JP2004125312A - Exhaust heat recovery system - Google Patents

Exhaust heat recovery system Download PDF

Info

Publication number
JP2004125312A
JP2004125312A JP2002291727A JP2002291727A JP2004125312A JP 2004125312 A JP2004125312 A JP 2004125312A JP 2002291727 A JP2002291727 A JP 2002291727A JP 2002291727 A JP2002291727 A JP 2002291727A JP 2004125312 A JP2004125312 A JP 2004125312A
Authority
JP
Japan
Prior art keywords
heat
exhaust gas
pipe
exchange chamber
heat recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002291727A
Other languages
Japanese (ja)
Other versions
JP3960893B2 (en
Inventor
Masaru Ito
伊藤 勝
Satoru Kobayashi
小林 哲
Kenichi Irikawa
入川 健一
Masanori Osone
大曽根 正範
Masaharu Kodera
古寺 雅晴
Yoshinobu Takagi
高木 義信
Hiroyuki Otsuka
大塚 裕之
Manabu Imoto
井元 学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Hitachi Zosen Corp
Imex Co Ltd
Original Assignee
Chugoku Electric Power Co Inc
Hitachi Zosen Corp
Imex Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc, Hitachi Zosen Corp, Imex Co Ltd filed Critical Chugoku Electric Power Co Inc
Priority to JP2002291727A priority Critical patent/JP3960893B2/en
Publication of JP2004125312A publication Critical patent/JP2004125312A/en
Application granted granted Critical
Publication of JP3960893B2 publication Critical patent/JP3960893B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage

Landscapes

  • Chimneys And Flues (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Air Supply (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust heat recovery system capable of reducing manufacturing cost. <P>SOLUTION: The exhaust heat recovery system 1 is provided with a heat recovery unit 6 having a heat exchange chamber 5 arranged with a heat transfer pipe 4 provided with a gas inlet 2 connected to an exhaust gas lead-in pipe 7 and a gas outlet 3 connected to an exhaust gas lead-out pipe 8 and supplied with hot water for heat recovery, a bypass pipe 9 provided between the exhaust gas lead-in pipe 7 and the exhaust gas lead-out pipe 8 to bypass the heat recovery unit 6, and a change-over damper 10 provided in an exhaust gas lead-in pipe 7 side to change over exhaust gas led in by the exhaust gas lead-in pipe 7 to either one of a heat exchange chamber 5 side or a bypass pipe 9 side. A cooling air supply pipe 13 for supplying cooling air into the heat exchange chamber 5 is connected to the exhaust heat recovery system 1, and it is composed so that when heat recovery is not necessary, heat leaking into the heat exchange chamber is cooled by supplying the cooling air into the heat exchange chamber by the cooling air supply pipe and discharging it out to the exhaust gas lead-out pipe from the gas outlet. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えばマイクロガスタービンから排出される排ガスの熱を回収するための排熱回収装置に関するものである。
【0002】
【従来の技術】
最近、マイクロガスタービンを使用した小規模発電設備が設置されるとともに、この小規模発電設備には、マイクロガスタービンから排出される排ガスを回収するための排熱回収装置が設けられている。
【0003】
ところで、図3に示すように、この排熱回収装置51は、上部に排ガスを導入するガス導入口52および下部に排ガスを導出するガス導出口53が設けられるとともに内部に伝熱管54が配置された熱交換室55を有する熱回収器56と、上記ガス導入口52側に接続された排ガス導入管57と、上記ガス導出口53側に接続された排ガス導出管58と、これら排ガス導入管57と排ガス導出管58とを接続して上記熱交換室55をバイパスするバイパス管59と、上記排ガス導入管57におけるガス導入口52とバイパス管59との接続部分に設けられて排ガスをガス導入口52側およびバイパス管59側のいずれかに切り替える切替板60aを有する切替ダンパー60と、上記伝熱管4と熱需要個所側に設けられた熱交換部との間で熱回収用の被加熱水である温水を循環させる被加熱水供給配管61と、この被加熱水供給配管61の送り管部61aと戻り管部61bとの間に接続されるとともに途中に循環用水ポンプ62、ラジエータ63および電磁開閉弁64が設けられて伝熱管54にて奪った熱を放出する放熱用管路である放熱用循環管65とから構成されている。
【0004】
上記構成において、熱需要箇所において熱需要がある場合、切替ダンパー60の切替板60aがガス導入位置(ハ)にされて、高温の排ガスが熱交換室5側に導かれ、伝熱管54内を流れる温水を加熱する。この加熱された高温水が熱需要箇所に供給されて熱回収が行われる。しかし、熱需要箇所において熱需要がない場合、切替ダンパー60の切替板60aがバイパス位置(ニ)に切り替えられて、ガス導入口62を閉塞して熱交換室55内に排ガスが流入しないようにされる。
【0005】
このように、切替ダンパー60にて排ガスが熱交換室55に流入しないようにされているが、どうしても、切替板60aの閉塞部分にて排ガスのリークが生じるとともに、熱回収器56自体にて伝わる熱、および排ガス導出管58からガス導出口53を経て熱交換室55内に回り込む排ガスにより、熱交換室55内が高温に曝されるため、その保護用として、伝熱管54内を流れる温水を放熱用循環管65に導き、熱交換室55内にリークする熱をラジエータ63より放出していた(例えば、特許文献1参照)。
【0006】
【特許文献1】
特開2002−4944号公報(公報第2頁〜第3頁の段落番号[0006]および[0007],図6および図7)
【0007】
【発明が解決しようとする課題】
上記従来の構成によると、熱需要がない場合、すなわち熱回収が行われない場合に対処するために、熱交換室55内の熱を放出するための水ポンプ62、ラジエータ63などの放熱用機器を必要とし、しかも高温の排ガスが排ガス導出管58からガス導出口53を経て熱交換室55内に回り込むのを防止することができないため、どうしても、大きい放熱能力を必要とし、製作コストが高くつくという問題があった。
【0008】
そこで、本発明は、製作コストが安価な排熱回収装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記課題を解決するために、本発明の排熱回収装置は、排ガス導入管が接続されるガス導入口および排ガス導出管が接続されるガス導出口が設けられるとともに被加熱流体が供給される伝熱管が配置された熱交換室を有する熱回収器と、上記排ガス導入管と排ガス導出管との間に設けられて上記熱回収器をバイパスするバイパス管と、上記排ガス導入管側に設けられて当該排ガス導入管より導入される排ガスを熱交換室側とバイパス管側とのいずれかに切り替える切替器とが具備された排熱回収装置において、
上記熱交換室内に冷却用空気を供給するための冷却空気供給管を接続したものであり、
また上記排熱回収装置において、伝熱管に被加熱流体が供給されない場合に、冷却空気供給管より冷却用空気を熱交換室内に供給するとともにガス導出口から排ガス導出管を経て外部に放出するようにしたものである。
【0010】
上記の構成によると、排ガスのバイパス時に、熱交換室内に冷却用空気を供給して熱交換器側にリークする熱を冷却することにより、例えばリークする熱を伝熱管内を流れる温水にてその熱を奪うようにしたものに比べると、放熱用管路に設けられる水ポンプ、ラジエータなどの構成機器を不要にすることができる。また、熱交換室側に冷却用空気が供給されることから、バイパス管への切替部分において熱交換室側にリークする排ガスおよびガス導出口側から熱交換室内に回り込む排ガスを殆ど無くすことができるので、熱交換室側にリークする熱量を大幅に減らすことができる。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態に係る排熱回収装置を、図1および図2に基づき説明する。
【0012】
本実施の形態における排熱回収装置は、排熱回収ボイラーともいい、例えばマイクロガスタービンを用いた小規模発電設備に設けられて、このマイクロガスタービンから排出される高温の排気ガス(以下、排ガスという)の熱を利用して、例えば高温水を得るとともにこの高温水を熱需要箇所に供給するためのものである。
【0013】
すなわち、図1に示すように、この排熱回収装置1は、上部に排ガスを導入するためのガス導入口2および下部に排ガスを導出するガス導出口3が設けられるとともに内部に伝熱管4が配置された熱交換室5を有する熱回収器6と、上記ガス導入口2に接続された排ガス導入管7と、上記ガス導出口3に接続された排ガス導出管8と、これら排ガス導入管7と排ガス導出管8とを接続して上記熱交換室5をバイパスするバイパス管9と、上記排ガス導入管7のガス導入口2部分とバイパス管9との接続箇所に設けられて排ガスをガス導入口2側およびバイパス管9側のいずれかに切り替える切替板10aを有する切替ダンパー(切替器)10と、途中に電磁開閉弁11が設けられるとともに送風ファン12に接続されて上記熱交換室5に冷却用空気を供給するための冷却空気供給管13とから構成されている。なお、上記伝熱管4には、熱需要個所との間で熱回収用の温水(被加熱水)を循環させる被加熱水供給配管14が接続されている。
【0014】
