JP2004125833A - Liquid crystal display element - Google Patents

Liquid crystal display element Download PDF

Info

Publication number
JP2004125833A
JP2004125833A JP2002285481A JP2002285481A JP2004125833A JP 2004125833 A JP2004125833 A JP 2004125833A JP 2002285481 A JP2002285481 A JP 2002285481A JP 2002285481 A JP2002285481 A JP 2002285481A JP 2004125833 A JP2004125833 A JP 2004125833A
Authority
JP
Japan
Prior art keywords
electrode
panel
substrate
liquid crystal
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002285481A
Other languages
Japanese (ja)
Inventor
Shozo Tokunaga
徳永 正造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima Opt Corp
Kyocera Display Corp
Original Assignee
Hiroshima Opt Corp
Kyocera Display Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima Opt Corp, Kyocera Display Corp filed Critical Hiroshima Opt Corp
Priority to JP2002285481A priority Critical patent/JP2004125833A/en
Publication of JP2004125833A publication Critical patent/JP2004125833A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To satisfy a minimum essential overlap width between a panel side lead electrode and a substrate side connection electrode opposite to each other as well as a minimum essential spacing between the panel side lead electrode and the substrate side connection electrode adjacent to each other in a liquid crystal display element using fine-pitch electrodes. <P>SOLUTION: In the liquid crystal display element constructed by electrically and mechanically connecting the panel side lead electrodes 13 formed on the terminal part 11a of a liquid crystal panel and the substrate side connection electrodes 21 formed on the electrode connection part 20a of a flexible substrate via a specified sticking means, the liquid crystal display element is characterized by specifying the optimized width wO of the panel side lead electrode 13 with a formula (1), p+us-gs-t, provided that an electrode width of the substrate side connection electrode 21, a pitch of the panel side lead electrodes 13 and the substrate side connection electrodes 21, the minimum essential overlap width between the panel side lead electrode 13 and the substrate side connection electrode 21 opposite to each other to ensure specified conductive quality, and the minimum essential spacing between the panel side lead electrode 13 and the substrate side connection electrode 21 adjacent to each other to ensure specified insulation quality are represented by t, p, us and gs respectively. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、液晶パネルにTCPなどのフレキシブル基板を接続してなる液晶表示素子に関し、さらに詳しく言えば、パネル側リード電極と基板側接続電極との間で生ずるずれによる接続不良を低減させるとともに、そのずれ量を目視で容易に判定可能とする技術に関するものである。
【0002】
【従来の技術】
液晶表示素子(液晶モジュール)の組立工程の一つに、液晶パネルに対する液晶駆動回路基板の接続工程がある。その接続工程の一例を図7および図8により説明する。
【0003】
液晶パネル10は、一対の透明電極基板11,12を図示しない周辺シール材を介して圧着してなり、少なくとも一方の透明電極基板11には、同基板11を側方に張り出した端子部11aが設けられている。このパネル側端子部11aには、図8に示すように、パネル内の透明電極に連なる多数のリード電極13がストライプ状(短冊状)に形成されている。
【0004】
このパネル側端子部11aに、液晶駆動回路基板としての例えばTCP(tape carrier package)20が接続される。TCP20は、配線パターンが形成されたフレキシブル基板に液晶駆動用のIC(もしくはLSI)チップ22を実装したものである。
【0005】
そのICチップ搭載部の両側(基板の両端側)には、信号出力用と信号入力用の電極接続部が設けられているが、図8には、その内のパネル側端子部11aに接続される信号出力側の電極接続部20aのみを示す。この電極接続部20aには、パネル側端子部11aと同様に、多数の接続電極21がストライプ状(短冊状)に形成されている。
【0006】
