JP2004145315A - Optical element and method of modulating optical element - Google Patents

Optical element and method of modulating optical element Download PDF

Info

Publication number
JP2004145315A
JP2004145315A JP2003337411A JP2003337411A JP2004145315A JP 2004145315 A JP2004145315 A JP 2004145315A JP 2003337411 A JP2003337411 A JP 2003337411A JP 2003337411 A JP2003337411 A JP 2003337411A JP 2004145315 A JP2004145315 A JP 2004145315A
Authority
JP
Japan
Prior art keywords
optical element
columnar
optical
columnar member
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003337411A
Other languages
Japanese (ja)
Inventor
Junichi Seki
関 淳一
Takeaki Itsuji
井辻 健明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003337411A priority Critical patent/JP2004145315A/en
Publication of JP2004145315A publication Critical patent/JP2004145315A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical element and a method of modulating the optical element in which the dimensional accuracy of the whole optical element is enhanced, the optical characteristic is homogenized and the freedom of selecting materials is enhanced. <P>SOLUTION: The method of modulating the optical element is characterized by the fact that the optical characteristic of the optical element is modulated by varying the diameter of columnar members by giving a force to the columnar members in a direction perpendicular to the arranging direction of the columnar members of the optical element which is formed by including a plurality of columnar members which are periodically arranged and a pair of supporting members which are arranged in the direction perpendicular to the arranged direction of the columnar members and interposing the columnar members and which optical element has a periodical structure in which the refractive index distributes periodically. The dimensional accuracy of the whole optical element is enhanced, the optical characteristic is homogenized and the freedom of selecting materials is enhanced. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、光学素子および光学素子の変調方法に関するものである。 The present invention relates to an optical element and a method for modulating an optical element.

 近年、屈折率の異なる物質を波長程度の間隔で周期的に配列した「フォトニック結晶」と呼ばれる新しい人工結晶が提案され(E.Yablonovitch,Phys.Rev.Lett.,58(1987)2059−2062)、注目を集めている。この人工結晶は、半導体のバンド構造に類似した、いわゆるフォトニックバンド構造に起因する光の禁制帯、見かけ上の屈折率異常といった特異な光学的特性を示し、その特性を構造やスケールで人為的に設計可能なことから、光学素子としての研究開発が盛んに行われるようになっている。
これら研究開発の中で注目されるものの1つとして、アクティブ型の光学素子が挙げられる。これは、設計時のみならず、使用中に外部から光学特性を能動的に制御可能な素子であり、可変フィルタ、光スイッチ等、幅広い分野への応用が期待されている。
In recent years, a new artificial crystal called “photonic crystal” in which substances having different refractive indexes are periodically arranged at intervals of about a wavelength has been proposed (E. Yablonovitch, Phys. Rev. Lett., 58 (1987) 2059-2062). ), Attention. This artificial crystal exhibits unique optical characteristics, such as the band gap of light and apparent refractive index anomalies caused by the so-called photonic band structure, similar to the band structure of semiconductors. Therefore, research and development as an optical element have been actively conducted.
One of the things that attracts attention in these researches and developments is an active optical element. This is an element whose optical characteristics can be actively controlled not only at the time of design but also from outside during use, and is expected to be applied to a wide range of fields such as a variable filter and an optical switch.

 このような従来技術として、特許文献1に、ファイバ回折格子の周囲にアクチュエータを配置し、これを伸縮してファイバに張力を与えることにより、ファイバ内の屈折率分布を制御する方法が提案されている。
また、特許文献2には、結晶中に圧電素子等、屈折率や透過率が外部制御可能な物質を導入し、その物質の伸縮や特性変化によって結晶の周期性を乱す方法が提案されている。
また、特許文献3にはフォトニック結晶に外部より圧力を加え、格子間隔を制御する方法が提案されている。
特開平10−253829号公報 特開2001−091911号公報 国際公開番号 WO02/27384
As such prior art, Patent Document 1 proposes a method of controlling a refractive index distribution in a fiber by arranging an actuator around a fiber diffraction grating and expanding and contracting the actuator to apply tension to the fiber. I have.
Patent Document 2 proposes a method in which a substance such as a piezoelectric element or the like whose refractive index and transmittance is externally controllable is introduced into a crystal, and the periodicity of the crystal is disturbed by expansion and contraction of the substance and a change in characteristics. .
Patent Document 3 proposes a method of controlling the lattice spacing by applying external pressure to a photonic crystal.
JP-A-10-253829 JP-A-2001-091911 International Publication Number WO02 / 27384

