JP2004125734A - Manufacturing method of slit plate of optical rotary encoder - Google Patents

Manufacturing method of slit plate of optical rotary encoder Download PDF

Info

Publication number
JP2004125734A
JP2004125734A JP2002293650A JP2002293650A JP2004125734A JP 2004125734 A JP2004125734 A JP 2004125734A JP 2002293650 A JP2002293650 A JP 2002293650A JP 2002293650 A JP2002293650 A JP 2002293650A JP 2004125734 A JP2004125734 A JP 2004125734A
Authority
JP
Japan
Prior art keywords
slit
disk
metal
rotary encoder
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002293650A
Other languages
Japanese (ja)
Other versions
JP4023732B2 (en
Inventor
Kiyoto Kobayashi
小林 清人
Toshiaki Atomachi
後町 敏明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harmonic Drive Systems Inc
Original Assignee
Harmonic Drive Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harmonic Drive Systems Inc filed Critical Harmonic Drive Systems Inc
Priority to JP2002293650A priority Critical patent/JP4023732B2/en
Publication of JP2004125734A publication Critical patent/JP2004125734A/en
Application granted granted Critical
Publication of JP4023732B2 publication Critical patent/JP4023732B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a metal slit circular disk which is high in strength and high in stiffness and formed with a precise slit by etching. <P>SOLUTION: The metal slit disk 5 for an optical rotary encoder is manufactured as follows: a disk 1 of Cu alloy is Ni plated 2, 3 on both its faces, and the Ni plated disk is etched from both the sides for forming a slit 4. The thicker the disk 1 is made, the larger the strength and stiffness of the slit disk 5 becomes. The etching speed of the Ni films 2, 3 are slower than that of the Cu alloy. Therefore, slit apertures 2a, 3a with a high precision can be formed on the Ni films 2, 3. The slit shape is limited by the slit apertures 2a, and 3a. Thereby the slit disk 5 of a high strength and high stiffness provided with the precise slit 4 can be obtained. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、光学式ロータリエンコーダに用いられている金属製のスリット板の製造方法に関するものである。
【0002】
【従来の技術】
光学式ロータリエンコーダは、良く知られているように、円周方向に所定ピッチでスリットが形成されたスリット円板と、このスリット円板のスリット形成位置を挟み対向配置した発光素子および受光素子から構成されており、回転部材の回転速度、回転位置などの情報を検出するために用いられている。スリット円板は、一般に30〜50ミクロン程度の薄い金属板、例えば、ステンレススチール製の円板にエッチング加工を施してスリットを形成することにより製造されている。
【0003】
【発明が解決しようとする課題】
しかしながら、このように薄い金属板を用いてスリット円板を製造しているので、スリット円板に撓みや残留歪みが発生しやすい。例えば、スリット円板を回転軸などに固定する際に歪みが発生しやすい。スリット円板に歪みが残ると、検出される信号波形に異常が発生する惧れがある。また、薄い軽量なスリット円板は、高速回転駆動時に共振が発生しやすく、スリット円板が共振状態に陥ると、やはり検出信号の異常などが引き起こされる。
【0004】
そこで、所定の剛性を備えた厚めの金属板を用いてスリット円板を製造することが考えられる。しかし、厚い金属板の場合にはスリット形成時のエッチング精度が低下してしまう。光学式ロータリエンコーダを小型化するためにスリット円板を小径のものとした場合には、スリットを高精度に形成する必要があるので、厚い金属板を用いてスリット円板を製造することが困難である。
【0005】
本発明の課題は、このような点に鑑みて、強度および剛性の高い金属板を用いて、精度良くスリットを形成することのできる光学式ロータリエンコーダのスリット板の製造方法を提案することにある。
【0006】
【課題を解決するための手段】
上記の課題を解決するために、本発明は、光学式ロータリエンコーダのスリット板の製造方法において、
スリット板用の金属基材の両面に、異なる金属素材からなる金属薄膜を形成する薄膜形成工程と、
前記金属薄膜および前記金属基材にエッチング加工を施してスリットを形成するエッチング工程とを含み、
前記金属薄膜のエッチング速度が前記金属基材のエッチング速度よりも遅くなるように、これら金属薄膜および金属基材の材質が選択されていることを特徴としている。
【0007】
本発明の製造方法においては、金属基材の両面に形成したエッチング速度の遅い金属薄膜により精度良くスリット形状が規定される。また、金属基材の厚さを厚くすることにより、スリット板の強度および剛性を充分なものにできる。よって、歪みが発生し難く、しかも高速回転駆動時に共振の起こり難いスリット板を製造できる。
【0008】
ここで、前記金属基材としては銅合金製の基材を用いることができ、前記金属薄膜としてはニッケル薄膜を用いることができる。
【0009】
この場合には、前記金属基材の厚さを50〜80ミクロンとし、前記金属薄膜の厚さを15〜20ミクロンとすれば、所望の精度でスリットを形成でき、しかも、所望の強度および剛性を備えたスリット板が得られることが確認された。
【0010】
次に、本発明は光学式ロータリエンコーダのスリット板に関するものであり、本発明の方法により製造したことを特徴としている。また、本発明は光学式ロータリエンコーダに関するものであり、本発明の方法により製造されたスリット板を備えていることを特徴としている。
【0011】
本発明のスリット板は強度および剛性が高く、スリットが精度良く形成されている。従って、回転軸への固定作業などにおいて歪みが発生しにくく、高速回転駆動時に共振が発生しにくい。よって、検出精度の高い光学式ロータリエンコーダを得ることができる。
【0012】
【発明の実施の形態】
以下に、図面を参照して、本発明による光学式ロータリエンコーダのスリット板の製造方法の一例を説明する。
【0013】
図1は本例の製造方法を示す説明図であり、この図を参照して本例の製造方法を説明する。まず、金属基材として、厚さが50〜80ミクロンの銅合金製の円板1を用意する。この円板1の両面1aおよび1bに、図1(a)に示すように、同一厚さの金属薄膜を形成する。本例では厚さが15〜20ミクロンのニッケル薄膜2、3を形成する。
【0014】
次に、ニッケル薄膜2、3が両面に形成された銅合金製の円板1を、両側からエッチングして、スリット4を形成する。ここで、銅合金に比べてニッケルはエッチング速度が遅いので、これらニッケル薄膜2、3には精度良くスリット用開口2a、3aが形成される。内側の銅合金製の円板1はエッチング速度が速いので、図1(b)、(c)に示すように、ニッケル薄膜2、3にスリット用開口2a、3aが形成された時点では、左右にエッチングが進行しており、一回り大きなスリット用開口1cが形成された状態になる。このようにしてスリット円板5が得られる。
【0015】
本例のスリット円板5は、50〜80ミクロンの銅合金製の円板1が基材として用いられているので、従来の金属製のスリット円板に比べて強度および剛性が高い。よってスリット円板5には歪みや撓みが発生しにくい。また、高速回転駆動状態で共振が発生しにくい。さらに、スリット4の形状は、ニッケル薄膜2、3をエッチングすることにより形成したスリット用開口2a、3aによって規定されるので、精度良くスリット4が形成されている。
【0016】
従って、本例のスリット円板5は、回転軸などへの取付時に歪みが発生して検出信号波形に異常が出るなどの弊害が発生しない。また、高速回転駆動時の共振によって検出信号異常が発生することもない。
【0017】
これに加えて、スリット円板5に強度および剛性を付与している金属基材として銅合金はエッチング速度が速いので、エッチング時間が長くなりスリット円板の製造時間が長くなってしまうこともない。また、強度および剛性が高いので、製品歩留まりも向上するなどの利点がある。
【0018】
(その他の実施の形態)
なお、上記の例では、金属基材として銅合金製の円板を用いていると共に、金属薄膜としてニッケル薄膜を用いているが、銅合金およびニッケル以外の金属素材を用いて金属基材および金属薄膜を形成することもできる。
【0019】
【発明の効果】
以上説明したように、本発明の光学式ロータリエンコーダのスリット板の製造方法においては、エッチング速度の早い金属素材からなる金属基材の両面にエッチング速度の遅い金属薄膜を形成し、エッチングによりスリットを形成している。従って、金属基材によってスリット板に所望の強度および剛性が付与され、金属薄膜によってスリットを精度良くエッチングすることができる。
