JP2004126114A - Method for adjusting optical characteristic of photonic crystal, and method and apparatus for manufacturing optical element using optical characteristic adjusting method - Google Patents

Method for adjusting optical characteristic of photonic crystal, and method and apparatus for manufacturing optical element using optical characteristic adjusting method Download PDF

Info

Publication number
JP2004126114A
JP2004126114A JP2002288644A JP2002288644A JP2004126114A JP 2004126114 A JP2004126114 A JP 2004126114A JP 2002288644 A JP2002288644 A JP 2002288644A JP 2002288644 A JP2002288644 A JP 2002288644A JP 2004126114 A JP2004126114 A JP 2004126114A
Authority
JP
Japan
Prior art keywords
photonic crystal
optical characteristics
adjusting
deformed
fixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002288644A
Other languages
Japanese (ja)
Inventor
Junichi Seki
関 淳一
Takeaki Itsuji
井辻 健明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002288644A priority Critical patent/JP2004126114A/en
Publication of JP2004126114A publication Critical patent/JP2004126114A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical characteristic adjusting method for photonic crystal which is high in degree of freedom of material selection and can be made compact and reduced in cost and continuously maintain a state in which the crystal is adjusted to a desired optical characteristic, and to provide a manufacturing method and a manufacturing apparatus for optical element which use the optical characteristic adjusting method. <P>SOLUTION: In the optical characteristic adjusting method for photonic crystal, the photonic crystal is deformed by using a mechanical external force applying means to adjust optical characteristics of the photonic crystal and the deformation state of the photonic crystal is fixed. The manufacturing method and manufacturing apparatus for optical element use the optical characteristic adjusting method and the mechanical external force applying means is removed after the deformation state is fixed to complete the optical element. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、フォトニック結晶の光学特性調整方法、該光学特性調整方法を用いた光学素子の作製方法及び光学素子の作製装置に関するものである。
【0002】
【従来の技術】
近年、屈折率の異なる物質を波長程度の間隔で周期的に配列した「フォトニック結晶」と呼ばれる新しい人工結晶が提案され、(E.Yablonovitch,Phys.Rev.Lett.,58(1987)2059−2062)、注目を集めている。この人工結晶は、半導体のバンド構造に類似した、いわゆるフォトニックバンド構造に起因する光の禁制帯、見かけ上の屈折率異常といった特異な光学的特性を示し、その特性を構造やスケールで人為的に設計可能なことから、光学素子としての研究開発が盛んに行われるようになっている。
【0003】
これら研究開発の中で注目されるものの1つとして、特性を調整可能な光学素子が挙げられる。これは、設計時のみならず、使用中に外部から光学特性を能動的に制御可能な素子であり、可変フィルタ、光スイッチ等、幅広い分野への応用が期待されている。
