JP2004125547A - Detector for stationary infrared ray source - Google Patents

Detector for stationary infrared ray source Download PDF

Info

Publication number
JP2004125547A
JP2004125547A JP2002288616A JP2002288616A JP2004125547A JP 2004125547 A JP2004125547 A JP 2004125547A JP 2002288616 A JP2002288616 A JP 2002288616A JP 2002288616 A JP2002288616 A JP 2002288616A JP 2004125547 A JP2004125547 A JP 2004125547A
Authority
JP
Japan
Prior art keywords
detector
shape memory
memory alloy
pyroelectric infrared
pyroelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002288616A
Other languages
Japanese (ja)
Inventor
Fumio Kaneda
金田 文郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002288616A priority Critical patent/JP2004125547A/en
Publication of JP2004125547A publication Critical patent/JP2004125547A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve a pyroelectric infrared-ray detector so as to be capable of performing the detection in a standstill state, in which the problems are that a full-rigged infrared-ray source detector is expensive for detecting the existence of an infrared ray source such as a standstill person and that an inexpensive pyroelectric infrared ray detector cannot detect the infrared ray source such as the standstill person, and to realize an inexpensive detector. <P>SOLUTION: The existence of the standstill person or the like can be detected by periodically moving the pyroelectric infrared-ray detector itself so that the standstill infrared ray source is relatively moved. Further, the detector is mounted at the tip of a pendulum to move the detector, so that the power consumption is reduced. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明は、赤外線を発する人や動物の存在を静止しているか、動いているかにかかわらず検出するための装置に関するものである。
【0002】
【従来の技術】
絶対赤外線強度測定の検出器では、静止赤外線源検出は可能で、各種の方式があるが、非常に高価で大がかりある。また、焦電式赤外線検出器は、防犯用などで安価に広く使われているが、その原理上、赤外線源が静止していると検出できない。
【0003】
【発明が解決しようとする課題】
焦電式赤外線検出器を改良して、静止している人などの赤外線源の存在を検出するための装置を安価に実現する。また、検出装置の電力消費を出来るだけ少なくし、長時間の電池駆動可能とすることにより、ワイヤレスが可能とする。これにより、設置に本格的な電気工事する必要がなく、照明器具の自動入り切りや、介護などの遠隔監視に容易に応用でき、普及しやすくする。また、検出視野範囲を広くして、設置個数を少なく出来るので更に安価になる。
【0004】
【課題を解決するための手段】
本発明は、焦電式赤外線検出器が赤外線の変化を検出し赤外線源が静止して赤外線の変化がなくなると検出できなくなる欠点を改良して、焦電式赤外線検出器自身を周期的に移動させて、静止している人などの赤外線源が相対的に動くようにし、その存在を検出させることを特徴とする。
【0005】
【発明実施の形態】
検出器を周期的に動かす方法は各種ある。現在存在する焦電式検出器の検出可能赤外線源移動速度は毎秒1m程度であるので、検出器を動かす周期もこの速度に近くすることが適当である。これより早過ぎたり、また遅過ぎると充分な感度が得られない。
【0006】
【実施例1】
最も簡単な実施例を図1に基づき説明する。本発明の検出器の主なる用途は、室内などの人の存在を検出することを想定している。したがって図1は本発明の検出装置を天井1に取り付けた図である。焦電式赤外線検出器2は腕3の先に取り付けられ、腕3は回転モーター4によりモーター回転軸5の回りを一定速度で回転させる。通常焦電式赤外線検出器2は赤外線源物体が毎秒1m位の速度で動くと検出するので、焦電式赤外線検出器2の移動速度もこの程度が適当である。モータの回転速度が毎秒1回転とすると、焦電式赤外線検出器2の中心が描く円周の長さが1m程度にするには、モーター回転軸5から焦電式赤外線検出器2の中心までの距離は0.16m程度になる。常に同じ方向に回転させると、焦電式赤外線検出器2に接続されている信号線等が巻きつかないようなスライド接点が必要である。これを避けるために、回転モーター4の回転方向を交互にしても基本的検出特性は変わらない。
