JP2004124309A - Fire-resistant spun yarn and method for producing the same - Google Patents

Fire-resistant spun yarn and method for producing the same Download PDF

Info

Publication number
JP2004124309A
JP2004124309A JP2002291090A JP2002291090A JP2004124309A JP 2004124309 A JP2004124309 A JP 2004124309A JP 2002291090 A JP2002291090 A JP 2002291090A JP 2002291090 A JP2002291090 A JP 2002291090A JP 2004124309 A JP2004124309 A JP 2004124309A
Authority
JP
Japan
Prior art keywords
flame
spun yarn
resistant
fiber
fiber bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002291090A
Other languages
Japanese (ja)
Inventor
Sunao Toba
鳥羽 直
Sadao Hosohara
細原 禎夫
Masaya Ikenori
池乗  雅也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2002291090A priority Critical patent/JP2004124309A/en
Publication of JP2004124309A publication Critical patent/JP2004124309A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Inorganic Fibers (AREA)
  • Woven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fire-resistant spun yarn having high quality and excellent weaving performance; and to provide a fire-resistant fiber fabric comprising the fire-resistant spun yarn. <P>SOLUTION: The fire-resistant spun yarn has ≤0.35 coefficient of F/F static friction and ≤0.2 coefficient of F/M static friction. The fabric comprises the fire-resistant spun yarn. The method for producing the fire-resistant spun yarn involves spinning a fire-resistant fiber bundle obtained by imparting 0.4-0.8pts.wt. nonionic surfactant to 100pts.wt. fire-resistant fiber bundle. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は高品質かつ製織性に優れる耐炎化紡績糸およびかかる耐炎化紡績糸からなる耐炎化繊維布帛に関する。
【0002】
【従来の技術】
炭素繊維布帛はその優れた強度特性からスポーツ用具、航空・宇宙基材、CNGタンク、フライホイール、風車、道路・橋脚等の各種構造基材の補強材料に用いられてきた。また、近年は炭素繊維布帛の高い導電性や放熱性から、携帯電話やパソコンの筐体等の電子機器部品への応用が強く求められている。従って、織り組織や厚みといった布帛の形態や電気特性など求められる品質も多様化している。
【0003】
このような炭素繊維布帛は、炭素繊維を直接紡績するのは困難なため、炭素繊維よりは伸度の高い耐炎化繊維を予め紡績・製織し、耐炎化繊維布帛としてから炭化して炭素繊維布帛を得るのが一般的である。
【0004】
また、かかる耐炎化繊維布帛は、炭素繊維布帛を得るための中間材料としてだけではなく消防服、溶接火花防護シート、カーテン等のインテリア資材など難燃性、防炎性が必要とされる分野において、それ自体の需要も増しており、より高品質な耐炎化繊維布帛を高効率で生産することが求められている。
【0005】
従って、上述の耐炎化繊維布帛さらには炭素繊維布帛を実現するような製織性に優れた耐炎化紡績糸の必要性が高まっている。
【0006】
従来の耐炎化紡績糸としては、アクリル系マルチフィラメントを耐炎化処理→スチームクリンプ→延伸切断→コーミング→ギリング→ロービングの工程を経て得られる紡績糸がある(例えば、特許文献1参照)。この方法においては多数の工程を経るなかで繊維切断が多発するなど工程通過性が良好とはいえなかった。
【0007】
また、4000〜6000フィラメントからなる無捲縮かつ無撚りの無期連続繊維束を高荷重下の一段牽切域で一気に牽切して延伸し、その後撚りを付与する製造方法もあるが、その生産性は極めて低く、得られた紡績糸の織編性も十分でなかった(例えば、特許文献2参照)。このような製造方法では、588dtex(1/17番手)といった太い紡績糸とすることである程度の高強度化を図ることができるが(例えば、特許文献3参照)、得られる紡績糸は、耐炎化繊維布帛さらには該耐炎化繊維布帛を炭化して得られる炭化繊維布帛の高密度化、薄物化を図るには満足できるものではなかった。
【0008】
【特許文献1】特開昭52−31122(第2項)
【0009】
【特許文献2】特開昭61−239030(第2〜3頁)
【0010】
【特許文献3】特開昭63−50541(第2〜3頁)
【0011】
【発明が解決しようとする課題】
本発明者らは、前記課題を解決すべく鋭意検討を重ねた結果、本発明に到達した。すなわち本発明の目的は、糸切れが少なく、製織性に優れた耐炎化紡績糸を提供することである。更には、厚さや織り組織を所望のものとした高密度な耐炎化織編布帛、更には該耐炎化繊維布帛を炭化して得られる炭化繊維布帛を安定提供することにある。
【0012】
【課題を解決するための手段】
本発明は、上記課題を解決するため以下のような手段を採用する。すなわち、F/F静摩擦係数が0.35以下であって、かつF/M静摩擦係数0.2以下である耐炎化紡績糸である。
【0013】
また、本発明の耐炎化紡績糸の製造方法は耐炎化繊維束100重量部に対して、非イオン界面活性剤が0.4〜0.8重量部付与されてなる耐炎化繊維束を紡績するものである。
【0014】
【発明の実施の形態】
本発明の実施の形態について説明する。
【0015】
本発明の耐炎化紡績糸はF/F静摩擦係数が0.35以下である。ここでF/F静摩擦係数とは繊維同士の摩擦係数のことである。その測定方法はJIS  L1095に従い測定することができる。具体的には、一端に初張力(Tf0)を加えた紡績糸試料と紡績糸をコーン等に巻上げた摩擦体とを直交かつ接触角度がθとなるように接触させながら低速で巻き取り、試料が摩擦体上を滑り始める直前の引き取り張力(Tf1)を測定し、下記式により算出できるものである。
【0016】
F/F静摩擦係数=log((Tf1/Tf0))/θloge
Tf0:初張力
Tf1:試料が摩擦体上を滑り始める直前の引き取り張力
θ :試料と被摩擦体との接触角度(ラジアン)
e :自然対数の底
ここで、初張力(Tf0)は、0.1〜100cNが好適であり、より好ましくは1〜10cNである。本発明においては初張力(Tf0)が100cNを超えると引き取り張力(Tf1)が紡績糸強力を超え、紡績糸が破断する場合があるので好ましくない。また紡績糸を巻きつけた摩擦体の直径は特に限定されるものではないが、8mmの円筒に紡績糸が円筒の軸と平行となるように巻き付けたものを使用するので、直径1〜20cmが一般的である。引き取り速度が高速であると測定誤差が生じやすいので、10cm以下/分の低速で測定を繰り返えすことが好ましく、測定精度を高めるには5cm以下/分がさらに好ましい。測定は温度24±4℃、相対湿度70±20%の条件下で30回以上行うことが好ましい。
【0017】
かかるF/F静摩擦係数が0.35を超えると、製織や編製時の糸打ち込み時の紡績糸同士の摩擦抵抗が増し、糸切れを多発するため好ましくない。F/F静摩擦係数は小さいほど好ましいが、本発明の目的からは、0.1〜0.35程度であればよい。より好ましくは0.2〜0.35である。
【0018】
また、本発明の耐炎化紡績糸はF/M静摩擦係数が0.2以下であることが重要である。ここでF/M摩擦係数とは紡績糸と金属の間の摩擦係数であり、上述のF/F静摩擦係数に用いた摩擦体を金属製のガイドに変更し測定することができる。その測定方法はJIS  L1095に従った。一端に初張力(TM0)を加えた紡績糸試料と金属製からなる円筒形摩擦体とを直交かつ接触角度がθとなるように接触させながら低速で巻き取り、試料が摩擦体上を滑り始める直前の引き取り張力(TM1)を測定し、下記式により算出することができる。
【0019】
F/M静摩擦係数=log((TM1/TM0))/θloge
TM0:初張力
TM1:試料が摩擦体上を滑り始める直前の引き取り張力
θ :試料と被摩擦体との接触角度(ラジアン)
e :自然対数の底
ここで、初張力(TM0)は、0.1〜100cNが好適であり、より好ましくは1〜5cNである。初張力(TM0)が100cNを超えると引き取り張力(TM1)が紡績糸強力を超え、紡績糸が破断する場合がある。金属摩擦体の大きさは特に限定されるものではないが、直径1〜20cmが一般的であり、さらには1〜10cmの梨地が好適である。ここで梨地とはJIS  B0601で測定される中心線平均粗さRaが0.5〜1.5μmのものであり、その材質は鋼材、ステンレスなどが好適に用いられる。引き取り速度が高速であると測定誤差が生じやすいので、10cm以下/分の低速で測定を繰り返えすことが好ましく、測定精度を高めるには5cm以下/分がさらに好ましい。測定は温度24±4℃、相対湿度70±20%の条件下で30回以上行うことが好ましい。
【0020】
かかるF/M静摩擦係数が0.2を超えると紡績や製織の工程において金属ローラとの巻付となり好ましくないばかりか、製織時にガイドとの擦れによって糸切れが発生する場合がある。かかるF/M摩擦係数は小さいほど好ましいが、本発明の目的からは0.1〜0.2程度であればよい。
【0021】
本発明の耐炎化紡績糸は、200〜333dtex(1/30〜1/50番手)の紡積糸であることが好ましい。より好ましくは220〜330dtexであり、さらに好ましくは250〜330dtexである。200dtex未満では、糸自体の強力が低下するため、製織など布帛製造時に糸傷み等が生じて耐炎化繊維布帛の品位が低下したり、生産性が低下する場合がある。また、333dtexを超える紡績糸では、単位面積辺りの打ち込み本数を上げることが出来ないため、布帛の薄物化と高密度化というニーズに応えられない場合がある。
【0022】
また、本発明の耐炎化紡績糸は強力が150cN以上であることが好ましい。好ましくは200cN以上、さらに好ましくは250cN以上である。紡績糸の強力が150cNを下回る場合、布帛製造時に糸切れが多発し操業性が低下する場合がある。かかる紡績糸の強力は、高ければ高いほど好ましく、上限は特にないが、本発明範囲の耐炎化紡績糸太さにおいては、500cN以上の強力を有することは希である。
【0023】
F/F摩擦係数及びF/M摩擦係数を前述の範囲とする方法は、特に限定されないが、例えば非イオン界面活性剤を耐炎化繊維に付与する方法を採用することができる。