パネル側端子部11aに対するTCP20の接続には、多くの場合、熱硬化型異方性導電樹脂や紫外線硬化型異方性導電樹脂などが用いられるが、ここでは、異方性導電フィルム(ACF)31を用いた例を示している。
【0007】
異方性導電フィルム31は、例えば熱硬化性樹脂フィルム内に導電粒子を分散させたフィルムで、図7に示すように、パネル側端子部11aとTCP20との間に挟んで加熱圧着ヘッド32にて押圧することにより、単一方向の導電性を発揮しリード電極13と接続電極21との間の導通をとる。
【0008】
リード電極13と接続電極21とを接続する際、位置合わせ装置の位置決め精度能力や液晶パネル10およびTCP20の寸法公差などに起因して、リード電極13と接続電極21との間でしばしばずれが生ずる。そのずれが生じた状態を図9に示す。
【0009】
ここで、リード電極13aと接続電極21aとが対向電極で、隣接するリード電極13bと接続電極21bとが対向電極であるとすると、良好な電気的接続状態を得るには、次の2つの条件を満足することが必要条件とされる。
▲1▼各対向電極13,21の重なり幅usが所定の導通品質を確保するために必要とされる幅以上であること。
▲2▼隣接する基板側接続電極21aとパネル側リード電極13bとの離間間隔gsが、所定の絶縁品質を確保するために必要な間隔以上であること。
【0010】
実際の組立工程において、このずれ管理は簡単かつ短時間で行わなければならない。そのため、一般的な手法として、ずれ量の絶対値管理(パネル側リード電極13と基板側接続電極21の芯−芯間距離xの計測)ではなく、顕微鏡を介しての目視により例えばパネル側リード電極13を基準にして基板側接続電極21のはみ出し量aを観察し、そのはみ出し量aの基板側接続電極21の幅に対する割合がいくらか(例えば1/3)などように相対値管理を行っている。
【0011】
【発明が解決しようとする課題】
しかしながら、近年の電極ピッチのファインピッチ化に伴い、次のような問題が新たに生じている。まず第1に、パネル側リード電極13の幅と基板側接続電極21の幅との関係によっては、わずかなずれによっても上記▲1▼の重なり幅usと上記▲2▼の離間間隔gsとが両立しなくなり、接続不良となることがある。
【0012】
第2に、ファインピッチ化に伴って電極幅および電極間隔がともに狭くなるため、上記したような顕微鏡を介しての目視により、一方の電極(例えばパネル側リード電極13)に対して他方の電極(例えば基板側接続電極21)のはみ出し割合を観察しての良否判定を行うことが困難になる。
【0013】
したがって、本発明の第1の課題は、位置合わせ装置の位置決め精度能力や液晶パネルおよびフレキシブル基板の寸法公差などに起因してずれが発生したとしても、上記▲1▼の重なり幅usと上記▲2▼の離間間隔gsとを両立させることができるようにすることにある。
また、本発明の第2の課題は、ファインピッチにおいても、生産性を低下させることなく、顕微鏡を介しての目視によりパネル側リード電極と基板側接続電極とのずれの良否判定を行えるようにすることにある。
【0014】
【課題を解決するための手段】
上記第1の課題を解決するため、本発明は、複数本のリード電極が一定のピッチで互いに平行に形成されている端子部を有する液晶パネルと、上記リード電極と同一ピッチになるように形成された複数の接続電極を有するフレキシブル基板とを含み、上記パネル側リード電極と上記基板側接続電極とを対向させて所定の接着手段を介して電気的・機械的に接続してなる液晶表示素子において、上記基板側接続電極の電極幅をt,上記パネル側リード電極および上記基板側接続電極のピッチをp,対向する上記パネル側リード電極と上記基板側接続電極との間で所定の導通品質を確保するため最小限必要とされる重なり幅をus,隣接する上記パネル側リード電極と上記基板側接続電極との間で所定の絶縁品質を確保するため最小限必要とされる離間間隔をgsとして、上記パネル側リード電極の最適幅wOが、次式(1)
wO=p+us−gs−t……式(1)
によって特定されることを特徴としている。
【0015】
また、上記第2の課題を解決するため、本発明は、上記パネル側リード電極および上記基板側接続電極の最外側に、さらに上記ピッチpの間隔をもって電気的機能を持たないずれ検査用の検査パターンを備え、上記基板側の検査パターンが上記基板側接続電極と同一幅に形成されるのに対して、上記パネル側の検査パターンの電極幅wSが、次式(2)
wS=t+p−us−gs……式(2)
によって特定されることを特徴としている。
【0016】
【発明の実施の形態】
次に、図1ないし図6を参照して、本発明をより詳しく説明する。なお、本発明の液晶表示素子は、先の図7ないし図9により説明した従来例と同様に、液晶パネル10の端子部11aにフレキシブル基板としての例えばTCP20を接続してなる液晶表示素子であり、したがって先に説明した従来例と同一もしくは同一と見なされてよい構成要素には、それと同じ参照符号を用いている。
【0017】
まず、図1にパネル側リード電極13と基板側接続電極21とが位置ずれのない理想的な関係で位置合わせされている状態を示す。この例において、パネル側リード電極13および基板側接続電極21のピッチp(電極の芯−芯間距離)はともに60μm,パネル側リード電極13の電極幅wは35μm,基板側接続電極21の電極幅tは27μmとする。なお、以下の説明において、隣接する電極を説明するときにのみ添え字のa,bを付し、対向する電極については単に13,21の符号のみを用いる。
【0018】
この電極幅t=27μm,w=35μmとピッチp=60μmとの関係において、対向するパネル側リード電極13と基板側接続電極21との間で、所定の導通品質を得るために必要とされる最小幅、すなわち上記▲1▼の重なり幅usは15μmである(us≧15μm)。
【0019】
また、隣接する基板側接続電極21aとパネル側リード電極13bとの間で、所定の電気的絶縁品質を得るために必要とされる最小間隔、すなわち上記▲2▼の離間間隔gsは20μmである(gs≧20μm)。なお、位置合わせ装置の位置決め精度能力をxmとすると、現状の設備でxmは±8μmである。
【0020】
図2にパネル側端子部11aに対して基板側電極接続部20aを右方向にずらして、対向するパネル側リード電極13と基板側接続電極21との重なり幅usを15μmとした状態を示し、また、図3にパネル側端子部11aに対して基板側電極接続部20aを右方向にずらして、隣接する基板側接続電極21aとパネル側リード電極13bとの間の離間間隔gsを20μmとした状態を示す。
【0021】
図2において、上記▲1▼の重なり幅us=15μmとしたときのパネル側リード電極13と基板側接続電極21との最大位置ずれ量(電極の芯−芯間距離)をxuとすると、xuは次式(3)によって示され、この例の場合、xu=16μmとなる。
xu=t/2+w/2−us……(3)
【0022】
また、図3において、上記▲2▼の離間間隔gs=20μmとしたときのパネル側リード電極13と基板側接続電極21との最大位置ずれ量(電極の芯−芯間距離)をxgとすると、xgは次式(4)によって示され、この例の場合、xg=9μmとなる。
xg=p−t/2−w/2−gs……(4)
【0023】
良好な接続品質を得るには上記▲1▼の重なり幅us≧15μm,上記▲2▼の離間間隔gs≧20μmをともに満足する必要があるため、この場合、パネル側リード電極13と基板側接続電極21とがずれてもよい最大ずれ許容量xOは9μm(=xg)となる。
【0024】
