JP2004125323A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2004125323A
JP2004125323A JP2002292300A JP2002292300A JP2004125323A JP 2004125323 A JP2004125323 A JP 2004125323A JP 2002292300 A JP2002292300 A JP 2002292300A JP 2002292300 A JP2002292300 A JP 2002292300A JP 2004125323 A JP2004125323 A JP 2004125323A
Authority
JP
Japan
Prior art keywords
air
ice
coil
heat storage
support member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002292300A
Other languages
Japanese (ja)
Other versions
JP3790207B2 (en
Inventor
Miyuki Miki
三木 幸
Yoshitaka Hara
原 嘉孝
Yoshiaki Kurosawa
黒澤 美暁
Toshiaki Kawada
川田 俊明
Akira Sano
佐野 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Sanyo Electric Co Ltd
Sanyo Electric Air Conditioning Co Ltd
Original Assignee
Kansai Electric Power Co Inc
Sanyo Electric Co Ltd
Sanyo Electric Air Conditioning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Sanyo Electric Co Ltd, Sanyo Electric Air Conditioning Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2002292300A priority Critical patent/JP3790207B2/en
Publication of JP2004125323A publication Critical patent/JP2004125323A/en
Application granted granted Critical
Publication of JP3790207B2 publication Critical patent/JP3790207B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner capable of feeding generally uniform air and promoting heat transfer in an ice heat storage tank with a simple structure. <P>SOLUTION: This air conditioner comprises the ice heat storage tank performing ice heat storage by evaporating refrigerant in a coil for ice-making and performing ice heat storage utilization by condensing the refrigerant in the coil to dissolve the ice on the periphery of the coil. A plurality of bottom members 111 are disposed at the bottom part of the ice heat storage tank parallel with each other in the lateral direction, an air feed means 95 is installed on at least one bottom member 111A, and a support member 93 having an air storage part 92 storing the air supplied through the air feed means 95 is bridged across the bottom members 111 and 111A. An air supply hole 98 allowing air to be led to the periphery of the coil in communication with the air storage part 92 is formed in the support member 93. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、氷蓄熱槽を有した空気調和装置に関する。
【0002】
【従来の技術】
一般に、圧縮機及び熱源側熱交換器を備えた熱源側ユニットと、氷蓄熱槽内にコイルが水没状態で配設された氷蓄熱ユニットと、利用側熱交換器を備えた利用側ユニットとを有した空気調和装置が知られている(例えば、特許文献1参照)。
【0003】
この種のものでは、上記コイル内で冷媒を蒸発させて製氷することにより氷蓄熱運転を行うと共に、上記コイル内で冷媒を凝縮させてコイル周辺の氷を解氷させることにより氷蓄熱利用運転を行う。
【0004】
ところで、従来では、氷蓄熱槽内の伝熱促進のため、氷蓄熱槽の底部に空気供給用のパイプを設けて構成される。
【0005】
そして、氷蓄熱利用運転時に、上記解氷によってコイル周辺に形成される環状の水柱内に、上記パイプを通じて空気を導き、この水柱内に上昇水流を形成して解氷速度を促進させている。
【0006】
【特許文献1】
特開2000−46434号公報
【0007】
【発明が解決しようとする課題】
しかしながら、従来の構成では、氷蓄熱槽の底部に、上記空気供給用のパイプを設ける他に、コイルの下部を固定する支持部材を設けているため、氷蓄熱槽の組み立てが困難になる等の問題がある。
【0008】
そこで、本発明の目的は、上述した従来の技術が有する課題を解消し、簡単な構成で、全体に均一な空気供給を可能にし、氷蓄熱槽内の伝熱促進を図ることができる空気調和装置を提供することにある。
【0009】
【課題を解決するための手段】
請求項1記載の発明は、コイル内で冷媒を蒸発させて製氷することにより氷蓄熱を行うと共に、上記コイル内で冷媒を凝縮させてコイル周辺の氷を解氷させることにより氷蓄熱利用を行う氷蓄熱槽を備えた空気調和装置において、上記氷蓄熱槽の底部に複数の底部材を横並びに配置し、少なくとも一つの底部材に空気供給手段を設け、上記底部材の上に上記空気供給手段を通じて供給された空気を貯留する空気貯留部を有した支持部材を掛け渡し、この支持部材に上記空気貯留部と連通してコイル周辺に空気を導入可能にした空気供給孔を形成したことを特徴とするものである。
【0010】
請求項2記載の発明は、圧縮機及び熱源側熱交換器を備えた熱源側ユニットと、氷蓄熱槽内にコイルが水没状態で配設された氷蓄熱ユニットと、利用側熱交換器を備えた利用側ユニットとを有し、上記コイル内で冷媒を蒸発させて製氷することにより氷蓄熱を行うと共に、上記コイル内で冷媒を凝縮させてコイル周辺の氷を解氷させることにより氷蓄熱利用を行う空気調和装置において、上記氷蓄熱槽の底部に複数の底部材を横並びに配置し、少なくとも一つの底部材に空気供給手段を設け、上記底部材の上に上記空気供給手段を通じて供給された空気を貯留する空気貯留部を有した支持部材を掛け渡し、この支持部材に上記空気貯留部と連通してコイル周辺に空気を導入可能にした空気供給孔を形成したことを特徴とするものである。
【0011】
請求項3記載の発明は、請求項1または2記載のものにおいて、上記コイルの下部が上記支持部材の下部空間内に延出することを特徴とする。
【0012】
請求項4記載の発明は、請求項1ないし3のいずれか1記載のものにおいて、上記空気供給手段を有した底部材および支持部材がそれぞれ下面を開口した箱形部材からなり、上記コイルが支持部材の側壁に固定されていることを特徴とするものである。
【0013】
請求項5記載の発明は、請求項4記載のものにおいて、上記支持部材の内側に空気貯留部を分割する仕切り体を設けたことを特徴とする。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0015】
図1は、本発明に係る蓄熱ユニットを備えた空気調和装置の一実施の形態が適用された氷蓄熱ユニットを備えた空気調和装置を示し、製氷運転時の管路図である。図2は、図1の一実施の形態における冷房運転時の管路図である。
【0016】
図1及び図2に示す空気調和装置10は、熱源側ユニット11、蓄熱ユニットとしての氷蓄熱ユニット12及び利用側ユニット13を有して構成される。熱源側ユニット11の冷媒配管14と、利用側ユニット13の並列配置された冷媒配管30,31及び32を接続する冷媒配管15A及び15Bとが、氷蓄熱ユニット12の冷媒配管16,17により接続される。冷媒配管15Aが冷媒配管16に、冷媒配管15Bが冷媒配管17に接続される。
【0017】
熱源側ユニット11は、冷媒配管14に容量可変型の圧縮機18A,18B,18Cが並列に配設され、これらの圧縮機18A,18B及び18Cの吸込側にアキュムレータ19が、吐出側に四方弁20がそれぞれ配設され、この四方弁20に熱源側熱交換器21、電動膨張弁22及びレシーバタンク23が冷媒配管14を介して順次接続される。
【0018】
利用側ユニット13は、冷媒配管30,31,32のそれぞれに利用側熱交換器24,25,26が配設され、これら冷媒配管30,31,32において利用側熱交換器24,25,26近傍に電動膨張弁27,28,29が配設されて構成される。これらの電動膨張弁27,28,29は、空調負荷に応じて開度が調整される。
【0019】
上記氷蓄熱ユニット12は、コイル35を収容した蓄熱槽としての氷蓄熱槽36を備えるとともに、冷媒配管16にレシーバタンク37、電動膨張弁38及び第1電動開閉弁41が、熱源側ユニット11側から利用側ユニット13へ向かい順次配設される。また、冷媒配管16には、電動膨張弁38と第1電動開閉弁41との間に、接続配管39を介してコイル35の一端が接続される。コイル35の他端は、接続配管40を介して氷蓄熱ユニット12の冷媒配管17に接続され、この接続配管40に第2電動開閉弁42が配設される。更に、冷媒配管16には、レシーバタンク37と電動膨張弁38との間に、第3電動開閉弁43を備えた接続配管44の一端が接続される。この接続配管44の他端は、接続配管40における第2電動開閉弁42とコイル35との間に接続される。
【0020】
上記氷蓄熱槽36内には二次媒体としての水が充填され、コイル35は水没状態で配設される。空気調和装置10の蓄熱運転としての製氷運転時には、コイル35内に、熱源側熱交換器21からの一次媒体としての液冷媒が流入して蒸発し、これにより、コイル35の外周に氷が付着して形成されて、この氷に冷熱が蓄熱される。空気調和装置10の放熱運転としての解氷冷房運転時には、コイル35内に、熱源側熱交換器21からの液冷媒が満杯状態で流入し、この液冷媒は、コイル35外周に付着した氷を融解し、この氷に蓄熱された冷熱の放熱により過冷却状態となる。
【0021】
[A]製氷運転(図1)
図1に示す空気調和装置10の製氷運転は、例えば、夜間10時から翌朝8時までの電力料金が安い時間帯に、熱源側ユニット11における熱源側熱交換器21からの液冷媒を氷蓄熱ユニット12における氷蓄熱槽36内のコイル35へ供給し、氷蓄熱槽36内に氷を作る運転である。
【0022】
この場合には、氷蓄熱ユニット12において、第1電動開閉弁41及び第3電動開閉弁43が閉弁され、電動膨張弁38及び第2電動開閉弁42が開弁操作される。また、利用側ユニット13の電動膨張弁27,28及び29は閉弁する。この状態で、熱源側ユニット11の圧縮機18A,18B,18Cが起動されると、これらの圧縮機18A,18B,18Cから吐出されたガス冷媒は、熱源側熱交換器21にて凝縮され、電動膨張弁22並びに氷蓄熱ユニット12の電動膨張弁38を経て減圧され、氷蓄熱槽36内のコイル35へ流入する。このコイル35内に流入した冷媒は蒸発されて、コイル35の外周に氷を付着した状態で形成する。その後、コイル35内のガス冷媒は、接続配管40及び第2電動開閉弁42並びに冷媒配管17を経て四方弁20へ至り、アキュムレータ19を経て圧縮機18A,18B,18Cに戻される。