 しかしながら、これらの従来技術はつぎのような課題を有している。
光ファイバを伸縮させる方法は、光の入射方向に並ぶ一次元の周期構造を変化させるので、伸縮力を発生する部材、例えば圧電体など、以外に、その力をファイバに伝えるための伝達部材が必要で、これらの伝達部材の材質、配置、接続状態などによって格子間隔の制御精度が左右されるという問題がある。
また、前述したような見かけ上の屈折率異常は二次元以上の周期構造で現れるが、伝達部材を介して2以上の方向に力を加えるにはさらに装置が複雑化する。
フォトニック結晶中に、結晶構造を乱す手段を作り込む方法においては、作製時に多くの作業工程が必要で煩雑さが増し、使用可能な材料にも制限が大きいという難点がある。
However, these conventional techniques have the following problems.
Since the method of expanding and contracting the optical fiber changes the one-dimensional periodic structure arranged in the light incident direction, in addition to a member that generates expansion and contraction force, for example, a piezoelectric body, a transmission member for transmitting the force to the fiber is used. This is necessary, and there is a problem that the control accuracy of the lattice spacing is affected by the material, arrangement, connection state, and the like of these transmission members.
Although the apparent refractive index abnormality as described above appears in a two-dimensional or more periodic structure, applying a force in two or more directions via a transmission member further complicates the apparatus.
The method of incorporating a means for disturbing the crystal structure in the photonic crystal has many drawbacks in that many operation steps are required at the time of fabrication, which increases the complexity and limits the usable materials.

 また、フォトニック結晶に外部より圧力を印加することで結晶構造を変化させる方式では、図5に示す周期的な屈折率分布(図5の縦の平行線が周期を表している)をもつフォトニック結晶に対して、垂直方向から圧力を印加して変形させると、図6に示すように、中心部から周辺部へ至るに従って変形量が累積し、結晶全体の形状が大きく歪んでしまう。また、結晶内の部位により、特性の不均一が生じることとなる。さらに、1周期内での屈折率分布の変化、周期の変化、および位相の変化が混在し、制御が困難である。 In the method of changing the crystal structure by applying pressure to the photonic crystal from the outside, the photonic crystal has a periodic refractive index distribution shown in FIG. 5 (vertical parallel lines in FIG. 5 indicate the period). When the nick crystal is deformed by applying pressure from the vertical direction, as shown in FIG. 6, the amount of deformation is accumulated from the central portion to the peripheral portion, and the shape of the entire crystal is greatly distorted. In addition, non-uniformity of characteristics occurs due to a portion in the crystal. Further, the change of the refractive index distribution, the change of the period, and the change of the phase within one cycle are mixed, and it is difficult to control.

 そこで、本発明は、上記課題を解決し、光学素子全体の寸法精度を高くするとができ、光学特性が均一で、材料選択の自由度を高くすることを可能とする光学素子および光学素子の変調方法を提供することを目的とするものである。 Therefore, the present invention solves the above-described problems, improves the dimensional accuracy of the entire optical element, has uniform optical characteristics, and enables a high degree of freedom in material selection and modulation of the optical element. It is intended to provide a method.