上記構成において、熱需要箇所にて熱需要(熱負荷)がある場合、切替ダンパー10の切替板10aがガス導入位置(イ)にされて、高温の排ガスが熱交換室5側に導かれ、伝熱管4内を流れる温水を加熱することにより熱回収が行われる。そして、この高温水が熱需要箇所に送られて、熱の有効利用が図られる。
【0015】
一方、熱需要箇所にて熱需要(熱負荷)がない場合、すなわち熱回収を行わない場合、切替ダンパー10の切替板10aがバイパス位置(ロ)に切り替えられるとともに、電磁開閉弁11が開かれて送風ファン12からの冷却用空気が熱交換室5内に供給される。
【0016】
この冷却用空気により、熱交換室5側にリークする熱、例えば熱交換器6自体にて伝わる熱が冷却されるとともに、この冷却用空気はガス導出口3より排ガス導出管8側に流出して外部に放出される。すなわち、熱交換室5内に供給される冷却用空気により、切替ダンパー10における切替板10aの閉塞部分に生じる隙間からリークする高温の排ガス、および排ガス導出管8からガス導出口3を経て熱交換室5内に回り込む(流入する)排ガスを殆ど無くすことができる。
【0017】
ここで、空気により熱交換室5内を100℃以下(熱交換室内を通過した空気の温度で、例えば70℃、80℃および90℃である場合)に冷却する際のリーク熱量と送風ファンの風量との関係を計算により求めた結果を図2に示す。
【0018】
従来のように、伝熱管を用いて冷却を行う場合、すなわち空気にて冷却を行わない場合には、熱交換室側にリークする熱量は、例えば2000kcal/hr以上と非常に多いが、冷却用空気を吹き込む場合には、切替ダンパーの切替板における閉鎖部分からの排ガスのリークおよびガス導出口3からの排ガスの回り込みが殆ど無くなるため、熱回収器6自体にて伝わる熱(リーク熱)だけとなる。この熱量は、例えば700kcal/hrとかなり少ないため、図2のグラフに示すように、熱交換室を通過する空気温度が80℃〜90℃である場合における冷却用空気量は、1m/min程度で済む。
【0019】
このように、熱回収を行わないバイパス時においては、冷却用空気が熱交換室5内に供給されるだけであるため、バイパス時に制御を必要とするのは電磁開閉弁11だけとなり、非常に簡単な制御で済み、さらに切替ダンパー10の切替板10aにおける閉塞部分での排ガスのリークおよびガス導出口3からの排ガスの回り込みが殆ど無くなるため、リーク熱量が大幅に減じられ、したがって冷却用空気の供給量も少なくて済むため、空気供給機器の容量も小さくなり、非常に経済的となる。また、切替ダンパー10については、シール性能が必ずしも高いものでなくてもよいため、さらなる製作コストの低減化に繋がる。
【0020】
すなわち、上記の構成によると、排ガスのバイパス時に、熱交換室5内に冷却用空気を供給して熱交換室5側にリークする熱を冷却(空冷)するようにしたので、従来のように、リークする熱を伝熱管内を流れる温水にてその熱を奪うようにしたものに比べると、放熱用循環管に設けられる水ポンプ、ラジエータなどの構成機器を不要にすることができるので、製作コストの低減化を図ることができる。さらに、熱交換室5側に冷却用空気が供給されることから、切替ダンパー10での切替部分において、熱交換室5側にリークする排ガス量および排ガス導出管8側から熱交換室5内に回り込む排ガス量を殆ど無くすことができるので、熱交換室5側にリークする熱量が大幅に減少し、したがって冷却用空気供給機器の容量の小型化を図ることができる。
【0021】
なお、上記実施の形態においては、排ガス導出口3に排ガス導出管8が接続されている説明したが、図1では、熱回収器6の側部に排ガス導出口3に連通する連通路が設けられた構成となっているが、この連通路を排ガス導出管8の一部として説明したものである。
【0022】
【発明の効果】
以上のように本発明の排熱回収装置の構成によると、排ガスのバイパス時に、熱交換室内に冷却用空気を供給して当該熱交換室側にリークする熱を冷却するようにしたので、従来のように、リークする熱を伝熱管内を流れる温水にてその熱を奪うようにしたものに比べると、放熱用管路に設けられる水ポンプ、ラジエータなどの構成機器を不要にすることができ、製作コストの低減化を図ることができ、さらに熱交換室側に冷却用空気が供給されることから、バイパス管への切替部分において熱交換室側にリークする排ガスおよびガス導出口側から熱交換室内に回り込む排ガスを殆ど無くすことができるので、熱交換室側にリークする熱量が大幅に減少し、したがって冷却用空気供給機器の容量の小型化を図ることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る排熱回収装置の概略構成を示す断面図である。
【図2】同排熱回収装置におけるリーク熱量と送風ファンの風量との関係を示すグラフである。
【図3】従来例に係る排熱回収装置の概略構成を示す断面図である。
【符号の説明】
1   排熱回収装置
2   ガス導入口
3   ガス導出口
4   伝熱管
5   熱交換室
6   熱回収器
7   排ガス導入管
8   排ガス導出管
9   バイパス管
10   切替ダンパー
10a  切替板
12   送風ファン
13   冷却空気供給管
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an exhaust heat recovery device for recovering heat of exhaust gas discharged from a micro gas turbine, for example.
[0002]
[Prior art]
Recently, a small-scale power generation facility using a micro gas turbine is installed, and the small-scale power generation facility is provided with an exhaust heat recovery device for recovering exhaust gas discharged from the micro gas turbine.
[0003]
As shown in FIG. 3, the exhaust heat recovery apparatus 51 includes a gas inlet 52 for introducing exhaust gas at an upper portion, a gas outlet 53 for extracting exhaust gas at a lower portion, and a heat transfer tube 54 disposed inside. A heat recovery unit 56 having a heat exchange chamber 55, an exhaust gas introduction pipe 57 connected to the gas inlet 52, an exhaust gas outlet pipe 58 connected to the gas outlet 53, and an exhaust gas introduction pipe 57. And a flue gas outlet pipe 58 for bypassing the heat exchange chamber 55, and a flue gas provided at a connection portion between the gas inlet 52 and the bypass pipe 59 in the flue gas inlet pipe 57 to supply the flue gas to the gas inlet. The heat transfer between the heat transfer tube 4 and the heat exchange unit provided on the heat demand point side, and the switching damper 60 having the switching plate 60a for switching to either the 52 side or the bypass pipe 59 side. Heated water supply pipe 61 for circulating hot water as the heated water for use, and a circulating water pump 62 connected between the feed pipe section 61a and the return pipe section 61b of the heated water supply pipe 61 and on the way. , A radiator 63 and a solenoid on-off valve 64 are provided, and a heat-dissipating circulation pipe 65 which is a heat-dissipating pipe for releasing heat taken by the heat transfer pipe 54.
[0004]
