apparatuses with A / D = 0.5. An example of the result of an experiment in which a thin-film solar cell was manufactured using the method shown in FIG.
[0043]
The A / D is based on the schematic diagram of the apparatus shown in FIG. 14, but the conductive portion d3 having the ground potential in FIG. 14 is not limited to the outer wall of the reaction chamber. The distance between d1 and d1 may be A. Further, the potential need not be the ground potential but may be any potential that is sufficiently smaller than the maximum potential applied to the high-frequency electrode.
[0044]
Here, the distance D between the electrodes at A / D = 0.17 was 3 cm, and A was 0.5 cm. The value of the distance D between the electrodes may be variable in the range of 2 cm ≦ D ≦ 5 cm in consideration of the correlation with the film forming speed of film formation, uniformity, etc., but may be variable in the range of 2 cm ≦ D ≦ 4 cm. Is preferred.
[0045]
Using the above compact apparatus, plasma measurement was performed to derive high-speed film formation conditions with low ion damage. For comparison, the same measurement was performed for a large-sized device (A / D = 2). FIG. 1 shows the experimental results of the plasma potential dependence of the plasma potential of both devices at a power supply frequency of 13 MHz. FIG. 1A shows the case of a conventional large-sized device (A / D = 2). Shows the case of A / D = 0.17 of the present invention. As a new finding, the results in FIG. 1 show that the pressure dependency of the plasma potential is significantly different between the two devices. That is, in the large-sized apparatus shown in FIG. 1A, the plasma potential (V) monotonically increases with an increase in the pressure (Pa). Actually, when an a-Si single cell was trial-produced using a large-sized apparatus with the i-layer deposition pressure as a parameter, it was found that the conversion efficiency after the photo-deterioration decreased as the pressure increased.
[0046]
On the other hand, in the compact device shown in FIG. 1B, there is a pressure at which the plasma potential becomes the lowest, and this lowest pressure may shift to the higher pressure side as the power density applied to the high frequency power supply increases. Do you get it. In addition, according to the results of an experiment conducted on a device other than A / D = 0.17, it was confirmed that if A / D was 1 or less, the same tendency as in FIG. 1B was exhibited. The preferred range of the film forming pressure will be described later with reference to FIG.
[0047]
Further, in the compact device, the power supply power density is 32 mW / cm 2 FIG. 2 shows the result of examining the power supply frequency dependence of the plasma potential at a pressure of 130 Pa. According to the results of FIG. 2, it was found that the plasma potential (V) was reduced by increasing the power supply frequency (MHz).
[0048]
Based on the above experimental results, it is considered that high pressure and high frequency are effective in reducing ion damage.Furthermore, the film thickness distribution is confirmed and the cell is prototyped, and data for judging good or bad under various conditions is obtained. Was measured. The results are described below.
[0049]
3 and 4 show the relationship between the film forming pressure and the film thickness distribution R (%) of the photoelectric conversion layer, and the relationship between the power supply frequency and the same film thickness distribution R (%), respectively. Here, as an index of the film thickness distribution of the photoelectric conversion layer, R (%) is as follows:
R (%) = 100 (maximum thickness in plane−minimum thickness in plane) / (average thickness in plane)
And the cell of R ≧ 20% is determined to be a cell having an uneven film thickness, and is determined to be defective. Regarding the R value, it is desirable to obtain a uniformity of R ≦ 15% in consideration of the relationship between the appearance and the characteristics of the solar cell.
[0050]
According to the results shown in FIG. 3, the relationship between the film forming pressure (Pa) and the film thickness distribution R (%) shows a monotonous increase curve, and R exceeds 15% at 340 Pa or more, and R = 400% or more. More than 20%. Therefore, from the viewpoint of film thickness distribution, the film forming pressure is preferably 400 Pa or less, more preferably 340 Pa or less. The lower limit is preferably 130 Pa from the results in FIG. 1B, and the preferable range of the film forming pressure is 130 to 400 Pa, more preferably 130 to 340 Pa.
[0051]