【0024】
かかる非イオン界面活性剤としては、水溶液中で電離しない界面活性剤であれば特に限定されないが、例えばアルキルアルコールエチレンオキサイド付加物を挙げることができる。中でも直鎖のアルキルアルコールエチレンオキサイド付加物を好ましく用いることができ、更に好ましくは炭素数が8以上であることが好ましい。たとえばラウリルアルコールエチレンオキサイド付加物、オクチルアルコールエチレンオキサイド付加物を特に好ましく用いることができる。これらの非イオン界面活性剤は、400℃でほぼ分解揮発するため、後の炭化工程において強度低下などの悪影響を及ぼさないことから好適である。
【0025】
非イオン界面活性剤は耐炎化繊維100重量部に対して0.4〜0.8重量部付着していることが好ましい。
【0026】
該付着量が0.8重量部を超えると、紡績製織工程において脱落油剤に風綿が付着し、粘着性が発現してローラー巻付等が発生したり、また0.4重量部未満では、F/F摩擦係数及びF/M摩擦係数を前述の範囲にする効果が十分でない場合がある。
【0027】
非イオン界面活性剤を付与する方法としては、特に限定されないが、ディップ法、キスロール法および噴霧法などの方法を用いて単独もしくは複数の組み合わせにより付与することができ、その付与工程は、耐炎化終了後から牽切加工前であることが好ましく、より好ましくは捲縮加工前である。
【0028】
前記摩擦係数を範囲外まで上昇させるものでない限り、各種制電成分や乳化成分等が付与されていてもよい。
【0029】
かかる制電成分や乳化成分は、摩擦係数コントロールの観点から耐炎化繊維100重量部に対して2.0重量部以下であることが好ましい。前記非イオン界面活性剤を付与する場合は、その後に制電成分や乳化成分を追加、追油してもよい。
【0030】
本発明の製造に用いる耐炎化繊維の前駆体繊維としては、ポリアクリロニトリル、レーヨン、リグニン、ポリビニルアルコール、ポリアセチレン、ピッチなどを原料とする各種前駆体繊維が挙げられるが、特にこれらに限定するものではない。高強度という点では、ポリアクリロニトリルを原料としたアクリロニトリル系前駆体繊維が好ましく用いられる。前駆体繊維束はフィラメント数1000〜100000本/束が好ましく、6000〜70000本/束がより好ましく、さらには12000〜48000本/束が好ましい。かかる範囲であることが操業性と生産効率の観点から好ましい。
【0031】
アクリロニトリル系前駆体繊維束を用いる場合、少なくとも90重量%以上のアクリロニトリルを含む重合体または共重合体よりなる繊維であることが好ましく、コモノマーとして、アクリル酸、メタクリル酸、イタコン酸等のカルボキシル基を有する化合物またはその塩類、およびアクリル酸メチルのようなアクリル酸エステル、メタクリル酸メチルのようなメタクリル酸エステル類等のビニル系共重合成分を含むものが好ましい。
【0032】
前駆体繊維束を得るための紡糸方法としては、特に限定されないが、原料に応じて湿式紡糸、乾式紡糸、乾湿式紡糸、溶融紡糸などが挙げられる。操業性の点からは、湿式紡糸、乾湿式紡糸が好ましく用いられる。摩擦係数は繊維の表面形態にも依存するため、本発明の効果をより大きく得るためには、湿式紡糸が好適である。
【0033】
本発明に用いる耐炎化繊維束を得るには、前駆体繊維束を繊維の蓄熱切断温度より低い温度で、より好ましくは200〜300℃の範囲で熱処理(以下、耐炎化処理という)することが好ましい。かかる耐炎化処理は段階的に昇温することがより好ましい。
【0034】
かかる処理により、本発明の耐炎化紡績糸の構成糸として好適な耐炎化繊維束を得ることができる。
【0035】
耐炎化繊維の比重は耐炎化処理時間や耐炎化温度に依存するが、耐炎化繊維の比重は1.3〜1.48g/cmの範囲にあることが好ましく、より好ましくは1.4〜1.46g/cmである。かかる比重は、密度該知の液体中と大気中での浮力の差から求める浮力法(アルキメデス法)などにより求めることができる。ここで密度該知の液体とは特に限定されるものではないが、耐炎化繊維の質量と、同体積の水の質量とを同時に測り、その温度における水の密度の値ρを用いて求めることができる。
【0036】
耐炎化繊維の比重が1.3g/cm未満であると、紡績性・製織性は良好であっても、得られる紡績糸が十分な耐炎化能を有さないことがあり、耐炎化繊維布帛の防炎・スパッタ性能が不十分となったり、耐炎化繊維布帛をさらに炭化して得られる炭化織編布帛に不均一な収縮が発生し布帛の強度が低下したり、炭化中に着火する場合がある。
【0037】
また耐炎化繊維の比重が1.48g/cmを超えると、耐炎化繊維の単繊維伸度が10%を下回ることがあり、繊維自体の脆弱化が進行することがある。そのため、紡績加工時に繊維トウが粉体化し、紡績糸が得られないことがある。
【0038】
また、耐炎化繊維束の単繊維繊度は1〜2dtexであることが好ましく、1.2〜1.4dtexであることがより好ましい。繊度が1dtex未満であると、耐炎化を進行させた場合に、単繊維強力の低下が大きい場合があり、紡績糸を得ることが困難になることがある。また、2dtexを超えると耐炎化処理時の蓄熱量が増加し、耐炎化処理時の糸切れが増加する場合がある。
【0039】
また、かかる耐炎化繊維束は単繊維数10000本/束以上の耐炎化繊維束であることが好ましい。より好ましくは10000〜500000本/束であり、10000〜100000本/束が更に好ましい。耐炎化繊維束の単繊維数が10000本/束に満たないと、紡績糸の生産性を高めるのが難しい場合がある。また500000本/束を超えると捲縮を均一に付与できない場合がある。かかる単繊維数の耐炎化繊維束は例えば前述の前駆体繊維束を複数本合糸して耐炎化処理することで得ることができる。
【0040】
かかる耐炎化繊維束を紡績糸に加工する方法としては特に限定されないが、カットし、加工糸を経て紡績糸とすることもできる。例えば、耐炎化繊維束を牽切し、そのまま紡績糸としてもよく、耐炎化繊維束を牽切し、スライバーとし紡績糸としてもよく、耐炎化繊維束をエッジカッタなどで圧切、スライバーとし紡績糸としてもよく、或いは耐炎化繊維束に予め切断容易な加工を施し、牽切、スライバーとし紡績糸としてもよく、加工糸を経由して紡績糸とすることができる。中でも、繊維損傷が少なく、紡績糸の強力低下が少ないという点から、牽切工程を経ることが好ましい。また、カットされた繊維長は10〜200mmであることが好ましく、30〜150mmが好ましい。カット長が10mm未満であると、後工程において風綿を発生し、作業環境が悪化する場合があり、200mmを超えると加撚用のフロントローラーとバックローラーとのゲージ長よりも長くなることから、紡出ドラフト不良を発生させる場合がある。
【0041】
耐炎化繊維束を牽切する際の牽切延伸倍率は、特に限定されないが、3倍以上であることが好ましく、より好ましくは4倍以上である。上限としては10倍である。牽切延伸倍率が3倍未満であると得られるスライバー中に繊維長が200mmを超える繊維が含まれることがあり、10倍を超えると牽切工程の糸切れが多発する場合がある。
【0042】
該工程の牽切段数は特に制限されるものではないが、1〜3段の牽切が好適である。
【0043】
また、耐炎化繊維束を適当な加工糸とし、紡績してもよい。加工糸としては、特に限定されないが、捲縮を付与することが可能である。この捲縮付与工程は、特に限定されず、前述の非イオン界面活性剤付与工程の前でも、後でもよく、牽切の前でもよく、後でもよいが、好ましくは牽切前に捲縮を付与していることが好ましく、更に好ましくは、非イオン界面活性剤付与工程の後、牽切前に捲縮を付与することが好ましい。捲縮の程度は特に限定されないが、牽切前の捲縮については、5山/cm以下の捲縮が好ましく、4山/cm以下がより好ましい。下限としては0.1山/cmである。捲縮が5山/cmを超えると、耐炎化繊維束に潜在的な損傷が加わり、牽切時に耐炎化繊維束の破断を生じるばかりか、得られるスライバーのカット長が短くなり、得られる紡績糸の強力が低下する場合がある。また、0.1山/cmに満たないと、10000本以上からなる耐炎化繊維束が不揃いに牽切工程に供給され、カットの乱れを生じる場合がある。捲縮加工に供する耐炎化繊維束のフィラメント数は10000〜100000が好ましく、48000〜100000がより好ましく、さらに好ましくは80000〜100000である。かかる範囲であることが操業性と生産効率の観点から好ましい。牽切後の捲縮は、得られたスライバーの形態を次工程まで維持する程度が好ましく、その範囲は0.1〜4山/cmが好適である。
【0044】
かかるスライバーに加撚延伸を施し紡績糸となすことができる。可燃延伸の前にギルフォーラーなどによりコーミングを施してもよいが、施さなくともよい。かくして得られたスライバーを配列向上等のために練条工程に供し、ドラフティングおよびダブリングしても良い。その回数はスライバー2本以上を一口として2回以上繰り返すことが好適であり、糸傷みを生じない限り繰り返しても良く、前記摩擦係数を範囲外まで上昇させるものでない限り増摩成分等が付与されてもよい。
【0045】
加撚数は400〜700T/mが好ましく、500〜700T/mがより好ましい。かかる撚数が400T/m未満であると撚り不足による強力低下という場合があり、700T/mを超えると撚り方向が紡績糸長手方向に対して直交方向に向き、飽和撚りを超えて強力利用率が低下し、紡績糸自体の強力が大幅に低下する場合がある。加撚装置は特に限定されず、リング式、ミュール式、フライヤ式、コップ式、ポット式などがあり、いずれの方法でも良いが、生産性から鑑みるとリング式が好適である。
【0046】
加燃延伸の延伸倍率は得ようとする耐炎紡績糸の太さや牽切後のスライバー目付けにより適宜決めることができる。
【0047】
本発明の耐炎化繊維布帛は前記耐炎化紡績糸からなるものである。ここで布帛とは主に織物、編物、不織布のことであるが、三次元織物、多軸たて編物、レース、組紐、網なども含まれる。中でも織物は強度、コスト面に優れるため多種の用途に用いられる。
【0048】
ここで織物とは経糸、緯糸が互いに直角又は場合によっては緯糸が斜めに走行し任意の角度で織り合わさったものでもよい。製織時には公知の方法で経糸に糊付けを行うことができる。糊は精錬で除くことが可能であれば、種類を限定するものではない。製織性は経糸の糊により影響を受けるものの、緯糸は糊付けされていないことから、紡績糸自体が有する摩擦特性に依存する。織組織としては平織、綾織、朱子織等が挙げられる。織物はシャトル織機、レピア織機、エアジェットルーム、ウオータジェットルーム等を用いて製織することができる。また、織物は多方向の強度に優れるという点で好ましい。従って本発明の耐炎化繊維織物は各種耐炎化、防火用途に用いられ、例えばブレーキパッドとして好ましく用いられる。
【0049】
また、編物とは編針を用いて編んだもので経編や緯編等ループを有するものである。
【0050】
本発明の耐炎化繊維布帛を炭化して得られる炭素繊維布帛は、各種電極基材として好適に用いられ、例えばナトリウム−硫黄電池や固体高分子型の電極基材などに好ましく用いることができる。
【0051】
本発明の耐炎化繊維布帛は厚さが2mm以下であることが好ましい。より好ましくは1mm以下である。ここで厚さとは耐炎化繊維織物を面圧で0.15MPa加圧したときの厚さとする。かかる厚さが2mmを超えると、かかる布帛の炭化において炭化ムラや不均一な収縮を生じる場合がある。
【0052】
また、本発明の耐炎化繊維布帛は、単位面積あたりの重量は特に限定されるものではないが、90g/m以上であることが好ましい。より好ましくは100g/m以上である。単位面積あたりの重量が90g/mに満たないと、布目間に隙間が生じて織物の表面平滑性や滑らかさが低下する場合がある。また、かかる布帛の炭化において布帛自体の強力低下を生じる場合がある。また、耐炎化繊維布帛の単位面積あたりの重量の上限は特になく、前述の好ましい厚さの範囲を満たす限りは高いほど好ましい。300g/mを超えると耐炎化繊維布帛の厚みが厚くなりすぎる場合がある。耐炎化繊維布帛の厚さが2mm以下でかつ単位面積あたりの重量が90g/m以上であることがより好ましい。