【0004】
このような従来技術として、ファイバ回折格子の周囲にアクチュエータ配置し、これを伸縮してファイバに張力を与えることにより、ファイバ内の屈折率分布を制御する方法が提案されている(例えば、特許文献1参照)。
また、結晶中に圧電素子等、屈折率や透過率が外部制御可能な物質を導入し、その物質の伸縮や特性変化によって結晶の周期性を乱す方法が提案されている(特許文献2参照)。
また、フォトニック結晶に外部より圧力を加え、格子間隔を制御する方法が提案されている(特許文献3参照)。
【0005】
【特許文献1】特開平10−253829号公報
【特許文献2】特開2001−091911号公報
【特許文献3】特開2002−098916号公報
【0006】
【発明が解決しようとする課題】
ところで、フォトニック結晶の実用化に向けての重要な課題の1つに加工精度の問題がある。前述のように、フォトニック結晶を構成する構造の周期は、使用する光の半分程度と非常に小さく、また、周期構造を構成する個々の部材のサイズによって、光学特性が非常に大きく変化するため、数〜10nm程度の加工精度が要求される。現在最先端の加工技術を用いてもこのような精度要求に対して、製造時の歩留まりの低下は避けられない。
【0007】
また、コスト上の別の懸念も存在する。電子線、X線、EUV等を用いたリソグラフィー技術を例に取って考えても、高価なマスクを使用波長毎に用意しなければならないばかりか、上述のような精度要求に対応するため、フォトニック結晶自身の熱膨張に対し、使用温度ごとに異なる設計を適用せざるを得ないということになりかねない。
【0008】
このような問題に対し、製造されたフォトニック結晶を、前述した各方法を用いて使用時に調整することはもちろん可能である。
しかしながら、例えば上記した特許文献1や特許文献3については、フォトニック結晶に外力を印加するため、前述のような精度で精密に動作するアクチュエータを常時必要とする。このようなアクチュエータは一般に高価で大きく、デバイス全体のコスト増や大型化につながる。
また、上記した特許文献2においても、フォトニック結晶中に、結晶構造を乱す手段を作り込む必要があり、製造時の作業工程が煩雑になる。また、使用可能な材料にも制限が大きい。
【0009】
そこで、本発明は、上記課題を解決し、材料選択の自由度が高く、コンパクトで低コスト化を図ることができ、所望の光学特性に調整された状態を継続して保持することが可能となるフォトニック結晶の光学特性調整方法、該光学特性調整方法を用いた光学素子の作製方法及び光学素子の作製装置を提供することを目的とするものである。
【0010】
【課題を解決するための手段】
本発明は、つぎのように構成した、フォトニック結晶の光学特性調整方法、該光学特性調整方法を用いた光学素子の作製方法及び光学素子の作製装置を提供するものである。
本発明の光学特性調整方法は、機械的外力印加手段を用いてフォトニック結晶を変形させ、該フォトニック結晶の光学特性を調整するステップと、前記フォトニック結晶の光学特性を調整した位置において変形状態を固定するステップと、を有することを特徴としている。
また、本発明の光学素子の作製方法は、前記フォトニック結晶の光学特性調整方法を用い、前記フォトニック結晶の変形状態を固定するステップにおいて該フォトニック結晶の変形状態が固定された後、前記機械的外力印加手段を取り外し、所望の光学特性に調整された光学素子を作製することを特徴としている。
また、本発明の光学素子の作製装置は、フォトニック結晶を外部からの機械的外力によって変形させる着脱可能な機械的外力印加手段と、前記機械的外力印加手段により変形されたフォトニック結晶の光学特性を調整する手段と、前記フォトニック結晶の光学特性を調整した位置において変形状態を固定する手段と、を有することを特徴としている。
【0011】
【発明の実施の形態】
本発明の実施の形態においては、上記構成を適用することにより、例えば、製造後の調整段階で、フォトニック結晶を変形して光学特性を調整した後、固定部材の可動部分を接着するなどして固定する事で変形状態を保持し、アクチュエータを取り外して光学素子として使用する、あるいは、フォトニック結晶を加熱して軟化させ、フォトニック結晶を変形して光学特性を調整した後、フォトニック結晶を冷却して硬化させる事で、変形状態を継続して保持することができる。したがって、このようにして光学特性を調整した後に、アクチュエータ及びヒーターを取り外す事で、所望の光学特性に調整された状態を継続して保持し得る光学素子を形成することができる。
また、上記構成によれば、部材への制限が小さく、材料選択時の自由度が上がり、作製プロセスを簡便にするものを適宜選択することができ、コンパクトかつ低コストな光学特性調整方法を提供することができる。
【0012】
【実施例】
以下に、図面を用いて、本発明の実施例について説明する。
[実施例1]
図1は、本実施例の光学素子の作製装置の装置構成を示す図である。
図1に示すように、PMMA(ポリメチルメタクリレート)からなるフォトニック結晶101は、相対的に可動する第1の固定部材102、第2の固定部材103で囲まれる。両部材間には光硬化樹脂104が配置される。
アクチュエータ105は、図中伸縮方向114に示す向きに伸縮し、押し付け部材106を介して第1の固定部材102と接続され、フォトニック結晶101を変形させる。これら各機構は、アクチュエータ105が第1の筐体部材107と、第2の固定部材103が第2の筐体部材108と接続され、両筐体部材から構成される分割可能な筐体に収められる。
【0013】