Next, FIG. 4 will be described. It can be seen that the power supply frequency shown in FIG. 4 exceeds R = 15% at a power supply frequency of 50 MHz or more, and exceeds R = 20% as a failure determination line at a power supply frequency of 60 MHz or more. Therefore, a preferable range of the power supply frequency is 13 to 60 MHz, more preferably, 13 to 50 MHz.
[0052]
Next, FIG. 5 will be described. FIG. 5 shows the hydrogen dilution rate (H 2 / SiH 4 ) And the film formation rate (nm / min). When the hydrogen dilution rate is increased, the film quality is improved, and the characteristics as a solar cell are improved. However, as shown in FIG. 5, the film formation speed is reduced, and the productivity is reduced. Conventionally, a value of about 2 to 10 has been used for the hydrogen dilution rate. 2 / SiH 4 = About half of 10 2 / SiH 4 = 20 is an acceptable limit. Therefore, the range of the hydrogen dilution rate is preferably 2 to 20, and more preferably 5 to 15 in view of the balance between productivity and cell characteristics.
[0053]
Next, experimental results such as fabrication and characteristics of the thin film solar cell will be described. The thin film solar cell is a SCAF type thin film solar cell shown in FIGS. 2 Was manufactured. When the i-layer of the photoelectric conversion layer was formed, the A / D of the plasma CVD apparatus was set to 0.5. The film was formed using a stepping roll type film forming apparatus in the order of nip.
[0054]
The conditions for producing the single cell i-layer are as follows: the frequency of the high-frequency power supply is 13 to 41 MHz, the hydrogen dilution rate is 10, and the high-frequency power supply power density is 10 to 80 mW / cm. 2 The film forming pressure was set to 65 to 400 Pa, and the film forming conditions were changed within this range, thereby producing an a-Si single cell. The film forming speed was calculated using the optically calculated film thickness and the film forming time in the a-Si thin film using the respective i-layer film forming conditions prepared in advance. At the time of manufacturing a single cell, the film forming time was adjusted using this film forming speed so that the designed film thickness became 300 nm. The i-layer thickness of the single cell was measured optically again after the cell was formed, and was confirmed to be around 300 nm.
[0055]
As described with reference to FIGS. 10 to 12, after forming the multistage serially connected solar cells, the sample fabrication was completed through the reverse bias applying process and the module forming process. After the sample was prepared, the sample was measured at 100 mW / cm to measure the cell characteristics after light degradation. 2 And then exposed to light for about 300 hours. Thereafter, the sample was taken out and placed under white light (100 mW / cm) for each unit cell. 2 ) Was measured. At the time of measurement, in order to make the area accurate, the measurement was performed with a mask having a known area covered on the solar cell. The measured data was corrected to a value equivalent to 25 ° C. by temperature correction.
[0056]
The results of plotting the relationship between the film formation speed and the conversion efficiency after 300 hours of light irradiation after performing the above-described measurement and correction are shown in FIGS. 6 to 8 show the results corresponding to the cells manufactured at the power supply frequencies of 13 MHz, 27 MHz and 41 MHz, respectively.
[0057]
Although the results of FIGS. 6 to 8 all show the same tendency, representatively, when comparing the cell characteristics by focusing on the example of the power supply frequency of 27 MHz shown in FIG. A comparison of the conversion efficiencies after 300 hours of light irradiation of a cell manufactured at a pressure of 65 Pa and a cell manufactured at a film formation speed of 4.8 nm / min and a cell manufactured at a film formation speed of 16.8 nm / min shows that the former is the former. Is 7.4% and the latter is 4.8%, which indicates that the conversion efficiency is significantly reduced by increasing the film forming speed.
[0058]
On the other hand, when the cell manufactured at a film forming speed of 130 nm and the cell manufactured at a film forming speed of 8.2 nm / min are compared with the cell manufactured at a film forming speed of 27.2 nm / min, the conversion efficiency after 300 hours of light irradiation is compared. The former is 7.5% and the latter is 6.1%, indicating that the effect of suppressing a decrease in conversion efficiency when the film forming speed is increased is large. In addition, it is clear that in the case of 200 Pa and 250 Pa, the effect of suppressing the decrease in the conversion efficiency when the film forming speed is increased is larger than that in the case of 130 Pa. When the film forming pressure is 400 Pa, the effect of suppressing the decrease in the conversion efficiency when the film forming speed is increased is smaller than when the film forming speed is 200 Pa and 250 Pa. Then, it can be said that there is an effect of suppressing a decrease in conversion efficiency.