【0053】
かかる耐炎化繊維布帛を1900℃以上2000℃以下の窒素雰囲気下で焼成することにより、本発明の炭素繊維布帛を得ることができる。かかる処理は1分以上とすることができる。
【0054】
本発明の炭素繊維布帛は厚さが0.5mm以下であることが好ましい。より好ましくは0.4mm以下である。かかる厚さが0.5mmを超えると布帛としてのフレキシビリティーが無くなり、布帛加工性が低下する場合がある。また、厚みは少なくとも0.1mmあることが好ましい。0.1mm未満では炭素繊維布帛の強度が不十分な場合がある。
【0055】
また、本発明の炭素繊維布帛は、単位面積あたりの重量は特に限定されるものではないが、80g/m以上であることが好ましい。より好ましくは85g/m以上である。単位面積あたりの重量が80g/mに満たないと、布目間に隙間が生じて織物の表面平滑性や滑らかさが低下する場合がある。また、かかる重量の上限は特になく、前述の好ましい厚さの範囲を満たす限りは高いほど好ましい。200g/mを超えると炭素繊維布帛の厚みが厚くなりすぎる場合がある。炭素繊維布帛の厚さが0.5mm以下でかつ単位面積あたりの重量が80g/m以上であることがより好ましい。
【0056】
【実施例】
以下、実施例を用いて、本発明をより具体的に説明するが、本発明はこれらの実施例等によりなんら限定されるものではない。
【0057】
本実施例では、各物性値は以下の方法により測定した。尚、測定雰囲気は特に記載しない場合を除き、温度24±4℃、相対湿度70±20%とした。
<比重>
JIS  R−7 601記載の方法に従った。試薬はエタノール(和光純薬社製特級)を精製せずに用いた。1.0〜1.5gの耐炎化繊維を採取し、120℃で2時間絶乾した。絶乾重量(A)を測定したのち、比重既知(比重ρ)のエタノールに含浸し、エタノール中の耐炎糸重量(B)を測定した。下記式1に従い比重を算出した。
【0058】
耐炎糸比重=(A×ρ)/(A−B) ・・・(式1)
<紡績糸太さ>
紡績糸1000mの重量を測定することを10回繰り返した。紡績糸重量を合計し、10000mあたりのク゛ラム数で示した。(g/10000m=dtex)
<紡績糸強力>
クロスヘッドスピード500mm/min、初期テンション0.5cN/tex、試長500mmで1ロットあたり、50サンフ゜ルを測定しその平均値を示した。本実施例では、STATIMAT ME(計測器製)を使用して測定した。
<単繊維強度・繊度>
試長20mm、初期張力0.50cN/texに調整し、クロスヘッドスピード20mm/分で33サンプルの単繊維強度を測定し、その平均値を示した。本実施例では試験機としてTEXTECHNO社製FAVIMATを使用して測定した。また、繊度については、かかる単繊維強度測定用試料の長さと重量を測定し、重量を長さで割り返した値の平均値を示した。
<F/F摩擦係数>
測定方法はJIS  L1095に従った。一端に初張力(Tf0)を加えた紡績糸試料と紡績糸をコーン等に巻上げた摩擦体とを直交かつ接触角度がθとなるように接触させながら低速で巻き取り、試料が摩擦体上を滑り始める直前の引き取り張力(Tf1)を測定し、下記(式2)により算出した。
【0059】
F/F静摩擦係数=log((Tf1/Tf0))/θloge  ・・・(式2)
Tf0:初張力
Tf1:試料が摩擦体上を滑り始める直前の引き取り張力
θ:試料と被摩擦体との接触角度(ラジアン)
e :自然対数の底
<F/M摩擦係数>
測定方法はJIS  L1095に従った。一端に初張力(TM0)を加えた紡績糸試料と金属製からなる円筒形摩擦体とを直交かつ接触角度がθとなるように接触させながら低速で巻き取り、試料が摩擦体上を滑り始める直前の引き取り張力(TM1)を測定し、下記3式により算出した。
【0060】
F/M静摩擦係数=log((TM1/TM0))/θloge  ・・・(3式)
TM0:初張力
TM1:試料が摩擦体上を滑り始める直前の引き取り張力
θ :試料と被摩擦体との接触角度(ラジアン)
e :自然対数の底
<風綿量>
製織時の緯糸チーズ下に、布(大きさ0.5m×1.0m)を引き、チーズから解舒されるときに発生する風綿と緯糸糸道擦過部で溜まる風綿の合計量(A)を計量し、織り長さ(B)で除した値を示した。
【0061】
風綿量(g/m)=(A)/(B)
<織機停台頻度>
糸切れに起因する製織機の停台回数をカウント(C)し、織り長さ(D)で除した値を示した。経糸切れ起因と緯糸切れ起因のそれぞれを合計し、織機停台頻度とした。
【0062】
織機停台頻度(回/m)=(C)/(D)
(実施例1)
比重1.07g/cmの7.2Ktex/48000fからなるアクリロニトリル系繊維束に0.2℃/分の速度で215〜230℃、更に3.0℃/分の速度で250℃〜270℃に昇温耐炎化を加え、単繊維繊度1.5dtex、比重1.42g/cmの耐炎化繊維からなる耐炎化繊維束を得た。
【0063】
かかる耐炎化繊維束を2本合糸し、14.4Ktex/96000fの耐炎化繊維束にラウリルアルコールエチレンオキサイド化合物を0.7重量部付与した。
【0064】
湿熱条件下で該繊維束温度70℃に昇温し、捲縮数3山/cmの捲縮を付与したのち、10%の水分率になるまで乾燥した。
【0065】
得られた耐炎化繊維束を3段牽切機で4倍に牽切延伸し、スライバーを得た。得られたスライバーを609T/mに加燃しつつ25倍延伸し、303dtex(1/33)の紡績糸を得た。
【0066】
この紡績糸強力は287cN、紡績糸の構成繊維長は30mm〜120mm、平均単繊維強力は1.61cNであった。
【0067】
得られた紡績糸のF/F静摩擦係数は0.28、F/M静摩擦係数は0.14であった。かかる耐炎化繊維束および紡績糸の特性を表1にまとめて示す。
【0068】
経糸に糊剤を5%付与し、経糸22本×緯糸20本/cmでレピア製織機を用いて製織し、幅1.3m×長さ25m×厚さ1mm、目付150g/mの耐炎化繊維布帛を得た。
【0069】
織機停台頻度は0.50回/m(経糸切れ起因0.38回/m、緯糸切れ起因0.12回/m)、緯糸風綿量0.05g/mであり良好であった。かかる本実施例の耐炎化紡績糸の製織性を表2にまとめて示す。
【0070】
得られた耐炎化繊維布帛を窒素雰囲気下で2000℃で2分間焼成し、目付91g/m、厚さ0.17mmの炭化繊維布帛を得た。得られた耐炎化繊維布帛、炭素繊維布帛の厚さ及び重量を表2に示す。
(実施例2)実施例1で得られた耐炎化繊維束をを2本合糸し、14.4Ktex/96000fの耐炎化繊維束にラウリルアルコールエチレンオキサイド化合物を0.7重量部付与した。
【0071】
湿熱条件下で該繊維束温度70℃に昇温し、捲縮数5.5山/cmの捲縮を付与したのち、10%の水分率になるまで乾燥した。
【0072】
得られた耐炎化繊維束を3段牽切機で4倍に牽切延伸したところ、延伸中にトウの破断が発生したがスライバーを得た。
【0073】
得られたスライバーを609T/mに加燃しつつ25倍延伸し、310dtex(1/33)の紡績糸を得た。この紡績糸強力は260cN、紡績糸の構成繊維長は20mm〜100mm、平均単繊維強力は1.52cNであった。
【0074】
得られた紡績糸のF/F静摩擦係数は0.27、F/M静摩擦係数は0.13であった。かかる耐炎化繊維束および紡績糸の特性を表1にまとめて示す。
【0075】
経糸に糊剤を5%付与し、経糸22本×緯糸20本/cmでレピア製織機を用いて製織し、幅1.3m×長さ25m×厚さ1mm、目付149g/mの耐炎化繊維布帛を得た。
【0076】
織機停台頻度は0.55回/m(経糸切れ起因0.38回/m、緯糸切れ起因0.17回/m)、緯糸風綿量0.07g/mであり良好であった。かかる本実施例の耐炎化紡績糸の製織性を表2にまとめて示す。
【0077】
得られた耐炎化繊維布帛を窒素雰囲気下で2000℃で2分間焼成し、目付90g/m、厚さ0.17mmの炭化繊維布帛を得た。得られた耐炎化繊維布帛、炭素繊維布帛の厚さ及び重量を表2に示す。
(実施例3)実施例1で得られた耐炎化繊維束をを2本合糸し、14.4Ktex/96000fの耐炎化繊維束にラウリルアルコールエチレンオキサイド化合物を0.7重量部付与した。
【0078】
得られた耐炎化繊維束に捲縮加工を施さず、3段牽切機で4倍に牽切延伸した。加撚ドラフトしたところ紡出不良とスライバーの割れが発生し、紡績操業性がやや悪化したものの610T/m、299dtex(1/33)紡績糸を得た。
【0079】
この紡績糸強力は290cN、紡績糸の構成繊維長は50mm〜200mm、平均単繊維強力は1.70cNであった。
【0080】
得られた紡績糸のF/F静摩擦係数は0.27、F/M静摩擦係数は0.13であった。かかる耐炎化繊維束および紡績糸の特性を表1にまとめて示す。
【0081】
経糸に糊剤を5%付与し、経糸22本×緯糸20本/cmでレピア製織機を用いて製織し、幅1.3m×長さ25m×厚さ1mm、目付152g/mの耐炎化繊維布帛を得た。
【0082】
織機停台頻度は0.53回/m(経糸切れ起因0.33回/m、緯糸切れ起因0.20回/m)、緯糸風綿量0.08g/mであり良好であった。かかる本実施例の耐炎化紡績糸の製織性を表2にまとめて示す。
【0083】
得られた耐炎化繊維布帛を窒素雰囲気下で2000℃で2分間焼成し、目付91g/m、厚さ0.17mmの炭化繊維布帛を得た。得られた耐炎化繊維布帛、炭素繊維布帛の厚さ及び重量を表2に示す。
(比較例1)
実施例1で得られた比重1.42g/cmの14.4Ktex/96000fからなる耐炎化繊維束にラウリルアルコールエチレンオキサイド化合物を0.3重量部付与した以外は実施例1と同様の方法で、平均撚り数620T/m、300dtex(1/33)の紡績糸を得た。
【0084】
この紡績糸強力は267cN、紡績糸の構成繊維長は30mm〜120mm、平均単繊維強力は1.60cNであった。
【0085】
得られた紡績糸のF/F静摩擦係数は0.36、F/M静摩擦係数は0.28であった。かかる耐炎化繊維束および紡績糸の特性を表1にまとめて示す。
【0086】
経糸に糊剤を5%付与し、経糸22本×緯糸20本/cmでレピア製織機を用いて製織し、幅1.3m×長さ25m×厚さ1mm、目付150g/mの耐炎化繊維布帛を得た。
【0087】
織機停台頻度は1.76回/m(経糸切れ起因0.32回/m、緯糸切れ起因1.44回/m)緯糸風綿量0.20g/mであった。かかる本比較例の耐炎化紡績糸の製織性を表2にまとめて示す。
【0088】
得られた耐炎化繊維布帛を窒素雰囲気下で2000℃で2分間焼成し、目付89g/m、厚さ0.18mmの炭化繊維布帛を得た。得られた耐炎化繊維布帛、炭素繊維布帛の厚さ及び重量を表2に示す。
(比較例2)実施例1で得られた比重1.42g/cmの14.4Ktex/96000fからなる耐炎化繊維束にラウリルアルコールエチレンオキサイド化合物を1.0重量部付与した以外は実施例1と同様の方法で、平均撚り数605T/m、305dtex(1/33)の紡績糸を得た。この紡績糸強力は262cNであった。
【0089】
得られた紡績糸のF/F静摩擦係数は0.38、F/M静摩擦係数は0.18であった。かかる耐炎化繊維束および紡績糸の特性を表1にまとめて示す。
【0090】
経糸に糊剤を5%付与し、経糸22本×緯糸20本/cmでレピア製織機を用いて製織し、幅1.3m×長さ25m×厚さ1mm、目付150g/mの耐炎化繊維布帛を得た。
【0091】
織機停台頻度は1.85回/m(経糸切れ起因0.32回/m、緯糸切れ起因1.53回/m)緯糸風綿量0.25g/mであった。かかる本比較例の耐炎化紡績糸の製織性を表2にまとめて示す。
【0092】
得られた耐炎化繊維布帛を窒素雰囲気下で2000℃で2分間焼成し、目付90g/m、厚さ0.18mmの炭化繊維布帛を得た。得られた耐炎化繊維布帛、炭素繊維布帛の厚さ及び重量を表2に示す。
【0093】
【表1】