 本発明は、つぎのように構成した光学素子および光学素子の変調方法を提供するものである。
本発明の光学装置は、周期的に配列した複数の柱状部材と、該柱状部材の配列方向に対して垂直な方向に配置されて該柱状部材を挟む1対の支持部材とを含んで形成され、屈折率が周期的に分布する周期構造をなす光学素子と、該支持部材から該柱状部材にその配列方向と垂直な方向の力を加えて、該柱状部材を変形させる手段とを有することを特徴とする。
また、本発明は、周期的に配列した複数の柱状部材と、該柱状部材の配列方向に対して垂直な方向に配置されて該柱状部材を挟む1対の支持部材とを含んで形成され、屈折率が周期的に分布する周期構造をなす光学素子に対し、該柱状部材にその配列方向と垂直な方向から力を加えて該柱状部材の径を変化させることにより、該光学素子の光学特性を変調することを特徴とする光学素子の変調方法でもある。
The present invention provides an optical element and a modulation method of the optical element configured as follows.
The optical device of the present invention is formed to include a plurality of columnar members that are periodically arranged, and a pair of support members that are arranged in a direction perpendicular to the arrangement direction of the columnar members and sandwich the columnar member. An optical element having a periodic structure in which the refractive index is periodically distributed, and means for applying a force in a direction perpendicular to the arrangement direction from the support member to the columnar member to deform the columnar member. Features.
Further, the present invention is formed including a plurality of columnar members arranged periodically, and a pair of support members that are arranged in a direction perpendicular to the arrangement direction of the columnar members and sandwich the columnar member, The optical characteristics of the optical element are changed by applying a force to the columnar member in a direction perpendicular to the arrangement direction of the columnar member to change the diameter of the columnar member with respect to the optical element having a periodic structure in which the refractive index is periodically distributed. This is also a method for modulating an optical element, characterized by modulating.

 本発明によれば、光学素子全体の寸法精度を高くすることができ、光学特性が均一で、材料選択の自由度を高くすることを可能とする光学素子の光学素子および光学素子の変調方法を実現することができる。 According to the present invention, there is provided an optical element of an optical element and a method of modulating the optical element, which can increase the dimensional accuracy of the entire optical element, have uniform optical characteristics, and can increase the degree of freedom in material selection. Can be realized.

 本発明の実施の形態においては、上記構成を適用することにより、変形可能な材質で独立した柱状部材を周期的に配列し、これを支持部材で挟んで2次元のフォトニック結晶を構成する。支持部材は変形が無視できる程度に剛性があり、柱状部材を挟んでその周期配列を固定する。支持部材と柱状部材の上下底面とは接着剤で固定されている。もしくは、上下一方の底面のみが接着されていてもよく、両底面とも接着しないで圧力だけで柱状部材を支持してもよい。その場合はしかし支持部材を介して柱状部材に加わる外力としては圧力のみで張力は伝わらない。 In the embodiment of the present invention, by applying the above configuration, independent columnar members made of a deformable material are periodically arranged, and a two-dimensional photonic crystal is formed by sandwiching the columnar members with a supporting member. The support member has rigidity such that deformation is negligible, and fixes the periodic arrangement with the columnar member interposed therebetween. The support member and the upper and lower bottom surfaces of the columnar member are fixed with an adhesive. Alternatively, only one of the upper and lower bottom surfaces may be bonded, and the columnar member may be supported only by pressure without bonding to both bottom surfaces. In that case, however, the external force applied to the columnar member via the support member is only pressure, and tension is not transmitted.

 この結晶に対して支持部材面に対して垂直な方向に機械的外力を加えるアクチュエータを取り付けて、このアクチュエータを駆動することにより、支持部材を介して柱状部材に垂直方向の力を加える。これによって柱状部材は高さが変化するとともに上下底面の中間付近で柱の径および断面積が変化する。すなわち、上下支持部材から圧力が加えられると柱状部材は中央付近で断面積が増加し、張力が加えられると断面積は減少する。加えられる力に対する断面積変化の割合は、柱状部材の高さと断面形状、および材料定数であるヤング率とポアソン比で決まっている。 ア ク チ ュ エ ー タ An actuator for applying a mechanical external force to the crystal in a direction perpendicular to the support member surface is attached to the crystal, and the actuator is driven to apply a vertical force to the columnar member via the support member. This changes the height of the columnar member and the diameter and cross-sectional area of the column near the middle between the upper and lower bottom surfaces. That is, when pressure is applied from the upper and lower support members, the cross-sectional area of the columnar member increases near the center, and the cross-sectional area decreases when tension is applied. The ratio of the change in the cross-sectional area to the applied force is determined by the height and the cross-sectional shape of the columnar member, and the Young's modulus and Poisson's ratio, which are material constants.