In the above configuration, when there is a heat demand at the heat demand location, the switching plate 60a of the switching damper 60 is set to the gas introduction position (C), the high-temperature exhaust gas is guided to the heat exchange chamber 5 side, and the inside of the heat transfer tube 54 is Heat the flowing hot water. The heated high-temperature water is supplied to a heat demand location to recover heat. However, when there is no heat demand at the heat demand location, the switching plate 60a of the switching damper 60 is switched to the bypass position (d) to close the gas inlet 62 and prevent the exhaust gas from flowing into the heat exchange chamber 55. Is done.
[0005]
As described above, the switching damper 60 prevents the exhaust gas from flowing into the heat exchange chamber 55. However, the exhaust gas leaks at the closed portion of the switching plate 60a and is transmitted by the heat recovery unit 56 itself. The heat and exhaust gas flowing from the exhaust gas outlet pipe 58 into the heat exchange chamber 55 via the gas outlet 53 exposes the inside of the heat exchange chamber 55 to high temperatures. The heat that has been guided to the heat radiating circulation pipe 65 and leaked into the heat exchange chamber 55 has been released from the radiator 63 (for example, see Patent Document 1).
[0006]
[Patent Document 1]
JP-A-2002-4944 (Paragraph Nos. [0006] and [0007] of Publications Nos. 2 and 3; FIGS. 6 and 7)
[0007]
[Problems to be solved by the invention]
According to the above-described conventional configuration, in order to cope with a case where there is no heat demand, that is, a case where heat recovery is not performed, a heat radiating device such as a water pump 62 and a radiator 63 for releasing heat in the heat exchange chamber 55. In addition, since it is impossible to prevent high-temperature exhaust gas from flowing from the exhaust gas outlet pipe 58 to the heat exchange chamber 55 through the gas outlet 53, a large heat dissipation capacity is required, and the manufacturing cost is high. There was a problem.
[0008]
Then, an object of the present invention is to provide an exhaust heat recovery device whose manufacturing cost is low.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, the exhaust heat recovery device of the present invention is provided with a gas inlet to which an exhaust gas inlet pipe is connected and a gas outlet to which an exhaust gas outlet pipe is connected, and a power supply to which a fluid to be heated is supplied. A heat recovery unit having a heat exchange chamber in which a heat pipe is disposed, a bypass pipe provided between the exhaust gas introduction pipe and the exhaust gas extraction pipe and bypassing the heat recovery unit, and provided on the exhaust gas introduction pipe side. In a waste heat recovery device equipped with a switch that switches exhaust gas introduced from the exhaust gas introduction pipe to either the heat exchange chamber side or the bypass pipe side,
A cooling air supply pipe for supplying cooling air into the heat exchange chamber is connected,
Further, in the exhaust heat recovery device, when the fluid to be heated is not supplied to the heat transfer tube, the cooling air is supplied from the cooling air supply tube into the heat exchange chamber and discharged from the gas outlet through the exhaust gas outlet tube to the outside. It was made.
[0010]
According to the above configuration, at the time of exhaust gas bypass, by supplying cooling air into the heat exchange chamber to cool heat leaking to the heat exchanger side, for example, the leaked heat is supplied by hot water flowing through the heat transfer tube. Compared with a device that removes heat, components such as a water pump and a radiator provided in a heat radiation pipe can be eliminated. Further, since the cooling air is supplied to the heat exchange chamber side, exhaust gas leaking to the heat exchange chamber side and exhaust gas flowing into the heat exchange chamber from the gas outlet side at the switching portion to the bypass pipe can be substantially eliminated. Therefore, the amount of heat leaking to the heat exchange chamber side can be significantly reduced.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an exhaust heat recovery device according to an embodiment of the present invention will be described with reference to FIGS.