【0007】
【実施例2】
検出器を周期的に動かす方法で最も効果的実施例を図2、3に示して説明する。図2は、本実施例の外観図で上方が天井である。この実施例では検出器を動かす手段として、焦電式赤外線検出器2を振り子7の先端に取り付け振り子運動をおこなわせる。振り子7は振動支点8を支点とし振動する。振り子7の上部には永久磁石9を取り付ける。装置の固定部分には、アクチュエーターコイル10を取り付ける。振り子7が振動して永久磁石9が近づいたときアクチュエーターコイル10に引き付ける方向に電流を流し、遠ざかる時には反発する方向に流すようにすれば、振り子7を継続的に振動させられる。焦電式赤外線検出器2は通常共通線13、電源線14、信号線15、計3本の線が外部との間に必要である。振り子7と振動支点8を中空にし、図2のように中空の中に配線すると振動する際の線によるねじれ抵抗を少なくし、消費電力を少なくすることができる。振り子7や振動支点8などを導電体にすれば、共通線13は振り子7に直接接続し、外部に電気的につながるので配線する必要がない。電源線14、信号線15は検出回路12に接続される。検出回路12は焦電式赤外線検出器2の電源供給と、焦電式赤外線検出器2からでるアナログ波形出力を人の有無の信号レベルに変換し外部に送る。コイル線16は、アクチュエーター回路11に接続される。振り子の周期を1秒とし、振り角90度とすると焦電式赤外線検出器2が毎秒1mの速度で移動させるには、振動支点8と焦電式赤外線検出器2の距離は約0.32mが適当となる。図3は振り子式の検出範囲を説明する図である。振り子7、焦電式赤外線検出器2が左に振れたとき、振り子7A、焦電式赤外線検出器2Aで示す。この時の焦電式赤外線検出器2Aは左側に傾くので、その検出範囲は視野角18Aとなる。反対に右に振れたときは、その検出範囲は視野角18Bとなる。本発明の検出器の全体の検出範囲は左に最大に振れたところから、右に最大に振れたところまでの合成で、視野角19になる。この結果検出視野範囲が広がる。
【0008】
【実施例3】
検出器を周期的に動かす方法で通常のモーターを使って小型にした実施例を図4、5に示して説明する。図4は外観図である。モーター20の回転軸に、焦電式赤外線検出器2が先端に付いたアーム21を取り付ける。アクチュエーター回路11によりモーターに一定時間電圧をかけ、ある角度回転させる。図5はこの時の動き説明する図である。図4で向かって左に回転させた後アクチュエーター回路11により今度は逆の電圧をかけ右に一定角度回転させる。このようにして周期的に焦電式赤外線検出器2を振らせる。前の実施例と同様、赤外線源があるときは、焦電式赤外線検出器2に入る赤外線量が変化し検出回路12で検出する。首振りの周期はアーム21の長さにもよるが、0.3Hz〜1Hzが適当である。焦電式赤外線検出器2は直径20mm、長さ20mm程度なので、アーム21の長さは40mm位である。またこれを駆動するモーターも1W程度の小さなモーターで良い。
【0009】
【実施例4】
検出器を周期的に動かす方法で形状記憶合金を使用した一般的実施例を図6に示す。図6では、焦電式赤外線検出器2を先に取り付けたアーム21に回転軸28のまわりに首を振る状態にする。アーム21の上端に腕木29を取り付け、右の端に形状記憶合金線23をとりつけ、その他端を基板8に固定する。腕木29の左の端にバネ24Aを取り付け、さらにそのバネ24Aの他端を基板8に固定する。形状記憶合金線23は長いほど、変位が大きく取れるため、複数のプーリー25を配置し、より小さい空間で、長さを確保するほうが効果的である。形状記憶合金線23はそれ自身に電流を流してその発熱により収縮する特性のものを使用する。したがって、形状記憶合金線23の一端に電流供給線正極26を接続し他端に電流供給線負極27を接続する。形状記憶合金線23に電流を流していない状態では、腕木29の他端に取り付けられたコイルバネ24Aにより引っ張られ、焦電式赤外線検出器2は左の方向に向いた位置になる。またこの状態で、形状記憶合金線23Aは十分張られた状態にしておく。形状記憶合金線電流制御部22により、電流供給線正極26、電流供給線負極27の間に電流を流すと、形状記憶合金線23は収縮して、形状記憶合金線23Aから形状記憶合金線23Bの状態になり、腕木29の右の端は引っ張られ上に上がり、焦電式赤外線検出器2は右の方向を向く。この結果コイルバネ(縮んだ状態)24Aは伸びてコイルばね(伸びた状態)24Bの状態になる。再び形状記憶合金線電流制御部22により、形状記憶合金線23に流していた電流を切ると、自然冷却により、形状記憶合金線23は延びる。この結果、コイルバネ(伸びた状態)24Bは引っ張って、コイルばね(縮んだ状態)24Aにもどり、焦電式赤外線検出器2は元の左側に向く。このように、形状記憶合金線電流制御部22より、周期的に電流の入り切りをすれば、焦電式赤外線検出器2は左右に振れる。後の原理は実施例2と同様である。左右に振れる周期は、形状記憶合金線23の材質にもよるが、電流を多く流せば発熱が早くなる。焦電式赤外線検出器2の特性により、本発明では0.3Hzから1Hzくらいが適当なので、通常の形状記憶合金線では、200mAから300mAが程度が適当である。また、焦電式赤外線検出器2の大きさは直径20mm程度であるので、これを左右に45度程度振らせるには、腕木29の先端で20mm程度の収縮が必要である。通常の形状記憶合金線の収縮率は4%程度なので、形状記憶合金線23は、500mm位の長さが必要である。このため、全体の形状を小さくするためには、プーリー25を複数使用して、形状記憶合金線23を往復させ、より少ない空間で長さを確保する必要がある。
【0010】
【実施例5】