この最大ずれ許容量xO=9μmに対して、位置合わせ装置の位置決め精度能力xmは、上記したように現状の設備で±8μmであるため、パネル側リード電極13と基板側接続電極21とのずれ量を9μm以内に納めることはきわめて難しく、接続不良の発生率が高くなる。ちなみに、現状の位置合わせ装置の位置決め精度能力からすると、最大ずれ許容量xOはxmの1.33倍(10.6μm)以上は必要である。
【0025】
また、図3に示すように、最大位置ずれ量xgである最大ずれ許容量xOを9μmとした場合におけるパネル側リード電極13を基準にして基板側接続電極21のはみ出し量aは5μmである。したがって、上記した相対値管理手法によれば、はみ出し量aが基板側接続電極幅tのt/5(=5.4μm)のとき良品,t/4(=6.75μm)のとき不良品として判定することになるが、その差1.35μmを顕微鏡を介しての目視で正確に判定することはきわめて困難で、判定誤差率が高くなる。
【0026】
図2および図3から分かるように、上記▲2▼の離間間隔gsにより規定されるパネル側リード電極13と基板側接続電極21との最大位置ずれ量xgを大きくするにはパネル側リード電極13の電極幅wを狭くすればよいが、このようにすると、他方において上記▲1▼の重なり幅usにより規定されるパネル側リード電極13と基板側接続電極21との最大位置ずれ量xuが小さくなる。
【0027】
最大ずれ許容量xOは、最大位置ずれ量xg,xuのいずれか小さい方の値となることから、上記▲1▼の重なり幅usを満足することができる最大位置ずれ量xuと、上記▲2▼の離間間隔gsを満足することができる最大位置ずれ量xgとが等しくなるように、パネル側リード電極13の電極幅wを決めることにより、最大ずれ許容量xOをもっとも大きくすることができる。
【0028】
したがって、そのときのパネル側リード電極13の最適幅をwOとすると、その最適幅wOは、上記式(3),(4)から導き出される次式(1)によって求められる。
xu=xg
t/2+w/2−us=p−t/2−w/2−gs
から
wO=p+us−gs−t……(1)
【0029】
この例において、p=60μm,us=15μm,gs=20μm,t=27μmであるから、パネル側リード電極13の最適幅wOは28μmとなる。パネル側リード電極13の電極幅をwO=28μmとした状態を図4に示す。また、図5のグラフに上記式(3),(4)の関係を示す(横軸はパネル側リード電極13の電極幅wで、縦軸は最大位置ずれ量xu,xgである)。
【0030】
このときの最大ずれ許容量xOは、xO=p−wO/2−gs−t/2から12.5μmとなる。上記したように、現状の位置合わせ装置の位置決め精度能力xm(±8μm)からして、最大ずれ許容量xOは10.6μm(xmの1.33倍)以上あればよいため、最大ずれ許容量xO=12.5μmは現状の工程能力に十分適合する。
【0031】
本発明は、対向電極としてのパネル側リード電極13と基板側接続電極21のほかに、図6に示すように、ずれ検査用の検査パターンDPを備えている。このずれ検査用の検査パターンDPは電気的機能を持たない中性的なパターンで、対向電極群の端に設けられている。
【0032】
図6に示すずれ検査用の検査パターンDPは対向電極群の左端に設けられたものであるが、このずれ検査用の検査パターンDPは同一構成として対向電極群の両端に設けられることが好ましい。なお、図6(a)はパネル側端子部11aに対して基板側電極接続部20aが右側にずれた状態を示し、図6(b)はパネル側端子部11aに対して基板側電極接続部20aが左側にずれた状態を示す。
【0033】
ずれ検査用の検査パターンDPには、液晶パネルの端子部11a側に形成されたパネル側検査パターン14と、フレキシブル基板(例えば、TCP)の電極接続部20a側に形成された基板側検査パターン22とが含まれている。
【0034】
この場合、パネル側検査パターン14とその一つ内側に隣接するパネル側リード電極13とのピッチおよび基板側検査パターン22とその一つ内側に隣接する基板側接続電極21とのピッチは、ともに60μmで対向電極13,21のピッチpと同一である。
【0035】
また、基板側検査パターン22の幅は基板側接続電極21の電極幅tと同じ27μmであるが、パネル側検査パターン14の幅wSは次式(2)によって特定される。基板側接続電極21の電極幅をt,最大ずれ許容量をxOとして、
wS=t+2×xO
ここで、xOはパネル側リード電極13の電極幅を最適幅wOとしたときのxu(もしくはxg)の値で、xO=(p−gs−us)/2であるから、
wS=t+p−gs−us……(2)
となる。
【0036】
この例において、t=27μm,p=60μm,gs=20μm,us=15μmであるから、パネル側検査パターン14の幅wSは52μmとされる。すなわち、パネル側検査パターン14の幅wSは、基板側接続電極21の電極幅tの両側に最大ずれ許容量xOを付加した幅である。
【0037】
したがって、図6(a),(b)に示すように、基板側検査パターン22がパネル側検査パターン14の幅wS内に入っていれば、パネル側リード電極13と基板側接続電極21との間で、上記▲1▼の重なり幅us,上記▲2▼の離間間隔gsがともに満足されているとして、接続状態が良好と判定することができる。
【0038】
これに対して、基板側検査パターン22がパネル側検査パターン14の幅wSからはみ出している場合には、上記▲1▼の重なり幅us,上記▲2▼の離間間隔gsの少なくとも一方が満たされていない状態であるから、接続不良と判定することができる。このようにして、各電極がファインピッチされたとしても、顕微鏡を介しての目視により、ずれ判定を正確かつ容易に行うことができる。
【0039】
なお、図6(b)の状態(パネル側端子部11aに対して基板側電極接続部20aが左側にずれた状態)において、パネル側検査パターン14と隣接する基板側接続電極21aとの距離Bが、上記▲2▼の離間間隔gs未満となる場合が生じたとしても、パネル側検査パターン14は電気的接続に関与しないパターンであるため問題はない。
【0040】
また、上記実施形態の図面において、電極の断面形状は矩形状であるが、台形形状であってもよい。この台形形状の場合、電極幅や重なり幅は台形の上辺で換算すればよい。
【0041】
【発明の効果】
以上説明したように、本発明によれば、複数本のリード電極が一定のピッチで互いに平行に形成されている端子部を有する液晶パネルと、上記リード電極と同一ピッチで形成された複数の接続電極を有するフレキシブル基板とを含み、上記パネル側リード電極と上記基板側接続電極とを対向させて所定の接着手段を介して電気的・機械的に接続してなる液晶表示素子において、請求項1に記載した式(1)によってパネル側リード電極の最適幅wOを特定することにより、位置合わせ装置の位置決め精度能力や液晶パネルおよびフレキシブル基板の寸法公差などに起因してずれが発生したとしても、上記▲1▼の重なり幅usと上記▲2▼の離間間隔gsとを両立させることができる。
【0042】
また、本発明の請求項2によれば、上記パネル側リード電極および上記基板側接続電極の最外側に、さらに上記ピッチpの間隔をもって電気的機能を持たないずれ検査用の検査パターンを設け、上記基板側の検査パターンが上記基板側接続電極と同一幅に形成されるのに対して、上記パネル側の検査パターンの電極幅wSを式(2)によって特定される幅とすることにより、ファインピッチにおいても、顕微鏡を介しての目視によりパネル側リード電極と基板側接続電極とのずれの良否判定を正確かつ容易に行うことができる。