第1の筐体部材107と第2の固定部材103には光路を確保するため、フォトニック結晶101を挟んで両側に穴があけられており、レーザ112からのレーザ光はこの光路を通ってフォトニック結晶101を透過し、受光器111に入射する。受光器111はフォトダイオードからなり、入射された光の強度を制御回路109に送る。
制御回路109は受光器111に入射する光量が所望の値になるように、制御量を演算して駆動回路110に送り、アクチュエータ105を駆動させ、フォトニック結晶101を変形させる。
【0014】
受光器111に入射する光量が所望の値になると、制御回路109は光源113を点灯させる。紫外線ランプからなる光源113からの紫外光は、第1の筐体107にあけられた窓(不図示)を通って、光硬化樹脂104を硬化させる。これにより、第1の固定部材102と第2の固定部材103の位置関係が固定され、フォトニック結晶101の変形量が保持される。
【0015】
最後に、レーザ112及び、光源113を消灯し、フォトニック結晶101、第1の固定部材102、第2の固定部材103、光硬化樹脂104以外の機構を取り外し、図2に示すような、所望の光学特性をもつ光学素子が完成する。
なお、フォトニック結晶101の材質は前述の例に限るものではなく、屈折率、ヤング率といった物理的特性や、作製時のプロセス適合性、温度、湿度といった使用環境に対する適合性等から、適宜選択可能である。
【0016】
また、本実施例においては、アクチューエータ101として圧電素子を用いたが、送りねじ機構、ボイスコイル等、他の駆動機構を選択することも可能である。
また、本実施例においては、第1の固定部材102と第2の固定部材103の位置関係を固定するために光硬化樹脂を用いたが、熱硬化樹脂やねじ固定等、他の固定手段を選択することも可能である。
また、本実施例においては、光学特性として透過率の調整に本発明を適用したが、例えば反射率等、他の光学特性に対しても適用可能であることは言うまでもない。
【0017】
[実施例2]
図3は、本実施例の光学素子の作製装置の装置構成を示す図である。
図3に示すように、PMMA(ポリメチルメタクリレート)からなるフォトニック結晶101が、ヒーター201、断熱部材202を介してアクチュエータ105に接続される。
アクチュエータ105は、図中伸縮方向114に示す向きに伸縮し、フォトニック結晶101を変形させる。これら各機構は、アクチュエータ105が第1の筐体部材107と、フォトニック結晶101が第2の筐体部材108と接続され、両筐体部材から構成される分割可能な筐体に収められる。
【0018】
第1の筐体部材107には光路を確保するため、フォトニック結晶101を挟んで両側に穴があけられており、レーザ112からのレーザ光はこの光路を通ってフォトニック結晶101を透過し、受光器111に入射する。受光器111はフォトダイオードからなり、入射された光の強度を制御回路109に送る。制御回路109は、ヒーター201に通電し、フォトニック結晶101が軟化するまで加熱した後、受光器111に入射する光量が所望の値になるように、制御量を演算して駆動回路110に送り、アクチュエータ105を駆動させ、フォトニック結晶101を変形させる。
【0019】
受光器111に入射する光量が所望の値になると、制御回路109はヒータ201の電源を切り、フォトニック結晶101を冷却して硬化させる。これにより、フォトニック結晶101の変形量が継続して保持される。
最後に、レーザ112を消灯し、第1の筐体部材107と第2の筐体部材108とを分割してフォトニック結晶101を取り出す事で、所望の光学特性を継続して保持し得る光学素子が完成する。
なお、フォトニック結晶101の材質は前述の例に限るものではなく、熱可塑性の材料の中から、屈折率、ヤング率といった物理的特性や、作製時のプロセス適合性、温度、湿度といった使用環境に対する適合性等から、適宜選択可能である。
【0020】
また、本実施例においては、アクチューエータ101として圧電素子を用いたが、送りねじ機構、ボイスコイル等、他の駆動機構を選択することも可能である。
また、本実施例においては、光学特性として透過率の調整に本発明を適用したが、例えば反射率等、他の光学特性に対しても適用可能であることは言うまでもない。
【0021】
【発明の効果】
本発明によれば、材料選択の自由度が高く、コンパクトで低コスト化を図ることができ、所望の光学特性に調整された状態を継続して保持することが可能となるフォトニック結晶の光学特性調整方法、該光学特性調整方法を用いた光学素子の作製方法及び光学素子の作製装置を実現することができる。
【図面の簡単な説明】
【図1】本発明の実施例1における光学素子の作製装置の装置構成を説明する図。
【図2】本発明の実施例1における光学素子の構成を説明する図。
【図3】本発明の実施例2における光学素子の作製装置の装置構成を説明する図。
【符号の説明】
101:フォトニック結晶
102:第1の固定部材
103:第2の固定部材
104:光硬化樹脂
105:アクチュエータ
106:押付部材
107:第1の筐体部材
108:第2の筐体部材
109:制御回路
110:駆動回路
111:受光器
112:レーザ
113:光源
114:伸縮方向
201:ヒーター
202:断熱部材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for adjusting optical properties of a photonic crystal, a method for manufacturing an optical element using the method for adjusting optical properties, and an apparatus for manufacturing an optical element.