検出器を周期的に動かす方法で形状記憶合金を使用した別の実施例を図7,8に示す。実施例4では、形状記憶合金線に電流を流さない静止状態では焦電式赤外線検出器の向きが偏ってしまう。この点を改良した方法が実施例5である。図7は静止状態の説明図である。焦電式赤外線検出器2が取り付けられているアーム21の上方にバネケース31を取り付ける。このバネケース31のなかに両端に、左右対称に左バネ32A、右バネ32Bの一端を固定しそれぞれの他端に左ローラー30A、右ローラー30Bを取り付ける。このローラーそれぞれに、さらに形状記憶合金線左34A、形状記憶合金線右34Bを取り付け、それぞれの他端を基板8上の形状記憶合金線左固定位置35Aと形状記憶合金線右固定位置35Bに固定する。形状記憶合金線の引っ張る方向を最良にするた、長さを確保するため、間にプーリー25を配置する。静止状態では、左バネ32A、右バネ32Bがそれぞれ左ローラー30A,右ローラー30Bを引っ張り、それぞれ左ストッパー33A、右ストッパー33Bで止まっている。バネケース31の上方面には、ローラーが飛び出さず、かつ形状記憶合金線が入る幅に、溝が切られていて、ローラー稼動方向36のように動けるようになっている。形状記憶合金線電流制御部22により、電流供給線左正極37Aと電流供給線共通負極37Cの間に電流を流すと、形状記憶合金線左34Aは収縮する。この時の状態を説明するのが図8である。収縮した形状記憶合金線左34Aの一端に接続されている左ローラー30Aは左ストッパー33Aで動けないので、バネケース31の左側を持ち上げ、検出器回転軸28のまわりに回転する。形状記憶合金線右34Bの長さは変化がないので、バネケース31の右側が下がった分を補正するため、右ローラー30Bは引っ張られローラー稼動方向36に移動する。この時右バネ32Bは延びた状態になる。ローラーはこのときの動きをスムーズにするためで必ずしも必要ない。再び形状記憶合金線電流制御部22により、電流を止めると、形状記憶合金線左34Aは元の長さに戻る。このとき延びている右バネ32Bに引っ張られバネケース31は水平に戻る。右へ振る場合も同様である。このようにして、形状記憶合金線電流制御部22により、左右の形状記憶合金線に周期的に交互に電流を流せば、焦電式赤外線検出器2を左右に振らせることができる。また、電流を停止すれば、焦電式赤外線検出器2は真下を向く。また、焦電式赤外線検出器2の大きさは直径20mm程度であるので、これを左右に45度程度振らせるには、設計にもよるが、10mm程度の収縮に出来る。通常の形状記憶合金線の収縮率は4%程度なので、形状記憶合金線34A、34Bは、それぞれ250mm位の長さが必要である。このため、全体の形状を小さくするためには、プーリー25を複数使用して、形状記憶合金線34A,34Bを往復させ、より少ない空間で長さを確保する必要があるのは、実施例4と同様である。本実施例では、動きをスムーズにするために引っ張りバネを使用した例を説明しているが、バネケース31の中心部に圧縮バネを置いて、同様に実現することもできる。
【0011】
【実施例6】
実施例2〜5では、検出器の振る範囲は垂直平面上である。実施例6では、検出器の移動を円錐状に行い、視野範囲をより広く取るための例である。この方法の一例を図9に示す。モーター軸38と同軸に配置した検出器主アーム39Aに焦電式赤外線検出器2を先端に取り付けた検出器副アーム39Bを検出器副アーム軸40とモーター軸38がある角度を持つように一体にしたくの字形検出器ヘッドにする。この検出器ヘッドをモーター軸38の周りに回転させる。このときの焦電式赤外線検出器2の先端の軌跡が検出器回転軌跡41になる。モーター20が回転していないときは、焦電式赤外線検出器2の向きは、図9で示すようにになり、その視野は静止検出視野42になる。モーター20を動かせて、モーター軸38の周りに回転させると、静止検出視野42は移動して、結果的にこの装置がカバーする範囲は全体検出視野43になる。この装置の取り付ける天井の高さを2.5mとし、検出器副アーム軸40とモーター軸38の角度を45度とすると、焦電式赤外線検出器2の固定視野角を90度、検出可能距離を10mとすると、全体検出視野43は半径9.6mの円すなわち約289平方メートルになる焦電式赤外線検出器2を固定式で真下に向けた場合は視野範囲は半径5mの円すなわち20平方メートルなので、検出視野範囲は10倍以上に広がる。焦電式赤外線検出器2から信号線が出ているので、モーター20をいつも同じ方向に回転させるためには、スライド接点など信号を外に取り出すための工夫しなければならない。これを避けるために、回転を交互に行うことでもよい。焦電式赤外線検出器2の応答特性からこの回転速度は、毎秒1回転程度が適当である。
【0012】
【発明の効果】
この発明により、静止している人や動物などの赤外線発生源が存在するかどうかの検出が安価に可能となり、かつ検出可能範囲を広げる。このため、防犯上の監視や遠隔介護に有効である。この発明により人が居るかどうかの検出が的確に判断でき、照明の点灯、消灯が自動化でき電力節約に役立つ。また実施例2の振子式は重力を利用するので、少ない電力で作動させられる。このため長時間の電池駆動が可能となる。照明の光りを利用して、太陽電池による駆動も可能である。このため検出装置をワイヤレスにできるので、本格的な電気配線工事を伴わず、手軽に設置できるシステムが構築できる。また実施例2では、検出器が振り子運動により検出方向を変えるので、検出可能範囲が飛躍的に広がる効果がある。振り子の振れる角度を左右で45度づつ計90度とすると、現在存在する焦電式赤外線検出器は視野角90度、検出距離10m程度であるので、検出可能範囲は、振り子振動方向に20m、幅5m 計100平方メートルの範囲になる。焦電式赤外線検出器が固定の場合は、天井の高さを2.5mとすると直径約5mの円、約20平方メートルなので、5倍以上に広がる。さらに実施例6の方式なら、14倍以上に広がる。このため室の形状にもよるが、広い部屋では設置する検出装置の数を4分の1以上減らせることになり、システムとして安価になる。
【図面の簡単な説明】
【図1】回転式焦電式検出器移動方法の実施例1の外観図である。
【図2】振子式焦電式検出器移動方法の実施例2の外観図である。
【図3】振子式焦電式検出器実施例2の検出範囲を説明する図である。
【図4】首振り式焦電式検出器でモーター駆動方式の実施例3の外観図である。
【図5】首振り式焦電式検出器でモーター駆動方式の実施例3の動き説明する図である。
【図6】首振り式焦電式検出器で形状記憶合金での駆動方式の実施例4を説明する図である。
【図7】首振り式焦電式検出器で形状記憶合金での駆動方式の実施例5で静止状態の図である。
【図8】首振り式焦電式検出器で形状記憶合金での駆動方式の実施例5で左に振れた状態の図である。
【図9】検出視野範囲を広げるために、くの字型検出ヘッドにした実施例6を説明するための図である。
【符号の説明】
1  天井
2  焦電式検出器
2A 左に振れた位置の焦電式検出器
2B 左に振れた位置の焦電式検出器
3  腕
4  回転モーター
5  モーター回転軸