【0023】
この製氷運転によって氷蓄熱槽36内に氷が形成され、この氷に蓄熱された冷熱が、次の解氷冷房運転に利用される。
【0024】
[B]解氷冷房運転(図2)
図2に示す空気調和装置10の解氷冷房運転は、例えば、昼間、気温が上昇する時間帯に、熱源側ユニット11における熱源側熱交換器21からの液冷媒を、氷蓄熱ユニット12における氷蓄熱槽36内のコイル35へ供給させて過冷却状態とし、この過冷却状態の液冷媒を利用側ユニット13の利用側熱交換器24,25,26へ供給して実施される。
【0025】
この場合には、氷蓄熱ユニット12において、第2電動開閉弁42が閉弁され、第1電動開閉弁41及び第3電動開閉弁43が開弁され、電動膨張弁38の開度が後述の如く調整される。また、利用側ユニット13の電動膨張弁27,28及び29が開弁される。
【0026】
この状態で、熱源側ユニット11の圧縮機18A,18B,18Cが起動されると、これらの圧縮機18A,18B,18Cから吐出されたガス冷媒は、熱源側熱交換器21にて凝縮され、電動膨張弁22並びに氷蓄熱ユニット12の冷媒配管16、接続配管44及び第3電動開閉弁43を経て氷蓄熱槽36内のコイル35へ流入する。このコイル35内に流入した液冷媒は、コイル35内を満杯状態で流れ、コイル35の外周に付着した氷を解氷し、この氷に蓄熱された冷熱により過冷却状態となる。その後、コイル35内の過冷却状態の液冷媒は、接続配管39、第1電動開閉弁41及び冷媒配管16、並びに利用側ユニット13の冷媒配管15A及び電動膨張弁27,28,29を経て利用側熱交換器24,25,26へそれぞれ流入し、これらの利用側熱交換器24,25,26のそれぞれにより蒸発して室内を冷房する。
【0027】
その後、ガス冷媒は、冷媒配管30,31,32及び冷媒配管15Bを通り、氷蓄熱ユニット12の冷媒配管17を経、四方弁20及びアキュムレータ19を経た後圧縮機18A,18B,18Cへ戻される。
【0028】
従って、この解氷冷房運転時では、前述の製氷運転で氷蓄熱槽36内の氷に蓄熱された冷熱を利用し、氷蓄熱槽36のコイル35内で液冷媒を過冷却状態として利用側熱交換24,25,26へ供給するので、これら利用側熱交換器24,25,26における冷房運転の効率を向上させることができる。
【0029】
また、上述の解氷冷房運転においては、氷蓄熱ユニット12において、コイル35から接続配管39を介し第1電動開閉弁41側の冷媒配管16へ流入した液冷媒温度E1が、利用側ユニット13における利用側熱交換器24,25,26内の液冷媒温度E2よりも低いときに、電動膨張弁38の開度が調整されて、氷蓄熱槽36内のコイル35で過冷却された液冷媒に、熱源側熱交換器21及び電動膨張弁22からの液冷媒を合流させ、この合流した液冷媒を利用側熱交換器24,25,26へ供給する。このような解氷冷房運転は、熱源側熱交換器21及び電動膨張弁22からの液冷媒が、コイル35内で過冷却された液冷媒よりも温度が高いことから、利用側熱交換器24,25,26へ流れる液冷媒の温度を上昇させて、これら利用側熱交換器24,25,26による室内の冷房運転を適正化するものである。
【0030】
「C」通常冷房運転(図2)
図2に示す空気調和装置10における通常冷房運転は、氷蓄熱ユニット12における氷蓄熱槽36内の氷に蓄熱された冷熱を利用しないで実施される冷房運転であり、第2電動開閉弁42及び第3電動開閉弁43が閉弁され、電動膨張弁38及び第1電動開閉弁41が開弁される。また、利用側ユニット13における電動膨張弁27,28及び29は開弁される。
【0031】
この状態で、熱源側ユニット11の圧縮機18A,18B,18Cが起動されると、これらの圧縮機18A,18B,18Cから吐出されたガス冷媒は、熱源側熱交換器21にて凝縮され、電動膨張弁22並びに氷蓄熱ユニット12の冷媒配管16、電動膨張弁38及び第1電動開閉弁41を通り、利用側ユニット13の冷媒配管15A及び電動膨張弁27,28,29を経て利用側熱交換器24,25,26へそれぞれ流入し、これらの利用側熱交換器24,25,26のそれぞれにより蒸発して室内を冷房した後、冷媒配管15Bを通り、氷蓄熱ユニット12の冷媒配管17を経、四方弁20及びアキュムレータ19を経た後、圧縮機18A,18B,18Cへ戻される。
【0032】
「D」本実施形態による氷蓄熱槽36の構造
図3は、氷蓄熱槽36の内部構造の一部を示している。この氷蓄熱槽36内には水張りされており、蛇行配置された上記コイル35(図1)が、その上端部35Aを水面上に突出させて設けられている。製氷運転時には、コイル35内で冷媒を蒸発させて製氷することにより氷蓄熱を行うと共に、解氷運転時には、コイル35内で冷媒を凝縮させてコイル35周辺の氷を解氷させることにより氷蓄熱利用を行う。この解氷時には、図5に示すように、コイル35周辺の氷100が氷解し、この氷解によってコイル35周辺には環状の水柱91が形成される。
【0033】
本実施形態では、図4に示すように、上記氷蓄熱槽36の底部に、複数の底部材111が横並びに配置され、その内の少なくとも一つの底部材111Aには空気供給手段(パイプ)95が設けられている。
【0034】
これら底部材111,111Aの上には、上記パイプ95を通じて供給された空気を貯留する空気貯留部92を有した複数の支持部材93が、当該底部材111に略直交するように掛け渡されている。
【0035】
上記底部材111,111Aおよび支持部材93は、それぞれ下面を開口した箱形部材からなっており、上記パイプ95を通じて空気が供給されると、まず一つの底部材111Aの内部に空気が貯留され、ついでこの底部材111Aの上面に形成された貫通孔113を通じてすべての支持部材93の空気貯留部92に空気が均一に行き渡って貯留される。
【0036】
この支持部材93の側壁96には蛇行したコイル35の直管部35Bが固定具97を用いて固定され、このコイル35の曲管部(下部)35Cは支持部材93の下部空間94内に延出している。この固定具97の近傍には細孔からなる空気供給孔98が形成され、この空気供給孔98は空気貯留部92と連通してコイル35の直管部35B周辺に空気を導入可能に形成されている。
【0037】
本実施形態では、上述した製氷運転時、図1に示すように、コイル35周辺に氷100が製氷される。この場合、コイル35の上端部35Aが水面上に突出しているため、この上端部35A周辺には製氷されない。
【0038】
ついで、上述した解氷運転が実行されると、図5に示すように、まず、コイル35周辺の氷が氷解し、この氷解によってコイル35周辺に環状の水柱91が形成される。また、この氷解によって支持部材93の側壁96に形成された空気供給孔98が上記水柱91に連通し、図3に示すように、この水柱91内に空気の泡101が供給される。この泡101が水柱91に供給されると、この泡101は水柱91内を上昇して、水面上に突出したコイル35の上端部35A近傍から外部に排気される。これによれば、水柱91内に上昇水流が発生するため、伝熱性が向上し、融氷速度が促進される。
【0039】
本実施形態では、以下▲1▼〜▲5▼の効果を奏する。
【0040】
▲1▼支持部材93が、いわゆる空気供給用パイプとコイル35の下部35Cを固定する支持部材とを兼ねるため、配管構造が簡素化され、コストダウンが図れると共に、氷蓄熱槽36の組み立てが容易になる。
【0041】
▲2▼パイプ95を通じて空気が供給されると、まず一つの底部材111Aの内部に空気が貯留され、ついでこの底部材111Aの上面に形成された貫通孔113を通じてすべての支持部材93の空気貯留部92に空気が供給される構造であるため、すべての支持部材93に空気が均一に貯留される。
【0042】
▲3▼また従来のように、コイル35と空気貯留部92とが交差しないため、シール機能が不要になると共に、均一な抜気がおこなわれる。
【0043】
▲4▼コイル35が支持部材93の側壁96に固定されるため、解氷運転時には、このコイル35の温度によって側壁周辺の氷が解氷し、空気供給孔98と上記水柱91とが連通する。そのため、従来のように、あらたな融氷手段を設けて連通させる必要がなく、配管構造が簡素化される。
【0044】
▲5▼氷蓄熱槽36の大きさが異なる場合であっても、支持部材93を複数組み合わせる等して対応が図れるため、支持部材93の共通化が図られる。
【0045】
図6は、別の実施形態を示している。
【0046】
これによれば、上記支持部材93の内側に、その短手方向に延びて空気貯留部92を複数分割する仕切り体103が設けられている。
【0047】
この仕切り体103の高さH1は、支持部材93の高さH2よりも低く形成され、この支持部材93を氷蓄熱槽36内に設置する場合、この支持部材93が傾いて設置されたとしても、仕切り体103の高さH1によって、各室A〜Cに貯留される空気量が一定に維持される。
【0048】
従って、各室A〜Cにおいて、上記泡101の出方に極端な差が生じることがなく、ほぼ均一な抜気が可能になる。
【0049】
以上、本発明を上記実施の形態に基づいて説明したが、本発明はこれに限定されるものではない。例えば、上記実施の形態では、支持部材を下面が開口した箱形部材で構成したが、これに限定されず、本発明の趣旨を逸脱しない限り、種々の形態が適用されることは云うまでもない。
【0050】
【発明の効果】
本発明では、支持部材が、いわゆる空気供給用パイプとコイルを固定する支持部材とを兼ねるため、配管構造が簡素化され、コストダウンが図れると共に、氷蓄熱槽の組み立てが容易になる。
【図面の簡単な説明】
【図1】本発明に係る蓄熱ユニットを備えた空気調和装置の一実施の形態が適用された氷蓄熱ユニットを備えた空気調和装置を示し、製氷運転時の管路図である。
【図2】図1の一実施の形態における冷房運転時の管路図である。
【図3】氷蓄熱槽の断面図である。
【図4】氷蓄熱槽の断面斜視図である。
【図5】コイル周辺の氷を示す断面図である。
【図6】別の実施形態を示す支持部材の斜視図である。
【符号の説明】
10 空気調和装置
11 熱源側ユニット
12 氷蓄熱ユニット
13 利用側ユニット
21 熱源側熱交換器
24 利用側熱交換器
35 コイル
36 氷蓄熱槽
91 水柱
92 空気貯留部
93 支持部材
94 下部空間
95 パイプ(空気供給手段)
96 側壁
97 固定具
98 空気供給孔
111,111A 底部材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an air conditioner having an ice heat storage tank.
[0002]
[Prior art]
In general, a heat source side unit having a compressor and a heat source side heat exchanger, an ice heat storage unit having a coil disposed in a submerged state in an ice heat storage tank, and a use side unit having a use side heat exchanger. 2. Description of the Related Art There is known an air conditioner having the same (for example, see Patent Document 1).
[0003]
In this type, the ice heat storage operation is performed by evaporating the refrigerant in the coil to make ice, and the ice heat storage operation is performed by condensing the refrigerant in the coil to melt ice around the coil. Do.
[0004]