 支持部材は柱状部材に対して十分大きな剛性を持つ材料で構成される。したがって、力は柱状部材の変形に有効に用いられる。また柱状部材は支持部材に固定されているので、配置周期は変化しない。
断面積の変化は屈折率の周期配列の1周期内の分布を変化させるので、フォトニックバンド構造の変化をもたらす。これによって光の反射、屈折などフォトニック結晶としての光学特性を調整することが可能となる。
また、前記構成によれば、ほぼ柱状部材の径のみを変化させることで光学特性を調整することができるため、特に面積の広い場合においても、全体の寸法の精度を保ちながら、均一な変形を生じさせることが可能となり、調整後の結晶全体の特性の均一化を図ることができる。
The support member is made of a material having sufficient rigidity with respect to the columnar member. Therefore, the force is effectively used to deform the columnar member. Since the columnar member is fixed to the support member, the arrangement period does not change.
The change in the cross-sectional area changes the distribution of the refractive index within one period of the periodic array, thereby causing a change in the photonic band structure. This makes it possible to adjust optical characteristics of the photonic crystal, such as light reflection and refraction.
Further, according to the above configuration, since the optical characteristics can be adjusted by changing only the diameter of the columnar member, even in a case where the area is particularly large, uniform deformation can be performed while maintaining the accuracy of the entire dimension. Thus, the properties of the entire crystal after the adjustment can be made uniform.

 また、前記構成によれば、部材への制限が小さく、材料選択時の自由度が上がり、作製プロセスを簡便にするものを適宜選択することが可能となる。
また、支持部材を圧電体材料で作ることにより、支持部材自身をアクチュエータとして柱状部材に直接力を与えることもできる。
本発明においては、柱状部材は互いに離れて配置されているが、その空隙部には柱状部材の変形を妨げないほかの物質、例えば気体、液体、ゲル状物質、あるいは柔軟性に富む樹脂などが充填されていてもよい。
Further, according to the above configuration, there is little restriction on members, the degree of freedom in selecting a material is increased, and it is possible to appropriately select a material that simplifies the manufacturing process.
In addition, by forming the support member from a piezoelectric material, a force can be directly applied to the columnar member using the support member itself as an actuator.
In the present invention, the columnar members are arranged apart from each other, but the gap portion is made of another material that does not hinder the deformation of the columnar member, such as a gas, a liquid, a gel-like material, or a resin having high flexibility. It may be filled.

 以下、図面を用いて、本発明の実施例について説明する。
図1は、本実施例の光学装置の装置構成を示す図である。図1に示すように筐体106内に圧電素子からなるアクチュエータ101とフォトニック結晶105とが積層されて収められている。アクチュエータ101の動作方向は基板104面の法線方向であり、同方向にフォトニック結晶105を伸縮させる。筐体106には光路を確保するため、フォトニック結晶105を挟んで2つの穴があいている。
光ファイバー110からのレーザ光は、一方の穴より素子内に入り、フォトニック結晶105中を透過し、他方の穴から抜けて受光器109に入射する。受光器109はフォトダイオードからなり、入射光の強度を制御回路107に送る。制御回路107はあらかじめ指定された強度のレーザ光が受光器109に入射されるように、制御量を演算して駆動回路108に送り、アクチュエータ101を駆動させる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram illustrating a device configuration of the optical device according to the present embodiment. As shown in FIG. 1, an actuator 101 made of a piezoelectric element and a photonic crystal 105 are stacked and housed in a housing 106. The operation direction of the actuator 101 is the normal direction of the surface of the substrate 104, and causes the photonic crystal 105 to expand and contract in the same direction. The housing 106 has two holes with the photonic crystal 105 interposed therebetween to secure an optical path.
The laser light from the optical fiber 110 enters the element through one hole, passes through the photonic crystal 105, passes through the other hole, and enters the light receiver 109. The light receiver 109 includes a photodiode, and sends the intensity of the incident light to the control circuit 107. The control circuit 107 calculates a control amount and sends it to the drive circuit 108 to drive the actuator 101 so that a laser beam having a predetermined intensity is incident on the light receiver 109.