6  人などの赤外線源
7  振り子
7A 左に振れた位置の振り子
7B 右に振れた位置の振り子
8  振動支点
9  永久磁石
10 アクチュエーターコイル
11 アクチュエーター回路
12  検出回路
13  共通線
14  電源線
15  信号線
16  アクチュエータコイル線
17  振り子振れ角
18A 左に振れたときの検出器の視野角
18B 右に振れたときの検出器の視野角
19  全体の視野角
20  モーター
21  アーム
22  形状記憶合金線電流制御部
23  形状記憶合金線
23A 形状記憶合金線(電流を流さない状態)
23B 形状記憶合金線(電流を流した状態)
24A コイルバネ(縮んだ状態)
24B コイルバネ(伸びた状態)
25  プーリー
26 電流供給線正極
27 電流供給線負極
28  検出器回転軸
29  腕木
30A 左ローラー
30B 右ローラー
31  バネケース
32A 左バネ
32B 右バネ
33A 左ストッパー
33B 右ストッパー
34A 形状記憶合金線左
34B 形状記憶合金線右
35A 形状記憶合金線左固定位置
35B 形状記憶合金線右固定位置
36  ローラー稼動方向
37A 電流供給線左正極
37B 電流供給線右正極
37C 電流供給線共通負極
38  モーター軸
39A 検出器主アーム
39B 検出器副アーム
40  検出器副アーム軸
41  検出器回転軌跡
42  静止検出視野
43  全体検出視野
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a device for detecting the presence of a person or animal that emits infrared light, whether stationary or moving.
[0002]
[Prior art]
A detector for measuring the absolute infrared intensity can detect a stationary infrared source, and there are various methods, but they are very expensive and large. In addition, pyroelectric infrared detectors are widely used at low cost for crime prevention and the like, but due to the principle, they cannot be detected if the infrared source is stationary.
[0003]
[Problems to be solved by the invention]
A pyroelectric infrared detector is improved to realize a low-cost device for detecting the presence of an infrared source such as a stationary person. In addition, the power consumption of the detection device is reduced as much as possible and the battery can be driven for a long time, thereby enabling wireless communication. This eliminates the need for full-scale electrical work for installation, and can be easily applied to remote monitoring such as automatic turning on and off of lighting equipment and nursing care, thereby facilitating spread. Further, since the range of the detection visual field can be widened and the number of installations can be reduced, the cost can be further reduced.
[0004]
[Means for Solving the Problems]
The present invention improves the disadvantage that the pyroelectric infrared detector detects a change in infrared light and cannot detect the infrared light when the infrared light source stops and the change in infrared light disappears, and the pyroelectric infrared detector itself moves periodically. Then, the infrared source such as a stationary person is caused to relatively move and its presence is detected.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
There are various ways to move the detector periodically. Since the moving speed of the detectable infrared light source of the existing pyroelectric detector is about 1 m per second, it is appropriate that the cycle of moving the detector is close to this speed. If it is too early or too late, sufficient sensitivity cannot be obtained.