[0002]
[Prior art]
In recent years, a new artificial crystal called “photonic crystal” in which substances having different refractive indices are periodically arranged at intervals of about a wavelength has been proposed (E. Yablonovitch, Phys. Rev. Lett., 58 (1987) 2059- 2062), attracting attention. This artificial crystal exhibits unique optical characteristics, such as the band gap of light and apparent refractive index anomalies caused by the so-called photonic band structure, similar to the band structure of semiconductors. Therefore, research and development as an optical element have been actively conducted.
[0003]
One of the things that attracts attention in these researches and developments is an optical element whose characteristics can be adjusted. This is an element whose optical characteristics can be actively controlled not only at the time of design but also from outside during use, and is expected to be applied to a wide range of fields such as a variable filter and an optical switch.
[0004]
As such a prior art, a method has been proposed in which an actuator is arranged around a fiber diffraction grating and the fiber is stretched to apply tension to the fiber, thereby controlling the refractive index distribution in the fiber (for example, Patent Document 1). 1).
Further, a method has been proposed in which a substance such as a piezoelectric element, whose refractive index and transmittance can be externally controlled, is introduced into a crystal, and the periodicity of the crystal is disturbed by expansion and contraction and characteristic change of the substance (see Patent Document 2). .
Also, a method has been proposed in which pressure is applied to the photonic crystal from the outside to control the lattice spacing (see Patent Document 3).
[0005]
[Patent Document 1] Japanese Patent Application Laid-Open No. 10-253829 [Patent Document 2] Japanese Patent Application Laid-Open No. 2001-091911 [Patent Document 3] Japanese Patent Application Laid-Open No. 2002-098916
[Problems to be solved by the invention]
By the way, one of the important issues for practical use of a photonic crystal is a problem of processing accuracy. As described above, the period of the structure constituting the photonic crystal is very small, about half of the light used, and the optical characteristics vary greatly depending on the size of the individual members constituting the periodic structure. , A processing accuracy of about several to 10 nm is required. Even with the most advanced processing technology at present, it is inevitable that the yield at the time of manufacturing is reduced for such accuracy requirements.
[0007]
There are also other cost concerns. Even taking lithography technology using electron beams, X-rays, EUV, etc. as an example, not only must expensive masks be prepared for each wavelength used, but also photomasks must be used to meet the above-mentioned accuracy requirements. It may be necessary to apply a different design to the nick crystal itself for each operating temperature with respect to the thermal expansion of the nick crystal itself.
[0008]
To cope with such a problem, it is of course possible to adjust the manufactured photonic crystal at the time of use using the above-described methods.
However, for example, in Patent Literature 1 and Patent Literature 3 described above, since an external force is applied to the photonic crystal, an actuator that operates accurately and precisely as described above is always required. Such an actuator is generally expensive and large, which leads to an increase in the cost and size of the entire device.
Also, in Patent Document 2 described above, it is necessary to provide a means for disturbing the crystal structure in the photonic crystal, which complicates the operation steps during manufacturing. In addition, usable materials are greatly limited.