[0012]
The exhaust heat recovery device according to the present embodiment is also referred to as an exhaust heat recovery boiler, and is provided, for example, in a small-scale power generation facility using a micro gas turbine, and is configured to emit high-temperature exhaust gas (hereinafter, exhaust gas) discharged from the micro gas turbine. ) Is used to obtain, for example, high-temperature water and to supply the high-temperature water to a heat demand location.
[0013]
That is, as shown in FIG. 1, the exhaust heat recovery apparatus 1 is provided with a gas inlet 2 for introducing exhaust gas at an upper portion and a gas outlet 3 for extracting exhaust gas at a lower portion, and a heat transfer tube 4 inside. A heat recovery unit 6 having a heat exchange chamber 5 disposed therein, an exhaust gas introduction pipe 7 connected to the gas introduction port 2, an exhaust gas introduction pipe 8 connected to the gas exit port 3, and an exhaust gas introduction pipe 7 And a flue gas outlet pipe 8 for bypassing the heat exchange chamber 5 and a flue gas provided at a connection point between the gas inlet 2 of the flue gas inlet pipe 7 and the bypass pipe 9 to introduce flue gas. A switching damper (switching device) 10 having a switching plate 10a for switching to one of the port 2 side and the bypass pipe 9 side, and an electromagnetic on-off valve 11 provided in the middle and connected to a blower fan 12 to connect to the heat exchange chamber 5 cooling And a cooling air supply pipe 13 for for supplying air. The heat transfer pipe 4 is connected to a heated water supply pipe 14 for circulating hot water (heated water) for heat recovery between the heat transfer pipe 4 and a heat demanding point.
[0014]
In the above configuration, when there is a heat demand (heat load) at the heat demand location, the switching plate 10a of the switching damper 10 is set to the gas introduction position (a), and the high-temperature exhaust gas is guided to the heat exchange chamber 5 side, Heat recovery is performed by heating the hot water flowing in the heat transfer tube 4. Then, the high-temperature water is sent to a heat demand location, and effective use of heat is achieved.
[0015]
On the other hand, when there is no heat demand (heat load) at the heat demand location, that is, when heat recovery is not performed, the switching plate 10a of the switching damper 10 is switched to the bypass position (b), and the electromagnetic on-off valve 11 is opened. Thus, cooling air from the blower fan 12 is supplied into the heat exchange chamber 5.
[0016]
The cooling air cools the heat leaking to the heat exchange chamber 5 side, for example, the heat transmitted by the heat exchanger 6 itself, and the cooling air flows out of the gas outlet 3 to the exhaust gas outlet pipe 8 side. Released to the outside. That is, the cooling air supplied into the heat exchange chamber 5 causes the high-temperature exhaust gas leaking from the gap generated in the closed portion of the switching plate 10 a in the switching damper 10, and the heat exchange via the exhaust gas outlet pipe 8 through the gas outlet 3. Exhaust gas flowing around (inflowing) into the chamber 5 can be almost eliminated.
[0017]
Here, the amount of leak heat when cooling the inside of the heat exchange chamber 5 with air to 100 ° C. or less (when the temperature of the air passing through the heat exchange chamber is, for example, 70 ° C., 80 ° C., and 90 ° C.) and the blower fan FIG. 2 shows the result obtained by calculating the relationship with the air volume.
[0018]
When cooling is performed using a heat transfer tube as in the conventional case, that is, when cooling is not performed using air, the amount of heat leaking to the heat exchange chamber side is very large, for example, 2000 kcal / hr or more. In the case of blowing air, since there is almost no leakage of exhaust gas from the closed portion of the switching plate of the switching damper and exhaust gas from the gas outlet 3, almost no heat (leak heat) is transmitted by the heat recovery unit 6 itself. Become. Since this heat amount is considerably small, for example, 700 kcal / hr, as shown in the graph of FIG. 2, when the air temperature passing through the heat exchange chamber is 80 ° C. to 90 ° C., the cooling air amount is 1 m 3 / min. It only takes about.