[0006]
Embodiment 1
The simplest embodiment will be described with reference to FIG. The main use of the detector of the present invention is assumed to detect the presence of a person in a room or the like. Therefore, FIG. 1 is a diagram in which the detection device of the present invention is mounted on a ceiling 1. The pyroelectric infrared detector 2 is attached to the tip of an arm 3, and the arm 3 is rotated by a rotating motor 4 around a motor rotating shaft 5 at a constant speed. Normally, the pyroelectric infrared detector 2 detects that the infrared source object moves at a speed of about 1 m per second, so that the moving speed of the pyroelectric infrared detector 2 is also appropriate. Assuming that the rotation speed of the motor is 1 revolution per second, the circumference drawn by the center of the pyroelectric infrared detector 2 should be about 1 m from the motor rotation shaft 5 to the center of the pyroelectric infrared detector 2. Is about 0.16 m. If the rotation is always performed in the same direction, a slide contact is required so that the signal line or the like connected to the pyroelectric infrared detector 2 does not wind. In order to avoid this, even if the rotation direction of the rotary motor 4 is alternated, the basic detection characteristics do not change.
[0007]
Embodiment 2
The most effective embodiment of the method of moving the detector periodically will be described with reference to FIGS. FIG. 2 is an external view of the present embodiment, and the upper part is a ceiling. In this embodiment, as means for moving the detector, a pyroelectric infrared detector 2 is attached to the tip of a pendulum 7 to perform a pendulum motion. The pendulum 7 vibrates with the vibration fulcrum 8 as a fulcrum. A permanent magnet 9 is attached to the upper part of the pendulum 7. The actuator coil 10 is attached to the fixed part of the device. When a current is caused to flow in a direction to attract the actuator coil 10 when the pendulum 7 vibrates and the permanent magnet 9 approaches, and in a direction in which the pendulum 7 repels when moving away, the pendulum 7 can be continuously vibrated. The pyroelectric infrared detector 2 usually requires a total of three lines, a common line 13, a power line 14, a signal line 15, and the outside. When the pendulum 7 and the vibration fulcrum 8 are hollow and wired inside the hollow as shown in FIG. 2, the torsional resistance due to the vibrating wire can be reduced, and the power consumption can be reduced. If the pendulum 7 and the vibration fulcrum 8 are made of a conductor, the common line 13 is directly connected to the pendulum 7 and is electrically connected to the outside, so that there is no need to perform wiring. The power supply line 14 and the signal line 15 are connected to the detection circuit 12. The detection circuit 12 supplies power to the pyroelectric infrared detector 2 and converts an analog waveform output from the pyroelectric infrared detector 2 into a signal level indicating presence or absence of a person and sends the signal to the outside. The coil wire 16 is connected to the actuator circuit 11. If the period of the pendulum is 1 second and the swing angle is 90 degrees, the distance between the vibration fulcrum 8 and the pyroelectric infrared detector 2 is about 0.32 m so that the pyroelectric infrared detector 2 moves at a speed of 1 m per second. Is appropriate. FIG. 3 is a diagram illustrating a pendulum-type detection range. When the pendulum 7 and the pyroelectric infrared detector 2 swing to the left, this is indicated by a pendulum 7A and a pyroelectric infrared detector 2A. At this time, the pyroelectric infrared detector 2A is tilted to the left, and its detection range is the viewing angle 18A. On the other hand, when it swings to the right, the detection range becomes the viewing angle 18B. The entire detection range of the detector of the present invention is a view angle 19 obtained by combining from a position where the maximum swing is made to the left to a position where the shake is made maximum to the right. As a result, the detection visual field range is widened.
[0008]
Embodiment 3
An embodiment in which the detector is made smaller using a normal motor by a method of periodically moving the detector will be described with reference to FIGS. FIG. 4 is an external view. An arm 21 having a pyroelectric infrared detector 2 attached to a tip thereof is attached to a rotating shaft of a motor 20. A voltage is applied to the motor for a certain period of time by the actuator circuit 11 to rotate the motor by a certain angle. FIG. 5 is a diagram for explaining the movement at this time. After rotating to the left in FIG. 4, the actuator circuit 11 applies a reverse voltage to rotate to the right by a certain angle. Thus, the pyroelectric infrared detector 2 is periodically swung. As in the previous embodiment, when there is an infrared light source, the amount of infrared light entering the pyroelectric infrared detector 2 changes and is detected by the detection circuit 12. The period of the swing depends on the length of the arm 21, but an appropriate range is 0.3 Hz to 1 Hz. Since the pyroelectric infrared detector 2 has a diameter of about 20 mm and a length of about 20 mm, the length of the arm 21 is about 40 mm. The motor for driving this may be a small motor of about 1 W.