Figure 2004124309
【0094】
【表2】
Figure 2004124309
【0095】
【発明の効果】
本発明は糸切れが少なく、製織性に優れた耐炎化紡績糸を提供する。更には、厚さや織り組織を所望のものとした高密度な耐炎化織編布帛、更には該耐炎化繊維布帛を炭化して得られる炭化繊維布帛を安定提供することにある。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a flame-resistant spun yarn having high quality and excellent weaving properties, and a flame-resistant fiber fabric comprising such a flame-resistant spun yarn.
[0002]
[Prior art]
Carbon fiber fabrics have been used as reinforcing materials for various structural base materials such as sports equipment, aerospace base materials, CNG tanks, flywheels, windmills, roads and piers because of their excellent strength properties. In recent years, due to the high conductivity and heat dissipation of carbon fiber fabrics, application to electronic equipment components such as housings of mobile phones and personal computers has been strongly demanded. Therefore, the required quality such as the form and electrical characteristics of the fabric, such as the weave structure and thickness, is also diversifying.
[0003]
Since it is difficult to directly spin carbon fiber, such a carbon fiber cloth is preliminarily spun and woven from a flame-resistant fiber having a higher elongation than the carbon fiber, and then carbonized as a flame-resistant fiber cloth. Is generally obtained.
[0004]
Further, such flame-resistant fiber cloth is used not only as an intermediate material for obtaining a carbon fiber cloth, but also in fields where flame retardancy and flame resistance are required, such as firefighting clothes, welding spark protection sheets, interior materials such as curtains, and the like. In addition, the demand of itself is increasing, and it is required to produce a higher-quality flame-resistant fiber fabric with high efficiency.
[0005]
Therefore, there is an increasing need for a flame-resistant spun yarn having excellent weaving properties, which realizes the above-described flame-resistant fiber fabric and carbon fiber fabric.
[0006]
As a conventional flame-resistant spun yarn, there is a spun yarn obtained by subjecting an acrylic multifilament to a flame-proofing treatment → steam crimp → stretch cutting → combing → guilling → roving (for example, see Patent Document 1). According to this method, the process passability was not good, for example, fiber cutting occurred frequently during many steps.
[0007]
There is also a production method in which a non-crimped and non-twisted continuous fiber bundle composed of 4000 to 6000 filaments is stretched and stretched at a stretch in a single-stage stretching area under a high load, and then twist is applied. The properties are extremely low and the obtained spun yarn has insufficient weaving / knitting properties (for example, see Patent Document 2). In such a manufacturing method, a spun yarn having a thickness of 588 dtex (1 / 17th count) can be used to increase the strength to some extent (for example, see Patent Literature 3). It was not satisfactory for increasing the density and thickness of the fiber cloth and the carbonized fiber cloth obtained by carbonizing the flame-resistant fiber cloth.
[0008]
[Patent Document 1] JP-A-52-31122 (Section 2)
[0009]
[Patent Document 2] JP-A-61-239030 (pages 2-3)
[0010]
[Patent Document 3] JP-A-63-50541 (pages 2-3)
[0011]
[Problems to be solved by the invention]
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have reached the present invention. That is, an object of the present invention is to provide a flame-resistant spun yarn that has few yarn breaks and is excellent in weaving. Another object of the present invention is to stably provide a high-density flame-resistant woven knitted fabric having a desired thickness and woven structure, and a carbonized fiber fabric obtained by carbonizing the flame-resistant fiber fabric.
[0012]
[Means for Solving the Problems]
The present invention employs the following means to solve the above problems. That is, it is an oxidized spun yarn having an F / F static friction coefficient of 0.35 or less and an F / M static friction coefficient of 0.2 or less.
[0013]
Further, the method for producing a flame-resistant spun yarn of the present invention spins a flame-resistant fiber bundle obtained by adding 0.4 to 0.8 parts by weight of a nonionic surfactant to 100 parts by weight of a flame-resistant fiber bundle. Things.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described.
[0015]
The oxidized spun yarn of the present invention has an F / F static friction coefficient of 0.35 or less. Here, the F / F static friction coefficient is a coefficient of friction between fibers. The measuring method can be measured according to JIS L1095. Specifically, a spun yarn sample having an initial tension (Tf0) applied to one end and a friction body obtained by winding the spun yarn around a cone or the like are wound at a low speed while making contact with each other at right angles and with a contact angle of θ. Can measure the take-up tension (Tf1) immediately before starting to slide on the friction body, and can be calculated by the following equation.
[0016]
F / F static friction coefficient = log ((Tf1 / Tf0)) / θlog
Tf0: initial tension
Tf1: take-up tension immediately before the sample starts to slide on the friction body
θ: Contact angle between the sample and the friction object (radian)
e: base of natural logarithm
Here, the initial tension (Tf0) is preferably from 0.1 to 100 cN, more preferably from 1 to 10 cN. In the present invention, if the initial tension (Tf0) exceeds 100 cN, the take-up tension (Tf1) exceeds the spun yarn strength, and the spun yarn may break, which is not preferable. The diameter of the friction body around which the spun yarn is wound is not particularly limited. However, since the spun yarn is wound around an 8 mm cylinder so as to be parallel to the axis of the cylinder, the diameter is 1 to 20 cm. General. If the take-up speed is high, a measurement error is likely to occur. Therefore, it is preferable to repeat the measurement at a low speed of 10 cm or less / minute, and more preferably 5 cm or less / minute to increase the measurement accuracy. The measurement is preferably performed 30 times or more under the conditions of a temperature of 24 ± 4 ° C. and a relative humidity of 70 ± 20%.
[0017]
If the F / F static friction coefficient exceeds 0.35, the frictional resistance between spun yarns at the time of yarn driving during weaving or knitting increases, and yarn breakage frequently occurs. The smaller the F / F coefficient of static friction, the more preferable. However, for the purpose of the present invention, it may be about 0.1 to 0.35. More preferably, it is 0.2 to 0.35.
[0018]
It is important that the oxidized spun yarn of the present invention has an F / M static friction coefficient of 0.2 or less. Here, the F / M friction coefficient is a friction coefficient between the spun yarn and the metal, and can be measured by changing the friction body used for the above-mentioned F / F static friction coefficient to a metal guide. The measuring method followed JIS L1095. A spun yarn sample having an initial tension (TM0) applied to one end and a cylindrical friction body made of metal are wound at a low speed while making contact at right angles so that the contact angle becomes θ, and the sample starts to slide on the friction body. The immediately preceding take-up tension (TM1) is measured and can be calculated by the following equation.
[0019]
F / M coefficient of static friction = log ((TM1 / TM0)) / θlog
TM0: Initial tension
TM1: Take-up tension just before the sample starts to slide on the friction body
θ: Contact angle between the sample and the friction object (radian)
e: base of natural logarithm
Here, the initial tension (TM0) is preferably from 0.1 to 100 cN, and more preferably from 1 to 5 cN. If the initial tension (TM0) exceeds 100 cN, the take-up tension (TM1) exceeds the spun yarn strength, and the spun yarn may break. Although the size of the metal friction body is not particularly limited, a diameter of 1 to 20 cm is generally used, and a matte cloth of 1 to 10 cm is more preferable. Here, the satin finish has a center line average roughness Ra of 0.5 to 1.5 μm measured according to JIS B0601, and a steel material, stainless steel, or the like is suitably used as the material. If the take-up speed is high, a measurement error is likely to occur. Therefore, it is preferable to repeat the measurement at a low speed of 10 cm or less / minute, and more preferably 5 cm or less / minute to increase the measurement accuracy. The measurement is preferably performed 30 times or more under the conditions of a temperature of 24 ± 4 ° C. and a relative humidity of 70 ± 20%.
[0020]
If the F / M coefficient of static friction exceeds 0.2, winding with a metal roller occurs in the spinning or weaving process, which is not preferable, and yarn breakage may occur due to friction with a guide during weaving. The smaller the F / M coefficient of friction is, the more preferable. However, for the purpose of the present invention, it may be about 0.1 to 0.2.
[0021]
The flame-resistant spun yarn of the present invention is preferably a spun yarn of 200 to 333 dtex (1/30 to 1/50 count). It is more preferably from 220 to 330 dtex, and still more preferably from 250 to 330 dtex. If it is less than 200 dtex, the strength of the yarn itself is reduced, so that yarn damage or the like may occur at the time of fabric production such as weaving, and the quality of the oxidized fiber fabric may be reduced or the productivity may be reduced. Further, in the case of a spun yarn exceeding 333 dtex, the number of fibers to be driven per unit area cannot be increased, so that it may not be possible to meet the needs for thinning and increasing the density of the fabric.
[0022]
Further, the flame-resistant spun yarn of the present invention preferably has a tenacity of 150 cN or more. It is preferably at least 200 cN, more preferably at least 250 cN. If the strength of the spun yarn is lower than 150 cN, operability may decrease due to frequent yarn breakage during fabric production. The strength of the spun yarn is preferably as high as possible, and there is no particular upper limit. However, it is rare that the spun yarn has a strength of 500 cN or more in the thickness of the oxidized spun yarn within the scope of the present invention.
[0023]
The method for setting the F / F friction coefficient and the F / M friction coefficient in the above-mentioned ranges is not particularly limited, and for example, a method of applying a nonionic surfactant to the oxidized fiber can be adopted.
[0024]
The nonionic surfactant is not particularly limited as long as it is a surfactant that does not ionize in an aqueous solution, and examples thereof include an alkyl alcohol ethylene oxide adduct. Among them, a linear alkyl alcohol ethylene oxide adduct can be preferably used, and more preferably it has 8 or more carbon atoms. For example, lauryl alcohol ethylene oxide adduct and octyl alcohol ethylene oxide adduct can be particularly preferably used. Since these nonionic surfactants are almost completely decomposed and volatilized at 400 ° C., they are preferable because they do not exert an adverse effect such as a decrease in strength in the subsequent carbonization step.
[0025]
It is preferable that the nonionic surfactant is attached in an amount of 0.4 to 0.8 parts by weight based on 100 parts by weight of the oxidized fiber.
[0026]
When the amount exceeds 0.8 parts by weight, fly cotton adheres to the oil removed in the spinning and weaving process, and the adhesiveness appears to cause roller winding or the like. The effect of setting the F / F friction coefficient and the F / M friction coefficient in the above ranges may not be sufficient.
[0027]
The method for applying the nonionic surfactant is not particularly limited, and the nonionic surfactant can be applied singly or in combination using a method such as a dip method, a kiss roll method, and a spray method. It is preferable that after finishing, before cutting, and more preferably before crimping.
[0028]
Various antistatic components, emulsifying components, and the like may be provided as long as the coefficient of friction is not raised outside the range.
[0029]
The antistatic component and the emulsifying component are preferably 2.0 parts by weight or less based on 100 parts by weight of the oxidized fiber from the viewpoint of controlling the friction coefficient. When the nonionic surfactant is applied, an antistatic component or an emulsifying component may be added and oil added thereafter.
[0030]
Examples of the precursor fiber of the flame-resistant fiber used in the production of the present invention include various precursor fibers made of polyacrylonitrile, rayon, lignin, polyvinyl alcohol, polyacetylene, pitch, etc., but are not particularly limited to these. Absent. In terms of high strength, acrylonitrile-based precursor fibers using polyacrylonitrile as a raw material are preferably used. The number of filaments of the precursor fiber bundle is preferably from 1,000 to 100,000 filaments / bundle, more preferably from 6,000 to 70,000 filaments / bundle, and further preferably from 12,000 to 48,000 filaments / bundle. Such a range is preferable from the viewpoint of operability and production efficiency.
[0031]