【図面の簡単な説明】
【図1】本発明の説明図で、パネル側リード電極と基板側接続電極とが位置ずれのない理想的な関係で位置合わせされている状態を示す模式的断面図。
【図2】本発明の説明図で、パネル側端子部に対して基板側電極接続部を最小限必要とされる重なり幅分右方向にずらした状態を示す模式的断面図。
【図3】本発明の説明図で、パネル側端子部に対して基板側電極接続部を最小限必要とされる離間間隔分右方向にずらした状態を示す模式的断面図。
【図4】本発明の説明図で、パネル側リード電極を最適幅とした状態を示す模式的断面図。
【図5】本発明の説明図で、パネル側リード電極と基板側接続電極との最大位置ずれ量xu,xgの関係を示すグラフ。
【図6】本発明の説明図で、ずれ検査用の検査パターンを示す模式的断面図。
【図7】液晶パネルと液晶駆動回路基板の接続方法を図解した模式的側面図。
【図8】液晶パネルの端子部と液晶駆動回路基板の電極接続部とを並置して示す模式的平面図。
【図9】図8の端子部と電極接続部とがずらされている状態を示す模式的断面図。
【符号の説明】
10 液晶パネル
11a 端子部
13 パネル側リード電極
14 パネル側検査用パターン
20 TCP基板(液晶駆動回路基板)
20a 電極接続部
21 基板側接続電極
22 基板側検査用パターン
DP ずれ検査用パターン
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a liquid crystal display device in which a flexible substrate such as a TCP is connected to a liquid crystal panel. More specifically, the present invention reduces a connection failure due to a displacement between a panel-side lead electrode and a substrate-side connection electrode, The present invention relates to a technology that allows the amount of deviation to be easily determined visually.
[0002]
[Prior art]
One of the steps of assembling a liquid crystal display element (liquid crystal module) includes a step of connecting a liquid crystal driving circuit board to a liquid crystal panel. An example of the connection process will be described with reference to FIGS.
[0003]
The liquid crystal panel 10 is formed by pressure-bonding a pair of transparent electrode substrates 11 and 12 via a peripheral sealing material (not shown), and at least one of the transparent electrode substrates 11 has a terminal portion 11a that projects the substrate 11 to the side. Is provided. As shown in FIG. 8, a large number of lead electrodes 13 connected to the transparent electrodes in the panel are formed in a stripe shape (strip shape) on the panel side terminal portion 11a.
[0004]
For example, a TCP (tape carrier package) 20 as a liquid crystal drive circuit board is connected to the panel side terminal portion 11a. The TCP 20 has a liquid crystal driving IC (or LSI) chip 22 mounted on a flexible substrate on which a wiring pattern is formed.
[0005]
On both sides of the IC chip mounting portion (both ends of the substrate), electrode connection portions for signal output and signal input are provided. In FIG. 8, the electrode connection portions are connected to the panel side terminal portion 11a. 1 shows only the electrode connection portion 20a on the signal output side. A large number of connection electrodes 21 are formed in a stripe shape (strip shape) on the electrode connection portion 20a, similarly to the panel side terminal portion 11a.
[0006]
For connection of the TCP 20 to the panel side terminal portion 11a, a thermosetting anisotropic conductive resin or an ultraviolet-curing anisotropic conductive resin is used in many cases. Here, an anisotropic conductive film (ACF) is used. 31 shows an example in which 31 is used.
[0007]
The anisotropic conductive film 31 is a film in which conductive particles are dispersed in, for example, a thermosetting resin film. As shown in FIG. By pressing, the conductive material exhibits a unidirectional conductivity and establishes conduction between the lead electrode 13 and the connection electrode 21.