 フォトニック結晶105は、例えば以下のようにして作製する。まずレーザ光の透過率向上のため、Siからなる基板104上に多層膜を蒸着により作製し、反射膜102を形成する。次に反射膜102上にPMMA(ポリメチルメタクリレート)を塗布し、X線リソグラフィーにより周期構造103を作製する。図4はこれを基板104面の法線方向、周期構造103側から見たものである。周期構造103を構成する個々の柱状部材は孤立し、反射膜102上、基板104面と平行な面内において2次元の周期構造をなす。
次に、Siからなる基板104上に反射膜102を形成したものをもう1枚用意し、反射膜102をPMMAからなる周期構造103側にして重ね合わせる。以上のようにして、図2に示す、周期構造103を平行な2枚の反射膜102、さらに基板104で挟み込んだフォトニック結晶105が形成される。
The photonic crystal 105 is produced, for example, as follows. First, in order to improve the transmittance of laser light, a multilayer film is formed on a substrate 104 made of Si by vapor deposition, and a reflective film 102 is formed. Next, PMMA (polymethyl methacrylate) is applied on the reflective film 102, and a periodic structure 103 is formed by X-ray lithography. FIG. 4 shows this as viewed from the direction normal to the surface of the substrate 104 and from the periodic structure 103 side. The individual columnar members forming the periodic structure 103 are isolated, and form a two-dimensional periodic structure on the reflective film 102 in a plane parallel to the substrate 104 surface.
Next, another one in which the reflective film 102 is formed on the substrate 104 made of Si is prepared, and the reflective film 102 is overlaid on the side of the periodic structure 103 made of PMMA. As described above, the photonic crystal 105 in which the periodic structure 103 illustrated in FIG. 2 is sandwiched between the two parallel reflective films 102 and the substrate 104 is formed.

 図2のフォトニック結晶105に対し、基板104面の法線方向から外力を加え、同方向に圧縮した様子を図3に示す。周期構造103を構成する個々の柱状部材が変形し、径が変化することで、フォトニック結晶105の光学特性が変化する。その際、個々の柱状部材は孤立しているため、周期構造103の配列面内において、前述した変形量の累積は発生せず、結晶全体の形状の変化は生じない。なお、反射膜102、周期構造103、基板104等の材質は前述の例に限るものではなく、屈折率、ヤング率といった物理的特性や、作製時のプロセス適合性、温度、湿度といった使用環境に対する適合性等から、適宜選択可能である。また、本実施例においては、アクチューエータ101として圧電素子を用いたが、送りねじ機構、ボイスコイル等、他の駆動機構を選択することも可能である。また、本実施例においては、光学特性として透過率の調整に本発明を適用したが、例えば反射率等、他の光学特性に対しても適用可能であることは言うまでもない。 FIG. 3 shows a state in which an external force is applied to the photonic crystal 105 of FIG. 2 in a direction normal to the surface of the substrate 104 and the photonic crystal 105 is compressed in the same direction. The optical characteristics of the photonic crystal 105 change as individual columnar members constituting the periodic structure 103 deform and change in diameter. At this time, since the individual columnar members are isolated, the above-described accumulation of the deformation does not occur in the arrangement plane of the periodic structure 103, and the shape of the entire crystal does not change. The materials of the reflective film 102, the periodic structure 103, the substrate 104, and the like are not limited to the above-described examples. It can be appropriately selected from the suitability and the like. In the present embodiment, a piezoelectric element is used as the actuator 101, but other driving mechanisms such as a feed screw mechanism and a voice coil can be selected. Further, in the present embodiment, the present invention is applied to the adjustment of the transmittance as an optical characteristic, but it is needless to say that the present invention can be applied to other optical characteristics such as a reflectance.