[0009]
Therefore, the present invention solves the above-mentioned problems, has a high degree of freedom in material selection, can achieve compactness and low cost, and can continuously maintain a state adjusted to desired optical characteristics. It is an object of the present invention to provide a method for adjusting optical characteristics of a photonic crystal, a method for manufacturing an optical element using the method for adjusting optical characteristics, and an apparatus for manufacturing an optical element.
[0010]
[Means for Solving the Problems]
The present invention provides a method for adjusting optical characteristics of a photonic crystal, a method for manufacturing an optical element using the method for adjusting optical characteristics, and an apparatus for manufacturing an optical element, configured as follows.
The method for adjusting optical characteristics of the present invention comprises the steps of: deforming a photonic crystal by using a mechanical external force applying unit, adjusting the optical characteristics of the photonic crystal; and deforming the optical characteristics of the photonic crystal at the adjusted position. Fixing the state.
Further, the method for manufacturing an optical element of the present invention uses the method for adjusting the optical characteristics of the photonic crystal, and in the step of fixing the deformation state of the photonic crystal, after the deformation state of the photonic crystal is fixed, It is characterized in that the mechanical external force applying means is removed and an optical element adjusted to desired optical characteristics is produced.
Further, the apparatus for manufacturing an optical element according to the present invention includes a detachable mechanical external force applying means for deforming the photonic crystal by an external mechanical external force, and an optical system for the photonic crystal deformed by the mechanical external force applying means. It is characterized by having means for adjusting characteristics and means for fixing a deformed state at a position where the optical characteristics of the photonic crystal are adjusted.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
In the embodiment of the present invention, by applying the above configuration, for example, in the adjustment stage after manufacturing, after adjusting the optical characteristics by deforming the photonic crystal, the movable portion of the fixed member is bonded. After the actuator is removed and used as an optical element by fixing, the photonic crystal is heated and softened, and the photonic crystal is deformed to adjust the optical characteristics. By cooling and hardening, the deformed state can be maintained continuously. Therefore, by removing the actuator and the heater after adjusting the optical characteristics in this way, it is possible to form an optical element that can continuously maintain the state adjusted to the desired optical characteristics.
Further, according to the above configuration, there is little restriction on members, the degree of freedom in selecting a material is increased, and a material that simplifies the manufacturing process can be appropriately selected. Thus, a compact and low-cost optical characteristic adjustment method is provided. can do.
[0012]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Example 1]
FIG. 1 is a diagram showing a device configuration of a device for manufacturing an optical element according to the present embodiment.
As shown in FIG. 1, a photonic crystal 101 made of PMMA (polymethyl methacrylate) is surrounded by a first fixed member 102 and a second fixed member 103 which are relatively movable. The photocurable resin 104 is disposed between the two members.
The actuator 105 expands and contracts in the direction indicated by the expansion and contraction direction 114 in the figure, is connected to the first fixing member 102 via the pressing member 106, and deforms the photonic crystal 101. In each of these mechanisms, the actuator 105 is connected to the first housing member 107 and the second fixing member 103 is connected to the second housing member 108, and is housed in a split housing composed of both housing members. Can be
[0013]
The first casing member 107 and the second fixing member 103 are provided with holes on both sides of the photonic crystal 101 to secure an optical path, and the laser light from the laser 112 passes through the optical path. The light passes through the photonic crystal 101 and enters the light receiver 111. The light receiver 111 includes a photodiode, and sends the intensity of the incident light to the control circuit 109.
The control circuit 109 calculates a control amount and sends it to the drive circuit 110 so that the amount of light incident on the light receiver 111 becomes a desired value, drives the actuator 105, and deforms the photonic crystal 101.
[0014]
When the amount of light incident on the light receiver 111 reaches a desired value, the control circuit 109 turns on the light source 113. Ultraviolet light from a light source 113 composed of an ultraviolet lamp passes through a window (not shown) opened in the first housing 107 to cure the photocurable resin 104. Thereby, the positional relationship between the first fixing member 102 and the second fixing member 103 is fixed, and the amount of deformation of the photonic crystal 101 is maintained.
[0015]
Finally, the laser 112 and the light source 113 are turned off, and the mechanisms other than the photonic crystal 101, the first fixing member 102, the second fixing member 103, and the photo-curing resin 104 are removed. An optical element having the above optical characteristics is completed.