When an acrylonitrile-based precursor fiber bundle is used, the fiber is preferably a fiber made of a polymer or a copolymer containing at least 90% by weight or more of acrylonitrile. As a comonomer, a carboxyl group such as acrylic acid, methacrylic acid, and itaconic acid is used. Compounds having a vinyl copolymer component such as a compound or a salt thereof and an acrylate such as methyl acrylate or a methacrylate such as methyl methacrylate are preferable.
[0032]
The spinning method for obtaining the precursor fiber bundle is not particularly limited, and examples thereof include wet spinning, dry spinning, dry-wet spinning, and melt spinning depending on the raw material. From the viewpoint of operability, wet spinning and dry wet spinning are preferably used. Since the coefficient of friction also depends on the surface morphology of the fiber, wet spinning is suitable for obtaining a greater effect of the present invention.
[0033]
In order to obtain the flame-retardant fiber bundle used in the present invention, the precursor fiber bundle is subjected to a heat treatment at a temperature lower than the heat storage and cutting temperature of the fiber, more preferably in the range of 200 to 300 ° C. preferable. It is more preferable that the temperature of the oxidization treatment be increased stepwise.
[0034]
By such treatment, a flame-resistant fiber bundle suitable as a constituent yarn of the flame-resistant spun yarn of the present invention can be obtained.
[0035]
The specific gravity of the oxidized fiber depends on the oxidization time and the oxidization temperature, but the specific gravity of the oxidized fiber is 1.3 to 1.48 g / cm. 3 Is more preferably in the range of 1.4 to 1.46 g / cm. 3 It is. Such specific gravity can be determined by a buoyancy method (Archimedes method) determined from the difference between the known buoyancy in the liquid and the buoyancy in the atmosphere. Here, the density of the known liquid is not particularly limited, but the mass of the oxidized fiber and the mass of the same volume of water are measured simultaneously, and the density is determined using the value ρ of the water density at that temperature. Can be.
[0036]
The specific gravity of the flame-resistant fiber is 1.3 g / cm 3 If less than, even if the spinnability and weaving properties are good, the obtained spun yarn may not have sufficient flame-resistant ability, and the flame-resistant and sputter performance of the flame-resistant fiber cloth becomes insufficient. In addition, non-uniform shrinkage may occur in a carbonized woven knitted fabric obtained by further carbonizing an oxidized fiber cloth, and the strength of the cloth may be reduced, or ignition may occur during carbonization.
[0037]
The specific gravity of the flame-resistant fiber is 1.48 g / cm. 3 If it exceeds, the single fiber elongation of the oxidized fiber may be lower than 10%, and the fiber itself may be weakened. For this reason, the fiber tow may be powdered during spinning, and a spun yarn may not be obtained.
[0038]
Further, the single fiber fineness of the oxidized fiber bundle is preferably from 1 to 2 dtex, more preferably from 1.2 to 1.4 dtex. When the fineness is less than 1 dtex, when the flame resistance is advanced, the strength of the single fiber may be greatly reduced, and it may be difficult to obtain a spun yarn. On the other hand, if it exceeds 2 dtex, the amount of heat stored during the flameproofing treatment increases, and the yarn breakage during the flameproofing treatment may increase.
[0039]
Further, the flame-resistant fiber bundle is preferably a flame-resistant fiber bundle having 10,000 single fibers / bundle or more. More preferably, it is 10,000 to 500,000 pieces / bundle, and more preferably, 10,000 to 100,000 pieces / bundle. If the number of single fibers of the oxidized fiber bundle is less than 10,000 / bundle, it may be difficult to increase the productivity of spun yarn. On the other hand, when the number exceeds 500,000 / bundle, crimps may not be applied uniformly. Such a flame-resistant fiber bundle having a single fiber number can be obtained by, for example, plying a plurality of the above-described precursor fiber bundles and performing a flame-proof treatment.
[0040]
The method for processing such a flame-resistant fiber bundle into a spun yarn is not particularly limited, but it may be cut into a spun yarn through a processed yarn. For example, the flame-retardant fiber bundle may be cut off and used as it is as a spun yarn. Alternatively, the flame-resistant fiber bundle may be subjected to a process that is easy to cut in advance, and may be turned into a sliver to form a spun yarn, or a spun yarn via a processed yarn. Above all, it is preferable to go through a drawing step from the viewpoint that fiber damage is small and strength of spun yarn is hardly reduced. The cut fiber length is preferably from 10 to 200 mm, and more preferably from 30 to 150 mm. If the cut length is less than 10 mm, fly waste is generated in the subsequent process, and the working environment may be deteriorated, and if it exceeds 200 mm, it becomes longer than the gauge length of the front roller and the back roller for twisting. In some cases, defective spinning draft may occur.
[0041]
The drawing stretch ratio when cutting the oxidized fiber bundle is not particularly limited, but is preferably 3 times or more, and more preferably 4 times or more. The upper limit is 10 times. If the draw-drawing ratio is less than 3 times, the obtained sliver may contain fibers having a fiber length of more than 200 mm, and if it exceeds 10 times, yarn breakage in the drawing-off process may occur frequently.
[0042]
Although the number of steps in this step is not particularly limited, cutting in one to three steps is preferred.
[0043]
Further, the oxidized fiber bundle may be made into a suitable processed yarn and spun. The textured yarn is not particularly limited, but can be crimped. This crimping step is not particularly limited, and may be performed before or after the above-described nonionic surfactant applying step, before or after traction, or after, but preferably before crimping. Preferably, crimping is performed, and more preferably, crimping is performed after the nonionic surfactant applying step and before drawing. Although the degree of crimping is not particularly limited, the crimp before pulling is preferably 5 crimps / cm or less, more preferably 4 crimps / cm or less. The lower limit is 0.1 peak / cm. If the crimp exceeds 5 ridges / cm, potential damage is given to the oxidized fiber bundle, which not only causes breakage of the oxidized fiber bundle at the time of towing, but also shortens the cut length of the obtained sliver, resulting in spinning. The strength of the yarn may decrease. In addition, if it is less than 0.1 peaks / cm, the flame-retardant fiber bundles of 10,000 or more are supplied irregularly to the pulling-out step, which may cause cutting disorder. The number of filaments of the oxidized fiber bundle to be subjected to crimping is preferably 10,000 to 100,000, more preferably 48,000 to 100,000, and further preferably 80,000 to 100,000. Such a range is preferable from the viewpoint of operability and production efficiency. The crimping after drawing is preferably such that the shape of the obtained sliver is maintained until the next step, and the range is preferably from 0.1 to 4 peaks / cm.
[0044]
The sliver can be twisted and drawn into a spun yarn. Before combustible stretching, combing may be performed by a Gil-Forer or the like, but may not be performed. The sliver thus obtained may be subjected to a drawing step for improving the alignment and the like, and may be subjected to drafting and doubling. It is preferable that the number of times is repeated two or more times using two or more slivers as one bite, and may be repeated as long as the yarn is not damaged, and a lubricating component or the like is provided unless the friction coefficient is increased outside the range. You may.
[0045]
The twist number is preferably 400 to 700 T / m, more preferably 500 to 700 T / m. If the number of twists is less than 400 T / m, the strength may decrease due to insufficient twisting. If the number of twists exceeds 700 T / m, the twisting direction is perpendicular to the longitudinal direction of the spun yarn, and the strength utilization exceeds the saturated twisting. And the strength of the spun yarn itself may be significantly reduced. The twisting device is not particularly limited, and includes a ring type, a mule type, a flyer type, a cup type, a pot type, and the like. Any of these methods may be used, but a ring type is preferable in view of productivity.
[0046]
The draw ratio of the flammable drawing can be appropriately determined according to the thickness of the flame resistant spun yarn to be obtained and the sliver weight after drawing.
[0047]
The flame-resistant fiber fabric of the present invention comprises the above-described flame-resistant spun yarn. Here, the fabric is mainly a woven fabric, a knitted fabric, or a non-woven fabric, but also includes a three-dimensional woven fabric, a multiaxial warp knitted fabric, a lace, a braid, a net, and the like. Above all, woven fabrics are used for various purposes because of their excellent strength and cost.
[0048]
Here, the woven fabric may be one in which the warp and the weft run at right angles to each other, or in some cases, the weft runs obliquely and woven at an arbitrary angle. At the time of weaving, the warp can be glued by a known method. The type of glue is not limited as long as it can be removed by refining. Although the weaving property is affected by the warp glue, since the weft is not glued, it depends on the friction characteristics of the spun yarn itself. Plain weave, twill weave, satin weave and the like can be mentioned as the weave structure. The woven fabric can be woven using a shuttle loom, a rapier loom, an air jet loom, a water jet loom, or the like. Further, the woven fabric is preferable in that it has excellent multidirectional strength. Therefore, the flame-retardant fiber fabric of the present invention is used for various flame-resisting and fire-preventing applications, and is preferably used as, for example, a brake pad.
[0049]
The knitted article is knitted using a knitting needle and has a loop such as a warp knit or a weft knit.
[0050]
The carbon fiber fabric obtained by carbonizing the flame-resistant fiber fabric of the present invention is suitably used as various electrode substrates, and can be preferably used for, for example, a sodium-sulfur battery or a solid polymer electrode substrate.
[0051]
The flame resistant fiber fabric of the present invention preferably has a thickness of 2 mm or less. It is more preferably 1 mm or less. Here, the thickness is a thickness when the oxidized fiber woven fabric is pressed at a surface pressure of 0.15 MPa. If the thickness exceeds 2 mm, carbonization unevenness and uneven shrinkage may occur in carbonizing such a fabric.
[0052]
Further, the weight per unit area of the flame-retardant fiber fabric of the present invention is not particularly limited, but is 90 g / m2. 2 It is preferable that it is above. More preferably 100 g / m 2 That is all. Weight per unit area is 90g / m 2 If less than the above, a gap may be formed between the fabrics, and the surface smoothness and smoothness of the fabric may be reduced. In addition, the carbonization of the cloth may cause a reduction in the strength of the cloth itself. Further, there is no particular upper limit on the weight per unit area of the flame-resistant fiber cloth, and the higher the weight, the more preferable as long as the above-mentioned preferable thickness range is satisfied. 300g / m 2 If it exceeds 300, the thickness of the flame-resistant fiber cloth may be too large. The thickness of the flame-resistant fiber fabric is 2 mm or less and the weight per unit area is 90 g / m. 2 More preferably.
[0053]
The carbon fiber fabric of the present invention can be obtained by firing such a flame-resistant fiber fabric in a nitrogen atmosphere of 1900 ° C. or more and 2000 ° C. or less. Such processing can be for one minute or longer.
[0054]
The carbon fiber fabric of the present invention preferably has a thickness of 0.5 mm or less. More preferably, it is 0.4 mm or less. When the thickness exceeds 0.5 mm, flexibility as a fabric is lost and fabric workability may be reduced. The thickness is preferably at least 0.1 mm. If it is less than 0.1 mm, the strength of the carbon fiber fabric may be insufficient.
[0055]
The weight per unit area of the carbon fiber cloth of the present invention is not particularly limited, but is 80 g / m2. 2 It is preferable that it is above. More preferably 85 g / m 2 That is all. Weight per unit area is 80g / m 2 If less than the above, a gap may be formed between the fabrics, and the surface smoothness and smoothness of the fabric may be reduced. There is no particular upper limit for the weight, and the higher the weight, the better, as long as it satisfies the above-mentioned preferred thickness range. 200g / m 2 If it exceeds 300, the thickness of the carbon fiber fabric may be too large. The thickness of the carbon fiber fabric is 0.5 mm or less and the weight per unit area is 80 g / m. 2 More preferably.