【0020】
よって、本発明によれば、歪みが発生しにくく、高速回転駆動時に共振が起こりにくく、しかも、精度良くスリットが形成されたスリット板を製造できる。また、金属基材は充分に厚いので、製造加工時の取り扱いが容易であり、歩留まり良くスリット板を製造できる。さらに、金属基材はエッチング速度が速いので、厚くても従来におけるスリット板の製造時間と同程度の製造時間でスリット板を製造できる。
【0021】
次に、本発明の方法により製造したスリット板は強度および剛性が高く、スリットが精度良く形成されているので、歪みや高速回転駆動時の共振に起因する検出信号異常の発生を回避できる。よって、精度の高い検出信号を得ることのできる光学式ロータリエンコーダを実現できる。
【図面の簡単な説明】
【図1】本発明を適用したスリット円板の製造方法を示す図であり、(a)は銅合金製の円板の両面にニッケル薄膜が形成された状態を示す部分断面図であり、(b)はエッチングによりスリットが形成された状態を示す断面図であり、(c)はその部分平面図である。
【符号の説明】
1  銅合金製の円板(金属基材)
1a、1b 円板の表面
1c スリット用開口
2、3 ニッケル薄膜(金属薄膜)
2a、3a スリット用開口
4  スリット
5  スリット円板
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a metal slit plate used for an optical rotary encoder.
[0002]
[Prior art]
As is well known, an optical rotary encoder is composed of a slit disk in which slits are formed at a predetermined pitch in a circumferential direction, and a light-emitting element and a light-receiving element which are arranged to face each other with a slit forming position of the slit disk therebetween. It is used to detect information such as the rotation speed and the rotation position of the rotating member. The slit disk is generally manufactured by etching a thin metal plate of about 30 to 50 microns, for example, a stainless steel disk to form slits.
[0003]
[Problems to be solved by the invention]
However, since the slit disk is manufactured using such a thin metal plate, the slit disk is liable to be bent or to have residual distortion. For example, distortion tends to occur when the slit disk is fixed to a rotating shaft or the like. If distortion remains in the slit disk, an abnormality may occur in the detected signal waveform. Further, a thin and lightweight slit disk tends to generate resonance during high-speed rotation driving, and when the slit disk enters a resonance state, an abnormality in a detection signal or the like is also caused.
[0004]
Therefore, it is conceivable to manufacture a slit disk using a thick metal plate having a predetermined rigidity. However, in the case of a thick metal plate, the etching accuracy at the time of forming the slit is reduced. If the slit disk has a small diameter in order to reduce the size of the optical rotary encoder, it is necessary to form the slit with high precision, so it is difficult to manufacture the slit disk using a thick metal plate. It is.
[0005]
In view of the above, an object of the present invention is to propose a method of manufacturing a slit plate of an optical rotary encoder that can form a slit with high accuracy using a metal plate having high strength and rigidity. .
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a method of manufacturing a slit plate of an optical rotary encoder,
A thin film forming step of forming a metal thin film made of a different metal material on both surfaces of a metal substrate for a slit plate,
An etching step of forming a slit by performing an etching process on the metal thin film and the metal base material,
The material of the metal thin film and the metal base is selected so that the etching rate of the metal thin film is lower than the etching rate of the metal base.
[0007]
In the manufacturing method of the present invention, the slit shape is accurately defined by the metal thin film having a low etching rate formed on both surfaces of the metal substrate. Further, by increasing the thickness of the metal substrate, the strength and rigidity of the slit plate can be made sufficient. Therefore, it is possible to manufacture a slit plate in which distortion hardly occurs and resonance hardly occurs during high-speed rotation driving.
[0008]
Here, a copper alloy base material can be used as the metal base material, and a nickel thin film can be used as the metal thin film.
[0009]
In this case, if the thickness of the metal substrate is 50 to 80 microns and the thickness of the metal thin film is 15 to 20 microns, a slit can be formed with a desired accuracy, and a desired strength and rigidity can be obtained. It was confirmed that a slit plate provided with was obtained.
[0010]
Next, the present invention relates to a slit plate of an optical rotary encoder, which is characterized by being manufactured by the method of the present invention. Further, the present invention relates to an optical rotary encoder, which is provided with a slit plate manufactured by the method of the present invention.
[0011]
The slit plate of the present invention has high strength and rigidity, and the slit is formed with high accuracy. Therefore, distortion is less likely to occur in the work of fixing to the rotating shaft, and resonance is less likely to occur during high-speed rotation driving. Therefore, an optical rotary encoder with high detection accuracy can be obtained.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an example of a method for manufacturing a slit plate of an optical rotary encoder according to the present invention will be described with reference to the drawings.