By the way, conventionally, in order to promote heat transfer in the ice heat storage tank, a pipe for supplying air is provided at the bottom of the ice heat storage tank.
[0005]
During the operation of utilizing ice heat, the air is guided through the pipe into an annular water column formed around the coil by the above-mentioned ice melting, and a rising water flow is formed in the water column to accelerate the ice melting speed.
[0006]
[Patent Document 1]
JP 2000-46434 A
[Problems to be solved by the invention]
However, in the conventional configuration, in addition to providing the air supply pipe at the bottom of the ice heat storage tank, a support member for fixing the lower portion of the coil is provided, which makes assembly of the ice heat storage tank difficult. There's a problem.
[0008]
Therefore, an object of the present invention is to solve the above-mentioned problems of the conventional technology, to achieve a uniform air supply with a simple configuration, and to promote heat transfer in an ice heat storage tank. It is to provide a device.
[0009]
[Means for Solving the Problems]
According to the first aspect of the present invention, ice heat is stored by evaporating the refrigerant in the coil to make ice, and ice storage is performed by condensing the refrigerant in the coil to melt ice around the coil. In an air conditioner having an ice heat storage tank, a plurality of bottom members are arranged side by side at the bottom of the ice heat storage tank, air supply means is provided on at least one bottom member, and the air supply means is provided on the bottom member. A support member having an air storage portion for storing the air supplied through the support member, and an air supply hole communicating with the air storage portion and allowing air to be introduced around the coil is formed in the support member. It is assumed that.
[0010]
The invention according to claim 2 includes a heat source side unit provided with a compressor and a heat source side heat exchanger, an ice heat storage unit in which a coil is disposed in a submerged state in an ice heat storage tank, and a use side heat exchanger. And ice storage by evaporating the refrigerant in the coil to make ice, and condensing the refrigerant in the coil to defrost the ice around the coil, thereby utilizing the ice heat storage. In the air conditioner, a plurality of bottom members are arranged side by side at the bottom of the ice heat storage tank, air supply means is provided on at least one bottom member, and the air supply means is supplied on the bottom member through the air supply means. A support member having an air storage portion for storing air is bridged, and an air supply hole is formed in the support member so as to communicate with the air storage portion and allow air to be introduced around the coil. is there.
[0011]
According to a third aspect of the present invention, in the first or second aspect, a lower portion of the coil extends into a lower space of the support member.
[0012]
According to a fourth aspect of the present invention, in any one of the first to third aspects, the bottom member having the air supply means and the support member are box-shaped members each having an open lower surface, and the coil is supported. It is characterized by being fixed to the side wall of the member.
[0013]
According to a fifth aspect of the present invention, in the fourth aspect, a partition member for dividing an air storing portion is provided inside the support member.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0015]
FIG. 1 shows an air conditioner including an ice heat storage unit to which an embodiment of an air conditioner including a heat storage unit according to the present invention is applied, and is a pipeline diagram during an ice making operation. FIG. 2 is a pipeline diagram during the cooling operation in the embodiment of FIG.
[0016]
The air conditioner 10 shown in FIGS. 1 and 2 includes a heat source side unit 11, an ice heat storage unit 12 as a heat storage unit, and a use side unit 13. The refrigerant pipes 15A and 15B connecting the refrigerant pipes 14 of the heat source side unit 11 and the refrigerant pipes 30, 31 and 32 arranged in parallel of the use side unit 13 are connected by refrigerant pipes 16 and 17 of the ice heat storage unit 12. You. The refrigerant pipe 15A is connected to the refrigerant pipe 16, and the refrigerant pipe 15B is connected to the refrigerant pipe 17.
[0017]
In the heat source side unit 11, variable capacity compressors 18A, 18B, 18C are arranged in parallel in a refrigerant pipe 14, and an accumulator 19 is provided on a suction side of the compressors 18A, 18B, 18C, and a four-way valve is provided on a discharge side. The heat source side heat exchanger 21, the electric expansion valve 22, and the receiver tank 23 are sequentially connected to the four-way valve 20 via the refrigerant pipe 14.
[0018]
In the use-side unit 13, use-side heat exchangers 24, 25, and 26 are disposed in the refrigerant pipes 30, 31, and 32, respectively, and the use-side heat exchangers 24, 25, and 26 in the refrigerant pipes 30, 31, and 32, respectively. Electric expansion valves 27, 28, and 29 are provided in the vicinity. The degree of opening of these electric expansion valves 27, 28, 29 is adjusted according to the air conditioning load.
[0019]