[0056]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples and the like.
[0057]
In this example, each property value was measured by the following method. The measurement atmosphere was a temperature of 24 ± 4 ° C. and a relative humidity of 70 ± 20%, unless otherwise specified.
<Specific gravity>
The method described in JIS R-7601 was used. As a reagent, ethanol (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) was used without purification. 1.0 to 1.5 g of the oxidized fiber was collected and dried at 120 ° C. for 2 hours. After measuring the absolute dry weight (A), the sample was impregnated with ethanol having a known specific gravity (specific gravity ρ), and the weight of the flame resistant yarn in ethanol (B) was measured. The specific gravity was calculated according to the following equation 1.
[0058]
Flame-resistant yarn specific gravity = (A × ρ) / (AB) (Formula 1)
<Thickness of spun yarn>
The measurement of the weight of 1000 m of the spun yarn was repeated 10 times. The spun yarn weights were summed and indicated by the number of crumbs per 10,000 m. (G / 10000m = dtex)
<Strong spun yarn>
At a crosshead speed of 500 mm / min, an initial tension of 0.5 cN / tex and a test length of 500 mm, 50 samples were measured per lot, and the average value was shown. In this example, the measurement was performed using STATIMAT ME (manufactured by a measuring instrument).
<Single fiber strength / fineness>
The test length was adjusted to 20 mm, the initial tension was adjusted to 0.50 cN / tex, and the single fiber strength of 33 samples was measured at a crosshead speed of 20 mm / min, and the average value was shown. In this example, the measurement was performed using TEXTTECHNO's FAVIMAT as a tester. As for the fineness, the length and weight of the single fiber strength measurement sample were measured, and the average value of the values obtained by dividing the weight by the length was shown.
<F / F friction coefficient>
The measuring method followed JIS L1095. The spun yarn sample to which the initial tension (Tf0) is applied at one end and the friction body in which the spun yarn is wound around a cone or the like are wound at a low speed while making contact at right angles and with a contact angle of θ. The take-up tension (Tf1) immediately before the start of sliding was measured and calculated by the following (Equation 2).
[0059]
F / F static friction coefficient = log ((Tf1 / Tf0)) / θlog (Formula 2)
Tf0: initial tension
Tf1: take-up tension immediately before the sample starts to slide on the friction body
θ: Contact angle between the sample and the friction object (radian)
e: base of natural logarithm
<F / M friction coefficient>
The measuring method followed JIS L1095. A spun yarn sample having an initial tension (TM0) applied to one end and a cylindrical friction body made of metal are wound at a low speed while making contact at right angles so that the contact angle becomes θ, and the sample starts to slide on the friction body. The immediately preceding take-up tension (TM1) was measured and calculated by the following three equations.
[0060]
F / M coefficient of static friction = log ((TM1 / TM0)) / θlog (3)
TM0: Initial tension
TM1: Take-up tension just before the sample starts to slide on the friction body
θ: Contact angle between the sample and the friction object (radian)
e: base of natural logarithm
<Amount of fly cotton>
A cloth (size 0.5 m × 1.0 m) is drawn under the weft cheese during weaving, and the total amount of fly waste generated when the cheese is unwound from the cheese and the fly waste accumulated in the weft yarn rubbing portion (A) ) Was weighed and divided by the weave length (B).
[0061]
Wool amount (g / m) = (A) / (B)
<Loom stop frequency>
The value obtained by counting (C) the number of stops of the weaving machine due to yarn breakage and dividing by the weaving length (D) is shown. The sum of the warp breaks and the weft breaks was summed up to determine the loom stop frequency.
[0062]
Loom stop frequency (times / m) = (C) / (D)
(Example 1)
Specific gravity 1.07g / cm 3 The acrylonitrile-based fiber bundle consisting of 7.2 Ktex / 48000f is heated to 215-230 ° C. at a rate of 0.2 ° C./min, and further heated to 250 ° C.-270 ° C. at a rate of 3.0 ° C./min. Single fiber fineness 1.5 dtex, specific gravity 1.42 g / cm 3 To obtain a bundle of flame-resistant fibers composed of the above-mentioned flame-resistant fibers.
[0063]
Two of such oxidized fiber bundles were combined and 0.7 part by weight of a lauryl alcohol ethylene oxide compound was added to the oxidized fiber bundle of 14.4 Ktex / 96000 f.
[0064]
The fiber bundle temperature was raised to 70 ° C. under moist heat conditions to give crimps of 3 crimps / cm, and then dried until the moisture content became 10%.
[0065]
The obtained flame-resistant fiber bundle was drawn and stretched 4-fold by a three-stage pulling machine to obtain a sliver. The obtained sliver was stretched 25 times while burning at 609 T / m to obtain a spun yarn of 303 dtex (1/33).
[0066]
The spun yarn strength was 287 cN, the constituent fiber length of the spun yarn was 30 mm to 120 mm, and the average single fiber strength was 1.61 cN.
[0067]
The F / F static friction coefficient of the obtained spun yarn was 0.28, and the F / M static friction coefficient was 0.14. Table 1 summarizes the characteristics of the flame-resistant fiber bundle and the spun yarn.
[0068]
5% glue is applied to the warp and woven with 22 warps × 20 wefts / cm using a rapier weaving machine, width 1.3 m × length 25 m × thickness 1 mm, basis weight 150 g / m 3 To obtain a flame-resistant fiber fabric.
[0069]
The loom stopping frequency was 0.50 times / m (0.38 times / m due to warp breakage, 0.12 times / m due to weft breakage), and the amount of weft fly cotton was 0.05 g / m, which was favorable. Table 2 summarizes the weaving properties of the flame-resistant spun yarn of this example.
[0070]
The obtained flame-resistant fiber fabric was baked under a nitrogen atmosphere at 2000 ° C. for 2 minutes to obtain a basis weight of 91 g / m 2. 3 Thus, a carbonized fiber cloth having a thickness of 0.17 mm was obtained. Table 2 shows the thickness and weight of the obtained flame-resistant fiber cloth and carbon fiber cloth.
(Example 2) Two pieces of the oxidized fiber bundle obtained in Example 1 were combined and 0.7 part by weight of a lauryl alcohol ethylene oxide compound was added to the oxidized fiber bundle of 14.4 Ktex / 96000f.
[0071]
The fiber bundle temperature was raised to 70 ° C. under moist heat conditions to give 5.5 crimps / cm of crimps, and then dried until the moisture content became 10%.
[0072]
When the obtained oxidized fiber bundle was drawn and stretched four times with a three-stage drawing machine, the sliver was obtained although the tow was broken during the drawing.
[0073]
The obtained sliver was stretched 25 times while burning at 609 T / m to obtain a spun yarn of 310 dtex (1/33). The spun yarn strength was 260 cN, the constituent fiber length of the spun yarn was 20 mm to 100 mm, and the average single fiber strength was 1.52 cN.
[0074]
The F / F static friction coefficient of the obtained spun yarn was 0.27, and the F / M static friction coefficient was 0.13. Table 1 summarizes the characteristics of the flame-resistant fiber bundle and the spun yarn.
[0075]
5% glue is applied to the warp and woven with 22 warps × 20 wefts / cm using a rapier weaving machine, width 1.3 m × length 25 m × thickness 1 mm, basis weight 149 g / m 3 To obtain a flame-resistant fiber cloth.
[0076]
The loom stopping frequency was 0.55 times / m (0.38 times / m due to warp breakage, 0.17 times / m due to weft breakage), and the amount of weft fly cotton was 0.07 g / m, which was favorable. Table 2 summarizes the weaving properties of the flame-resistant spun yarn of this example.
[0077]
The obtained flame-resistant fiber fabric was baked under a nitrogen atmosphere at 2000 ° C. for 2 minutes to obtain a basis weight of 90 g / m 2. 3 Thus, a carbonized fiber cloth having a thickness of 0.17 mm was obtained. Table 2 shows the thickness and weight of the obtained flame-resistant fiber cloth and carbon fiber cloth.
(Example 3) Two pieces of the oxidized fiber bundle obtained in Example 1 were combined, and 0.7 part by weight of a lauryl alcohol ethylene oxide compound was added to the oxidized fiber bundle of 14.4 Ktex / 96000f.
[0078]
The resulting flame-resistant fiber bundle was not crimped and stretched four times by a three-stage stretcher. When twisted and drafted, poor spinning and sliver cracking occurred, and the spinning operability was slightly deteriorated, but a 610 T / m, 299 dtex (1/33) spun yarn was obtained.
[0079]
The spun yarn strength was 290 cN, the constituent fiber length of the spun yarn was 50 mm to 200 mm, and the average single fiber strength was 1.70 cN.
[0080]
The F / F static friction coefficient of the obtained spun yarn was 0.27, and the F / M static friction coefficient was 0.13. Table 1 summarizes the characteristics of the flame-resistant fiber bundle and the spun yarn.
[0081]
5% glue is applied to the warp and woven with 22 warps × 20 wefts / cm using a rapier weaving machine, width 1.3 m × length 25 m × thickness 1 mm, basis weight 152 g / m 3 To obtain a flame-resistant fiber cloth.
[0082]
The loom stopping frequency was 0.53 times / m (0.33 times / m due to warp breakage, 0.20 times / m due to weft breakage) and the amount of weft fly cotton was 0.08 g / m, which was favorable. Table 2 summarizes the weaving properties of the flame-resistant spun yarn of this example.
[0083]
The obtained flame-resistant fiber fabric was baked under a nitrogen atmosphere at 2000 ° C. for 2 minutes to obtain a basis weight of 91 g / m 2. 3 Thus, a carbonized fiber cloth having a thickness of 0.17 mm was obtained. Table 2 shows the thickness and weight of the obtained flame-resistant fiber cloth and carbon fiber cloth.
(Comparative Example 1)
Specific gravity 1.42 g / cm obtained in Example 1 3 The average twist number 620 T / m, 300 dtex (1/33) in the same manner as in Example 1 except that 0.3 parts by weight of the lauryl alcohol ethylene oxide compound was added to the oxidized fiber bundle consisting of 14.4 Ktex / 96000 f. Was obtained.
[0084]
The spun yarn strength was 267 cN, the constituent fiber length of the spun yarn was 30 mm to 120 mm, and the average single fiber strength was 1.60 cN.
[0085]
The F / F static friction coefficient of the obtained spun yarn was 0.36, and the F / M static friction coefficient was 0.28. Table 1 summarizes the characteristics of the flame-resistant fiber bundle and the spun yarn.
[0086]
5% glue is applied to the warp and woven with 22 warps × 20 wefts / cm using a rapier weaving machine, width 1.3 m × length 25 m × thickness 1 mm, basis weight 150 g / m 3 To obtain a flame-resistant fiber cloth.
[0087]
The loom stopping frequency was 1.76 times / m (0.32 times / m due to warp breakage, 1.44 times / m due to weft breakage), and the amount of weft fly cotton was 0.20 g / m. Table 2 shows the weaving properties of the flame-resistant spun yarn of this comparative example.
[0088]
The obtained flame-resistant fiber cloth was baked under a nitrogen atmosphere at 2000 ° C. for 2 minutes to give a basis weight of 89 g / m 2. 3 Thus, a carbonized fiber cloth having a thickness of 0.18 mm was obtained. Table 2 shows the thickness and weight of the obtained flame-resistant fiber cloth and carbon fiber cloth.
(Comparative Example 2) Specific gravity 1.42 g / cm obtained in Example 1 3 The average twist number 605 T / m, 305 dtex (1/33) in the same manner as in Example 1 except that 1.0 part by weight of a lauryl alcohol ethylene oxide compound was added to the oxidized fiber bundle of 14.4 Ktex / 96000 f of the above. Was obtained. The spun yarn strength was 262 cN.
[0089]
The F / F static friction coefficient of the obtained spun yarn was 0.38, and the F / M static friction coefficient was 0.18. Table 1 summarizes the characteristics of the flame-resistant fiber bundle and the spun yarn.
[0090]
5% glue is applied to the warp and woven with 22 warps × 20 wefts / cm using a rapier weaving machine, width 1.3 m × length 25 m × thickness 1 mm, basis weight 150 g / m 3 To obtain a flame-resistant fiber cloth.
[0091]
The loom stopping frequency was 1.85 times / m (0.32 times / m due to warp breakage, 1.53 times / m due to weft breakage), and the amount of weft cotton wool was 0.25 g / m. Table 2 shows the weaving properties of the flame-resistant spun yarn of this comparative example.
[0092]
The obtained flame-resistant fiber fabric was baked under a nitrogen atmosphere at 2000 ° C. for 2 minutes to obtain a basis weight of 90 g / m 2. 3 Thus, a carbonized fiber cloth having a thickness of 0.18 mm was obtained. Table 2 shows the thickness and weight of the obtained flame-resistant fiber cloth and carbon fiber cloth.
[0093]
[Table 1]
Figure 2004124309
[0094]
[Table 2]
Figure 2004124309
[0095]
【The invention's effect】
The present invention provides a flame-resistant spun yarn having few yarn breaks and excellent weaving properties. Another object of the present invention is to stably provide a high-density flame-resistant woven knitted fabric having a desired thickness and woven structure, and a carbonized fiber fabric obtained by carbonizing the flame-resistant fiber fabric.