[0059]
In the case of 400 Pa, the reason why the effect of suppressing the decrease in the conversion efficiency becomes small is considered to be that the in-plane film thickness distribution becomes large and the cell characteristics are deteriorated. Taking into account the results of the film thickness distribution described above, the range of the film forming pressure is preferably from 130 to 400 Pa, and more preferably from 130 to 340 Pa.
[0060]
Increasing the power supply frequency also has the effect of suppressing a decrease in conversion efficiency when the film forming speed increases. As an example, comparing the conversion efficiencies after 300 hours of light irradiation of cells manufactured at a film forming pressure of 200 Pa at a film forming speed of 30 nm / min in FIGS. It is 6.6% (FIG. 6), and it can be seen that the cell manufactured at 27 MHz is 7.2% (FIG. 7) and the cell manufactured at 41 MHz is 6.9% (FIG. 8).
[0061]
From these results, for example, when manufacturing a cell having a conversion efficiency of 7% or more after 300 hours of light irradiation, a cell manufactured under conventional conditions (13 MHz, 65 Pa) has a conversion efficiency of 7. nm / min at a film formation rate of 3.2 nm / min. The conversion efficiency was 7.3% at a deposition rate of 33.2 nm / min by applying an appropriate combination of power supply frequency and deposition pressure, for example, (27 MHz, 200 Pa). It becomes possible. From the above results, the power supply frequency is preferably 13 to 60 MHz, and more preferably 13 to 50 MHz, as described above.
[0062]
As described above, the effect of the present invention for improving the characteristics of the cell while suppressing the influence of the ion damage has been described. However, according to the present invention, there is the following effect different from the above-described effect. FIG. 9 shows the relationship between the film forming pressure and the radius of curvature of the plastic substrate after film formation. According to this figure, it can be seen that the radius of curvature increases as the film forming pressure increases. It is considered that the ion damage was reduced as described above by increasing the film forming pressure, and as a result, the internal stress of the film was reduced and the radius of curvature of the plastic substrate was increased. An increase in the radius of curvature of the substrate is preferable from the viewpoint of (1) an increase in the a-Si peeling limit film thickness of the electrode plate of the CVD apparatus, and (2) an improvement in film handling.
[0063]
By the way, the numerical value of the radius of curvature of the substrate shown in FIG. 9 is about 20 mm, and when the film substrate after the a-Si film formation is made free, the substrate is wound up like a bandage. However, during the process, the film substrate is stretched with tension, and if the film substrate is finally laminated with a resin or the like, curling is eliminated. However, since the internal stress remains, this causes the following problems.
[0064]
(1) Problem of a-Si film peeling from electrode of CVD device
This is a phenomenon in which the a-Si film adhered to the electrode peels off when the thickness exceeds the limit thickness due to stress. When this occurs, a large amount of pinholes are generated in the film. Will decide. Under the conventional high-speed conditions, the peeling limit film thickness (integrated value during mass production of cells) was 20 to 30 μm, but according to the application of the present invention, the limit film thickness could be increased to 70 μm or more. This is because the internal stress becomes small and the peeling is suppressed.
[0065]
(2) Handling problems during modularization work
When a film is cut into a module to be curled, workability becomes extremely poor. As a countermeasure, a method in which an adhesive resin (EVA) sheet is temporarily laminated is also employed. However, according to the application of the present invention, the curling is reduced, so that the module work can be performed without performing the temporary lamination. It becomes possible.
[0066]
(3) Reliability issues