本発明の実施例における光学装置の装置構成を説明する図。FIG. 2 is a diagram illustrating a device configuration of an optical device according to an embodiment of the invention. 本発明の実施例における素子の構成を説明する図。FIG. 2 is a diagram illustrating a configuration of an element in an example of the present invention. 本発明の実施例における調整動作を説明する図。FIG. 4 is a diagram illustrating an adjustment operation according to the embodiment of the present invention. 本発明の実施例における周期構造を基板面の法線方向から見た図。FIG. 4 is a diagram illustrating a periodic structure according to an embodiment of the present invention as viewed from a direction normal to a substrate surface. 従来の発明における課題を説明する図。FIG. 4 illustrates a problem in a conventional invention. 従来の発明における課題を説明する図。FIG. 4 illustrates a problem in a conventional invention.

符号の説明Explanation of reference numerals

 101:アクチュエータ
 102:反射膜
 103:周期構造
 104:基板
 105:フォトニック結晶
 106:筐体
 107:制御回路
 108:駆動回路
 109:受光器
 110:光ファイバー
101: Actuator 102: Reflective film 103: Periodic structure 104: Substrate 105: Photonic crystal 106: Housing 107: Control circuit 108: Driving circuit 109: Light receiver 110: Optical fiber

Claims (8)

 周期的に配列した複数の柱状部材と、
 該柱状部材の配列方向に対して垂直な方向に配置されて該柱状部材を挟む1対の支持部材と、
 を含んで形成され、屈折率が周期的に分布する周期構造をなす光学素子と、
該支持部材から該柱状部材にその配列方向と垂直な方向の力を加えて、該柱状部材を変形させる手段と、
 を有することを特徴とする光学装置。
A plurality of columnar members arranged periodically,
A pair of support members arranged in a direction perpendicular to the arrangement direction of the columnar members and sandwiching the columnar members,
And an optical element having a periodic structure in which the refractive index is periodically distributed;
Means for applying a force in a direction perpendicular to the arrangement direction from the support member to the columnar member to deform the columnar member;
An optical device, comprising:
 前記柱状部材はその配列方向と垂直な方向からの力により高さとともに径が変化する部材である請求項1に記載の光学装置。 The optical device according to claim 1, wherein the columnar member is a member whose diameter changes with height due to a force from a direction perpendicular to the arrangement direction. 前記支持部材は、柱状部材より剛性の大きい部材である請求項1に記載の光学装置。 The optical device according to claim 1, wherein the support member is a member having greater rigidity than a columnar member.  前記光学素子は柱状部材の変形に際して前記周期構造の周期を変えない光学素子である請求項1に記載の光学装置。 The optical device according to claim 1, wherein the optical element does not change the period of the periodic structure when the columnar member is deformed.  前記1対の支持部材の少なくとも一方がアクチュエータに固定されている請求項1に記載の光学装置。 The optical device according to claim 1, wherein at least one of the pair of support members is fixed to an actuator.  前記支持部材の前記柱状部材側に反射層が設けられている請求項1に記載の光学装置。 The optical device according to claim 1, wherein a reflective layer is provided on the support member on the side of the columnar member.  前記1対の支持部材の少なくとも一方が圧電体に固定され、前記機械的力を加える手段が該圧電体に配置される電極と、該電極に電圧を印加する回路装置を含む請求項1に記載の光学装置。 2. The device according to claim 1, wherein at least one of the pair of support members is fixed to a piezoelectric body, and the means for applying the mechanical force includes an electrode disposed on the piezoelectric body, and a circuit device for applying a voltage to the electrode. Optical device.  周期的に配列した複数の柱状部材と、該柱状部材の配列方向に対して垂直な方向に配置されて該柱状部材を挟む1対の支持部材とを含んで形成され、屈折率が周期的に分布する周期構造をなす光学素子に対し、該柱状部材にその配列方向と垂直な方向から力を加えて該柱状部材の径を変化させることにより、該光学素子の光学特性を変調することを特徴とする光学素子の変調方法。 A plurality of columnar members arranged periodically, and a pair of support members arranged in a direction perpendicular to the arrangement direction of the columnar members and sandwiching the columnar member are formed, and the refractive index is periodically adjusted. The optical characteristics of the optical element are modulated by applying a force to the columnar member in a direction perpendicular to the arrangement direction of the columnar member to change the diameter of the columnar member with respect to the optical element having a distributed periodic structure. Modulation method of the optical element.
JP2003337411A 2002-10-01 2003-09-29 Optical element and method of modulating optical element Pending JP2004145315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003337411A JP2004145315A (en) 2002-10-01 2003-09-29 Optical element and method of modulating optical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002288645 2002-10-01
JP2003337411A JP2004145315A (en) 2002-10-01 2003-09-29 Optical element and method of modulating optical element