The ice heat storage unit 12 includes an ice heat storage tank 36 as a heat storage tank accommodating a coil 35, and a receiver tank 37, an electric expansion valve 38, and a first electric opening / closing valve 41 in the refrigerant pipe 16 are connected to the heat source side unit 11 side. From the user side unit 13 to the user side unit 13. One end of a coil 35 is connected to the refrigerant pipe 16 between the electric expansion valve 38 and the first electric opening / closing valve 41 via a connection pipe 39. The other end of the coil 35 is connected to the refrigerant pipe 17 of the ice heat storage unit 12 via a connection pipe 40, and a second electric open / close valve 42 is provided on the connection pipe 40. Further, one end of a connection pipe 44 having a third electric opening / closing valve 43 is connected to the refrigerant pipe 16 between the receiver tank 37 and the electric expansion valve 38. The other end of the connection pipe 44 is connected between the second electric on-off valve 42 and the coil 35 in the connection pipe 40.
[0020]
The ice heat storage tank 36 is filled with water as a secondary medium, and the coil 35 is disposed in a submerged state. During the ice making operation as the heat storage operation of the air-conditioning apparatus 10, the liquid refrigerant as the primary medium from the heat source side heat exchanger 21 flows into the coil 35 and evaporates, whereby ice adheres to the outer periphery of the coil 35. The ice is stored with cold heat. During the thawing / cooling operation as the heat dissipation operation of the air conditioner 10, the liquid refrigerant from the heat source side heat exchanger 21 flows into the coil 35 in a full state, and this liquid refrigerant removes ice adhering to the outer periphery of the coil 35. It melts and becomes supercooled by the heat radiation of the cold stored in the ice.
[0021]
[A] Ice making operation (Fig. 1)
The ice making operation of the air-conditioning apparatus 10 shown in FIG. 1 is performed, for example, by storing the liquid refrigerant from the heat source-side heat exchanger 21 in the heat source-side unit 11 in ice heat during a time period when the electricity rate is low from 10:00 at night to 8:00 in the next morning. In this operation, the ice is supplied to the coil 35 in the ice heat storage tank 36 of the unit 12 to form ice in the ice heat storage tank 36.
[0022]
In this case, in the ice heat storage unit 12, the first electric open / close valve 41 and the third electric open / close valve 43 are closed, and the electric expansion valve 38 and the second electric open / close valve 42 are opened. Further, the electric expansion valves 27, 28 and 29 of the use side unit 13 are closed. In this state, when the compressors 18A, 18B, 18C of the heat source side unit 11 are started, the gas refrigerant discharged from these compressors 18A, 18B, 18C is condensed in the heat source side heat exchanger 21, and The pressure is reduced through the electric expansion valve 22 and the electric expansion valve 38 of the ice heat storage unit 12 and flows into the coil 35 in the ice heat storage tank 36. The refrigerant that has flowed into the coil 35 is evaporated and forms with ice attached to the outer periphery of the coil 35. Thereafter, the gas refrigerant in the coil 35 reaches the four-way valve 20 via the connection pipe 40, the second electric open / close valve 42 and the refrigerant pipe 17, and is returned to the compressors 18A, 18B, 18C via the accumulator 19.
[0023]
Ice is formed in the ice heat storage tank 36 by the ice making operation, and the cold stored in the ice is used for the next ice melting and cooling operation.
[0024]
[B] Thaw cooling operation (Fig. 2)
The thawing and cooling operation of the air conditioner 10 shown in FIG. 2 is performed, for example, in the daytime when the temperature rises, by using the liquid refrigerant from the heat source side heat exchanger 21 in the heat source side unit 11 and the ice in the ice heat storage unit 12. It is supplied to the coil 35 in the heat storage tank 36 to be in a supercooled state, and the supercooled liquid refrigerant is supplied to the use-side heat exchangers 24, 25, 26 of the use-side unit 13 for execution.
[0025]
In this case, in the ice heat storage unit 12, the second electric open / close valve 42 is closed, the first electric open / close valve 41 and the third electric open / close valve 43 are opened, and the opening degree of the electric expansion valve 38 will be described later. It is adjusted as follows. Further, the electric expansion valves 27, 28 and 29 of the use side unit 13 are opened.
[0026]
In this state, when the compressors 18A, 18B, 18C of the heat source side unit 11 are started, the gas refrigerant discharged from these compressors 18A, 18B, 18C is condensed in the heat source side heat exchanger 21, and The refrigerant flows into the coil 35 in the ice heat storage tank 36 via the electric expansion valve 22, the refrigerant pipe 16 of the ice heat storage unit 12, the connection pipe 44, and the third electric open / close valve 43. The liquid refrigerant that has flowed into the coil 35 flows in the coil 35 in a full state, defrosts the ice attached to the outer periphery of the coil 35, and enters a supercooled state due to the cold stored in the ice. Thereafter, the liquid refrigerant in the supercooled state in the coil 35 is used through the connection pipe 39, the first electric opening / closing valve 41 and the refrigerant pipe 16, the refrigerant pipe 15A of the use side unit 13, and the electric expansion valves 27, 28, 29. The heat flows into the side heat exchangers 24, 25, 26, respectively, and is evaporated by each of the use side heat exchangers 24, 25, 26 to cool the room.