[0013]
FIG. 1 is an explanatory view showing the manufacturing method of the present embodiment, and the manufacturing method of the present embodiment will be described with reference to this drawing. First, a disk 1 made of a copper alloy having a thickness of 50 to 80 microns is prepared as a metal substrate. As shown in FIG. 1A, a metal thin film having the same thickness is formed on both surfaces 1a and 1b of the disk 1. In this example, nickel thin films 2 and 3 having a thickness of 15 to 20 microns are formed.
[0014]
Next, the slits 4 are formed by etching the copper alloy disc 1 having the nickel thin films 2 and 3 formed on both sides thereof from both sides. Here, since the etching rate of nickel is lower than that of the copper alloy, the openings 2a and 3a for slits are formed in the nickel thin films 2 and 3 with high accuracy. Since the inner copper alloy disc 1 has a high etching rate, as shown in FIGS. 1B and 1C, when the slit openings 2a and 3a are formed in the nickel thin films 2 and 3, the left and right sides are left and right. Etching is progressing to a state in which a slightly larger slit opening 1c is formed. Thus, the slit disk 5 is obtained.
[0015]
Since the slit disk 5 of this example uses the copper alloy disk 1 of 50 to 80 microns as a base material, the slit disk 5 has higher strength and rigidity than a conventional metal slit disk. Therefore, the slit disk 5 is unlikely to be distorted or bent. In addition, resonance hardly occurs in the high-speed rotation driving state. Further, since the shape of the slit 4 is defined by the slit openings 2a, 3a formed by etching the nickel thin films 2, 3, the slit 4 is formed with high accuracy.
[0016]
Therefore, the slit disk 5 of the present embodiment does not suffer from such a problem that distortion occurs when the slit disk 5 is attached to a rotating shaft or the like and abnormalities appear in the detection signal waveform. Further, no abnormality in the detection signal occurs due to resonance during high-speed rotation driving.
[0017]
In addition, since copper alloy has a high etching rate as a metal base material that imparts strength and rigidity to the slit disk 5, the etching time is long and the manufacturing time of the slit disk is not long. . In addition, since strength and rigidity are high, there are advantages such as an improvement in product yield.
[0018]
(Other embodiments)
In the above example, a copper alloy disk is used as the metal substrate, and a nickel thin film is used as the metal thin film. A thin film can also be formed.
[0019]
【The invention's effect】
As described above, in the method for manufacturing a slit plate of an optical rotary encoder of the present invention, a metal thin film having a low etching rate is formed on both surfaces of a metal base made of a metal material having a high etching rate, and the slit is formed by etching. Has formed. Therefore, the metal substrate provides the slit plate with desired strength and rigidity, and the metal thin film allows the slit to be etched with high accuracy.
[0020]
Therefore, according to the present invention, it is possible to manufacture a slit plate in which distortion is less likely to occur, resonance is less likely to occur during high-speed rotation driving, and slits are accurately formed. Further, since the metal base material is sufficiently thick, handling during manufacturing processing is easy, and a slit plate can be manufactured with high yield. Further, since the etching rate of the metal base material is high, the slit plate can be manufactured in the same manufacturing time as the conventional slit plate even if it is thick.
[0021]
Next, since the slit plate manufactured by the method of the present invention has high strength and rigidity and the slits are formed with high precision, it is possible to avoid the occurrence of a detection signal abnormality due to distortion or resonance during high-speed rotation driving. Therefore, an optical rotary encoder that can obtain a highly accurate detection signal can be realized.
[Brief description of the drawings]
FIG. 1 is a view showing a method of manufacturing a slit disk to which the present invention is applied, and FIG. 1 (a) is a partial cross-sectional view showing a state in which nickel thin films are formed on both surfaces of a copper alloy disk; (b) is a cross-sectional view showing a state in which a slit is formed by etching, and (c) is a partial plan view thereof.
[Explanation of symbols]
1 Copper alloy disc (metal substrate)
1a, 1b Disk surface 1c Slit opening 2, 3 Nickel thin film (metal thin film)
2a, 3a Slit opening 4 Slit 5 Slit disk