When a high-temperature and high-humidity test of 2000 hours or more is performed as a weathering test, peeling occurs between the lower electrode and the film or between the electrode and a-Si due to internal stress of the a-Si film. According to the application of the present invention, this phenomenon is also mitigated.
[0067]
By the way, in the above description of the embodiment of the present invention, the case where the present invention is applied to an a-Si single cell has been described. It is also effective for a solar cell using an alloy film such as a-SiO or microcrystalline silicon. Further, the configuration of the thin-film solar cell is not limited to the SCAF type.
[0068]
【The invention's effect】
According to the present invention, as described above, the first electrode layer, the non-single-crystal photoelectric conversion layer, and the transparent electrode layer (second electrode layer) are laminated on the surface of the electrically insulating substrate. The layer is a thin-film solar cell manufacturing method in which a film is formed by a plasma CVD method in which glow discharge decomposition of a source gas is performed under application of a high-frequency voltage in a vacuum reaction chamber.
The reaction chamber is composed of a ground electrode, a high-frequency electrode, and a reaction chamber wall, and the distance between the ground electrode and the high-frequency electrode is D, and the closest distance between the reaction chamber wall and the high-frequency electrode is A. In this case, the A / D is set to 1 or less, the film forming pressure in the reaction chamber is set to 130 to 400 Pa, and the frequency of the high frequency voltage is set to 13 to 60 MHz to form a film.
The plasma potential at the time of high-speed film formation can be suppressed low, and the film quality can be prevented from deteriorating. Further, the internal stress of the formed thin film is also weakened, and effects such as an improvement in the productivity of the solar cell, an increase in the a-Si peeling limit film thickness, and an improvement in the handling of the film can be obtained. As described above, mass production of thin-film solar cells using a low-cost compact film-forming apparatus becomes possible.
[Brief description of the drawings]
FIG. 1 is a diagram showing a relationship between a film forming pressure and a plasma potential according to an embodiment of the present invention.
FIG. 2 is a diagram showing a relationship between a power supply frequency and a plasma potential according to an embodiment of the present invention.
FIG. 3 is a diagram showing a relationship between a film forming pressure and a film thickness distribution R according to an embodiment of the present invention.
FIG. 4 is a diagram showing a relationship between a power supply frequency and a film thickness distribution R according to an embodiment of the present invention.
FIG. 5 is a diagram showing a relationship between a hydrogen dilution rate and a film formation rate according to an embodiment of the present invention.
FIG. 6 is a diagram showing a relationship between a film forming speed and a conversion efficiency after 300 hours of light irradiation according to an example of the present invention.
FIG. 7 is a relationship diagram similar to FIG. 6 when the power supply frequency is different from FIG. 6;
FIG. 8 is a relationship diagram similar to FIG. 6 when the power supply frequency is further different from FIG. 6;
FIG. 9 is a diagram showing a relationship between a film forming pressure and a radius of curvature of a substrate according to an embodiment of the present invention.
FIG. 10 is a configuration diagram of a conventional SCAF thin-film solar cell.
FIG. 11 is a perspective view showing a schematic configuration of a conventional SCAF thin-film solar cell.
FIG. 12 is a view schematically showing a manufacturing process of a conventional SCAF thin-film solar cell.
FIG. 13 is a diagram showing an example of a schematic structure of a film forming chamber of a conventional plasma CVD apparatus.
FIG. 14 is a schematic diagram obtained by simplifying FIG. 13;
FIG. 15 is a diagram showing the relationship between the i-layer film forming speed and the conversion efficiency after photodegradation during the formation of a-Si in each reaction chamber structure.
[Explanation of symbols]
61: substrate, 64: lower electrode layer, 65: photoelectric conversion layer, 66: transparent electrode layer, 67: collector hole, 68: connection hole, d1: high-frequency electrode, d2: ground electrode, d3: reaction chamber wall A: a conductive portion having a ground potential, A: the closest distance between the reaction chamber wall and the high-frequency electrode, D: the inter-electrode distance between the high-frequency electrode and the ground electrode.