[0009]
Embodiment 4
A general embodiment using a shape memory alloy in a manner that moves the detector periodically is shown in FIG. In FIG. 6, the arm 21 to which the pyroelectric infrared detector 2 is attached first is swung around the rotation axis 28. An arm 29 is attached to the upper end of the arm 21, a shape memory alloy wire 23 is attached to the right end, and the other end is fixed to the substrate 8. A spring 24A is attached to the left end of the arm 29, and the other end of the spring 24A is fixed to the substrate 8. Since the longer the shape memory alloy wire 23 is, the larger the displacement can be obtained, it is more effective to arrange a plurality of pulleys 25 and secure the length in a smaller space. As the shape memory alloy wire 23, a wire having a property of causing a current to flow through itself and contracting due to heat generation is used. Therefore, the current supply line positive electrode 26 is connected to one end of the shape memory alloy wire 23, and the current supply line negative electrode 27 is connected to the other end. When no current is flowing through the shape memory alloy wire 23, the wire is pulled by the coil spring 24A attached to the other end of the arm 29, and the pyroelectric infrared detector 2 is in a position facing the left direction. Also, in this state, the shape memory alloy wire 23A is kept sufficiently stretched. When a current flows between the current supply line positive electrode 26 and the current supply line negative electrode 27 by the shape memory alloy wire current control unit 22, the shape memory alloy wire 23 contracts, and the shape memory alloy wire 23A changes to the shape memory alloy wire 23B. , The right end of the arm 29 is pulled upward and the pyroelectric infrared detector 2 is turned to the right. As a result, the coil spring (compressed state) 24A expands to a coil spring (extended state) 24B. When the current flowing through the shape memory alloy wire 23 is turned off again by the shape memory alloy wire current control unit 22, the shape memory alloy wire 23 is extended by natural cooling. As a result, the coil spring (extended state) 24B is pulled back to return to the coil spring (compressed state) 24A, and the pyroelectric infrared detector 2 is directed to the original left side. As described above, if the current is periodically turned on and off by the shape memory alloy wire current control unit 22, the pyroelectric infrared detector 2 swings right and left. The subsequent principle is the same as in the second embodiment. The cycle of swinging to the left and right depends on the material of the shape memory alloy wire 23, but if a large amount of current is passed, the heat generation becomes faster. According to the characteristics of the pyroelectric infrared detector 2, a frequency of about 0.3 Hz to 1 Hz is appropriate in the present invention, so that about 200 mA to 300 mA is appropriate for a normal shape memory alloy wire. Since the pyroelectric infrared detector 2 has a diameter of about 20 mm, the tip of the arm 29 needs to contract by about 20 mm in order to swing it about 45 degrees left and right. Since the contraction rate of a normal shape memory alloy wire is about 4%, the shape memory alloy wire 23 needs to have a length of about 500 mm. Therefore, in order to reduce the overall shape, it is necessary to use a plurality of pulleys 25 to reciprocate the shape memory alloy wire 23 and secure the length in a smaller space.
[0010]
Embodiment 5
Another embodiment using a shape memory alloy in a method of periodically moving the detector is shown in FIGS. In the fourth embodiment, the direction of the pyroelectric infrared detector is biased in a stationary state where no current flows through the shape memory alloy wire. Embodiment 5 is a method that improves this point. FIG. 7 is an explanatory diagram of the stationary state. A spring case 31 is mounted above the arm 21 on which the pyroelectric infrared detector 2 is mounted. One end of a left spring 32A and one end of a right spring 32B are fixed symmetrically to both ends of the spring case 31, and a left roller 30A and a right roller 30B are attached to the other end. A shape memory alloy wire left 34A and a shape memory alloy wire right 34B are further attached to each of the rollers, and the other ends thereof are fixed to a shape memory alloy wire left fixed position 35A and a shape memory alloy wire right fixed position 35B on the substrate 8 respectively. I do. A pulley 25 is interposed between the shape memory alloy wires in order to secure the length in order to optimize the pulling direction. In the stationary state, the left spring 32A and the right spring 32B pull the left roller 30A and the right roller 30B, respectively, and stop at the left stopper 33A and the right stopper 33B, respectively. On the upper surface of the spring case 31, a groove is cut so that the roller does not protrude and the shape memory alloy wire can enter, so that the roller can move in the roller operating direction. When a current flows between the current supply line left positive electrode 37A and the current supply line common negative electrode 37C by the shape memory alloy wire current control unit 22, the shape memory alloy wire left 34A contracts. FIG. 8 illustrates the state at this time. Since the left roller 30A connected to one end of the contracted shape memory alloy wire left 34A cannot be moved by the left stopper 33A, the left side of the spring case 31 is lifted and rotates around the detector rotation shaft 28. Since the length of the right shape memory alloy wire 34B does not change, the right roller 30B is pulled and moves in the roller operating direction 36 in order to compensate for the lowering of the right side of the spring case 31. At this time, the right spring 32B is extended. Rollers are not necessary for smoothing the movement at this time. When the current is stopped again by the shape memory alloy wire current control unit 22, the shape memory alloy wire left 34A returns to the original length. At this time, the spring case 31 is returned to the horizontal state by being pulled by the extending right spring 32B. The same is true when swinging right. In this way, when the shape memory alloy wire current control unit 22 periodically and alternately applies a current to the left and right shape memory alloy wires, the pyroelectric infrared detector 2 can be swung right and left. Further, when the current is stopped, the pyroelectric infrared detector 2 faces directly below. Further, since the size of the pyroelectric infrared detector 2 is about 20 mm in diameter, it can be shrunk by about 10 mm depending on the design to swing it about 45 degrees left and right. Since the contraction rate of a normal shape memory alloy wire is about 4%, each of the shape memory alloy wires 34A and 34B needs to have a length of about 250 mm. Therefore, in order to reduce the overall shape, it is necessary to reciprocate the shape memory alloy wires 34A and 34B using a plurality of pulleys 25 to secure the length in a smaller space in the fourth embodiment. Is the same as In the present embodiment, an example is described in which a tension spring is used to make the movement smooth, but a compression spring may be placed at the center of the spring case 31 to realize the same.