The material of the photonic crystal 101 is not limited to the above-described example, and may be appropriately selected from physical characteristics such as a refractive index and a Young's modulus, process compatibility at the time of fabrication, and compatibility with a use environment such as temperature and humidity. It is possible.
[0016]
In the present embodiment, a piezoelectric element is used as the actuator 101, but other driving mechanisms such as a feed screw mechanism and a voice coil can be selected.
Further, in the present embodiment, a light-curing resin is used to fix the positional relationship between the first fixing member 102 and the second fixing member 103, but other fixing means such as a thermosetting resin or screw fixing may be used. It is also possible to select.
Further, in the present embodiment, the present invention is applied to the adjustment of the transmittance as an optical characteristic, but it is needless to say that the present invention can be applied to other optical characteristics such as a reflectance.
[0017]
[Example 2]
FIG. 3 is a diagram illustrating a device configuration of a device for manufacturing an optical element of the present embodiment.
As shown in FIG. 3, a photonic crystal 101 made of PMMA (polymethyl methacrylate) is connected to an actuator 105 via a heater 201 and a heat insulating member 202.
The actuator 105 expands and contracts in the direction indicated by the expansion and contraction direction 114 in the figure, and deforms the photonic crystal 101. In each of these mechanisms, the actuator 105 is connected to the first housing member 107 and the photonic crystal 101 is connected to the second housing member 108, and are housed in a divisible housing composed of both housing members.
[0018]
The first housing member 107 is provided with holes on both sides of the photonic crystal 101 in order to secure an optical path, and laser light from the laser 112 passes through the optical path and passes through the photonic crystal 101. , Incident on the light receiver 111. The light receiver 111 includes a photodiode, and sends the intensity of the incident light to the control circuit 109. The control circuit 109 energizes the heater 201 and heats the photonic crystal 101 until it softens, then calculates a control amount and sends it to the drive circuit 110 so that the amount of light incident on the light receiver 111 becomes a desired value. Then, the actuator 105 is driven to deform the photonic crystal 101.
[0019]
When the amount of light incident on the light receiver 111 reaches a desired value, the control circuit 109 turns off the power of the heater 201 and cools and cures the photonic crystal 101. As a result, the amount of deformation of the photonic crystal 101 is continuously maintained.
Finally, the laser 112 is turned off, the first housing member 107 and the second housing member 108 are divided, and the photonic crystal 101 is taken out, so that desired optical characteristics can be continuously maintained. The device is completed.
In addition, the material of the photonic crystal 101 is not limited to the above-described example, and physical properties such as a refractive index and a Young's modulus, process suitability at the time of fabrication, and use environment such as temperature and humidity are selected from thermoplastic materials. Can be selected as appropriate based on the suitability for.
[0020]
In the present embodiment, a piezoelectric element is used as the actuator 101, but other driving mechanisms such as a feed screw mechanism and a voice coil can be selected.
Further, in the present embodiment, the present invention is applied to the adjustment of the transmittance as an optical characteristic, but it is needless to say that the present invention can be applied to other optical characteristics such as a reflectance.
[0021]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the degree of freedom of material selection is high, compactness and cost reduction can be achieved, and it is possible to continuously maintain a state adjusted to desired optical characteristics. A method for adjusting characteristics, a method for manufacturing an optical element using the method for adjusting optical characteristics, and an apparatus for manufacturing an optical element can be realized.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an apparatus configuration of an optical element manufacturing apparatus according to a first embodiment of the present invention.
FIG. 2 is a diagram illustrating a configuration of an optical element according to a first embodiment of the present invention.
FIG. 3 is a diagram illustrating an apparatus configuration of an optical element manufacturing apparatus according to a second embodiment of the present invention.