[0019]
As described above, at the time of bypass without performing heat recovery, since only cooling air is supplied into the heat exchange chamber 5, only the electromagnetic on-off valve 11 needs to be controlled at the time of bypass. Simple control is sufficient, and furthermore, since there is almost no leakage of exhaust gas at the closed portion of the switching plate 10a of the switching damper 10 and sneaking of exhaust gas from the gas outlet 3, the amount of leak heat is greatly reduced. Since the supply amount is small, the capacity of the air supply device is also small, which is very economical. Further, the switching damper 10 does not necessarily have to have high sealing performance, which leads to a further reduction in manufacturing cost.
[0020]
That is, according to the above configuration, when the exhaust gas is bypassed, the cooling air is supplied into the heat exchange chamber 5 to cool (air-cool) the heat leaking to the heat exchange chamber 5 side. Compared to a device that uses the hot water flowing in the heat transfer tube to take the leaked heat, the components such as a water pump and a radiator that are provided in the circulating tube for heat radiation can be eliminated. Cost can be reduced. Further, since the cooling air is supplied to the heat exchange chamber 5 side, the amount of exhaust gas leaking to the heat exchange chamber 5 side and the exhaust gas outlet pipe 8 side into the heat exchange chamber 5 at the switching portion of the switching damper 10. Since the amount of exhaust gas flowing around can be almost eliminated, the amount of heat leaking to the heat exchange chamber 5 side is greatly reduced, and therefore, the capacity of the cooling air supply device can be reduced.
[0021]
In the above embodiment, the exhaust gas outlet pipe 8 is connected to the exhaust gas outlet 3. However, in FIG. 1, a communication passage communicating with the exhaust gas outlet 3 is provided on the side of the heat recovery unit 6. However, this communication path has been described as a part of the exhaust gas discharge pipe 8.
[0022]
【The invention's effect】
As described above, according to the configuration of the exhaust heat recovery apparatus of the present invention, when bypassing exhaust gas, cooling air is supplied into the heat exchange chamber to cool heat leaking to the heat exchange chamber side. In comparison with the case where the leaked heat is taken away by hot water flowing through the heat transfer tube, the components such as a water pump and a radiator installed in the heat dissipation pipe can be eliminated. In addition, since the manufacturing cost can be reduced, and the cooling air is supplied to the heat exchange chamber side, the exhaust gas leaking to the heat exchange chamber side at the switching part to the bypass pipe and the heat from the gas discharge port side. Since almost no exhaust gas flowing into the exchange chamber can be eliminated, the amount of heat leaking to the heat exchange chamber side is greatly reduced, and thus the capacity of the cooling air supply device can be reduced.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a schematic configuration of an exhaust heat recovery device according to an embodiment of the present invention.
FIG. 2 is a graph showing the relationship between the amount of leak heat and the amount of air of a blower fan in the exhaust heat recovery device.
FIG. 3 is a cross-sectional view illustrating a schematic configuration of an exhaust heat recovery device according to a conventional example.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 Exhaust heat recovery device 2 Gas inlet 3 Gas outlet 4 Heat transfer tube 5 Heat exchange chamber 6 Heat recovery device 7 Exhaust gas inlet tube 8 Exhaust gas outlet tube 9 Bypass tube 10 Switching damper 10a Switching plate 12 Blower fan 13 Cooling air supply tube