[0008]
When the lead electrode 13 and the connection electrode 21 are connected, a displacement often occurs between the lead electrode 13 and the connection electrode 21 due to the positioning accuracy of the positioning device, the dimensional tolerance of the liquid crystal panel 10 and the TCP 20, and the like. . FIG. 9 shows a state in which the deviation has occurred.
[0009]
Here, assuming that the lead electrode 13a and the connection electrode 21a are opposing electrodes and the adjacent lead electrode 13b and the connection electrode 21b are opposing electrodes, in order to obtain a good electrical connection state, the following two conditions are required. Is a necessary condition.
{Circle around (1)} The overlapping width us of each of the counter electrodes 13 and 21 is equal to or larger than the width required to secure a predetermined conduction quality.
(2) The separation distance gs between the adjacent board-side connection electrode 21a and the panel-side lead electrode 13b is equal to or longer than the distance required to ensure a predetermined insulation quality.
[0010]
In the actual assembling process, this deviation management must be performed easily and in a short time. Therefore, as a general method, for example, the panel-side lead is visually observed through a microscope instead of the absolute value management of the shift amount (measurement of the core-to-core distance x between the panel-side lead electrode 13 and the board-side connection electrode 21). The protrusion amount a of the substrate-side connection electrode 21 is observed with reference to the electrode 13, and relative value management is performed so that the ratio of the protrusion amount a to the width of the substrate-side connection electrode 21 is, for example, 1/3. I have.
[0011]
[Problems to be solved by the invention]
However, with the recent trend toward finer electrode pitches, the following problems have newly arisen. First, depending on the relationship between the width of the panel-side lead electrode 13 and the width of the substrate-side connection electrode 21, even with a slight deviation, the overlapping width us of the above item (1) and the separation gs of the above item (2) can be obtained. Incompatibilities may result in poor connections.
[0012]
Second, since both the electrode width and the electrode interval become narrower with the fine pitch, one electrode (for example, the panel-side lead electrode 13) and the other electrode are visually observed through a microscope as described above. It becomes difficult to determine the quality by observing the protruding ratio of the (for example, the substrate-side connection electrode 21).
[0013]
Therefore, the first problem of the present invention is that even if a displacement occurs due to the positioning accuracy capability of the positioning device, the dimensional tolerance of the liquid crystal panel and the flexible substrate, etc., the overlapping width us of (1) and the above (1) The object of the present invention is to make it possible to satisfy both the separation interval gs of 2).
Further, a second object of the present invention is to make it possible to judge the quality of a shift between a panel-side lead electrode and a board-side connection electrode by visual observation through a microscope without reducing productivity even at a fine pitch. Is to do.
[0014]
[Means for Solving the Problems]
In order to solve the first problem, the present invention is directed to a liquid crystal panel having a plurality of lead electrodes having terminal portions formed in parallel with each other at a constant pitch, and forming the lead electrodes at the same pitch as the lead electrodes. A liquid crystal display device comprising: a flexible substrate having a plurality of connection electrodes, wherein the panel-side lead electrode and the substrate-side connection electrode face each other and are electrically and mechanically connected via a predetermined bonding means. , The electrode width of the substrate-side connection electrode is t, the pitch of the panel-side lead electrode and the substrate-side connection electrode is p, and a predetermined conduction quality between the opposing panel-side lead electrode and the substrate-side connection electrode. In order to ensure a predetermined insulation quality between the adjacent panel-side lead electrode and the substrate-side connection electrode, the minimum required overlap width is us. The separation interval as gs, the optimum width wO of the panel-side lead electrode, the following equation (1)
wO = p + us-gs-t Equation (1)
It is characterized by the following.
[0015]
Further, in order to solve the second problem, the present invention provides an inspection for any inspection which has an electrical function with an interval of the pitch p on the outermost sides of the panel-side lead electrode and the substrate-side connection electrode. While the test pattern on the substrate side is formed to have the same width as the connection electrode on the substrate side, the electrode width wS of the test pattern on the panel side is expressed by the following equation (2).
wS = t + p-us-gs (2)
It is characterized by the following.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described in more detail with reference to FIGS. The liquid crystal display element of the present invention is a liquid crystal display element in which, for example, a TCP 20 as a flexible substrate is connected to the terminal portion 11a of the liquid crystal panel 10, as in the conventional example described with reference to FIGS. Therefore, the same reference numerals are used for the components which may be regarded as the same as or the same as those of the conventional example described above.
[0017]
First, FIG. 1 shows a state in which the panel-side lead electrode 13 and the substrate-side connection electrode 21 are aligned in an ideal relationship with no displacement. In this example, the pitch p (the distance between the cores of the electrodes) between the panel-side lead electrodes 13 and the substrate-side connection electrodes 21 is 60 μm, the electrode width w of the panel-side lead electrodes 13 is 35 μm, and the electrode of the substrate-side connection electrodes 21. The width t is 27 μm. In the following description, suffixes a and b are added only when describing adjacent electrodes, and only the reference numerals 13 and 21 are used for the opposing electrodes.
[0018]
In the relationship between the electrode widths t = 27 μm, w = 35 μm, and the pitch p = 60 μm, it is necessary to obtain a predetermined conduction quality between the opposing panel-side lead electrode 13 and substrate-side connection electrode 21. The minimum width, that is, the overlap width us of (1) is 15 μm (us ≧ 15 μm).