[0011]
Embodiment 6
In Examples 2 to 5, the range in which the detector swings is on a vertical plane. The sixth embodiment is an example in which the detector is moved in a conical shape to obtain a wider field of view. One example of this method is shown in FIG. A detector main arm 39A coaxially arranged with the motor shaft 38 is integrated with a detector sub arm 39B having the pyroelectric infrared detector 2 attached to the tip so that the detector sub arm shaft 40 and the motor shaft 38 have an angle. Detector head The detector head is rotated about a motor axis 38. The trajectory of the tip of the pyroelectric infrared detector 2 at this time becomes the detector rotation trajectory 41. When the motor 20 is not rotating, the orientation of the pyroelectric infrared detector 2 is as shown in FIG. When the motor 20 is moved and rotated about the motor axis 38, the stationary detection field of view 42 moves, resulting in the area covered by the device being the entire detection field of view 43. Assuming that the height of the ceiling to which this device is attached is 2.5 m and the angle between the detector sub-arm shaft 40 and the motor shaft 38 is 45 degrees, the fixed viewing angle of the pyroelectric infrared detector 2 is 90 degrees, and the detectable distance is Is 10 m, the entire detection field of view 43 is a circle with a radius of 9.6 m, that is, about 289 square meters. When the pyroelectric infrared detector 2 is fixed and oriented directly below, the field of view is a circle with a radius of 5 m, that is, 20 square meters. , The detection visual field range is expanded 10 times or more. Since a signal line is emitted from the pyroelectric infrared detector 2, in order to always rotate the motor 20 in the same direction, it is necessary to devise a method for taking out a signal such as a slide contact. In order to avoid this, the rotation may be alternately performed. From the response characteristics of the pyroelectric infrared detector 2, it is appropriate that the rotation speed is about one rotation per second.
[0012]
【The invention's effect】
According to the present invention, it is possible to inexpensively detect whether or not an infrared source such as a stationary person or animal is present, and to expand the detectable range. Therefore, it is effective for security monitoring and remote care. According to the present invention, detection of whether or not a person is present can be accurately determined, and turning on and off of the lighting can be automated, which is useful for power saving. Further, since the pendulum system of the second embodiment utilizes gravity, it can be operated with a small amount of electric power. Therefore, the battery can be driven for a long time. Driving with a solar cell is also possible using the light of the illumination. For this reason, since the detection device can be made wireless, a system that can be easily installed without a full-scale electric wiring work can be constructed. Further, in the second embodiment, since the detector changes the detection direction by the pendulum motion, there is an effect that the detectable range is greatly expanded. Assuming that the swing angle of the pendulum is 90 degrees for each of the left and right 45 degrees, the currently existing pyroelectric infrared detector has a viewing angle of 90 degrees and a detection distance of about 10 m, so that the detectable range is 20 m in the pendulum vibration direction, The width is 5m and the total area is 100m2. When the pyroelectric infrared detector is fixed, if the height of the ceiling is 2.5 m, the circle is about 5 m in diameter and about 20 m 2, so it spreads 5 times or more. Further, in the case of the method of the sixth embodiment, the size is increased 14 times or more. Therefore, although depending on the shape of the room, in a large room, the number of detectors to be installed can be reduced by more than a quarter, and the system becomes inexpensive.
[Brief description of the drawings]
FIG. 1 is an external view of Embodiment 1 of a method of moving a rotary pyroelectric detector.
FIG. 2 is an external view of a pendulum type pyroelectric detector moving method according to a second embodiment.
FIG. 3 is a diagram illustrating a detection range of a pendulum type pyroelectric detector according to a second embodiment.
FIG. 4 is an external view of a third embodiment of a head-driven pyroelectric detector and a motor drive system.
FIG. 5 is a diagram for explaining the operation of a third embodiment of a motor driving system using a swing type pyroelectric detector.
FIG. 6 is a diagram for explaining a fourth embodiment of a driving method using a shape memory alloy with a swing type pyroelectric detector.
FIG. 7 is a diagram showing a stationary state in Embodiment 5 of a driving method using a shape memory alloy in a swing type pyroelectric detector.
FIG. 8 is a diagram showing a state where the head is swung to the left in a fifth embodiment of a driving method using a shape memory alloy with a swing type pyroelectric detector.