Publications (1)

Publication Number Publication Date
JP2004145315A true JP2004145315A (en) 2004-05-20

Family

ID=32473342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003337411A Pending JP2004145315A (en) 2002-10-01 2003-09-29 Optical element and method of modulating optical element

Country Status (1)

Country Link
JP (1) JP2004145315A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004302457A (en) * 2003-03-20 2004-10-28 Fujitsu Ltd Optical function element, wavelength variable optical filter, and wavelength variable light source
JP2015118380A (en) * 2007-04-12 2015-06-25 ガルトロニクス・オプティカル・リミテッド Optical switches and logic gates using optical switches

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004302457A (en) * 2003-03-20 2004-10-28 Fujitsu Ltd Optical function element, wavelength variable optical filter, and wavelength variable light source
JP2015118380A (en) * 2007-04-12 2015-06-25 ガルトロニクス・オプティカル・リミテッド Optical switches and logic gates using optical switches

Similar Documents

Publication Publication Date Title
EP1688783B1 (en) Optical element using liquid crystal having optical isotropy
CA2133335C (en) Modulating a light beam
US6822784B2 (en) Light-beam deflecting device with photonic crystal, optical switch using the same, and light-beam deflecting method
US7920330B2 (en) Tunable optical active elements
US6813399B2 (en) Optical device
WO2002027382A1 (en) Optical fiber connector, wavelength varying device, pressure sensor, acceleration sensor, and optical device
WO2013132266A2 (en) Optical device
JPH11218627A (en) Photonic crystal waveguide and its manufacture
CN1224854C (en) Variable wavelength light source
US20070110382A1 (en) Waveguide and device including the same
US20050117223A1 (en) Diffractive wave modulating devices
KR100815359B1 (en) Variable-type diffraction optical modulator
US20040130773A1 (en) Method and device for variable optical attenuator
JP2002350908A (en) Ray deflector using photonic crystal, optical switch suing this device and ray deflection method
JP2004145315A (en) Optical element and method of modulating optical element
TWI237443B (en) Piezoelectric tunable filter
US7068904B2 (en) Optical element with periodic structure
JP5217100B2 (en) Optical unit
US7136560B2 (en) Method of controlling optical characteristic of optical element and optical device
US20080107388A1 (en) Optical waveguide device
JP2006349776A (en) Wavelength selection element
US20060051009A1 (en) Optical deflector based on photonic bandgap structure
CN111630443B (en) Stress optical phase shifter array for Lidar and other applications
JP2004145314A (en) Optical element having periodic structure, mirror having the optical element, optical deflector, and method of controlling optical element
JP2004145317A (en) Optical deflector, optical switch composed of the optical deflector, optical scanning device and method of deflecting light