[0019]
In addition, the minimum distance required to obtain a predetermined electrical insulation quality between the adjacent substrate-side connection electrode 21a and panel-side lead electrode 13b, that is, the separation distance gs of the above (2) is 20 μm. (Gs ≧ 20 μm). Assuming that the positioning accuracy of the positioning device is xm, xm is ± 8 μm in the current equipment.
[0020]
FIG. 2 shows a state in which the board-side electrode connection portion 20a is shifted to the right with respect to the panel-side terminal portion 11a, and the overlap width us of the opposing panel-side lead electrode 13 and board-side connection electrode 21 is 15 μm. Further, in FIG. 3, the board-side electrode connection portion 20a is shifted rightward with respect to the panel-side terminal portion 11a, and the separation interval gs between the adjacent board-side connection electrode 21a and the panel-side lead electrode 13b is set to 20 μm. Indicates the status.
[0021]
In FIG. 2, when the maximum displacement (distance between the electrode core and the core) between the panel-side lead electrode 13 and the substrate-side connection electrode 21 when the overlap width us of (1) is 15 μm is xu, xu Is given by the following equation (3). In this case, xu = 16 μm.
xu = t / 2 + w / 2-us (3)
[0022]
In FIG. 3, when the maximum displacement (distance between the electrode core and the core) between the panel-side lead electrode 13 and the substrate-side connection electrode 21 when the separation distance gs = 20 μm in (2) above is xg. , Xg are represented by the following equation (4). In this example, xg = 9 μm.
xg = pt / 2-w / 2-gs (4)
[0023]
In order to obtain good connection quality, it is necessary to satisfy both the above-mentioned (1), the overlap width us ≧ 15 μm, and the above-mentioned (2), the separation interval gs ≧ 20 μm. The maximum allowable shift amount xO that may be shifted from the electrode 21 is 9 μm (= xg).
[0024]
With respect to this maximum deviation allowable amount xO = 9 μm, the positioning accuracy capability xm of the positioning device is ± 8 μm in the current equipment as described above, and thus the deviation between the panel-side lead electrode 13 and the substrate-side connection electrode 21. It is extremely difficult to keep the amount within 9 μm, and the incidence of connection failure increases. Incidentally, in view of the positioning accuracy capability of the current positioning device, the maximum deviation allowable amount xO needs to be 1.33 times (10.6 μm) or more of xm.
[0025]
Further, as shown in FIG. 3, the protrusion amount a of the board-side connection electrode 21 is 5 μm with respect to the panel-side lead electrode 13 when the maximum allowable displacement xO, which is the maximum displacement xg, is 9 μm. Therefore, according to the above-described relative value management method, when the protruding amount a is t / 5 (= 5.4 μm) of the board-side connection electrode width t, it is a non-defective product when t / 4 (= 6.75 μm). However, it is extremely difficult to accurately determine the difference of 1.35 μm visually through a microscope, and the determination error rate increases.
[0026]
As can be seen from FIGS. 2 and 3, it is necessary to increase the maximum displacement xg between the panel-side lead electrode 13 and the board-side connection electrode 21 defined by the spacing gs in (2) above. In this case, on the other hand, the maximum displacement xu between the panel-side lead electrode 13 and the board-side connection electrode 21 defined by the overlap width us described in (1) is small. Become.
[0027]
Since the maximum deviation allowable amount xO is the smaller value of the maximum positional deviation amounts xg and xu, the maximum positional deviation amount xu that can satisfy the overlapping width us of the above (1) and the above (2) By determining the electrode width w of the panel-side lead electrode 13 so that the maximum positional deviation amount xg that can satisfy the separation interval gs of ▼ becomes equal, the maximum deviation allowable amount xO can be maximized.
[0028]
Therefore, assuming that the optimum width of the panel-side lead electrode 13 at that time is wO, the optimum width wO is obtained by the following equation (1) derived from the above equations (3) and (4).
xu = xg
t / 2 + w / 2-us = pt / 2-w / 2-gs
From wO = p + us-gs-t (1)
[0029]
In this example, since p = 60 μm, us = 15 μm, gs = 20 μm, and t = 27 μm, the optimum width wO of the panel-side lead electrode 13 is 28 μm. FIG. 4 shows a state where the electrode width of the panel-side lead electrode 13 is wO = 28 μm. The graph of FIG. 5 shows the relationship of the above equations (3) and (4) (the horizontal axis is the electrode width w of the panel-side lead electrode 13 and the vertical axis is the maximum displacement xu, xg).
[0030]
At this time, the maximum allowable displacement xO is 12.5 μm from xO = p−wO / 2−gs−t / 2. As described above, based on the positioning accuracy capability xm (± 8 μm) of the current positioning device, the maximum deviation allowable amount xO may be 10.6 μm (1.33 times xm) or more. xO = 12.5 μm is well compatible with current process capabilities.
[0031]
The present invention includes an inspection pattern DP for displacement inspection, as shown in FIG. 6, in addition to the panel-side lead electrode 13 and the substrate-side connection electrode 21 as counter electrodes. The inspection pattern DP for the displacement inspection is a neutral pattern having no electric function, and is provided at an end of the counter electrode group.
[0032]
Although the shift inspection test pattern DP shown in FIG. 6 is provided at the left end of the counter electrode group, the shift inspection test pattern DP preferably has the same configuration and is provided at both ends of the counter electrode group. 6A shows a state in which the substrate-side electrode connection portion 20a is shifted to the right with respect to the panel-side terminal portion 11a, and FIG. 6B shows a state in which the substrate-side electrode connection portion is shifted with respect to the panel-side terminal portion 11a. 20a shows a state shifted to the left side.