FIG. 9 is a diagram for explaining a sixth embodiment in which a V-shaped detection head is used in order to widen a detection visual field range.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ceiling 2 Pyroelectric detector 2A Pyroelectric detector 2B at the position deflected to the left 3 Pyroelectric detector 3 at the position deflected to the left 3 Arms 4 Rotary motor 5 Motor rotary shaft 6 Infrared source 7 such as a person 7 Pendulum 7A Pendulum 7B swinging to the left Pendulum 7 swinging to the right 8 Vibration fulcrum 9 Permanent magnet 10 Actuator coil 11 Actuator circuit 12 Detection circuit 13 Common line 14 Power line 15 Signal line 16 Actuator coil line 17 Pendulum swing angle 18A Left Detector viewing angle 18B when shaken Detector view angle 19 when swung to the right 19 Overall view angle 20 Motor 21 Arm 22 Shape memory alloy wire current controller 23 Shape memory alloy wire 23A Shape memory alloy wire (current Without flowing)
23B shape memory alloy wire (with current flowing)
24A coil spring (shrinked state)
24B coil spring (extended state)
25 Pulley 26 Current supply line positive electrode 27 Current supply line negative electrode 28 Detector rotating shaft 29 Arm 30A Left roller 30B Right roller 31 Spring case 32A Left spring 32B Right spring 33A Left stopper 33B Right stopper 34A Shape memory alloy wire Left 34B Shape memory alloy wire Right 35A Shape memory alloy wire left fixed position 35B Shape memory alloy wire right fixed position 36 Roller operating direction 37A Current supply line left positive electrode 37B Current supply line right positive electrode 37C Current supply line common negative electrode 38 Motor shaft 39A Detector main arm 39B Detector Secondary arm 40 Detector Secondary arm axis 41 Detector rotation trajectory 42 Static detection visual field 43 Overall detection visual field

Claims (5)

焦電式検出器自身を周期的に動かせて、動いている時はもとより静止している人や動物などの赤外線を発する物体の存在を検出する装置A device that moves the pyroelectric detector itself periodically and detects the presence of objects that emit infrared light, such as people and animals that are stationary as well as when they are moving 前記焦電式検出器を周期的に動かす方式として、振り子の先に焦電式検出器をつけ振り子運動で検出器を動かす方式As a method for periodically moving the pyroelectric detector, a method in which a pyroelectric detector is attached to the tip of a pendulum and the detector is moved by a pendulum motion 前記焦電式検出器を周期的に動かす方式として、モーターを正逆転させて首振り運動させる方式As a method for periodically moving the pyroelectric detector, a method in which a motor is rotated forward and backward to swing the head. 前記焦電式検出器を周期的に動かす方式として、形状記憶合金に電流を流して首振り運動させる方式As a method of periodically moving the pyroelectric detector, a method in which an electric current is applied to a shape memory alloy to perform a swing motion 前記焦電式検出器を周期的にくの字型の検出ヘッドにして動かして、検出視野範囲を広げる方式A method of extending the detection visual field range by moving the pyroelectric detector periodically into a U-shaped detection head and moving it.
JP2002288616A 2002-10-01 2002-10-01 Detector for stationary infrared ray source Pending JP2004125547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002288616A JP2004125547A (en) 2002-10-01 2002-10-01 Detector for stationary infrared ray source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002288616A JP2004125547A (en) 2002-10-01 2002-10-01 Detector for stationary infrared ray source

Publications (1)

Publication Number Publication Date
JP2004125547A true JP2004125547A (en) 2004-04-22

Family

ID=32281062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002288616A Pending JP2004125547A (en) 2002-10-01 2002-10-01 Detector for stationary infrared ray source

Country Status (1)

Country Link
JP (1) JP2004125547A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014071347A (en) * 2012-09-28 2014-04-21 Kyocera Document Solutions Inc Electronic equipment and image forming apparatus
JP2015111314A (en) * 2015-03-24 2015-06-18 京セラドキュメントソリューションズ株式会社 Electronic device and image forming apparatus
CN113686270A (en) * 2021-09-30 2021-11-23 湖南瑞盈光电科技有限公司 On-vehicle well accuse plane glass apron plane degree of flatness detection device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014071347A (en) * 2012-09-28 2014-04-21 Kyocera Document Solutions Inc Electronic equipment and image forming apparatus
JP2015111314A (en) * 2015-03-24 2015-06-18 京セラドキュメントソリューションズ株式会社 Electronic device and image forming apparatus
CN113686270A (en) * 2021-09-30 2021-11-23 湖南瑞盈光电科技有限公司 On-vehicle well accuse plane glass apron plane degree of flatness detection device

Similar Documents

Publication Publication Date Title
US7626281B2 (en) Energy converter, flag type energy converter
US20230212901A1 (en) Control elements for tracking and movement of furniture and interior architectural elements
JP6273038B2 (en) Infrared sensor module using rotary ultrasonic motor
CN110125124B (en) Photovoltaic cleaning machine inclination posture detection method, controller and photovoltaic cleaning machine
CN206578809U (en) A kind of indoor mobile robot system positioned based on RFID
JP2004125547A (en) Detector for stationary infrared ray source
CN203617932U (en) Carrying roller detection apparatus
CN205541739U (en) Rotary display screen
CN109581901A (en) A kind of display system
JP2010096104A (en) Power feeding mechanism for display using wind turbine
CN209343146U (en) A kind of display system
Rai et al. Solar panel cleaning device
CN111098336B (en) Device for detecting mechanical arm collision
KR20230046590A (en) Apparatus for mobile smart monitoring device and operation method thereof
JP2003310138A (en) System for preventing bird from coming flying
JP2004093238A (en) Static infrared source detector
KR101274618B1 (en) Hinge device
KR100503314B1 (en) continuous sensor-lamp and, method for as the same
US3456762A (en) Electrically powered mobile
JP2004045134A (en) Stationary infrared light source detector
JP2001314098A (en) Overload detecting device for induction motor
KR20180058409A (en) Weather observation system using a generator
CN201045829Y (en) A non-contact type steering control device
JP6362388B2 (en) Snow melting equipment
JPH0524996U (en) Fan