Claims (4)

電気絶縁性を有する基板の表面に第1電極層,非単結晶の光電変換層,透明電極層(第2電極層)を積層してなり、前記光電変換層は、真空の反応室内で高周波電圧の印加の下で原料ガスのグロー放電分解を行なうプラズマCVD法によって製膜する薄膜太陽電池の製造方法において、
前記反応室は、接地電極と高周波電極と反応室壁体とで構成し、前記接地電極と高周波電極との電極間距離をD、前記反応室壁体と高周波電極との最近接距離をAとした場合、A/Dを1以下とし、かつ、前記反応室内の製膜圧力を130〜400Paとし、さらに、前記高周波電圧の周波数を13〜60MHzとして製膜することを特徴とする薄膜太陽電池の製造方法。
A first electrode layer, a non-single-crystal photoelectric conversion layer, and a transparent electrode layer (second electrode layer) are laminated on a surface of an electrically insulating substrate, and the photoelectric conversion layer is provided with a high-frequency voltage in a vacuum reaction chamber. In a method of manufacturing a thin film solar cell formed by a plasma CVD method of performing glow discharge decomposition of a source gas under application of
The reaction chamber is composed of a ground electrode, a high-frequency electrode, and a reaction chamber wall, and the distance between the ground electrode and the high-frequency electrode is D, and the closest distance between the reaction chamber wall and the high-frequency electrode is A. In this case, A / D is set to 1 or less, the film forming pressure in the reaction chamber is set to 130 to 400 Pa, and the frequency of the high frequency voltage is set to 13 to 60 MHz. Production method.
請求項1に記載の製造方法において、前記薄膜太陽電池は、電気絶縁性を有する基板の表面に下電極層としての第1電極層,光電変換層,透明電極層(第2電極層)を順次積層してなる光電変換部と、前記基板の裏面に形成した接続電極層としての第3電極層および第4電極層とを備え、前記光電変換部および接続電極層を互いに位置をずらして単位部分にパターニングしてなり、前記透明電極層形成領域内に形成した電気的直列接続用の接続孔を介して、前記表面上の互いにパターニングされて隣合う単位光電変換部分(ユニットセル)を電気的に直列に接続することを特徴とする薄膜太陽電池の製造方法。2. The manufacturing method according to claim 1, wherein the thin-film solar cell includes a first electrode layer, a photoelectric conversion layer, and a transparent electrode layer (second electrode layer) as a lower electrode layer sequentially on a surface of an electrically insulating substrate. A photoelectric conversion unit having a stacked structure, and a third electrode layer and a fourth electrode layer as connection electrode layers formed on the back surface of the substrate, wherein the photoelectric conversion unit and the connection electrode layer are displaced from each other to form a unit portion The adjacent unit photoelectric conversion portions (unit cells) that are patterned and adjacent to each other on the surface are electrically connected to each other through connection holes for electrical series connection formed in the transparent electrode layer formation region. A method for manufacturing a thin-film solar cell, comprising connecting in series. 請求項1または2に記載の製造方法において、前記非単結晶の光電変換層は、非単結晶シリコン、非単結晶シリコンゲルマニウム、非単結晶シリコンカーバイド、非単結晶シリコンオキサイド、非単結晶シリコンナイトライドの内の少なくともいずれか一つとすることを特徴とする薄膜太陽電池の製造方法。3. The method according to claim 1, wherein the non-single-crystal photoelectric conversion layer is made of non-single-crystal silicon, non-single-crystal silicon germanium, non-single-crystal silicon carbide, non-single-crystal silicon oxide, non-single-crystal silicon nitride. A method for producing a thin-film solar cell, wherein the method is at least one of rides. 請求項1または2に記載の製造方法において、前記非単結晶の光電変換層は非単結晶シリコンとし、前記原料ガスとしてはSiHをHで希釈したガスを用い、その水素希釈率H/SiHを2〜20とすることを特徴とする薄膜太陽電池の製造方法。3. The method according to claim 1, wherein the non-single-crystal photoelectric conversion layer is made of non-single-crystal silicon, and a gas obtained by diluting SiH 4 with H 2 is used as the source gas, and a hydrogen dilution rate H 2 is used. / SiH 4 is 2 to 20. A method for producing a thin-film solar cell.
JP2002288346A 2002-10-01 2002-10-01 Manufacturing method of thin film solar cell Pending JP2004128110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002288346A JP2004128110A (en) 2002-10-01 2002-10-01 Manufacturing method of thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002288346A JP2004128110A (en) 2002-10-01 2002-10-01 Manufacturing method of thin film solar cell