Claims (5)

スリット板用の金属基材の両面に、異なる金属素材からなる金属薄膜を形成する薄膜形成工程と、
前記金属薄膜および前記金属基材にエッチング加工を施してスリットを形成するエッチング工程とを含み、
前記金属薄膜のエッチング速度が前記金属基材のエッチング速度よりも遅くなるように、これら金属薄膜および金属基材の材質が選択されていることを特徴とする光学式ロータリエンコーダのスリット板の製造方法。
A thin film forming step of forming a metal thin film made of a different metal material on both surfaces of a metal substrate for a slit plate,
An etching step of forming a slit by performing an etching process on the metal thin film and the metal base material,
The method for manufacturing a slit plate of an optical rotary encoder, wherein the materials of the metal thin film and the metal base are selected so that the etching rate of the metal thin film is lower than the etching rate of the metal base. .
請求項1において、
前記金属基材を銅合金製とし、
前記金属薄膜をニッケル製としたことを特徴とする光学式ロータリエンコーダのスリット板の製造方法。
In claim 1,
The metal substrate is made of a copper alloy,
A method for manufacturing a slit plate of an optical rotary encoder, wherein the metal thin film is made of nickel.
請求項2において、
前記金属基材の厚さを50〜80ミクロンとし、
前記金属薄膜の厚さを15〜20ミクロンとしたことを特徴とする光学式ロータリエンコーダのスリット板の製造方法。
In claim 2,
The thickness of the metal substrate is 50 to 80 microns,
A method for manufacturing a slit plate of an optical rotary encoder, wherein the thickness of the metal thin film is 15 to 20 microns.
請求項1、2または3に記載の製造方法により製造したことを特徴とする光学式ロータリエンコーダのスリット板。A slit plate for an optical rotary encoder manufactured by the manufacturing method according to claim 1. 請求項4に記載のスリット板を備えていることを特徴とする光学式ロータリエンコーダ。An optical rotary encoder comprising the slit plate according to claim 4.
JP2002293650A 2002-10-07 2002-10-07 Method for manufacturing slit plate of optical rotary encoder Expired - Lifetime JP4023732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002293650A JP4023732B2 (en) 2002-10-07 2002-10-07 Method for manufacturing slit plate of optical rotary encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002293650A JP4023732B2 (en) 2002-10-07 2002-10-07 Method for manufacturing slit plate of optical rotary encoder