[0027]
Thereafter, the gas refrigerant passes through the refrigerant pipes 30, 31, 32 and the refrigerant pipe 15B, passes through the refrigerant pipe 17 of the ice heat storage unit 12, passes through the four-way valve 20 and the accumulator 19, and then returns to the compressors 18A, 18B, 18C. .
[0028]
Therefore, during this ice melting and cooling operation, the cooling medium stored in the ice in the ice heat storage tank 36 in the ice making operation described above is used, and the liquid refrigerant is supercooled in the coil 35 of the ice heat storage tank 36 to use the heat on the use side. Since the supply to the exchanges 24, 25, 26, the efficiency of the cooling operation in the use side heat exchangers 24, 25, 26 can be improved.
[0029]
In the above-described ice melting and cooling operation, in the ice heat storage unit 12, the liquid refrigerant temperature E1 flowing from the coil 35 to the refrigerant pipe 16 on the first electric on-off valve 41 side via the connection pipe 39 is changed by the use-side unit 13. When the temperature is lower than the liquid refrigerant temperature E2 in the use-side heat exchangers 24, 25, and 26, the opening degree of the electric expansion valve 38 is adjusted, and the liquid refrigerant supercooled by the coil 35 in the ice heat storage tank 36 is removed. The liquid refrigerant from the heat source side heat exchanger 21 and the electric expansion valve 22 are merged, and the merged liquid refrigerant is supplied to the use side heat exchangers 24, 25, 26. In such a de-ice cooling operation, since the liquid refrigerant from the heat source side heat exchanger 21 and the electric expansion valve 22 has a higher temperature than the liquid refrigerant supercooled in the coil 35, the use side heat exchanger 24 , 25, and 26 to raise the temperature of the liquid refrigerant to optimize the indoor cooling operation by the use-side heat exchangers 24, 25, and 26.
[0030]
"C" Normal cooling operation (Fig. 2)
The normal cooling operation in the air-conditioning apparatus 10 illustrated in FIG. 2 is a cooling operation that is performed without using the cold heat stored in the ice in the ice heat storage tank 36 in the ice heat storage unit 12, and includes the second electric on-off valve 42 and The third electric on-off valve 43 is closed, and the electric expansion valve 38 and the first electric on-off valve 41 are opened. Further, the electric expansion valves 27, 28 and 29 in the use side unit 13 are opened.
[0031]
In this state, when the compressors 18A, 18B, 18C of the heat source side unit 11 are started, the gas refrigerant discharged from these compressors 18A, 18B, 18C is condensed in the heat source side heat exchanger 21, and It passes through the electric expansion valve 22 and the refrigerant pipe 16 of the ice heat storage unit 12, the electric expansion valve 38, and the first electric opening / closing valve 41, passes through the refrigerant pipe 15 </ b> A of the user side unit 13 and the electric expansion valves 27, 28, 29, and uses the heat on the usage side. After flowing into the heat exchangers 24, 25, and 26, evaporating and cooling the room by each of the use-side heat exchangers 24, 25, and 26, the refrigerant flows through the refrigerant pipe 15B and passes through the refrigerant pipe 17 of the ice heat storage unit 12. After passing through the four-way valve 20 and the accumulator 19, it is returned to the compressors 18A, 18B, 18C.
[0032]
[D] Structure of Ice Heat Storage Tank 36 According to the Present Embodiment FIG. 3 shows a part of the internal structure of the ice heat storage tank 36. The ice heat storage tank 36 is filled with water, and the meandering coil 35 (FIG. 1) is provided with its upper end 35A protruding above the water surface. In the ice making operation, ice heat is stored by evaporating the refrigerant in the coil 35 to make ice, and in the ice melting operation, the refrigerant is condensed in the coil 35 to deice the ice around the coil 35 to store the ice heat. Make use. During this thawing, as shown in FIG. 5, the ice 100 around the coil 35 is thawed, and an annular water column 91 is formed around the coil 35 due to the thawing.
[0033]
In the present embodiment, as shown in FIG. 4, a plurality of bottom members 111 are arranged side by side at the bottom of the ice heat storage tank 36, and at least one of the bottom members 111A is provided with air supply means (pipe) 95. Is provided.
[0034]
A plurality of support members 93 having an air storage portion 92 for storing the air supplied through the pipe 95 are laid on the bottom members 111 and 111A so as to be substantially orthogonal to the bottom members 111. I have.
[0035]
The bottom members 111 and 111A and the support member 93 are box-shaped members each having an open lower surface, and when air is supplied through the pipe 95, first, air is stored inside one bottom member 111A, Next, air is uniformly distributed and stored in the air storage portions 92 of all the support members 93 through the through holes 113 formed on the upper surface of the bottom member 111A.
[0036]