Claims (2)

排ガス導入管が接続されるガス導入口および排ガス導出管が接続されるガス導出口が設けられるとともに被加熱流体が供給される伝熱管が配置された熱交換室を有する熱回収器と、上記排ガス導入管と排ガス導出管との間に設けられて上記熱回収器をバイパスするバイパス管と、上記排ガス導入管側に設けられて当該排ガス導入管より導入される排ガスを熱交換室側とバイパス管側とのいずれかに切り替える切替器とが具備された排熱回収装置において、
上記熱交換室内に冷却用空気を供給するための冷却空気供給管を接続したことを特徴とする排熱回収装置。
A heat recovery unit having a heat exchange chamber provided with a gas inlet to which an exhaust gas introduction pipe is connected and a gas outlet to which an exhaust gas outlet pipe is connected, and a heat transfer tube to which a fluid to be heated is provided; A bypass pipe provided between the introduction pipe and the exhaust gas discharge pipe and bypassing the heat recovery unit; and a bypass pipe provided on the exhaust gas introduction pipe side and introducing exhaust gas introduced from the exhaust gas introduction pipe into the heat exchange chamber side and the bypass pipe. And a switch for switching to any one of the side and the exhaust heat recovery device,
An exhaust heat recovery device, wherein a cooling air supply pipe for supplying cooling air to the heat exchange chamber is connected.
伝熱管に被加熱流体が供給されない場合に、冷却空気供給管より冷却用空気を熱交換室内に供給するとともにガス導出口から排ガス導出管を経て外部に放出するようにしたことを特徴とする請求項1に記載の排熱回収装置。When the fluid to be heated is not supplied to the heat transfer tube, cooling air is supplied from the cooling air supply tube into the heat exchange chamber and discharged from the gas outlet through the exhaust gas outlet tube to the outside. Item 2. An exhaust heat recovery device according to Item 1.
JP2002291727A 2002-10-04 2002-10-04 Waste heat recovery device Expired - Lifetime JP3960893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002291727A JP3960893B2 (en) 2002-10-04 2002-10-04 Waste heat recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002291727A JP3960893B2 (en) 2002-10-04 2002-10-04 Waste heat recovery device