Publications (1)

Publication Number Publication Date
JP2004128110A true JP2004128110A (en) 2004-04-22

Family

ID=32280866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002288346A Pending JP2004128110A (en) 2002-10-01 2002-10-01 Manufacturing method of thin film solar cell

Country Status (1)

Country Link
JP (1) JP2004128110A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040183A1 (en) * 2005-10-03 2007-04-12 Sharp Kabushiki Kaisha Silicon-based thin film photoelectric converter, and method and apparatus for manufacturing same
US8859887B2 (en) 2008-10-31 2014-10-14 Mitsubishi Heavy Industries, Ltd. Photovoltaic device and process for producing photovoltaic device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10233517A (en) * 1997-02-21 1998-09-02 Fuji Electric Corp Res & Dev Ltd Photoelectric conversion device and its manufacturing method
JPH11251612A (en) * 1998-03-03 1999-09-17 Canon Inc Manufacture of photovoltaic element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10233517A (en) * 1997-02-21 1998-09-02 Fuji Electric Corp Res & Dev Ltd Photoelectric conversion device and its manufacturing method
JPH11251612A (en) * 1998-03-03 1999-09-17 Canon Inc Manufacture of photovoltaic element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040183A1 (en) * 2005-10-03 2007-04-12 Sharp Kabushiki Kaisha Silicon-based thin film photoelectric converter, and method and apparatus for manufacturing same
JP5259189B2 (en) * 2005-10-03 2013-08-07 シャープ株式会社 Manufacturing method of silicon-based thin film photoelectric conversion device
US8859887B2 (en) 2008-10-31 2014-10-14 Mitsubishi Heavy Industries, Ltd. Photovoltaic device and process for producing photovoltaic device

Similar Documents

Publication Publication Date Title
JP4340246B2 (en) Thin film solar cell and manufacturing method thereof
KR101031246B1 (en) Thin film type Solar Cell and method of manufacturing the smae, and Thin film type solar cell module and Power generation system using the same
JPH09129904A (en) Photovoltaic element and its manufacture
JP4940290B2 (en) Photoelectric conversion device and manufacturing method thereof
JP2006332453A (en) Thin film solar battery and method for manufacturing the same
JP3653800B2 (en) Method for manufacturing integrated thin film solar cell
WO2020237697A1 (en) Thin film photovoltaic cell series structure and preparation process for thin film photovoltaic cell series connection
JP3655025B2 (en) Thin film photoelectric conversion device and manufacturing method thereof
JP4379560B2 (en) Thin film solar cell and manufacturing method thereof
JP2003037278A (en) Photovoltaic element and manufacturing method therefor
JP4171959B2 (en) Method for manufacturing thin film solar cell
US20110265847A1 (en) Thin-film solar cell module and manufacturing method thereof
JP2004128110A (en) Manufacturing method of thin film solar cell
JP3112339B2 (en) Solar cell module
JP4403654B2 (en) Thin film solar cell
JP3278535B2 (en) Solar cell and method of manufacturing the same
JP4077456B2 (en) Integrated thin film solar cell
WO2013168515A1 (en) Photovoltaic device and method for producing same
JP2004056024A (en) Thin-film solar battery, and manufacturing method thereof
JP4075254B2 (en) Method for manufacturing thin film solar cell
JP5373045B2 (en) Photoelectric conversion device
JP2002222969A (en) Laminated solar battery
JP3685964B2 (en) Photoelectric conversion device
JP2005033006A (en) Integrated tandem junction solar cell and its manufacturing method
JP4432236B2 (en) Thin film solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080716

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080801

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080822

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20081016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081017

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219