A straight pipe portion 35B of the meandering coil 35 is fixed to a side wall 96 of the support member 93 by using a fixing tool 97, and a curved pipe portion (lower portion) 35C of the coil 35 extends into a lower space 94 of the support member 93. Is out. An air supply hole 98 made of a fine hole is formed in the vicinity of the fixing member 97, and the air supply hole 98 is formed so as to communicate with the air reservoir 92 and to introduce air around the straight pipe portion 35 </ b> B of the coil 35. ing.
[0037]
In the present embodiment, during the ice making operation described above, ice 100 is made around the coil 35 as shown in FIG. In this case, since the upper end 35A of the coil 35 projects above the water surface, ice is not formed around the upper end 35A.
[0038]
Next, when the above-described thawing operation is performed, first, as shown in FIG. 5, the ice around the coil 35 is thawed, and an annular water column 91 is formed around the coil 35 by this thawing. Further, due to the thawing, an air supply hole 98 formed in the side wall 96 of the support member 93 communicates with the water column 91, and an air bubble 101 is supplied into the water column 91 as shown in FIG. When the bubbles 101 are supplied to the water column 91, the bubbles 101 rise in the water column 91 and are exhausted to the outside from the vicinity of the upper end 35A of the coil 35 projecting above the water surface. According to this, since a rising water flow is generated in the water column 91, the heat conductivity is improved, and the ice melting speed is accelerated.
[0039]
In the present embodiment, the following effects (1) to (5) are obtained.
[0040]
{Circle around (1)} Since the support member 93 also functions as a so-called air supply pipe and a support member for fixing the lower portion 35C of the coil 35, the piping structure is simplified, the cost is reduced, and the ice heat storage tank 36 is easily assembled. become.
[0041]
(2) When the air is supplied through the pipe 95, the air is first stored inside the one bottom member 111A, and then the air is stored in all the support members 93 through the through holes 113 formed on the upper surface of the bottom member 111A. Since the air is supplied to the portion 92, the air is uniformly stored in all the support members 93.
[0042]
{Circle around (3)} Since the coil 35 does not intersect with the air storing portion 92 as in the related art, a sealing function is not required, and uniform air is removed.
[0043]
{Circle around (4)} Since the coil 35 is fixed to the side wall 96 of the support member 93, the ice around the side wall is melted by the temperature of the coil 35 during the deicing operation, and the air supply hole 98 communicates with the water column 91. . Therefore, unlike the related art, there is no need to provide a new ice melting means for communication, and the piping structure is simplified.
[0044]
(5) Even if the size of the ice heat storage tank 36 is different, it is possible to cope with it by combining a plurality of the support members 93 and the like, so that the support members 93 can be shared.
[0045]
FIG. 6 shows another embodiment.
[0046]
According to this, a partition body 103 is provided inside the support member 93 and extends in the short direction to divide the air storage portion 92 into a plurality.
[0047]
The height H1 of the partition body 103 is formed lower than the height H2 of the support member 93. When the support member 93 is installed in the ice heat storage tank 36, even if the support member 93 is installed at an angle. The amount of air stored in each of the chambers A to C is kept constant by the height H1 of the partition body 103.
[0048]
Therefore, in each of the chambers A to C, there is no extreme difference in the appearance of the bubbles 101, and substantially uniform air removal is possible.
[0049]
As described above, the present invention has been described based on the above embodiment, but the present invention is not limited to this. For example, in the above-described embodiment, the support member is configured as a box-shaped member having an open lower surface, but is not limited thereto, and it goes without saying that various forms may be applied without departing from the gist of the present invention. Absent.
[0050]
【The invention's effect】
In the present invention, since the supporting member also serves as a so-called air supply pipe and a supporting member for fixing the coil, the piping structure is simplified, the cost is reduced, and the assembly of the ice heat storage tank is facilitated.
[Brief description of the drawings]
FIG. 1 is an air conditioner including an ice heat storage unit to which an embodiment of an air conditioner including a heat storage unit according to the present invention is applied, and is a pipeline diagram during an ice making operation.
FIG. 2 is a pipeline diagram during a cooling operation in the embodiment of FIG. 1;
FIG. 3 is a sectional view of an ice heat storage tank.
FIG. 4 is a sectional perspective view of an ice heat storage tank.
FIG. 5 is a sectional view showing ice around a coil.
FIG. 6 is a perspective view of a support member showing another embodiment.
[Explanation of symbols]
Reference Signs List 10 air conditioner 11 heat source side unit 12 ice heat storage unit 13 user side unit 21 heat source side heat exchanger 24 user side heat exchanger 35 coil 36 ice heat storage tank 91 water column 92 air storage part 93 support member 94 lower space 95 pipe (air Supply means)
96 Side wall 97 Fixing tool 98 Air supply holes 111, 111A Bottom member