Publications (2)

Publication Number Publication Date
JP2004125312A true JP2004125312A (en) 2004-04-22
JP3960893B2 JP3960893B2 (en) 2007-08-15

Family

ID=32283204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002291727A Expired - Lifetime JP3960893B2 (en) 2002-10-04 2002-10-04 Waste heat recovery device

Country Status (1)

Country Link
JP (1) JP3960893B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127301A (en) * 2005-11-01 2007-05-24 Daihen Corp Protection method of cogeneration system
CN106642182A (en) * 2016-12-15 2017-05-10 郑州轻工业学院 Movable type heat exchanger for high-temperature fuel gas residual heat

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127301A (en) * 2005-11-01 2007-05-24 Daihen Corp Protection method of cogeneration system
CN106642182A (en) * 2016-12-15 2017-05-10 郑州轻工业学院 Movable type heat exchanger for high-temperature fuel gas residual heat

Also Published As

Publication number Publication date
JP3960893B2 (en) 2007-08-15

Similar Documents

Publication Publication Date Title
US10400636B2 (en) Supercritical CO2 generation system applying plural heat sources
EP1669568A1 (en) Exhaust gas heat exchanger for cogeneration system
US7240504B2 (en) Cogeneration system
US20060037742A1 (en) Cogeneration system
KR100657471B1 (en) Cogeneration system
US10287926B2 (en) Supercritical CO2 generation system applying recuperator per each heat source
JP4626239B2 (en) Heat pump heat storage device
JPH07208115A (en) Method and equipment for operating gas turbine by combined cycle of simple cycle and steam turbine
JP2004239544A (en) Absorption type cooling and heating machine
JP2004125312A (en) Exhaust heat recovery system
KR100600752B1 (en) Steam supply and power generation system
KR100657472B1 (en) Cogeneration system
JPH10238972A (en) Heat transfer unit
KR100579560B1 (en) Exhaust gas heat exchanger for cogeneration system
JP5854369B2 (en) Cogeneration system
JP2009138982A (en) Cooling/heating device and method
JP2004150664A (en) Cooling device
JP2010043864A (en) Heat pump heat storage device
KR100644832B1 (en) Cogeneration system
JP5749999B2 (en) Heat storage device
JP2004084959A (en) Heat exchanger and air conditioner equipped with this heat exchanger
JP2004251597A (en) Heat pump type hot-water supply apparatus and heat pump type hot-water supply heating apparatus
KR100534129B1 (en) Air Conditioner
JP2014049290A (en) Fuel cell system, and cogeneration system equipped with the same
JP2004092980A (en) Waste heat recovery boiler device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070515

R150 Certificate of patent or registration of utility model

Ref document number: 3960893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140525

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term