[0033]
The inspection pattern DP for displacement inspection includes a panel-side inspection pattern 14 formed on the terminal portion 11a side of the liquid crystal panel and a substrate-side inspection pattern 22 formed on the electrode connection portion 20a side of a flexible substrate (for example, TCP). And are included.
[0034]
In this case, the pitch between the panel-side inspection pattern 14 and the panel-side lead electrode 13 adjacent to the inside thereof and the pitch between the substrate-side inspection pattern 22 and the substrate-side connection electrode 21 adjacent to the inside thereof are both 60 μm. And the pitch p of the opposing electrodes 13 and 21 is the same.
[0035]
The width of the board-side inspection pattern 22 is 27 μm, which is the same as the electrode width t of the board-side connection electrode 21, but the width wS of the panel-side inspection pattern 14 is specified by the following equation (2). Assuming that the electrode width of the substrate-side connection electrode 21 is t and the maximum deviation allowable amount is xO,
wS = t + 2 × xO
Here, xO is the value of xu (or xg) when the electrode width of the panel-side lead electrode 13 is the optimum width wO, and xO = (p-gs-us) / 2.
wS = t + p-gs-us (2)
It becomes.
[0036]
In this example, since t = 27 μm, p = 60 μm, gs = 20 μm, and us = 15 μm, the width wS of the panel-side inspection pattern 14 is 52 μm. That is, the width wS of the panel-side inspection pattern 14 is a width obtained by adding the maximum allowable deviation xO to both sides of the electrode width t of the substrate-side connection electrode 21.
[0037]
Therefore, as shown in FIGS. 6A and 6B, if the board-side inspection pattern 22 is within the width wS of the panel-side inspection pattern 14, the connection between the panel-side lead electrode 13 and the board-side connection electrode 21 is made. It can be determined that the connection state is good, assuming that the overlap width us of (1) and the separation interval gs of (2) are both satisfied.
[0038]
On the other hand, when the board-side inspection pattern 22 protrudes from the width wS of the panel-side inspection pattern 14, at least one of the overlapping width us of (1) and the separation gs of (2) is satisfied. Since it is not in the state, it can be determined that the connection is poor. In this way, even if each electrode is finely pitched, it is possible to accurately and easily determine the deviation by visual observation through a microscope.
[0039]
In the state shown in FIG. 6B (the state in which the board-side electrode connection portion 20a is shifted to the left with respect to the panel-side terminal portion 11a), the distance B between the panel-side inspection pattern 14 and the adjacent board-side connection electrode 21a. However, even in the case where the separation interval gs in the above (2) occurs, there is no problem because the panel-side inspection pattern 14 is a pattern not involved in the electrical connection.
[0040]
Further, in the drawings of the above embodiment, the cross-sectional shape of the electrode is rectangular, but may be trapezoidal. In the case of this trapezoidal shape, the electrode width and the overlap width may be converted on the upper side of the trapezoid.
[0041]
【The invention's effect】
As described above, according to the present invention, a liquid crystal panel having a terminal portion in which a plurality of lead electrodes are formed in parallel with each other at a constant pitch, and a plurality of connections formed with the same pitch as the lead electrodes 2. A liquid crystal display device comprising: a flexible substrate having electrodes, wherein said panel-side lead electrode and said substrate-side connection electrode face each other and are electrically and mechanically connected via a predetermined bonding means. By specifying the optimum width wO of the panel-side lead electrode by the equation (1) described in (1), even if the displacement occurs due to the positioning accuracy capability of the positioning device, the dimensional tolerance of the liquid crystal panel and the flexible substrate, etc. It is possible to make the overlap width us of (1) and the separation interval gs of (2) compatible.
[0042]
Further, according to the second aspect of the present invention, an inspection pattern for any inspection having an electrical function with an interval of the pitch p is provided on the outermost side of the panel-side lead electrode and the substrate-side connection electrode, While the inspection pattern on the substrate side is formed to have the same width as the connection electrode on the substrate side, the electrode width wS of the inspection pattern on the panel side is set to the width specified by the equation (2), so that the fine pattern can be obtained. Also at the pitch, it is possible to accurately and easily determine the quality of the shift between the panel-side lead electrode and the board-side connection electrode by visual observation through a microscope.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of the present invention, and is a schematic cross-sectional view showing a state in which a panel-side lead electrode and a substrate-side connection electrode are aligned in an ideal relationship with no displacement.
FIG. 2 is an explanatory view of the present invention, and is a schematic cross-sectional view showing a state in which a board-side electrode connection portion is shifted to the right by a minimum required overlap width with respect to a panel-side terminal portion.
FIG. 3 is an explanatory view of the present invention, and is a schematic cross-sectional view showing a state in which a substrate-side electrode connection portion is shifted to the right by a minimum required separation interval with respect to a panel-side terminal portion.
FIG. 4 is an explanatory view of the present invention, and is a schematic cross-sectional view showing a state in which a panel-side lead electrode has an optimum width.
FIG. 5 is an explanatory diagram of the present invention and is a graph showing a relationship between maximum displacements xu and xg between a panel-side lead electrode and a board-side connection electrode.
FIG. 6 is an explanatory view of the present invention and is a schematic cross-sectional view showing an inspection pattern for a shift inspection.
FIG. 7 is a schematic side view illustrating a method of connecting a liquid crystal panel and a liquid crystal drive circuit board.
FIG. 8 is a schematic plan view showing the terminal portion of the liquid crystal panel and the electrode connection portion of the liquid crystal drive circuit board side by side.