Claims (5)

コイル内で冷媒を蒸発させて製氷することにより氷蓄熱を行うと共に、上記コイル内で冷媒を凝縮させてコイル周辺の氷を解氷させることにより氷蓄熱利用を行う氷蓄熱槽を備えた空気調和装置において、
上記氷蓄熱槽の底部に複数の底部材を横並びに配置し、
少なくとも一つの底部材に空気供給手段を設け、
上記底部材の上に上記空気供給手段を通じて供給された空気を貯留する空気貯留部を有した支持部材を掛け渡し、
この支持部材に上記空気貯留部と連通してコイル周辺に空気を導入可能にした空気供給孔を形成したことを特徴とする空気調和装置。
An air conditioner equipped with an ice heat storage tank that performs ice heat storage by evaporating a refrigerant in a coil to make ice, and condensing the refrigerant in the coil to melt ice around the coil to use the ice heat. In the device,
A plurality of bottom members are arranged side by side at the bottom of the ice heat storage tank,
Providing air supply means on at least one bottom member,
A support member having an air storage section for storing air supplied through the air supply means is stretched over the bottom member,
An air conditioner, wherein an air supply hole is formed in the support member so as to communicate with the air storage section so that air can be introduced around the coil.
圧縮機及び熱源側熱交換器を備えた熱源側ユニットと、氷蓄熱槽内にコイルが水没状態で配設された氷蓄熱ユニットと、利用側熱交換器を備えた利用側ユニットとを有し、
上記コイル内で冷媒を蒸発させて製氷することにより氷蓄熱を行うと共に、上記コイル内で冷媒を凝縮させてコイル周辺の氷を解氷させることにより氷蓄熱利用を行う空気調和装置において、
上記氷蓄熱槽の底部に複数の底部材を横並びに配置し、
少なくとも一つの底部材に空気供給手段を設け、
上記底部材の上に上記空気供給手段を通じて供給された空気を貯留する空気貯留部を有した支持部材を掛け渡し、
この支持部材に上記空気貯留部と連通してコイル周辺に空気を導入可能にした空気供給孔を形成したことを特徴とする空気調和装置。
A heat source side unit having a compressor and a heat source side heat exchanger, an ice heat storage unit having a coil disposed in a submerged state in an ice heat storage tank, and a use side unit having a use side heat exchanger. ,
In the air conditioner performing ice heat storage by evaporating the refrigerant in the coil and making ice to perform ice heat storage, and condensing the refrigerant in the coil to melt ice around the coil to use ice heat storage.
A plurality of bottom members are arranged side by side at the bottom of the ice heat storage tank,
Providing air supply means on at least one bottom member,
A support member having an air storage section for storing air supplied through the air supply means is stretched over the bottom member,
An air conditioner, wherein an air supply hole is formed in the support member so as to communicate with the air storage section so that air can be introduced around the coil.
上記コイルの下部が上記支持部材の下部空間内に延出することを特徴とする請求項1または2記載の空気調和装置。The air conditioner according to claim 1, wherein a lower portion of the coil extends into a lower space of the support member. 上記空気供給手段を有した底部材および支持部材がそれぞれ下面を開口した箱形部材からなり、上記コイルが支持部材の側壁に固定されていることを特徴とする請求項1ないし3のいずれか1記載の空気調和装置。4. The apparatus according to claim 1, wherein the bottom member having the air supply means and the support member are box-shaped members each having an open lower surface, and the coil is fixed to a side wall of the support member. The air conditioner as described in the above. 上記支持部材の内側に空気貯留部を分割する仕切り体を設けたことを特徴とする請求項4記載の空気調和装置。The air conditioner according to claim 4, wherein a partition body for dividing the air storage portion is provided inside the support member.
JP2002292300A 2002-10-04 2002-10-04 Air conditioner Expired - Lifetime JP3790207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002292300A JP3790207B2 (en) 2002-10-04 2002-10-04 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002292300A JP3790207B2 (en) 2002-10-04 2002-10-04 Air conditioner