Claims (12)

F/F静摩擦係数が0.35以下であって、かつF/M静摩擦係数が0.2以下である耐炎化紡績糸。An oxidized spun yarn having an F / F static friction coefficient of 0.35 or less and an F / M static friction coefficient of 0.2 or less. 200〜333dtexであって、強力が150cN以上である請求項1記載の耐炎化紡績糸。The flame-resistant spun yarn according to claim 1, wherein the spun yarn has a strength of 150 cN or more at 200 to 333 dtex. 比重1.3〜1.48g/cmの耐炎化繊維からなる請求項1または2記載の耐炎化紡績糸。The flame-resistant spun yarn according to claim 1, comprising a flame-resistant fiber having a specific gravity of 1.3 to 1.48 g / cm 3 . 耐炎化繊維束100重量部に対して、非イオン界面活性剤が0.4〜0.8重量部付与されてなる耐炎化繊維束を紡績する耐炎化紡績糸の製造方法。A method for producing an oxidized spun yarn, comprising spinning an oxidized fiber bundle obtained by adding 0.4 to 0.8 parts by weight of a nonionic surfactant to 100 parts by weight of an oxidized fiber bundle. 捲縮が付与されてなる耐炎化繊維束を用いる請求項4記載の耐炎化紡績糸の製造方法。5. The method for producing a flame-resistant spun yarn according to claim 4, wherein a flame-resistant fiber bundle provided with crimp is used. 単繊維数10000本/束以上の耐炎化繊維束を用いる請求項4または5記載の耐炎化紡績糸の製造方法。The method for producing a flame-resistant spun yarn according to claim 4 or 5, wherein a flame-resistant fiber bundle having 10,000 or more single fibers / bundle is used. 5山/cm以下の捲縮を付与してなる耐炎化繊維束を用いる請求項4〜6いずれか記載の耐炎化紡績糸の製造方法。The method for producing a flame-resistant spun yarn according to any one of claims 4 to 6, wherein a flame-resistant fiber bundle provided with a crimp of 5 ridges / cm or less is used. 捲縮を付与した耐炎化繊維束に400〜700T/mの撚りをかける請求項4〜7いずれか記載の耐炎化紡績糸の製造方法。The method for producing a flame-resistant spun yarn according to any one of claims 4 to 7, wherein the crimped flame-resistant fiber bundle is twisted at 400 to 700 T / m. 請求項1〜3のいずれかに記載の耐炎化紡績糸からなる耐炎化繊維布帛。A flame-resistant fiber fabric comprising the flame-resistant spun yarn according to any one of claims 1 to 3. 厚さ2mm以下かつ単位面積あたりの重量が90g/m以上である請求項9記載の耐炎化繊維布帛。The flame-resistant fiber fabric according to claim 9, wherein the thickness is 2 mm or less and the weight per unit area is 90 g / m 2 or more. 請求項9または10記載の耐炎化繊維布帛を炭化することにより得られる炭素繊維布帛。A carbon fiber cloth obtained by carbonizing the flame-resistant fiber cloth according to claim 9 or 10. 厚さ0.5mm以下かつ単位面積あたりの重量が80g/m以上である請求項11記載の炭素繊維布帛。Carbon fiber fabric of claim 11, wherein a thickness of 0.5mm or less and a weight per unit area is 80 g / m 2 or more.
JP2002291090A 2002-10-03 2002-10-03 Fire-resistant spun yarn and method for producing the same Pending JP2004124309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002291090A JP2004124309A (en) 2002-10-03 2002-10-03 Fire-resistant spun yarn and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002291090A JP2004124309A (en) 2002-10-03 2002-10-03 Fire-resistant spun yarn and method for producing the same