Publications (2)

Publication Number Publication Date
JP2004125734A true JP2004125734A (en) 2004-04-22
JP4023732B2 JP4023732B2 (en) 2007-12-19

Family

ID=32284504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002293650A Expired - Lifetime JP4023732B2 (en) 2002-10-07 2002-10-07 Method for manufacturing slit plate of optical rotary encoder

Country Status (1)

Country Link
JP (1) JP4023732B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104422467A (en) * 2013-08-23 2015-03-18 欧姆龙株式会社 Optical encoder light shielding plate, producing method therof, and optical encoder provided therewith
JP2016211060A (en) * 2015-05-13 2016-12-15 株式会社メルテック Manufacturing method of precision machinery component and grid plate for permeation encoder
JP6240867B1 (en) * 2017-06-12 2017-12-06 株式会社プロセス・ラボ・ミクロン Reflector for optical encoder and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104422467A (en) * 2013-08-23 2015-03-18 欧姆龙株式会社 Optical encoder light shielding plate, producing method therof, and optical encoder provided therewith
US9279704B2 (en) 2013-08-23 2016-03-08 Omron Corporation Optical encoder light shielding plate, producing method therof, and optical encoder provided therewith
JP2016211060A (en) * 2015-05-13 2016-12-15 株式会社メルテック Manufacturing method of precision machinery component and grid plate for permeation encoder
JP6240867B1 (en) * 2017-06-12 2017-12-06 株式会社プロセス・ラボ・ミクロン Reflector for optical encoder and manufacturing method thereof
JP2019002711A (en) * 2017-06-12 2019-01-10 株式会社プロセス・ラボ・ミクロン Reflection plate for optical encoder and method for manufacturing the same

Also Published As

Publication number Publication date
JP4023732B2 (en) 2007-12-19

Similar Documents

Publication Publication Date Title
US7393594B2 (en) Laminated metal thin plate formed by electrodeposition and method of producing the same
JP2004125734A (en) Manufacturing method of slit plate of optical rotary encoder
WO2006090765A1 (en) Base for hard disk drive and method of manufacturing the same
JP2008184670A (en) Method for producing organic el element, and mask for film deposition
JP2003279381A (en) Encoder, code disk, method of manufacturing metallic mold used for producing the code disk, and method of manufacturing the code disk
KR101728580B1 (en) Magnetic encoder
JP2005227134A (en) Magnetic sensor
JP2008169414A (en) Jig for film deposition
JP4183101B2 (en) Mold fine processing method, mold and molded product
WO2018226198A1 (en) Substrate alignment detection using circumferentially extending timing pattern
TW202120968A (en) Light-shielding member, lens unit, camera module, and electronic device
JP2018124192A (en) Magnetic encoder and manufacturing method therefor
JP2004218002A (en) Method for producing precise metallic member utilizing stripped surface from base material
US4673808A (en) Disc for rotary encoder and method for producing same
JP3465280B2 (en) Manufacturing method of magnetic sensor
JP2006307282A (en) Mask for vapor deposition
JPS6038774A (en) Production for core bar of rotary recording sheet
JPH0453012A (en) Manufacture of thin film magnetic head
JPS62147948A (en) Manufacture of magnetic pole of linear pulse motor
TWI408341B (en) A coding element of a pedometer and a method of manufacturing the same
JPH07234103A (en) Rotary disk for optical position detector
JP2669187B2 (en) Manufacturing method of magnetic sensor
JP2502040B2 (en) Magnetic disk manufacturing method
JPS6010407A (en) Production of magnetic head
JPH0347691B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070928

R150 Certificate of patent or registration of utility model

Ref document number: 4023732

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term