[Explanation of symbols]
101: Photonic crystal 102: First fixing member 103: Second fixing member 104: Photocurable resin 105: Actuator 106: Pressing member 107: First housing member 108: Second housing member 109: Control Circuit 110: drive circuit 111: light receiver 112: laser 113: light source 114: expansion / contraction direction 201: heater 202: heat insulating member

Claims (8)

機械的外力印加手段を用いてフォトニック結晶を変形させ、該フォトニック結晶の光学特性を調整するステップと、
前記フォトニック結晶の光学特性を調整した位置において変形状態を固定するステップと、
を有することを特徴とするフォトニック結晶の光学特性調整方法。
Deforming the photonic crystal using mechanical external force applying means, and adjusting the optical characteristics of the photonic crystal;
Fixing a deformed state at a position where the optical characteristics of the photonic crystal are adjusted,
A method for adjusting optical characteristics of a photonic crystal, comprising:
前記フォトニック結晶の変形状態を固定するステップにおいて、前記機械的外力印加手段によって変形されたフォトニック結晶の前記変形状態を保持する保持部材と、該保持部材によって前記フォトニック結晶の変形状態を保持する位置で該保持部材を固定する固定手段とを用い、前記変形状態を固定することを特徴とする請求項1に記載のフォトニック結晶の光学特性調整方法。In the step of fixing the deformed state of the photonic crystal, a holding member for holding the deformed state of the photonic crystal deformed by the mechanical external force applying means, and a holding state of the photonic crystal deformed by the holding member The method for adjusting optical characteristics of a photonic crystal according to claim 1, wherein the deformed state is fixed by using fixing means for fixing the holding member at a position where the photonic crystal is deformed. 前記固定手段が、光硬化材料または熱硬化材料を用い、該材料に光を照射し、または熱を加えて前記フォトニック結晶の変形状態を固定する手段であることを特徴とする請求項2に記載のフォトニック結晶の光学特性調整方法。3. The method according to claim 2, wherein the fixing unit is a unit that uses a light-curing material or a thermosetting material, and irradiates the material with light or applies heat to fix the deformed state of the photonic crystal. The method for adjusting optical characteristics of the photonic crystal according to the above. 前記フォトニック結晶を変形させ、該フォトニック結晶の光学特性を調整するステップにおいて、フォトニック結晶を熱可塑性材料で構成し、フォトニック結晶を加熱した後、機械的外力印加手段を用いて変形させる一方、
前記フォトニック結晶の光学特性を調整した位置における変形状態を固定するステップにおいて、前記加熱後変形されたフォトニック結晶を冷却して変形状態を固定することを特徴とする請求項1に記載のフォトニック結晶の光学特性調整方法。
In the step of deforming the photonic crystal and adjusting the optical characteristics of the photonic crystal, the photonic crystal is made of a thermoplastic material, and after heating the photonic crystal, the photonic crystal is deformed by using a mechanical external force applying unit. on the other hand,
The photo-crystal according to claim 1, wherein, in the step of fixing the deformed state at the position where the optical characteristics of the photonic crystal have been adjusted, the deformed state is fixed by cooling the deformed photonic crystal after the heating. A method for adjusting the optical characteristics of a nick crystal.
光学素子を作製する方法であって、請求項1〜請求項4のいずれか1項に記載のフォトニック結晶の光学特性調整方法を用い、前記フォトニック結晶の変形状態を固定するステップにおいて該フォトニック結晶の変形状態が固定された後、前記機械的外力印加手段を取り外し、所望の光学特性に調整された光学素子を作製することを特徴とする光学素子の作製方法。5. A method for producing an optical element, comprising: using the method for adjusting optical characteristics of a photonic crystal according to claim 1, wherein the step of fixing a deformed state of the photonic crystal includes the step of: After the deformation state of the nick crystal is fixed, the mechanical external force applying means is removed, and an optical element adjusted to desired optical characteristics is manufactured. フォトニック結晶を外部からの機械的外力によって変形させる着脱可能な機械的外力印加手段と、
前記機械的外力印加手段により変形されたフォトニック結晶の光学特性を調整する手段と、
前記フォトニック結晶の光学特性を調整した位置において変形状態を固定する手段と、
を有することを特徴とする光学素子の作製装置。
Detachable mechanical external force applying means for deforming the photonic crystal by external mechanical external force,
Means for adjusting the optical characteristics of the photonic crystal deformed by the mechanical external force applying means,
Means for fixing a deformed state at a position where the optical characteristics of the photonic crystal are adjusted,
An apparatus for manufacturing an optical element, comprising:
前記固定手段が、光硬化材料または熱硬化材料と、該材料に光を照射する手段または熱を加える手段からなることを特徴とする請求項6に記載の光学素子の作製装置。7. The apparatus for manufacturing an optical element according to claim 6, wherein the fixing means comprises a light-curing material or a thermosetting material, and a means for irradiating the material with light or a means for applying heat. 前記固定手段が、熱可塑性材料で構成されたフォトニック結晶を加熱手段によって加熱し、前記機械的外力印加手段を用いて変形させた後、該フォトニック結晶を冷却して変形状態を固定する手段からなることを特徴とする請求項6に記載の光学素子の作製装置。The fixing unit heats a photonic crystal made of a thermoplastic material by a heating unit, deforms the same using the mechanical external force applying unit, and then cools the photonic crystal to fix the deformed state. 7. The apparatus for manufacturing an optical element according to claim 6, comprising:
JP2002288644A 2002-10-01 2002-10-01 Method for adjusting optical characteristic of photonic crystal, and method and apparatus for manufacturing optical element using optical characteristic adjusting method Pending JP2004126114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002288644A JP2004126114A (en) 2002-10-01 2002-10-01 Method for adjusting optical characteristic of photonic crystal, and method and apparatus for manufacturing optical element using optical characteristic adjusting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002288644A JP2004126114A (en) 2002-10-01 2002-10-01 Method for adjusting optical characteristic of photonic crystal, and method and apparatus for manufacturing optical element using optical characteristic adjusting method

Publications (1)

Publication Number Publication Date
JP2004126114A true JP2004126114A (en) 2004-04-22

Family

ID=32281078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002288644A Pending JP2004126114A (en) 2002-10-01 2002-10-01 Method for adjusting optical characteristic of photonic crystal, and method and apparatus for manufacturing optical element using optical characteristic adjusting method

Country Status (1)

Country Link
JP (1) JP2004126114A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009086335A (en) * 2007-09-28 2009-04-23 Sumitomo Osaka Cement Co Ltd Optical device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009086335A (en) * 2007-09-28 2009-04-23 Sumitomo Osaka Cement Co Ltd Optical device

Similar Documents

Publication Publication Date Title
US20240308162A1 (en) Methods and apparatuses for casting polymer products
JP4790044B2 (en) MOLD, PATTERN TRANSFER DEVICE, AND PATTERN FORMING METHOD
Nocentini et al. 3D printed photoresponsive materials for photonics
JP2007015375A (en) Mold, apparatus including mold, pattern transfer apparatus and pattern forming method
WO2002027384A1 (en) Optical device
JP2022505043A (en) Methods and equipment for casting polymer products
JP2024113200A (en) Imprinting apparatus and method for manufacturing article
JP2001091912A (en) Optical element and demultiplexer
JP2004126114A (en) Method for adjusting optical characteristic of photonic crystal, and method and apparatus for manufacturing optical element using optical characteristic adjusting method
JP4097568B2 (en) Optical recording device
JP2001043562A5 (en)
He et al. Rapid fabrication of optical volume gratings in Foturan glass by femtosecond laser micromachining
US7068904B2 (en) Optical element with periodic structure
JP2006349776A (en) Wavelength selection element
JPH08101310A (en) Reflection type fiber grating filter
Kuebler et al. 3D printing functional nano-photonic devices by multi-photon lithography
JP6941758B2 (en) Optical shutter device and its manufacturing method, optical device, and image forming method.
JP4830685B2 (en) Method for manufacturing wavelength selective polarization hologram element
JP2005244012A5 (en)
JP4242818B2 (en) Optical fiber grating manufacturing method and manufacturing apparatus
JP2001091760A (en) Wavelength variable optical part
JP2004145315A (en) Optical element and method of modulating optical element
JP2001091864A (en) Wavelength variable optical parts
KR20040058856A (en) method for fabrication of photonic crystal circuits
JP2004145317A (en) Optical deflector, optical switch composed of the optical deflector, optical scanning device and method of deflecting light