Publications (2)

Publication Number Publication Date
JP2004125323A true JP2004125323A (en) 2004-04-22
JP3790207B2 JP3790207B2 (en) 2006-06-28

Family

ID=32283598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002292300A Expired - Lifetime JP3790207B2 (en) 2002-10-04 2002-10-04 Air conditioner

Country Status (1)

Country Link
JP (1) JP3790207B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013155936A (en) * 2012-01-30 2013-08-15 Miura Co Ltd Ice thermal storage device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013155936A (en) * 2012-01-30 2013-08-15 Miura Co Ltd Ice thermal storage device

Also Published As

Publication number Publication date
JP3790207B2 (en) 2006-06-28

Similar Documents

Publication Publication Date Title
JP5920178B2 (en) Heat pump cycle
JP5327308B2 (en) Hot water supply air conditioning system
WO2013084464A1 (en) Heat exchanger and heat pump cycle provided with same
JP2007010288A (en) Cooling and heating capacity enhancement method of existing heat pump type air conditioner, thermal storage unit device and heat pump type air conditioner using the device
JP2013083439A (en) Hot water supply air conditioning system
JP2004069228A (en) Heat exchanger
JP2004125323A (en) Air conditioner
JP3814570B2 (en) Air conditioner
JPH08152162A (en) Internally melting type ice heat storage tank
JP3639422B2 (en) Air conditioner with ice heat storage unit
JP3643687B2 (en) Air conditioner with ice heat storage unit
JP3802237B2 (en) Air conditioner with ice storage tank
JP3920540B2 (en) Air conditioner
JP3276013B2 (en) Thermal storage system
JP2005055024A (en) Outdoor unit of air conditioner
WO2023210200A1 (en) Cooler
JP2003202135A (en) Regenerative air-conditioning device
JP3427628B2 (en) Ice storage device
JP3831529B2 (en) Ice heat storage unit of air conditioner
JP2006342994A (en) Ice heat storage air conditioner
JP2649078B2 (en) Heat storage type cooling and heating method
JP3365371B2 (en) Ice storage device
JP3422288B2 (en) Ice storage device
JPH1047822A (en) Ice heat storage device
JPH06213525A (en) Ice heat accumulator and air conditioner using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3790207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090407

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100407

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110407

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120407

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140407

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term