FIG. 9 is a schematic cross-sectional view showing a state where the terminal portion and the electrode connection portion in FIG. 8 are shifted.
[Explanation of symbols]
Reference Signs List 10 liquid crystal panel 11a terminal portion 13 panel-side lead electrode 14 panel-side inspection pattern 20 TCP substrate (liquid crystal drive circuit substrate)
20a electrode connection part 21 board side connection electrode 22 board side inspection pattern DP misalignment inspection pattern

Claims (2)

複数本のリード電極が一定のピッチで互いに平行に形成されている端子部を有する液晶パネルと、上記リード電極と同一ピッチになるように形成された複数の接続電極を有するフレキシブル基板とを含み、上記パネル側リード電極と上記基板側接続電極とを対向させて所定の接着手段を介して電気的・機械的に接続してなる液晶表示素子において、
上記基板側接続電極の電極幅をt,
上記パネル側リード電極および上記基板側接続電極のピッチをp,
対向する上記パネル側リード電極と上記基板側接続電極との間で所定の導通品質を確保するため最小限必要とされる重なり幅をus,
隣接する上記パネル側リード電極と上記基板側接続電極との間で所定の絶縁品質を確保するため最小限必要とされる離間間隔をgsとして、上記パネル側リード電極の最適幅wOが、次式(1)
wO=p+us−gs−t……式(1)
によって特定されることを特徴とする液晶表示素子。
Including a liquid crystal panel having a terminal portion in which a plurality of lead electrodes are formed in parallel with each other at a constant pitch, and a flexible substrate having a plurality of connection electrodes formed to have the same pitch as the lead electrodes, In a liquid crystal display element in which the panel-side lead electrode and the substrate-side connection electrode face each other and are electrically and mechanically connected via a predetermined bonding means,
The electrode width of the substrate side connection electrode is t,
The pitch between the panel-side lead electrode and the board-side connection electrode is p,
In order to ensure a predetermined conduction quality between the opposing panel-side lead electrode and the substrate-side connection electrode, the minimum required overlap width is us,
An optimal width wO of the panel-side lead electrode is expressed by the following equation, where gs is a minimum spacing required to secure a predetermined insulation quality between the adjacent panel-side lead electrode and the substrate-side connection electrode. (1)
wO = p + us-gs-t Equation (1)
A liquid crystal display device characterized by the following.
上記パネル側リード電極および上記基板側接続電極の最外側に、さらに上記ピッチpの間隔をもって電気的機能を持たないずれ検査用の検査パターンが設けられており、上記基板側の検査パターンが上記基板側接続電極と同一幅に形成されるのに対して、上記パネル側の検査パターンの電極幅wSが、次式(2)
wS=t+p−us−gs……式(2)
によって特定されることを特徴とする請求項1に記載の液晶表示素子。
On the outermost sides of the panel-side lead electrode and the substrate-side connection electrode, there is further provided an inspection pattern for any inspection having an electrical function with an interval of the pitch p, and the inspection pattern on the substrate side is the substrate. The electrode width wS of the test pattern on the panel side is defined by the following equation (2)
wS = t + p-us-gs (2)
The liquid crystal display element according to claim 1, wherein the liquid crystal display element is specified by:
JP2002285481A 2002-09-30 2002-09-30 Liquid crystal display element Withdrawn JP2004125833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002285481A JP2004125833A (en) 2002-09-30 2002-09-30 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002285481A JP2004125833A (en) 2002-09-30 2002-09-30 Liquid crystal display element

Publications (1)

Publication Number Publication Date
JP2004125833A true JP2004125833A (en) 2004-04-22

Family

ID=32278772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002285481A Withdrawn JP2004125833A (en) 2002-09-30 2002-09-30 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JP2004125833A (en)

Similar Documents

Publication Publication Date Title
KR100524033B1 (en) Electronic module and method for fabricating the same
US8446556B2 (en) Flexible printed circuit and electric circuit structure
JP5274564B2 (en) Flexible substrate and electric circuit structure
KR20090058987A (en) Method for fabricating liquid crystal display device and method for fabricating film carrier tape in it
JPWO2009004894A1 (en) Display module, liquid crystal display device, and display module manufacturing method
JP2006098455A (en) Mounting structure, substrate for mounting, electrooptical device and electronic equipment
JP2004095756A (en) Semiconductor package and method for manufacturing the same and electronic equipment
KR100715724B1 (en) Probe device, method of manufacture thereof, method of testing substrate using probe device
JP2001056477A (en) Liquid crystal display device and inspection method therefor
JP2004125833A (en) Liquid crystal display element
JP2004140384A (en) Method of connecting printed wiring board
JPH0990398A (en) Connecting structure of electric wiring substrate
JP2008224934A (en) Electrooptical device, and method for inspecting electric bonding state by anisotropic conductive layer
JP2003090856A (en) Mounting inspection method of wiring board
JP2006163012A (en) Display panel, display apparatus using the same and method for manufacturing display panel
JP2016207792A (en) Flexible printed board and image display device
US20070246836A1 (en) Electric terminal device and method of connecting the same
JPH11135909A (en) Electronic equipment and flexible wiring board
JP2002344097A (en) Mounting substrate and display device having the same
JP2000111939A (en) Liquid crystal display device
JP3684886B2 (en) Semiconductor chip mounting structure, liquid crystal device and electronic device
JP2007067197A (en) Connecting structure for driving circuit element
JP2003158354A (en) Mount inspection method of wiring board
JPH11218778A (en) Method for packaging liquid crystal display device
JP2001125127A (en) Liquid crystal device and connecting method therefor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110