Publications (1)

Publication Number Publication Date
JP2004124309A true JP2004124309A (en) 2004-04-22

Family

ID=32282771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002291090A Pending JP2004124309A (en) 2002-10-03 2002-10-03 Fire-resistant spun yarn and method for producing the same

Country Status (1)

Country Link
JP (1) JP2004124309A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220083239A (en) * 2020-12-11 2022-06-20 주식회사 티에프제이 Oxipan stabilized fiber improved with crimp and flame-resistance, flame-resistance spun yarn containing the same and preparation thereof
JP7140438B1 (en) 2022-04-15 2022-09-21 竹本油脂株式会社 Treatment agent for manufacturing carbon fiber spun yarn, and carbon fiber spun yarn

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220083239A (en) * 2020-12-11 2022-06-20 주식회사 티에프제이 Oxipan stabilized fiber improved with crimp and flame-resistance, flame-resistance spun yarn containing the same and preparation thereof
KR102544318B1 (en) 2020-12-11 2023-06-16 주식회사 티에프제이 Oxipan stabilized fiber improved with crimp and flame-resistance, flame-resistance spun yarn containing the same and preparation thereof
JP7140438B1 (en) 2022-04-15 2022-09-21 竹本油脂株式会社 Treatment agent for manufacturing carbon fiber spun yarn, and carbon fiber spun yarn
WO2023199879A1 (en) * 2022-04-15 2023-10-19 竹本油脂株式会社 Treatment agent for production of carbon fiber spun yarn and carbon fiber spun yarn
JP2023157607A (en) * 2022-04-15 2023-10-26 竹本油脂株式会社 Treatment agent for production of carbon fiber spun yarn and carbon fiber spun yarn

Similar Documents

Publication Publication Date Title
JP4822552B2 (en) Hybrid carbon fiber spun yarn and hybrid carbon fiber spun yarn fabric using the same
EP0835953B1 (en) A precursor fibre bundle for production of a carbon fibre bundle, a carbon fibre bundle, and a process for producing thereof
KR100473126B1 (en) Carbon Fiber Precursor Fiber Bundle
JP5313788B2 (en) Carbon fiber precursor fiber bundle and method for producing the same
JP2006299439A (en) Carbon fiber, method for producing the same, acrylonitrile precursor fiber and method for producing the same
CA3038925A1 (en) Flame-resistant woven fabric
TW202006201A (en) Carbon fiber and method for producing same
TW200540305A (en) High-strength yarn made through stretch breaking and process for producing the same
JPS6132412B2 (en)
US20070111000A1 (en) Filament networks and methods of making same for use in the manufacture of products with enhanced characteristics
CN111065769A (en) Yarns incorporating fluoropolymer staple fibers
JPH06257027A (en) Compound yarn and its production
JP2004124309A (en) Fire-resistant spun yarn and method for producing the same
JP4624571B2 (en) Method for producing carbon fiber precursor yarn
CN112725971B (en) Heat-insulating yarn
Wu et al. Twist in the Spinning of a Composite Yarn
JP2006274507A (en) Flame resistant fiber
JP4216873B2 (en) Method for producing carbon fiber precursor fiber bundle
JP4002426B2 (en) Carbon fiber spun woven fabric structure for polymer electrolyte fuel cell electrode material and method for producing the same
JP2003045443A (en) Nonwoven carbon fiber fabric for electrode material of high polymer electrolyte fuel cell and its manufacturing method
JP4646467B2 (en) Spun yarn
WO2010021045A1 (en) Woven fabric of isotropic pitch carbon fiber and process for producing the same
JP4074820B2 (en) Polyacrylonitrile-based oxidized fiber spun yarn
JP6075148B2 (en) Spun yarn and fabric using the same
JPH11189913A (en) Precursor fiber bundle for producing carbon fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071204